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Abstract
The gravitational Higgs mechanism proposed by ’t Hooft in arXiv:0708.3184
involves the spacetime metric gμν as well as the induced metric gμν ∝
ηab∂μφa∂νφ

b where φa (a = 0, . . . , 3), as we call it, break all four
diffeomorphisms spontaneously via the vacuum expectation values 〈φa〉 ∝ xa .
In this framework, we construct and analyze the most general action density
in terms of various invariants involving the curvature tensors, connexion
coefficients, and the contractions and the determinants of the two metric
fields. We show that this action admits a consistent expansion about the
flat background such that the resulting Lagrangian possesses several novel
features not found in the linearized Einstein–Hilbert Lagrangian with Fierz–
Pauli mass term (LEHL-FP): (i) its kinetic part generalizes that of LELHL-FP
by weighing the corresponding structures with certain coefficients generated
by invariants, (ii) the entire Lagrangian is ghost– and tachyon–free for mass
terms not necessarily in the Fierz–Pauli form, and, (iii) a consistent mass term
is generated with no apparent need to higher derivative couplings.

PACS numbers: 04.00.00, 04.50.Kd, 11.30.Qc

1. Introduction and motivation

In general, massive fields with spin s � 1 possess 2s − 1 longitudinal components not found
in their massless limit. These extra components directly couple to the conserved currents,
and their effects do not necessarily disappear in the limit of vanishing mass. Therefore, there
arises a discontinuity in the field’s mass, and it renders the associated scattering amplitudes
unphysical. This phenomenon is known to occur in non-Abelian gauge theories [1] as well
as (the linearized) gravity [2]. Indeed, the linearized Einstein–Hilbert action, linearized about
the flat spacetime in metric perturbations,

hμν ≡ gμν − ημν (1)
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admits a mass term of the form

Lmass = − 1
4M2

P lm
2
g

(
hαβhαβ − ζhα

αh
β

β

)
(2)

where, ζ = 1 strictly, for the tensor theory to be ghost-free [3]. In other words, it is only
and only for ζ = 1, the trace mode h ≡ hα

α , which is a ghost as it possesses negative energy
[4], decouples from the rest. As mentioned before, this tensor theory is discontinuous as
mg → 0 [2].

A highly important feature of the Fierz–Pauli mass term (2), worthy of emphasizing here,
is that it holds only in the linearized scheme. In other words, this very structure does not
admit any nonlinear completion obeying general covariance. This immediately follows from
the fact that, among the geometrical quantities pertaining to the spacetime manifold, there is
no source, other than the determinant of the metric det(gμν), for a non-derivative structure
like the Fierz–Pauli mass term. However, one immediately runs into difficulties while trying
to generate (2), if det(gμν) is the only source. Indeed, a likely choice would be to augment
Einstein–Hilbert action by vacuum energy contribution,

√−det(gμν)Vvac. However, this
energy component cannot generate the graviton mass term correctly since, in the first place,
background geometry is wrong and, secondly, the quadratic part of the linearized

√−det(gμν)

yields (2) with ζ = 1/2 not ζ = 1. As a step further, one can imagine including higher powers
of

√−det(gμν) for generating (2). However, this is simply impossible in general relativity
since det(gμν) is a scalar density and the general covariance gets blatantly broken unless
some other scalar density (the determinant of some tensor field different than the metric) is
appropriately incorporated into the action.

For a resolution of these problems (as reviewed in detail in [5]), it is considered convenient
to start with an analysis of the mass discontinuity. This problem is overcome, in non-Abelian
gauge theories, via the Higgs mechanism through which the gauge field develops requisite
longitudinal component by swallowing the Goldstone boson generated by the spontaneous
breakdown of the gauge symmetry. The system, as a whole, consists not only of the gauge
field but also of the scalars, so that number of degrees of freedom remain unchanged as the state
changes from symmetric to broken phase, and vice versa. In analogy with non-Abelian gauge
theories, recently ’t Hooft [6] (see also the previous work [7] and references therein), followed
by [8, 9], proposed a similar mechanism for gravity in which graviton acquires mass via the
spontaneous breakdown of the diffeomorphism invariance (see the earlier works [10–12, 13]
for variant approaches).

In essence, what ’t Hooft suggests is to introduce ‘scalar coordinates’ φa(x) (a =
0, 1, 2, 3) which are functions of the ‘vector coordinates’ xμ (μ = 0, 1, 2, 3) of the spacetime
(in the spirit of manifold structures [14] utilized for spacetime compactification). Nonvanishing
vacuum expectation values (VEVs) of these scalars define a ‘preference gauge’, more precisely
a ‘preference frame’ in which diffeomorphism invariance is spontaneously broken, whence
graviton acquires a nonvanishing mass [6]. This mass generation process, compared to gauge
theories, is complicated by the fact that the number of the scalars eaten is higher than the number
of longitudinal degrees of freedom that should be generated. In other words, nonunitary
degrees of freedom must be eliminated to have a physically sensible massive graviton. This
point, in the framework of [6, 9], turns out to require higher derivative couplings in the action,
in order to provide additional structures to eliminate the non-unitary modes. One important
aspect of the present work will be to show that, elimination of the non-unitary modes does not
necessarily necessitate such higher derivative terms.

By imposing the invariance under the shifts [6]

φa → φa + ca (3)
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it is automatically guaranteed that (i) φa cannot have non-derivative interactions such as a
mass term, (ii) φa can interact only gravitationally via their kinetic terms, and finally (iii) all
the effects of scalar coordinates can be encoded into the ‘induced metric’

gμν = 1

M4
ηab∇μφa∇νφ

b (4)

which is made dimensionless by rescaling its right-hand side by M4,M being a mass scale
related to the VEV of the scalars φa . At this point, for definiteness and clarity, it proves useful
to dwell on the meanings and implications of the ‘metric fields’ to be used throughout the text:

• The ‘metric’ fields gμν and gμν are actually spin-2 tensor fields. In the technical sense,
they are not ‘metric’ fields. In fact, the former encodes the geometry (gravitational
field) while the latter sets the background geometry with respect to which one studies the
dynamics of spin-2 excitations hμν via (1). The true metric in this whole setup is the flat
Minkowski metric ημν . In spirit, the setup mimics that of bimetric gravity [16].

• The gμν , induced by the scalars φa , is a tensor field that plays a role similar to that of the
Higgs field in the spontaneously broken gauge theories. It equals ημν when all the four
diffeomorphisms are broken spontaneously, and this sets the background geometry.

• The internal metric of the scalars is the flat Minkowski metric ηab, not δab. In fact,
structure of the induced metric in (4) parallels the decomposition gμν = ηabe

a
μeb

ν so that
the two metrics are related by the exchange of the vierbein ea

μ and the gradient of the
scalars ∇μφa .

These observations reveal the distinctions among gμν, gμν and ημν , though they will all be
called ‘metric’ in what follows. The gμν and gμν will be treated as two coexisting metric
fields, though the latter reduces to ημν upon spontaneous diffeomorphism breaking.

In this work, we make use of the coexisting gμν and gμν fields to write down the
most general action density, and show that it admits a consistent expansion about the flat
background such that the resulting Lagrangian owns several novel features not found in the
linearized Einstein–Hilbert Lagrangian with Fierz–Pauli mass term (LEHL-FP): (i) its kinetic
part generalizes that of LELHL-FP by weighing the corresponding structures with generic
coefficients formed by those of the invariants present in the action, (ii) the total Lagrangian
qualifies to be ghost– and tachyon–free even for ζ �= 1 provided that the Lagrangian parameters
satisfy certain consistency relations, and finally, (iii) a consistent mass term arises with no
apparent need to higher derivative couplings.

The rest of the work is organized as follows. In section 2 below, we construct the action
density after determining exhaustively the invariants made out of metric tensors, curvature
tensors, and connexion coefficients. Also in this section, we derive the linearized action,
determine the conditions on model parameters, and elaborate upon the generalized nature of
the action by comparing it with the LEHL-FP framework, in regard to various extra structures
not found in LEHL-FP setup. In section 3 we summarize our main findings, and conclude.

2. The action

For determining the most general action density, it proves useful to first prepare an inventory
of the invariants. The non-derivative invariants are those constructed out of the metric fields,
gμν and gμν . In this class, there naturally arise two fundamental invariants

K = gμνg
μν, D = det(gμν)

det(gμν)
(5)
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where K is related to the kinetic term of the φa , and the D to the ratio of the determinants of
the two metrics. It is clear that K necessarily embodies a ghost state, since the scalar fields
φa possess an indefinite metric (ηab instead of δab). The invariants K and D are also invariant
under the shift transformation (3). In fact, any function of them are also shift-invariant, and
hence, they contribute to the action density via generic functions of the form V1(K), V2(D) and
V3(1/D). These functions, as they stand, serve as shift-invariant ‘potentials’ for the metric
field.

The derivative invariants, that is, those invariants which involve derivatives of the metric
fields consist of a number of structures constructed from the curvature tensors and the
connexion coefficients. Concerning the former, one readily finds two invariants

R1 = gμνgαβRμανβ, R2 = gμνgαβRμανβ (6)

each of which dynamically differing from the usual Ricci scalar R ≡ gμνgαβRμανβ . Not
surprisingly, these are not the only curvature invariants since, being a metric tensor, the
induced metric gμν itself generates novel structures paralleling those generated by gμν . To
this end, in the spirit of constructing Lévi-Civitá connexion 
 from the metric tensor gμν , one
can construct a different connexion



λ

μν = 1
2 ĝ

λρ
(∂μgνρ + ∂νgρμ − ∂ρgμν) (7)

based on gμν , assuming that it is invertible. Here, ĝ
λρ

is the matrix inverse of the induced

metric gλρ , that is, ĝλρg
ργ = δ

γ

λ . It is worth emphasizing again, that ĝ
λρ �= gλρ ≡ gλκgκθg

θρ .

Needless to say, 

λ

μν is compatible with gμν in full analogy with the compatibility of the 
λ
μν

with the gμν .

As with the connexion 
λ
μν , the new connexion 


λ

μν also generates its Riemann tensor
Rμανβ from which, similar to (6), one constructs the curvature invariants

R1 = gμνgαβRμανβ, R2 = gμνgαβRμανβ (8)

in addition to the Ricci scalar R ≡ gμνgαβRμανβ .
Apart from (6) and (8) generated by the curvature tensors of gμν and gμν , there exist extra

invariants generated by the connexion coefficients. Indeed, the difference

Fλ
μν = 
λ

μν − 

λ

μν (9)

is a rank (1,2) tensor, and its contractions give rise to additional derivative invariants
independent of the curvature tensors [16]. Obviously, all the invariants stemming from
this tensor field necessarily involve even occurrences of Fλ

μν . In fact, up to the quadratic order,
possible invariants read as

C1 = gμνFα
αμF

β

βν, C2 = gμνFα
βμFβ

αν

C3 = gμνFα
αβFβ

μν, C4 = gμνgαβgλρFλ
αμF

ρ
βν

C1 = gμνFα
αμF

β

βν, C2 = gμνFα
βμFβ

αν (10)

C3 = gμνFα
αβFβ

μν, C4 = gμνgαβgλρFλ
αμF

ρ
βν

C5 = gμνgαβgλρFλ
αμF

ρ
βν, C6 = gμνgαβgλρFλ

αμF
ρ
βν

Note that in these invariants indices on Fλ
μν are kept as in (9), with no further lowering or

raising operations.
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Having determined all possible invariants in the presence of two metric fields, a general
action integral can be written as

SG = 1

2
M2

P l

∫
d4x

√−det(gμν)

{
R + aR + a1R1 + a2R2 + a1R1 + a2R2

+
4∑

i=1

ciCi +
6∑

j=1

cjCj + V1(K) + V2(D) + V3(1/D)

}
(11)

wherein the derivative invariants with higher mass dimension (such as Rn, C2
i , R

n
i with n � 2)

are ignored. Therefore, a, ai, ai, ci and ci are all dimensionless constants. In spite of this
restricted structure of the sector of derivative invariants, the sector of the non-derivative
invariants, represented by the ‘potentials’ V1,2,3, is kept as general as possible to cope with the
constraints that can be faced with while inducing a consistent graviton mass term.

The action density in (11) incorporates, in the geometrical sector, all possible invariants
within the aforementioned limits. Obviously, this action provides a more general framework
than those in the existing literature, as the original proposal of ’t Hooft [6], and its refinements
[8, 9] involve only R and V1(K) contributions. The extra structures, as will be shown in the
next section, give rise to novel features in relation to structuring of the background geometry,
canceling the tadpoles, and killing the ghosts.

3. Higgsing gravity

The general covariance guarantees that physical quantities are independent of the choice of
the coordinates. For instance, invariance of the Einstein–Hilbert action under the infinitesimal
coordinate transformations (ε being infinitesimal)

xμ → xμ − εμ(x) (12)

reflects itself in the conservation law expressed by the contracted differential Bianchi identity.
This coordinate transformation or ‘gauge transformation’ gives rise to the diffeomorphisms

δgμν = ∇μεν + ∇νεμ, δφa = ∇μφaεμ (13)

as dictated by variations of the metric gμν , and the scalars φa under general coordinate
transformations. This very reparametrization invariance is the fundamental gauge symmetry
of the action (11) in that its status – exact or broken – determines whether or not there exist
massive excitations in the spectrum. Before turning our attention to the broken symmetry case,
which is the main aim of this work, we first briefly discuss the case of exact diffeomorphism
invariance, corresponding to the massless graviton, for completeness.

3.1. Massless graviton

In massless phase, reparametrization invariance is exact. The vacuum configuration

〈gμν〉 = ημν, 〈φa〉 = 0, (14)

for which 〈gμν〉 = 0 obviously, can be sustained, as all the curvature invariants vanish trivially,
if the potential functions satisfy the constraint

V1(0) + V2(0) + V3(∞) = 0. (15)

There is a subtlety involving the invariants Ci and Ci . That is while 
λ
μν = 0 trivially for

strictly flat metric, the connexion 

λ

μν of the induced metric appears to have 0
0 indeterminacy.
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Nonetheless, this indeterminacy does not mean that 

λ

μν diverges. In fact, with an appropriate
regularization procedure, for example, 〈φa〉 = δ1x

a + δb
2xbx

a with δa
2 
 δ1 and δa

2 → 0, it
can be adjusted to vanish. Consequently, the invariants Ci and Ci all vanish in the symmetric
vacuum (14) since

〈
Fλ

μν

〉 = 0 therein.
The excitations about the vacuum configuration (14) involve two propagating degrees of

freedom pertaining to hμν and four associated with φa since all the diffeomorhisms in (13)
are exact. These six degrees of freedom constitute the symmetric phase of the fields and the
interactions encoded in (11).

We have to reiterate that this regularization procedure affects only the massless case. That

it is, once 

λ

μν is regulated to vanish when gμν → 0, as long as the constraint in (15) is
satisfied, one realizes the massless gravity limit smoothly. For the massive case, which is at
the focus of the present work, this subtlety is irrelevant, however.

3.2. Massive graviton

In the massive phase, reparametrization invariance is spontaneously broken. Indeed, the
vacuum configuration (M being the mass scale appearing in (4))

〈gμν〉 = ημν, 〈φa〉 = M2xa, (16)

breaks the diffeomorphism invariance spontaneously and thus, as in gauge theories, defines a
‘preference frame’ such that all temporal and spatial diffeomorphisms are broken by imposing

δφa = 0 (17)

in (13). This gauge fixing forces all four scalar fields φa to remain stuck to their VEVs in (16),
leaving behind no scalar fluctuations to propagate. Expectedly, again in complete similarity
to gauge theories, this gauge fixing procedure automatically renders all 10 components of hμν

physical. However, a massive tensor field can have only 5 propagating modes, and thus, the 5
extra components should be eliminated by the dynamics encoded in (11).

Under the gauge fixing (17), the building blocks of the invariants in (11) can be
systematically expanded about (16) as follows:

(1) The scalars φa are fixed to their VEVs: φa = 〈φa〉 = M2xa .
(2) The quantities involving the spacetime metric gμν we expanded up to quadratic order as

gμν = ημν + hμν,

gμν = ημν − hμν + hμαhν
α + O(h3),

(18)−det(gμν) = 1 + h + 1
2h2 − 1

2hαβhαβ + O(h3),


λ
μν = 1

2 (ηλρ − hλρ)(∂μhνρ + ∂νhρμ − ∂ρhμν) + O(h3).

(3) The quantities related to the induced metric are expanded as

gμν = ημν,

gμν = ημν − 2hμν + 3hμαhν
α + O(h3),

(19)−det(gμν) = 1,



λ

μν = 0.

In addition, one has ĝμν = ημν , and since ĝ
μν

is the matrix inverse of gμν , it is immediately
found that ĝ

μν = ημν .
Having (17), (18) and (19) at hand, one can readily expand the action density in (11)

about the vacuum configuration (16) to obtain the hμν Lagrangian. To begin with, one notes

6
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that R, R1, R2 all vanish identically, as follows from (19). The rest of the derivative invariants
give rise to the action density

−M2
P l

2

[
(1 + a1 + a2)(∂λ∂ρh

λρ − � h) +
â

4
∂λh

αβ∂λhαβ

+
b̂

2
∂λh

λα∂ρhρα +
ĉ

2
∂λh∂ρh

λρ +
d̂

4
∂λh∂λh

]
(20)

whose first line, linear in hμν , can obviously be discarded away since it is a total divergence.
The quadratic terms in the second line form the kinetic part of the total hμν action. The hatted
coefficients herein read in terms of the original ones in (11) as follows

â = 1 + 3a1 + 5a2 + c2 + c2 − 3(c4 + c4 + c5 + c6)

b̂ = −1 − 3a1 − 5a2 + c4 + c4 + c5 + c6 − c2 − c2
(21)

ĉ = 1 + 2a1 + 3a2 − 1
2 (c3 + c3)

d̂ = −1 − a1 − a2 − c1 − c1.

In each coefficient, the right-hand side starts with ±1 which is what would be found within
LEHL-FP formalism, and the additional terms represent the deviations due to the curvature
invariants occurring in the presence of gμν .

The non-derivative part of the action originates from the ‘potentials’ V1,2,3 in (11).
Expanding them up to quadratic order by using (17), (18) and (19), the action density turns
out to be M2

P l

/
2 times

V1(4) + V2(1) + V3(1) +
[
V ′

3(1) − V ′
1(4) − V ′

2(1) + 1
2 (V1(4) + V2(1) + V3(1))

]
h

+
[

1
2 (V ′

3(1) − V ′
1(4) − V ′

2(1)) + 1
8 (V1(4) + V2(1) + V3(1))

+ 1
2 (V ′

2(1) + V ′
3(1) + V ′′

1 (4) + V ′′
2 (1) + V ′′

3 (1))
]
h2

+
[− 1

4 (V1(4) + V2(1) + V3(1)) − 1
2 (V ′

3(1) − V ′
1(4) − V ′

2(1))

+ 1
2V ′

1(4)
]
hαβhαβ (22)

where primes on Vi’s denote derivatives with respect to their arguments. This action density
is subject to certain consistency conditions beyond (15) found in the symmetric phase. First,
for the entire procedure to be consistent, the background geometry must be flat Minkowski,
that is, the total vacuum energy must vanish

V1(4) + V2(1) + V3(1) = 0. (23)

Next, in (22) the terms linear in h must also vanish

V ′
3(1) − V ′

1(4) − V ′
2(1) = 0 (24)

as otherwise classical field configuration gets destabilized (or tadpoles are generated in
quantized theory).

Combining the kinetic part in (20) with the remnant of (22) after imposing (23) and (24),
the total hμν action takes the form

SL = −M2
P l

2

∫
d4x

[
â

4
∂λh

αβ∂λhαβ +
b̂

2
∂λh

λα∂ρhρα +
ĉ

2
∂λh∂ρh

λρ

+
d̂

4
∂λh∂λh +

1

4
m2

g(h
αβhαβ − ζh2)

]
(25)
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where the mass term, taken to be precisely in the form of (2), involves the ‘graviton mass’

m2
g = −2V ′

1(4) (26)

as well as

ζ = − 1

V ′
1(4)

(V ′
1(4) + 2V ′

2(1) + V ′′
1 (4) + V ′′

2 (1) + V ′′
3 (1)) (27)

where uses have been made of the conditions (23) and (24). These conditions, that the vacuum
energy and tadpoles must vanish, impose strong fine-tuning constraints on the potentials
Vi . Their violations destabilize the background geometry and render the whole procedure
inconsistent. Apart from them, there arise additional constraints stemming from the hμν

dynamics itself, as to be determined below.
The action (25), in form, embodies the most general quadratic-level Lagrangian for a

symmetric tensor field. In fact, it is precisely the generic tensor theory setup studied in [15],
which provides a detailed analysis of propagating modes and elimination of the ghosts and
tachyons. Nonetheless, for the present analysis, it proves particularly useful to focus on the
equations of motion themselves, especially for a clear view of the dynamics of the scalar ghost
h. The equations of motion for hμν , as originate from the extremization of (25), read as

â � hμν + b̂
(
∂μ∂ρh

ρ
ν + ∂ν∂ρh

ρ
μ

)
+ ĉημν∂ρ∂λh

ρλ + ĉ∂μ∂νh

+ d̂ημν �h − m2
g(hμν − ζhημν) = 0 (28)

which can be mapped into dynamical equations of lower spin components by repeatedly
applying contraction and divergence operations. This way, the trace component h is found to
obey

b2 � 2h + b1m
2
g �h + b0m

4
gh = 0 (29)

wherein

b2 = −â2 − 2̂a(̂b + ĉ + 2̂d) − 6̂bd̂ + 3̂c2,

b1 = −2((1 − 2ζ )̂a + (1 − 3ζ )̂b + ĉ + 2̂d), (30)

b0 = 4ζ − 1,

which involve the model parameters in (21) at the order indicated by their subscripts.
The equations of motion for the vector component ∂μhμν is[

(−â − b̂) � + m2
g

]
∂μhμν +

1

2̂b + 4̂c

[
(̂a(̂b + ĉ) − b̂(̂c − 2̂d))�

− (̂c + (1 − 2ζ ))m2
g

]
∂νh = 0 (31)

This is coupled to (29) via the gradient of h.
The equations of motion (29) and (31) reveal the unphysical degrees of freedom contained

in hμν . Indeed, as the first point to note, the trace field h is clearly a ghost, and therefore, it
should be prohibited to propagate. This is accomplished by requiring

b2 = 0, b1 = 0 (32)

in (29). The main consequence of these conditions is that h is eliminated from the 10 total
degrees of freedom in hμν since, from (29), h = 0 follows unambiguously (One might
alternatively consider taking b0 = 0 as this also satisfies (29). However, this choice does
not eliminate h from the spectrum; moreover, it gives rise to a ghosty graviton as it enforces
ζ = 1/4.).

8
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Setting h = 0 in (31) reveals that the vector ∂μhμν is also a ghost, and its elimination
from the spectrum requires

â + b̂ = 0 (33)

as a further condition for having a ghost-free tensor theory.
Consequently, the equations of motion (28), after eliminating scalar ghost h and vector

ghost ∂μhμν , take the form

h = 0,

∂μhμν = 0, (34)(̂
a �−m2

g

)
hμν = 0,

where, obviously, it is imperative to have

â > 0, m2
g > 0 (35)

for equations of motion (34) to describe a non-ghost, non-tachyonic, massive, free, spin-2
field. The wave equation for hμν can be put into conventional form by rescaling the action
(25) by 1/̂a. Positivity of m2

g , through (26), implies that V ′
1(4) < 0. The main implication

of this, recalling that K = gμνg
μν = 4 − h + O

(
h2

)
, is that V1(K) must obtain negative slope

around K = 4 so as to invert the signature of gμν controlled by ηab. This switch of signature
makes m2

g positive, or equivalently, the graviton non-tachyonic.
The equations of motion (34) hold only for free hμν . The matter sector can be incorporated

into geometrodynamics by augmenting the action (11) with

�SG =
∫

d4x
√−det(gμν)Lmatter(g, g, ψ) (36)

where ψ stands for matter fields, collectively. This add-on interaction causes the hμν action
(25) to be extended by −(1/2)hμνT matter

μν . Consequently, unless the matter stress tensor T matter
μν

possesses certain special features, all components of hμν , excluding the vector ghost ∂μhμν ,
couple to and affected by T matter

μν . This implies, in particular, that the equation of motion of
h (29) possesses an inhomogeneity involving the trace of T matter

μν . If the matter sector is not
conformal invariant, which indeed is not, it becomes impossible to eliminate h, or equivalently,
to obtain h = 0. This problem was already noticed by ’t Hooft in [6], and a resolution was
suggested: Similar to the potentials V2,3, the matter Lagrangian should also depend on the
metric tensor via the determinantal invariant D. More explicitly, the matter Lagrangian must
have the specific structure

Lmatter(gμν, gμν, ψ) ≡ Lmatter(D
1/6gμν, ψ) (37)

so that the scalar ghost h gets eliminated despite the presence of matter.
Having reached a physically sensible picture of massive graviton, at this stage it could

be useful to perform a global analysis of the resulting constraints on the model parameters.
Tabulated in table 1 are the constraints imposed by having ghost– and tachyon–free massive
gravity. The implications or status of the constraints are shown for both the LEHL-FP and
the present model. In the linearized Einstein–Hilbert action with Fierz–Pauli type mass term
(the LEHL-FP framework), the parameters â, . . . , d̂ take on rather specific values such that
all the bounds and constraints are satisfied trivially (designated by the symbol

√
in the third

column). The only exception is ζ , namely b1 = 0 requires ζ = 1 which is the unique value of
ζ [9, 15] for the Fierz–Pauli mass term defined in (2).

Concerning the model under investigation, constraints and resulting bounds on or relations
among the model parameters are displayed in the fourth column of table 1. The fact that
â, . . . , d̂ deviate from LEHL-FP limit due to nonvanishing ai, ci and ci contributions, leaves
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important impact on parametric relations arising in response to bounds and constraints. In
particular, none of the constraints (listed in the second column) is satisfied trivially; each is
realized at the expense of imposing a further relation, which itself leads to the determination
or bounding of a certain parameter in terms of the others. The constraints are not sufficient in
number for a full determination of the model parameters. Nevertheless, various relations in the
fourth column reflect the generalized nature of (25) with respect to the LEHL-FP framework.
A highly important feature is that ζ is forced to have a specific relation to â, b̂ and ĉ. However,
as a direct consequence of the gravitational Higgs mechanism, the same parameter is related
also to the potential functions Vi , at specific values of these arguments as depicted in (27).
Therefore, elimination of the scalar ghost imposes a direct correlation between the derivative
and non-derivative sectors in (11) by forcing ζ to be equal to

ζ = â2 − 3̂âc + 3̂c2

â2

= 1

4(1 + 3a1 + 5a2 + c2 + c2)2

[
4 + 12a1

2 + 28a2
2

+ 6a1(2 + 6a2 − c3 − c3) + 4(c2 + c2)(c2 + c2 − 1)

+ 2a2(8 + 2(c2 + c2) − 3(c3 + c3))

+ 3(c3 + c3)(−2 + c3 + c3 + 2(c2 + c2))
]

= − 1

V ′
1(4)

(V ′
1(4) + 2V ′

2(1) + V ′′
1 (4) + V ′′

2 (1) + V ′′
3 (1)) (38)

where use has been made of (21) and (33) in the second step. This equality can be used
to eliminate one of the unknowns. For instance, it can be used to solve c2 + c2 in terms of
c3 + c3, a1, a2 and the potentials in the second line. The solution, after replacing in the third
row of table 1, determines c1 + c1 in terms of c3 + c3, a1, a2 and the potentials. This, however,
does not bring any important novelty in that c1 +c1 just gets expressed in terms of the potential
functions instead of c2 + c2. Nonetheless, extraction of c2 + c2 from (38) gives some useful
bounds in light of the constraint â > 0 (implying 1 + 3a1 + 5a2 + c2 + c2 > 0 as shown in the
fourth row of table 1). Indeed, one finds that

1 + 3a1 + 5a2 + c2 + c2 = 3

4� + 2
(2 + 4a1 + 6a2 − c3 − c3)

[
1 ±

√
−1

3
(4� + 5)

]
(39)

where

−1 − � ≡ − 1

V ′
1(4)

(V ′
1(4) + 2V ′

2(1) + V ′′
1 (4) + V ′′

2 (1) + V ′′
3 (1)) (40)

which equals the second line of (38). The ± signs correspond to the two solutions of c2 + c2 as
extracted from (38). This quantity can be guaranteed to be positive by various combinations
of signs and magnitudes of the parameters at the right-hand side. On the other hand, the
parameter � is bounded by

� < − 5
4 (41)

as follows from the terms in the radical sign in (39). This then gives rise to the constraint

2V ′
2(1) + V ′′

1 (4) + V ′′
2 (1) + V ′′

3 (1) > 5
4 |V ′

1(4)| (42)

after using the inequality V ′
1(4) < 0 for graviton to be non-tachyonic (as indicated in the fifth

row of table 1). However, there is more than this. Indeed, after using (42) in the definition of
ζ in (27), one arrives at the bound

ζ > 1
4 (43)
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Table 1. Constraints on the model parameters for having a ghost– and tachyon–free massive
graviton. The implication or status of each constraint is depicted for LEHL-FP (the third column)
and the present model (the fourth column). The symbol

√
means that a given constraint is satisfied

trivially (as happens for LEHL-FP for all constraints except for b1 = 0) or upon the imposition
of a condition which itself constrains or determines certain parameters in terms of the others (as
happens for the present formalism in all cases).

Present Model (equation (11) or
LEHL-FP Model equation (25)) (see equation (21)

Equation Relation (̂a = −b̂ = ĉ = −d̂ = 1) for parameters)

Equation (33) â + b̂ = 0
√ √

if c4 + c4 + c5 + c6 = 0

Equation (32) b2 = 0
√

√
if d̂ = −((̂a − ĉ)2 + 2̂c2)/2̂a⎛⎜⎜⎜⎜⎜⎝
c1 + c1 = 1

8(1 + 3a1 + 5a2 + c2 + c2)

×[3(c3 + c3)
2−4(c3 + c3)(2 + 3a1 + 4a2

− c2 − c2) + 4(3a2
1 + 12a1a2 + 12a2

2

+ (c2 + c2)
2 + 2(a2 − 1)(c2 + c2))]

⎞⎟⎟⎟⎟⎟⎠
Equation (35) â > 0

√ √
if 1 + 3a1 + 5a2 + c2 + c2 > 0

Equation (35) m2
g > 0

√ √
if V ′

1(4) < 0

Equation (32) b1 = 0
√

if ζ = 1
√

if ζ = (̂a2 − 3̂âc + 3̂c2)/̂a2 > 1
4

which clearly shows that ζ is positive yet does not need to take its value preferred by the
Fierz–Pauli mass term. This bound is indicated in the last row of table 1.

It is clear that the elimination of the scalar ghost does only put a bound on ζ as given in
(43). For instance, there is no obligation to have one or all of the V ′′

i to be nonzero. Indeed,
they can all vanish without causing a problem, provided that V ′

2(1) assumes an appropriate
value to satisfy (42). In this sense, thanks to the inclusion of determinantal invariants, V2 (D)
and V3 (1/D) in (11), it becomes possible to induce a physically consistent graviton mass with
no fundamental need to the higher derivative couplings. This is a novel feature not found
in [9], wherein it is shown that the existence of higher derivative couplings are essential for
eliminating the h.

4. Conclusion

In this work, by exploiting the coexistence of two metric fields gμν and gμν in the gravitational
Higgs mechanism proposed by ’t Hooft [6], we have constructed and studied the most general
action functional (11). The action involves both derivative (originating from the curvature
tensors and the connexion coefficients) as well as non-derivative (originating from both gμν

and gμν) invariants.
We have shown that the action density in (25) admits a consistent expansion about the flat

background such that the resulting Lagrangian (25) possesses several novel features not found
in the linearized Einstein–Hilbert Lagrangian with the Fierz–Pauli mass term. First of all,
its kinetic part generalizes that of the LELHL-FP framework by weighing the corresponding
structures with generic coefficients (21) generated by the invariants present in (11). Next,
a ghost– and tachyon–free massive gravity theory arises, once the conditions in the table 1
are met. In particular, the absence of the ghosts and the tachyons does not require ζ = 1; it
takes a general value shown in the fifth row of the table 1, provided that the constraint (38) is
respected.
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It is true that the action in (11) contains various independent structures which come
with independent coefficients. We have checked that one can eliminate several of these by
making use of the relations stemming from the constraints tabled in the fourth column of the
table 1. However, as the number of the constraints is fewer than the number of parameters,
there are yet several free parameters left over in the scheme after eliminating as many of
these as the constraints enable us to do. The parameters c3 + c3, a1, a2 and various potential
functions remain as essentially free parameters (as long as (42) and the bounds in fourth and
fifth rows of table 1 are satisfied).

Another important feature concerns the nature of the non-derivative invariants. The
inclusion of the determinantal invariants facilitates generation of the graviton mass term with
no apparent need to the higher derivative couplings. In other words, the potentials Vi can have
vanishing derivatives at the second and the higher orders, yet a physically meaningful graviton
mass still arises, as shown in (38).

In the entire text the focus of our attention was on the massive gravity, only. However,
this does not need to be so. Indeed, the action (25) does also describe of glueball dynamics in
QCD after the replacements MPl → �QCD and mg ∼ 1 GeV. Therefore, generality of (25)
can also provide useful tools for exploring the glueballs in QCD.
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