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ABSTRACT 

 
 In this thesis Artificial Neural Networks (ANN) and fuzzy logic models of the 

building energy use predictions were created. Data collected from a Hawaian 42 storey 

commercial building chiller plant power consumption and independent hourly climate 

data were obtained from the National Climate Data Center of the USA. These data were 

used in both ANN and the fuzzy model setting up and testing. The tropical climate data 

consisted of dry bulb temperature, wet bulb temperature, dew point temperature, relative 

humidity percentage, wind speed and wind direction.Both input variables and the output 

variable of the central chiller plant power consumption were fuzzified, and fuzzy 

membership functions were employed. The Mamdani fuzzy rules (32 rule) in If –Then 

format with the centre of gravity (COG; centroid) defuzzification were employed. The 

average percentage error levels in the fuzzy model and the ANN model were end up 

with 11.6% (R2=0.88) and 10.3% (R2=0.87), respectively. The fuzzy model is 

successfully presented for predicting chiller plant energy use in tropical climates with 

small seasonal and daily variations that makes this fuzzy model.  

 

  

 

 

 

 

 

 

 

 

 

 



   
 

ÖZET 

 
 Bu tezde binalarda enerji kullanımını tahmin etmek amacıyla yapay sinir a�ları 

ve bulanık mantık modelleri olu�turulmu�tur. Veriler Amerika Birle�ik Devletleri 

(ABD), Hawaii’de bulunan 42 katlı bir ticari binanın so�utma sisteminden so�utucu 

yükü toplanarak ve ba�ımsız saatlik iklim verileri ABD’nin ulusal klima data 

merkezinden sa�lanmı�tır. Bu data her iki yapay sinir a�ları (YSA) ve bulanık mantık 

modelleri için e�itme ve test etme amaçlı kullanılmı�tır. Tropikal klima datası kuru 

termometre sıcaklı�ı, ya� termometre sıcaklı�ı, çi� noktası sıcaklı�ı, ba�ıl nem yüzdesi, 

rüzgar hızı ve rüzgar yönünden meydana gelir. Hem girdi de�i�kenleri hem de çıktı 

de�i�keni olan merkezi chiller yük tüketimi yapay sinir a�ları kullanılarak 

bulanıkla�tırıldı ve bulanık üyelik fonksiyonları uygulandı. E�er-o zaman yapısındaki 

Mamdani bulanık kurallarına (32 kural) a�ırlık merkezi durula�tırması uygulandı. 

Bulanık modelin ortalama yüzde hata seviyesi % 11.6 (R2=0.88) ile yapay sinir a�ları 

modelinin ortalama yüzde hata seviyesi % 10.3 (R2=0.87) olarak gerçekle�ti. Chiller’ın 

küçük mevsimsel ve günlük de�i�iklikler gösterdi�i tropik iklimlerde enerji 

kullanımının Bulanık model ile tahminlenmesi bu çalı�mada ba�arıyla gösterilmi�tir. 
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CHAPTER 1 
 

 

INTRODUCTION 

 
Artificial intelligence (AI) methods, including neural networks, fuzzy logic and 

genetic algorithms, have been finding applications in building engineering since the past 

decade. A review study by (Krarti 2003) describes artificial intelligence methods and 

provides example uses in the building engineering. The most common applications of 

AI are building energy usage prediction and forecasting, HVAC controls, and system 

modeling. The building energy use prediction and forecasting are mostly based on 

artificial neural networks (Yalcintas and Akkurt 2005). Fuzzy logic based methods and 

genetic algorithms are more often used in HVAC controls and fault diagnosis 

(Guillemin 2002). While earlier system modeling studies used artificial neural networks, 

recent studies use fuzzy logic or neural fuzzy networks (Kesgin and Heperken 2005). 

A building energy usage is generally expressed as a function of weather, 

occupancy and time variables. In the past, various neural network architectures have 

been applied in whole building energy predictions including backpropagation, recurrent 

neural networks, autoassociative neural networks, and general regression neural network 

with relatively successful results having coefficient of variations in the range of 2% to 

40% (Haberl and Thamilseran 1996). These variations in the accuracy of the predictions 

depend mostly on the ANN architecture used, the regularity of the building operation, 

and the accuracy of data measurement devices.  

 

An ANN model based on backpropogation algorithm was developed by 

(Yalcintas and Akkurt 2005). The model predicted a Honolulu high rise building’s 

chiller plant power consumption. The model correlation  coefficient was 0.88, which is 

a very good indication of the predictive power of the ANN. Another significance of this 

study was to do with the tropical climate content of the building data used in the model. 

The current study deals with modeling the same chiller plant power consumption based 

on fuzzy logic. To the authors knowledge, up to date there is no modeling study for the 
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building energy prediction based on fuzzy logic method. Thus, this study presents the 

applicability and potential use of the fuzzy logic method for building energy prediction. 

One particular use of building energy prediction is estimation of energy savings 

due to an equipment retrofit in an existing building. The main challenge in predicting 

the energy savings due to equipment retrofit lies in identifying the comparative data 

after an equipment replacement/retrofit. The variations in weather, building internal 

loads such as occupancy, lighting and miscellaneous loads, and HVAC equipment 

operation schedules make the building energy use dependent upon the variability of 

these parameters. This situation disqualifies the building energy measurements in the 

pre-retrofit period from being accurately compared to the actual energy use 

measurement in the post-retrofit period in determining the energy savings. This 

disqualification, along with the limitations in linear regression methods that are most 

commonly used in processing the measured data, causes large variations between the 

estimated energy savings and the actual energy savings of an equipment retrofit. Thus, 

there is a significant need for a better method which can effectively predict the energy 

savings of a retrofit. In this regard, Artificial Neural Networks (ANN) or fuzzy logic 

method can be an effective method to fulfill this need with much better accuracy. The 

fuzzy logic method developed in this study, and the ANN method presented by 

(Yalcintas and Akkurt 2005) illustrate the potential capacity of these methods in 

accurate energy savings estimates. 

The building that was studied in this thesis is located in Honolulu, Hawaii which 

is situated in tropical climate where variations between the day and night and summer 

and winter are minimal. The building is a 42 storey high-rise building which is air 

conditioned by a central chilled water plant consisting of three chillers with a total 

1250-ton capacity. The chiller plant data collected from the building were augmented 

with meteorological data to create ANN and Fuzzy logic models. 

The thesis is composed of six chapters the second of which explains the 

parameters studied in model construction like the HVAC (heating ventilation and air 

conditioning) parameters. 
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The third chapter presents computational details of the ANN and fuzzy logic 

methods. Fourth chapter discusses the previous ANN and fuzzy logic modeling studies 

related to HVAC systems. In chapter five the ANN and Fuzzy logic model construction 

work performed in this thesis is presented. The final sixth chapter lists the conclusions. 
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CHAPTER 2 
 

 

DEFINING MODEL PARAMETERS 

 

2.1. Ventilation Systems 

There are significant spatial and seasonal variations in the volume of air delivered 

by most Heating, Ventilation, and Air Conditioning (HVAC) Systems. HVAC operators 

must understand the variations to know how to provide occupants with adequate fresh 

air in all spaces throughout the year. The ventilation features most important to an 

intelligent air control are the way in which supply air volume is controlled, and the way 

in which outdoor air delivery is controlled. 

In most HVAC systems a portion of ventilation air supplied to occupied spaces is 

fresh air and a portion is recirculated air. The Variable Air Volume (VAV) system is a 

mechanical system that circulates a mixture of fresh and conditioned air throughout the 

occupied spaces of a building to maintain comfort. Variations in the thermal 

requirements of a space are satisfied by varying the volume of air that is delivered to the 

space at a constant temperature (WEB_4 2005). The total volume of air is important for 

two reasons: 

• Air movement contributes to thermal comfort. The lack of air movement can 

create a sensation of hot/stuffy air.  

• In many VAV systems, outdoor air is a constant fraction of the total supply air. 

Thus, the total volume of outdoor air depends on both the outdoor air fraction, 

and the supply air volume.  
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There are two major types of HVAC systems based upon the use of airflow to 

control temperature the Constant Volume (CV) system, and the Variable Air Volume 

(VAV) system. 

2.1.1. Constant Volume (CV) Systems 

In a Constant Volume (CV) ventilation system, variations in the thermal 

requirements of a space are satisfied by varying the temperature of a constant volume of 

air delivered to the space. A constant fraction of outdoor air will mean that a constant 

volume of outdoor air will be delivered to occupied spaces. This volume can be set to 

satisfy applicable ventilation standards. CV systems are less energy efficient than VAV 

systems, but controls for outdoor air delivery are simpler to manage (WEB_4 2005). 

2.1.2. Variable Air Volume (VAV) Systems 

In a Variable Air Volume (VAV) ventilation system, variations in the thermal 

requirements of a space are satisfied by varying the volume of air that is delivered to the 

space at a constant temperature. VAV systems reduce HVAC energy cost by 10-20% 

over CV systems but complicate the delivery of outdoor air. If the fraction of outdoor 

air is constant, the total volume of outdoor air will be reduced as the supply air volume 

is reduced. An inadequate outdoor air fraction, combined with an inadequate VAV box 

minimum setting, may result in inadequate outdoor airflow to occupant spaces. This 

would occur during part-load conditions. VAV systems also complicate pressure 

relationships in the building and make testing, adjusting, and balancing more difficult. 

Most of the year, the volume of outside air may be reduced to about a third of 

the outdoor air volume at design load. This could result in indoor air quality problems. 

Separate controls to ensure adequate outside air year round do not increase energy costs. 

Some new VAV systems incorporate these controls (WEB_4 2005). 

2.1.3. Economizer 

Economizers are controls of the outdoor air designed to save energy by using 

cool outside air as a means of cooling the indoor space. When the enthalpy of the 



6  

outside air is less than the enthalpy of the recirculating air, conditioning the outside air 

is more energy efficient than conditioning recirculating air. 

2.2. HVAC Components 

Many HVAC components are particularly important to maintaining good an 

intelligent air control. Tips for optimum functionality of HVAC components are 

described next. 

2.2.1. Coils and Drain Pans 

� Malfunctioning coils, including dirty coils, can waste energy and cause thermal 

discomfort. Leaky valves that allow hot or chilled water through the coil when 

there is no demand waste energy and create thermal discomfort.  

� Cooling coils dehumidify the air and cause condensate water to drip into a drain 

pan and exit via a deep seal trap.  

� Standing water will accumulate if the drain pan is not properly designed and 

maintained, creating a microbial habitat. Proper sloping and frequent cleaning of 

the drain pans is essential to good indoor air quality.  

2.2.2. Humidification and Dehumidification Equipment 

� Potable water rather than boiler water should be used as a source of steam to 

avoid contaminating the indoor air with boiler treatment chemicals.  

� Wet surfaces should be properly drained and periodically treated as necessary to 

prevent microbial growth.  

� Duct linings should not be allowed to become moist from water spray.  

2.2.3. Outdoor Air Dampers 

Screens and grilles can become obstructed. Remove obstructions, check 

connections, and otherwise ensure that dampers are operating to bring in sufficient 

outdoor air to meet design-level requirements under all operating conditions. 
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2.2.3.1. Air Filters 

� Use filters to remove particles from the air stream.  

� Filters should be replaced on a regular basis, on the basis of pressure drop across 

the filter, or on a scheduled basis.  

� Fans should be shut off when changing the filter to prevent contamination of the 

air.  

� Filters should fit tightly in the filter housing.  

� Low efficiency filters (ASHRAE Dust Spot rating of 10%-20%), if loaded to 

excess, will become deformed and even “blow out”, leading to clogged coils, 

dirty ducts, reduced indoor air quality and greater energy use.  

� Higher efficiency filters are often recommended as a cost-effective means of 

improving an intelligent air control performance while minimizing energy 

consumption. Filtration efficiency should be matched to equipment capabilities 

and expected airflows.  

2.2.3.2. Ducts 

A small amount of dust on duct surfaces is normal. Parts of the duct susceptible 

to contamination include areas with restricted airflow, duct lining, or areas of moisture 

or condensation, (WEB_3 2005). Problems with biological pollutants can be prevented 

by: 

• Minimizing dust and dirt build-up  

• Promptly repairing leaks and water damage  

• Keeping system components dry that should be dry  

• Cleaning components such as coils and drip pans  

• Good filter maintenance  

• Good housekeeping in occupied spaces.  

Duct leakage can cause or exacerbate air quality problems and waste energy. 

Sealed duct systems with a leakage rate of less than 3% will usually have a superior life 

cycle cost and reduce problems associated with leaky ductwork. Common problems 

include: 
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• Leaks around loose fitting joints.  

• Leaks around light Troffer-type diffusers at the diffuser light 

fixture interface when installed in the return plenum.  

• Leaks in return ducts, in unconditioned spaces or underground 

can draw contaminants from these spaces into the supply air 

system.  

2.2.4. Exhaust Systems 

In general, slightly more outdoor air should be brought into the building than the 

exhaust air and relief air of the HVAC system. This will ensure that the building 

remains under slight positive pressure, (WEB_3 2005). 

• Exhaust should be located as close to the source as possible.  

• Fan should draw sufficient air to keep the room in which the exhaust is located 

under negative pressure relative to the surrounding spaces, including wall 

cavities and plenums.  

• Air should flow into, but not out of, the exhaust area, which may require panels 

in doors or walls to provide an unobstructed pathway for replacement air.  

• The integrity of walls and ceilings of rooms to be exhausted must be well 

maintained to prevent contaminated air from escaping into the return air plenum.  

• Provisions must be made for replacing all air exhausted out of the building with 

make-up outside air.  

2.2.5. VAV Boxes 

In a VAV system, a VAV box in the occupied space regulates the amount of 

supply air delivered to the space, based on the thermal needs of the space. 

Malfunctioning VAV boxes can result in thermal discomfort and fail to prevent buildup 

of indoor air contaminants. It is important to insure that VAV box minimum settings 

(e.g., 30% of peak flow) combined with the outdoor air fraction provide enough supply 

air so that sufficient outdoor air enters the space at partial loads. 
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2.2.6. Cooling Towers 

Water is a convenient incubator for microbial growth, with potentially fatal 

consequences, such as Legionnaires Disease, for building occupants. Periodically 

monitoring water quality and chemical treatment to prevent microbial growth is 

essential. Physical cleaning to prevent sediment accumulation and installation of drift 

eliminators may also be necessary. 

2.2.7. Boilers 

Fossil fuel combustion boilers provide the potential for contamination with 

carbon monoxide or other combustion by-products. 

• Maintain gaskets and breaching to prevent carbon monoxide from escaping.  

• Maintain the room in which the boiler is located under sufficient positive 

pressure relative to the outside to prevent back drafting of flue gases. Back 

drafting occurs when flue gases fail to be drawn up the flue and spill out into the 

room. Provide combustion air directly from the outside to prevent back drafting. 

A smoke tube can be used to check for back drafting.  

• Provide high enough exhaust stacks to prevent re-entrainment into the building, 

and maintain fuel lines to prevent leaks.  

2.3. Control of Temperature and Relative Humidity 

The thermal requirements of the space are designed to provide thermal comfort 

to occupants during all hours of occupancy. Requirements for temperature, relative 

humidity, and air movement during all seasons should be established and monitored to 

ensure that thermal comfort requirements are met, (Kreider et al. 2002). 
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2.3.1. ASHRAE Thermal Comfort Requirements 

ASHRAE Standard 55-1992 (ASHRAE STANDART 1992), Thermal 

Environmental Conditions for Human Occupancy, identifies many factors that influence 

thermal comfort and the perception of thermal conditions. Among them are temperature, 

radiation, humidity, air movement, vertical and horizontal temperature differences, 

temperature drift, personal activity and clothing. 

As a practical matter, maintaining a building within the following ranges of 

temperature and relative humidity will satisfy thermal comfort requirements of this 

standard in most cases. The ASHRAE comfort chart in Table 2.1 indicates the 

acceptable ranges of operative temperature and humidity during light sedentary activity, 

assuming typical summer or winter clothing, respectively.  

Table 2.1. Optimal operative temperature and humidity ranges 

Measurement Type  Winter  Summer  

Dry Bulb at 30% RH  20.3°C – 24.4°C 23.3°C – 26.7°C 

Dry Bulb at 50% RH  20.3°C – 23.6°C 22.8°C – 26.1°C 

Wet bulb maximum  17.8°C 20°C 

Relative humidity *  30% - 60% 30% - 60% 

* Upper bound of 50% RH will also control dust mites. 

 

2.3.1.1. Humidity and Microbial Growth 

In addition to thermal comfort, the control of relative humidity is important to 

limit the growth of microorganisms such as mold and dust mites. To control 

microorganisms, it is best to keep relative humidity below 60% (to control mold) and 

50% (to control dust mites) at all times, including unoccupied hours. High relative 

humidity can foster proliferation of mold and dust mites.  
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2.4. Dry bulb Temperature 

The dry bulb temperature is the temperature of air measured by a thermometer 

freely exposed to the air but shielded from radiation and moisture. In construction, it is 

an important consideration when designing a building for a certain climate. Nall (Nall 

2004), (as cited in "References") called it one of "the most important climate variables 

for human comfort and building energy efficiency". 

2.5. Wet Bulb Temperature 

The wet bulb temperature also uses a standard thermometer; however, a wet 

piece of cloth covers the bulb of the thermometer. As air passes over the wet cloth, the 

water in the cloth evaporates, drawing heat out of the thermometer.  

If the air is very humid (moist), only a small amount of moisture will evaporate 

from the cloth. This means the wet bulb temperature will only be a little lower than the 

dry bulb temperature.  

Conversely, if the humidity of the air is low (dry), the moisture will evaporate 

from the cloth quickly. This means that the wet bulb temperature will be much lower 

than the dry bulb temperature. 

If it is raining or there is heavy fog, the air is saturated, and the dry bulb 

temperature will be equal to the wet bulb temperature, (WEB_2 2005). 

2.6. Dew Point Temperature 

The dew point or dew point of a given parcel of air is the temperature to which 

the parcel must be cooled, at constant barometric pressure, for the water vapor 

component to condense into water, called dew. When the dew point temperature falls 

below freezing it is called the frost point, instead creating frost or hoar frost by 

deposition. 
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With higher temperatures the equilibrium partial pressure of water vapor 

increases thus more water evaporates. The behavior of water vapor does not depend on 

the presence of air. The formation of dew would occur at the dew point even if the only 

gas present was water vapor. 

The dew point determines relative humidity. When the relative humidity is high, 

the dew point is closer to the current air temperature. If the relative humidity is 100%, 

the dew point will be equal to the current temperature. As relative humidity falls, the 

dew point becomes lower, given the same air temperature. 

Humans tend to react with discomfort to high dewpoints. Those accustomed to 

continental climates often begin to feel discomfort when the dew point reaches between 

15° and 20° C (59° and 68° F). Most inhabitants of these areas will consider dewpoints 

above 21° (70° F) to be oppressive. Some consider a dewpoint above 10° C (50° F) to 

be uncomfortable, (WEB_1 2005) 

2.7. Relative Humidity 

Relative humidity is the ratio of the current vapor pressure of water in any gas 

(especially air) to the equilibrium vapor pressure, at which the gas is called saturated at 

the current temperature, expressed as a percentage. Equivalently, it is the ratio of the 

current mass of water per volume of gas and the mass per volume of a saturated gas. 

The saturation vapor pressure is the vapor pressure of water when air is saturated with 

water (having the maximum amount of water vapor that air can hold for a given 

temperature and pressure), (WEB_1 2005). 

2.8. Wind Speed 

Wind speed is the speed of movement of air relative to a fixed point on the earth. 

It usually means the movement of air in an outside environment, but the speed of 

movement of air inside a building or structure may also be referred to as “wind speed”. 

Wind speed is important in many areas, including weather forecasting, aircraft 

and maritime operations, building and civil engineering. High wind speeds can cause 

unpleasant side effects, and strong winds often have special names, including gales, 

hurricanes, and typhoons. Wind speed can affect sporting achievements either 



13  

beneficially or adversely. Most outdoor sports have limits of wind speed outside of 

which records are considered invalid, (WEB_1 2005). 

2.9. Wind Direction 

The direction from which the wind is blowing. For example, an easterly wind is 

blowing from the east, not toward the east. It is reported with reference to true north, or 

360 degrees on the compass, and expressed to the nearest 10 degrees, or to one of the 16 

points of the compass (N, NE, WNW, etc.), (WEB_1 2005). 

2.10. Total Building Chiller Power Consumption 

A Chiller is an air conditioning unit used primarily in commercial and industrial 

facilities to provide high capacity HVAC control. A Chiller differs from common air 

conditioners in both capacity and design. A typical Chiller is rated between 15 to 1000 

tons (180,000 to 12,000,000 BTU*) or more in cooling capacity. It also incorporates 

features such as screw-driven compressors and water-cooled condensors. The power 

consumption refers to the electrical energy over time that must be supplied to a chiller to 

maintain its operation. (* 1000 BTU/h is approximately 293 W). 

If the building is electrically cooled but not electrically heated, as is the case 

with our prototypical building, the maximum power corresponds to the hottest drybulb 

temperatures. This temperature dependence, with power use increasing with outdoor 

temperature, cooling system power is highly dependent on outdoor temperature. But it 

also depends on building loads, such as solar loads, lighting and appliance use, and 

people. In general, the load is met by a single chiller at low outdoor temperatures, and 

by both chillers at high outdoor temperatures. Wind speed is another weather-dependent 

variable that has a bearing on loads (Kreider 2002). 
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CHAPTER 3 

 

 

NEURAL NETWORKS AND FUZZY LOGIC 

 
 

Artificial intelligence is separated into two significant concepts; ANNs and 

fuzzy logic. Both ANNs and fuzzy logic is proved to be useful in modeling and 

simulation of a system, with one or more variables. 

 

3.1 Artificial Neural Networks (ANN) 
 

 ANN is one of the powerful data modeling tools motivated from the operation 

of human nervous system. Therefore, ANN became the most important tool to solve 

complex problems by using networks. Networks are used to model a wide range of 

phenomena in physics, computer science, biochemistry, etiology, mathematics, 

sociology, economics, telecommunications, and many other areas. 

One type of network sees the nodes as ‘artificial neurons’. These are called 

artificial neural networks (ANNs). An artificial neuron is a computational model 

inspired in the natural neurons. Natural neurons receive signals through synapses 

located on the dendrites or membrane of the neuron. When the signals received are 

strong enough (surpass a certain threshold), the neuron is activated and emits a signal 

though the axon. Figure 3.1 shows basic architecture of the network that consist of  

dendrites, axon and synapse.This signal might be sent to another synapse, that might 

activate other neurons.  
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Figure 3.1. Natural neurons. 

The complexity of real neurons is highly abstracted when modeling artificial 

neurons. These basically consist of inputs (like synapses), which are multiplied by 

weights (strength of the respective signals), and then computed by a mathematical 

function which determines the activation of the neuron. Another function (which may 

be the identity) computes the output of the artificial neuron (sometimes in dependence 

of a certain threshold). ANNs combine artificial neurons as shown in Figure 3.2 in order 

to process information. 

 

 

 

 

 

Figure 3.2. An artificial neuron, Aj: activation function, Oj: output function. 

The higher the weight of an artificial neuron is, the stronger the input that is 

multiplied by it will be. Weights can also be negative, so we can say that the signal is 

inhibited by the negative weight. Depending on the weights, the computation of the 

neuron will be different. By adjusting the weights of an artificial neuron we can obtain 

Aj Oj Outputs 
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the output we want for specific inputs. But when we have an ANN of hundreds or 

thousands of neurons, it would be quite complicated to find by hand all the necessary 

weights. But we can find algorithms, which can adjust the weights of the ANN in order 

to obtain the desired output from the network. This process of adjusting the weights is 

called learning or training. The simple form of network architecture is given below 

Figure 3.3 : 

  

Figure 3.3. A simple form of neural network architecture with four input 
parameters,four hidden layer neurons and one output parameter. (4x4x1 layer) 

The number of types of ANNs and their uses is very high. Since the first neural 

model by (McCulloch and Pitts 1943) there have been developed hundreds of different 

models considered as ANN. The differences in them might be the functions, the 

accepted values, the topology, the learning algorithms, etc. Also there are many hybrid 

models where each neuron has more properties than the ones we are reviewing here. 

Because of matters of space, we will present only an ANN, which learns using the 

backpropagation algorithm (Rumelhart and McClelland 1986) for learning the 

appropriate weights, since it is one of the most common models used in ANNs, and 

many others are based on it. 

Since the function of ANN is to process information, they are used mainly in 

fields related with it. There are a wide variety of ANN that are used to model real neural 

networks, and study behaviour and control in animals and machines, but also there are 
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ANN that are used for engineering purposes, such as pattern recognition, forecasting, 

and data compression. 

3.1.2 The Backpropagation Algorithm 

The backpropagation algorithm (Rumelhart and McClelland 1986) is used in 

layered feed-forward ANN. This means that the artificial neurons are organized in 

layers, and send their signals “forward”, and then the errors are propagated backwards. 

The network receives inputs by neurons in the input layer, and the output of the network 

is given by the neurons on an output layer. There may be one or more intermediate 

hidden layers. The backpropagation algorithm uses supervised learning, which means 

that we provide the algorithm with examples of the inputs and outputs we want the 

network to compute, and then the error (difference between actual and expected results) 

is calculated. The idea of the backpropagation algorithm is to reduce this error, until the 

ANN learns the training data. The training begins with random weights, and the goal is 

to adjust them so that the error will be minimal. 

            The activation function of the artificial neurons in ANNs implementing the 

backpropagation algorithm is a weighted sum (the sum of the inputs xi multiplied by 

their respective weights wji): 

� =
= n

i jiij wxwxA
0

),(                                                         (3.1) 

We can see that the activation depends only on the inputs and the weights. 

            If the output function would be the identity (output=activation), then the neuron 

would be called linear. But these have severe limitations. The most common output 

function is the sigmoidal function: 

                       ),(1

1
),( wxAj je

wxO
+

=                                                       (3.2) 

            The sigmoidal function is very close to one for large positive numbers, 0.5 at 

zero, and very close to zero for large negative numbers. This allows a smooth transition 

between the low and high output of the neuron (close to zero or close to one). We can 

see that the output depends only in the activation, which in turn depends on the values 

of the inputs and their respective weights. 
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            Now, the goal of the training process is to obtain a desired output when certain 

inputs are given. Since the error is the difference between the actual and the desired 

output, the error depends on the weights, and we need to adjust the weights in order to 

minimize the error. We can define the error function for the output of each neuron: 

2)),((),,( jjj dwxOdwxE −= (3.3) 

We take the square of the difference between the output and the desired target because it 

will be always positive, and because it will be greater if the difference is big, and lesser 

if the difference is small. The error of the network will simply be the sum of the errors 

of all the neurons in the output layer: 

� −=
j

jj dwxOdwxE 2)),((),,(                               (3.4) 

The backpropagation algorithm now calculates how the error depends on the output, 

inputs, and weights. After we find this, we can adjust the weights using the method of 

gradient descendent: 

ji
ji w

E
w

∂
∂−=∆ η                                               (3.5) 

 

            This formula can be interpreted in the following way: the adjustment of each 

weight (�wji) will be the negative of a constant eta (�) multiplied by the dependance of 

the previous weight on the error of the network, which is the derivative of E in respect 

to wi. The size of the adjustment will depend on �, and on the contribution of the weight 

to the error of the function. This is, if the weight contributes a lot to the error, the 

adjustment will be greater than if it contributes in a smaller amount. Equation 3.5 is 

used until we find appropriate weights (the error is minimal). 

 

3.2. Fuzzy Logic 
 (Zadeh 1975) proposed his theory of approximate reasoning by means of which a 

powerful technique for reasoning of imprecise and uncertain information was provided. 

The general structure of the fuzzy logic modeling is presented in Figure 3.4 According 
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to Figure 3.4, the model basically consists of four components: fuzzification, fuzzy rule 

base, fuzzy output engine, and defuzzification. Fuzzification converts each piece of 

input data to degrees of membership by lookup in one or more several membership 

functions. The key idea in fuzzy logic is allowance of partial belongings of any object to 

different subsets of a universal set instead of complete membership to a single set. The 

membership function (MF) helps the partial belongings numerically which have values 

between 0 and 1. Fuzzy membership functions may take many forms; in fact in practical 

applications, simple linear functions, like triangular, trapezoidal ones, are preferable. 

 

 

 
     Input Data  Output Data 
 
 
 
 
 
 
 
 

Figure 3.4 The basic structure of the fuzzy logic modeling. 
 

 

The central fuzzy rule base is the concept of the fuzzy If-Then rule, which is a 

mathematical interpretation of the linguistic If-Then rule. The basic linguistic If-Then 

rule is a linguistic row, which is written, in simple form below: 

 

If “�” is A and “�” is B, then “λ” is C 

 

A, B and C are the corresponding linguistic values, the inputs are �, � and λ. The fuzzy 

rule base defines the names of variables �, � and λ with the universes in which the fuzzy 

values A, B and C live. In the fuzzy approach, there are no mathematical equations and 

model parameters, and all the uncertainties, nonlinear relationships, and model 

complications are included in the descriptive fuzzy inference procedure in the form of 

If-Then format. There are basically two types of fuzzy rules: (Jantzen 1999). 

Fuzzy inference engine takes into account all the fuzzy rules in the fuzzy rule 

base and learns how to transform a set of inputs to corresponding outputs. There are 

basically two kinds of inference operators: minimization (min) and product (prod). 

Fuzzification 

Fuzzy output Engine 

Defuzzification (COG) 

Fuzzy Base Rule 
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(Jantzen 1999) pointed out that both methods works properly in general. In this study 

we used the prod method due to its performance. 

 

Membership functions are used to retranslate the fuzzy output into a crisp value. 

This technique is known as defuzzification and can be performed using several methods. 

There are many defuzzification methods such as centre of gravity (COG) or centroid, 

bisector area (BOA), mean of maxima (MOM), leftmost maximum (LM), rightmost 

maximum (RM), etc. (Jantzen 1999). In this study, we employed the most widely used 

centroid technique, and for the discrete case, it is expressed as: 

 

( )
( )�

�
≡

i
xi

i
xixi

x K
KK

K µ

µ
*                                                  (3.6) 

  

Where Kx
* is the defuzzified output value, Kxi is the output value in the ith subset, and 

µ(Kxi) is the membership value of the output value in the ith subset.  

If there is continuity, the summations in Equation 3.6 are changed by integrals. Further 

information can be obtained from Munakata (Munakata 1998). 

 

3.2.1. Fuzzy Logic Example: One 

 
In order to better present the fuzzy logic modeling technique an example from 

the literature will be helpful, (Goodrich 2001). Let’s consider the problem of trying to 

decide whether or not to turn on the heater in an apartment. Suppose that having a 

thermometer that gives three readings, A = {“T < 30”; “30 ≤ T ≤ 60”; “T > 60”} where 

using quotation marks to indicate that these statements can be interpreted as predicates. 

Prefer to think of these three predicates as A = {IsCold, IsCool, NotCold}. In addition to 

these three input predicates, two actions available B ={HeatOn, HeatOff}. Suppose 

further that having a rule base that says: 

    Reading(a)  � Action (b) 
T < 30         � HeatOn 
30 ≤ T ≤ 60 � HeatOn 
 T > 60         � HeatOff 

 

In this case, the implies in the statement “T < 30” � HeatOn does not mean ”if T < 30 
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it follows logically that the heat is on” but rather ”if T < 30 it follows logically from 

what my goals are that the heat should be turned on.” In this latter case, implication is 

nothing more than a relation between readings and actions: 

 
                         HeatOn   HeatOff 

T < 30                  1             0 
30 ≤ T ≤ 60          1  0 
T > 60                  0             1 

 

3.2.2. Fuzzy Logic Example: Two 
As a second example, let’s return to the temperature/heater example. Suppose that you 

bring a date to your (underheated) apartment and she or he has a thermometer that reads 

temperature in one degree increments. You don’t want to change your reading/action 

rulebase (it was programmed in Fortran in 1978), so you instead write a new program 

that translates the temperature on your date’s thermometer into one of the three classes 

known to your Fortran program. In other words, you create a new relation QCA, where 

C = {0,1,….,120} is the range of the thermometer. The relation is defined in terms of 

the membership function µQCA(c,a) as 

 

Table3.1. The relation is defined in terms of the membership function µQCA(c,a) 

 

a  
c = T “T < 30” “30 ≤ T ≤ 60” “T > 60” 
c < 30 1 0 0 

30 ≤ c≤ 60 0 1 0 
c> 60 0 0 1 

 
 

 

Let PCB denote the new relation between the temperature reading from your date’s 

thermometer and the decision to turn on your heater. How do I combine QCA with RAB to 

find PCB? We do this by the composition operator, 

 

PCB(c, b) = QCA(c, a) ο RAB(a, b)                                      (3.7) 

 

which is defined as a relation on C x B such that (c,b) ∈ PCB if and only if there exists 
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at least one a ∈ A such that (a,b) Ε RAB and (c,a) ∈ QCA. In other words, you will turn 

the HeatOn whenever your date reports a temperature for which the relation between 

this temperature and either one of the categories “T < 30” and “30 ≤ T ≤ 60”; is true. 

 

The trick is to come up with a formula on the membership functions of µRAB and µQCA 

that correctly produces µPCB. The formula is given by 

 

),(max),(),( babcbc
ABCACB RQ

Aa
RQP µµµµ ∗==

∈�
                          (3.8) 

 

Basically, this formula says that the truth of the predicate PCB, which was created by 

combining the predicates QCA and RAB, is obtained by seeing if both predicates Q and 

R are simultaneously true for any object a ∈ A. If I can find at least one object for 

which both predicates are true then the composition of these two predicates is also true. 

Otherwise, the composition is false. 

Let’s check to see that this works for the case when? Is implemented as a minimum, 

 

{ }),(),,(minmax),( baacbc
ABCA RQ
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                        (3.9) 

 

Suppose that your date’s thermometer reads 32. Then c = 32. We want to find out if 

HeatOn is true. So, calculating 
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So, at least for this temperature reading you should turn the HeatOn. 
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3.2.3. Fuzzy Logic Example: Three 
Now, suppose that your date’s thermometer reads 82. Then c = 82. We want to find 

out if HeatOn is true. So, calculating 
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So, at least for this temperature reading you should not turn the HeatOn. 
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CHAPTER 4 

 

 

RELATED PAST STUDIES USING ANN AND 

FUZZY MODELS 
 

The ANN has been investigated for its applicability in building energy 

predictions over the past ten years (Ansett and Kreider 1993, Curtiss et al.1993, Cohen 

and Krarti 1995, Kreider et al. 1995, Haberl and Thamilseran 1996, Breekweg et al. 

2000). Various neural network architectures have been applied in energy predictions. 

They include backpropagation, recurrent neural networks, autoassociative neural 

networks and general regression neural network demonstrating relatively successful 

results having coefficient of variations in the range of 2–40% (Ansett and Kreider 1993, 

Curtiss et al.1993, Cohen and Krarti 1995, Kreider et al.1995, Haberl and Thamilseran 

1996, Breekweg et al. 2000). These variations in the accuracy of the predictions depend 

mostly on the ANN architecture used, the regularity of the building operation and the 

accuracy of data measurement devices. More specifically, in a study by (Ansett and 

Kreider 1993), building utility measurement data from a university campus centre, 

including electricity, natural gas, water and steam use, were modelled. The study 

considered weather, building occupancy and activity as the independent variables. 

Backpropagation architecture was used in this effort. The main focus was on testing 

different training methods, layering and data input order. The study presented 

encouraging potential for the application of neural networks in building energy 

modeling. The study also stated the need for future investigation in selecting more 

accurate and effective learning algorithms. 

(Curtiss et al. 1993) used ANN to optimize energy consumption on an HVAC 

system. In this approach, the weather and building occupancy were considered as 

independent variables, and the HVAC system setpoints such as mixed air temperature, 

chilled water temperature, duct static pressure and chilled water flow rate were 

considered as dependent variables. Varying the dependent variables that would yield the 

minimum electricity consumption identified optimum setpoints. The building data were 

generated an HVAC Laboratory.  
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The results of this study showed the need to apply the model to larger sized 

buildings with actual building measurement data, in order to validate the ANN method’s 

efficiency. (Cohen and Krarti 1995) used energy consumption data generated from the 

DOE-2.1E Building Energy Analysis Program as input to the ANN model developed. 

The model was based on multi-layered feedforward networks. This study mentioned the 

potential use of ANN methods in building energy savings estimates and recommended 

that future ANN modeling studies be done based on ‘real’ building measurement data. 

(Kreider et al. 1995) investigated the prediction of future building energy consumption 

and system identification without the knowledge of immediate past energy 

consumption. Recurrent neural networks were used in the modeling. According to the 

authors, the recurrent networks offer an accurate method for predicting hourly energy 

use well into the future for thermal end uses when only weather data are known. During 

network training, actual measured data from a few past hours were used as input to the 

model. However, during the prediction period, the network’s own outputs were cycled 

back into the inputs. The building energy data for this model were also generated from 

the DOE-2.1E Building Energy Analysis Program. Although the error rate was 

relatively higher in this method when compared to, for example, the backpropagation 

method, it was still presented as an applicable method in predicting the future building 

energy use for retrofit energy savings estimation purposes. This study also stated the 

need for future study based on ‘real’ building measurement data. 

As part of an energy predictor competition titled ‘Great Energy Predictor 

Shootout’, (Chonan et al. 1996) applied Bayesian neural network for estimating 

building energy use. In this method, the known relationship between the input variables 

and output was used in combination with the neural network training. (Jang et al. 1996) 

used an auto-associative neural network in predicting missing building input–output 

data based on feedforward network identity mapping. This method is effectively used 

when the building data have been available for some periods of time and missing for 

other periods of time. The noise filter capabilities of auto-associative neural networks 

proved to be effective in preprocessing the model data. In another study, (Curtiss 1996) 

described the use of neural networks in continuous control of feedback loops in an 

HVAC system and overall building energy use prediction. In this method, the input and 

output training data set were updated with new input data and a neural network output 

prediction from one previous time segment. The training data set was renewed with the 

latest building information and kept current for the near future predictions. Additionally, 
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in this study, Curtiss used the neural network control algorithm along with the 

traditional PI control algorithm to develop the optimum control parameters and enhance 

control capabilities of both methods. (Breekweg et al. 2000) evaluated a number of 

ANN techniques in the development of a generalized method for building energy-

related fault detection. Real-time data from four different buildings and simulation data 

from one building were modelled based on normalized radial basis function (RBF), 

specifically the general regression neural network (GRNN) as the normalized RBF was 

used. The coefficient of variation was higher, in the range of 20–40% for most 

buildings, except two buildings, which were in the range of 4–8%. The large deviations 

in the results were attributed to the quality of data measurement, building operation 

consistency and minimization of the noise elements in the data set. This study also 

reported the necessity to test the developed ANN model with energy data from different 

buildings in order to ensure the generalizing capacity of the model. 

Artificial neural networks have successfully passed the research stages and 

found real time applications in many technologies including aerospace, defense, 

automotive, manufacturing process controls, etc.  

Accomplishing a model of the total power consumption of chiller plant is a 

complex process. The fuzzy logic model objective is to capture output variable of the 

central chiller plant power consumption by means of input variables. In a study by 

(Kesgin et.al. 2005) a fuzzy logic model was developed to predict the drying time and 

the power demand depending on condensation pressure and temperature and 

evaporation pressure. The fuzzy multi-objective linear programming approach was used 

by (Chedid and Mezher 1999) to solve the energy allocation problem. Both ANN and 

fuzzy logic model were used to model an appropriate lighting controller integrated in a 

self-adaptive building control system by (Guillemin et al. 2001). Fuzzy logic is used 

like a mathematical model to fulfill representation of human decision and assesment 

process.  In addition to this, the fuzzy logic approach supplies potential rules making 

connection between input variables and the output variables. Also, the detailed 

exposition of the application that combined the linguistic approach to the optimization 

under the input variables to the output is presented. Therefore, the load  forecasting can 

be crucial to strategy management of the multipurpose building sector energy demand. 

Additionally, a literature search was conducted for building energy use 

prediction models developed for tropical climates. However, to the authors’ knowledge, 

no specific study was found on the topic. 
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CHAPTER 5 

 

 

                    MODEL CONSTRUCTION 
 
 

5.1. Building Properties 

A 42 storey commercial building with approximately 41,800 m2 space in downtown 

Honolulu, Hawaii was selected for a case study for ANN building energy prediction. 

The basement housed the chiller room, a mechanical pump room, building maintenance 

offices, and a parking garage. The plaza level first floor and second floor contained the 

entry lobby restaurants and retail offices, and additional parking garages. Parking garage 

spaces took up 5–12 floors. The 14th floor and the upper levels of the building are 

separated into two towers: an office tower and a residential condominium tower. The 

14th floor also contains a recreational deck with a residential lounge and a pool. The 

cooling towers, exhaust fans and some other mechanical elevator equipment are located 

on the roof of the residential tower. The building is air conditioned by a central chilled 

water plant consisting of three chillers with a total 1250-ton capacity. Air conditioning 

in the office tower is provided for 13–15 h during the day, and air conditioning for the 

residential tower is provided 24 h a day, which is controlled by thermostats in each 

residential unit. Floor air handlers circulate the conditioned air through variable air 

volume (VAV) terminal units. This multiple utility building requires the building 

equipment to operate ‘24/7’ and has a building automation system (BAS). The chiller 

electricity consumption, chilled water flow rate, chilled water supply and return 

temperatures and air handling unit electricity use is monitored continuously. For this 

study, which was done over a period of three weeks, the hourly chilled water flow rate, 

chilled water supply and return temperatures, building occupancy rate, and hourly local 

climate data were used in predicting the total chiller power by the ANN method and the 



28  

fuzzy logic model. Figure 5.1 shows the chiller plant power consumption trend for this 

time period.   

 

 

 
Figure 5.1 Chiller plant power consumption trend for the time period studied           

(April 2001), Source: (Yalcintas and Akkurt 2005). 

 

The building that was studied has two unique characteristics. Firstly, it is located 

in the tropical climate of Honolulu, Hawaii where variations between the day and night, 

and summer and winter are minimal. In summer, the maximum dry bulb temperature 

average for Honolulu is 31.1oC and the minimum dry bulb temperature average is 24.48 

oC. The average wet bulb temperature is 22.88 oC. In winter, the maximum dry bulb 

temperature average is 27.28 oC and the minimum dry bulb temperature average is 19.58 

oC. The average wet bulb temperature is 18.98 oC. Average wind velocity in both 

summer and winter is relatively consistent at 16 kph. In this climate, air conditioning is 

required during the day, through the whole year and during the night, most of the time. 

Secondly, the building houses a variety of functions including office, residential, 

restaurants and recreation. All of these have different air conditioning requirements and 

schedules, while energy use throughout the day and night is continuous. The small 

variations in the seasonal weather conditions and continuous building use presents 

consistent data for the ANN analysis and this in turn gives a better prediction capacity 

for the developed ANN energy model. 

In this study, the power consumption of the central chiller plant, including the 

chillers, cooling tower and pumps, was first modeled based on the ANN method. The 

data used in the model covered the time period from 4 April 2001 to 16 April 2001. 
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Independent input variables mainly consisted of climate data, and the model output was 

the chiller plant power consumption.  

 

 

 

Figure 5.2 Chiller plant power consumption versus Time. 
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Figure 5.3. Chiller plant power consumption versus relative humiditiy. 
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Figure 5.4. Chiller plant power consumption versus wind speed. 
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Figure 5.5. Chiller plant power consumption versus wbt. 
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Figure 5.6. Chiller plant power consumption versus dpt. 

 

Due to the fact that, correlations of wet bulb temperature, dew point temperature, 

relative humidity percentage and wind speed, with total chiller power consumption are 

not all linear, the choice for modeling such relation ship would give better prediction 

capability if ANN or Fuzzy Logic are used.( see Figures 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7) 

Hourly climate data were obtained from the National Climate Data Center for 

April 2001. The climate data variables considered were specifically: dry bulb 

temperature, wet bulb temperature, dew point temperature, relative humidity percentage, 

wind speed and wind direction. Table 1 lists the input and output variables used in 

model construction. Unlike the weather data, the data for hourly power consumption of 

the chiller plant were not available for every hour of the 24 h a day. Therefore, a 

matching of the weather and chiller power data produced a total of 121 data sets to be 

used for the model creation. This was less than the total number of possible 

combinations of 312 for 13 days. 

 

5.2. Data Collection 

The data used in this study were previously used in another study on the ANN 

model for chiller plant power consumption (Yalcintas  2005). The data were collected 

from two different sources: A 42 storey commercial building in Honolulu, Hawaii, USA 
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and the National Weather Service that provided the meteorological data used in fuzzy 

model construction. More details about the building’s air conditioning system are 

provided in (Yalcintas et.al. 2005).  

In the previous ANN model created by Yalcintas et.al. 2005, there were 7 input 

variables and one output variable of total chiller plant power consumption Table 5.1. In 

this study, however, only five input parameters were employed because the fuzzy logic 

models require rule sets that expand significantly when the number of parameters 

increases. 

 

Table 5.1. The parameters used in ANN and Fuzzy model construction. 
 
Parameter Short 

notation for 
parameters 

Parameters 
used in ANN 
model of 
reference 2 

Parameters 
used in ANN 
model in this 
study 

Parameters 
used in 
Fuzzy model 
in this study 

Time (hour)  t x1 x1 x1 
Dry bulb temperature  dbt x2   
Wet bulb temperature  wbt x3 x2 x2 
Dew point temperature  dpt x4 x3 x3 
Relative humidity  rh x5 x4 x4 
Wind speed  ws x6 x5 x5 
Wind direction  wd x7   
Total building power 
consumption 

power y1 y1 y1 

 

 The increase in the number of rule sets follows a 2n function where n=the number of 

input parameters. When, for example, two input parameters are used only four rule sets 

must be written. For 7 input parameters the total number would be 27=128, which was 

too large for fuzzy rule sets. Therefore only 5 input parameters were selected in this 

study. The dry bulb temperature and wind direction were eliminated from the new 

model because they were thought to be the least effective parameters. Time is 

considered as a function of building occupancy.  

 

 The whole list of parameters is given in Table 5.1 for all the three models that are:  

� the first 7 input parameter ANN model in (Yalcintas 2005),  

� the 5 input parameter ANN model created in this study and  

� the 5 input parameter fuzzy model created in this study. 
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There were a total of 121 sets of data each containing 7 input parameters and one output 

parameter. The data were randomly split into two by Yalcintas (2005); the first one had 

80 data sets while the second contained 41 data sets. The latter 41 sets were used for 

comparison of the errors of the three models. For ANN model the first 80 sets were used 

for model creation and the latter 41 sets for model testing. For fuzzy logic model the 

same 41 sets were used for model validation (Table 5.2).   
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Table 5.2. Part of the data that was used for model validation consisted of 41 sets. This 
part of data was used for ANN and fuzzy logic model testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*hr : 53 minutes past hour 

 

      Measured 
 t wbt dpt rh ws Power 

Data set hr* (οC) (οC) % (mph) kW 
81 10 21.5 19.4 69 14 347.3 
82 21 20.3 18.9 79 9 193.9 
83 16 21.5 19.4 69 13 329.7 
84 20 20.5 18.9 76 12 178.1 
85 12 22.3 20.0 67 15 365.2 
86 11 22.6 20.0 63 13 360.1 
87 6 19.9 18.3 76 5 188.5 
88 7 20.3 18.3 71 8 274.0 
89 3 20.1 18.9 82 11 154.2 
90 22 20.3 18.9 79 11 221.7 
91 24 19.6 18.3 81 11 179.3 
92 13 21.3 18.3 60 18 347.3 
93 4 19.3 17.8 79 8 184.2 
94 19 19.9 18.3 76 15 203.4 
95 6 20.3 18.9 79 10 212.3 
96 21 20.3 18.9 79 6 204.7 
97 17 21.3 19.4 71 14 326.1 
98 5 19.9 18.9 84 4 212.2 
99 20 20.5 18.9 76 9 177.1 

100 21 19.7 18.3 79 10 167.0 
101 2 19.6 18.3 81 3 150.1 
102 3 19.6 18.3 81 10 158.9 
103 10 21.9 18.9 58 13 332.6 
104 21 20.3 18.9 79 9 179.2 
105 18 20.8 19.4 79 12 248.8 
106 13 22.4 20.0 65 15 381.2 
107 10 22.1 19.4 62 12 350.8 
108 13 22.1 18.9 57 13 318.5 
109 12 21.6 18.3 56 17 315.3 
110 14 21.6 18.3 56 22 347.3 
111 4 20.2 19.4 87 8 159.7 
112 17 20.7 18.9 74 17 296.4 
113 18 20.1 18.3 74 13 235.7 
114 22 20.5 18.9 76 9 205.7 
115 10 21.8 18.9 61 19 337.3 
116 24 20.2 19.4 87 0 159.5 
117 2 19.6 18.3 81 7 155.7 
118 16 21.2 18.9 67 20 345.9 
119 9 20.8 17.8 60 11 351.8 
120 8 21.7 19.4 67 11 322.7 
121 23 20.3 18.9 79 12 167.2 
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5.3. Model Construction 
 

The schematic diagram of conceptual modeling of the central chiller plant power 

consumption using Fuzzy Logic is presented in Figure 3.4 The original data used in a 

previous article for ANN modeling were applied in this thesis for fuzzy model set up. A 

new ANN model which had five input parameters [time (53 min after hour), wet bulb 

temperature (οC), dew point temperature (οC), relative humidity percentage (%), and 

wind speed (mph)] and one output parameter of the central chiller plant power 

consumption (kW) was created in this study. These parameters were believed to 

represent the more important factors based on visual and graphical inspection done on 

our previous model. 

The newly constructed ANN model had three layers: input, hidden and output. 

The input and hidden layers had five neurons, while the output layer had one. No bias 

term was used in training. The number of iterations was 20000 for training of the model. 

Table 2 shows that the reduction in the total number of input parameters from 7 to 5 

resulted in a slight increase in the percentage average absolute errors (PAAE) for both 

the 5 parameter ANN model and the fuzzy model, as already expected (Eqn. 5.1). For 

the fuzzy model decreasing the number of inputs gives a slight increase in PAAE that’s 

resulted from fuzzy logic model restrictions which mentioned in data collection part.   

 

                         100∗−=
werobservedpo

owerpredictedpwerobservedpo
PAAE  (5.1) 

 

 The constructed membership functions are shown in Figure 5.7 There were a total of 32 

fuzzy rule sets, which are listed in Table 5.3. 
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Figure 5.7. Membership functions for input and output parameters used for the fuzzy       
 modeling. 
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Table 5.3. The whole 32 fuzzy rule sets used in this study. 

 # t wbt dpt rh ws Power 

1 L L L L L M 

2 L L L L H L 

3 L L L H L L 

4 L L L H H L 

5 L L H L L L 

6 L L H L H M 

7 L L H H L L 

8 L L H H H L 

9 L H L L L L 

10 L H L L H H 

11 L H L H L L 

12 L H L H H L 

13 L H H L L L 

14 L H H L H L 

15 L H H H L L 

IF 

16 L H H H H L 

17 H L L L L L 

18 H L L L H H 

19 H L L H L H 

20 H L L H H H 

21 H L H L L H 

22 H L H L H M 

23 H L H H L H 

24 H L H H H H 

25 H H L L L H 

26 H H L L H H 

27 H H L H L H 

28 H H L H H H 

29 H H H L L H 

30 H H H L H H 

31 H H H H L H 

IF 

32 H H H H H H 

 
L, low; M, medium; H, high 
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5.4. Model Application 
The fuzzy-logic toolbox of the MatLAB® was used to construct the fuzzy model. 

The prod and centre of gravity (COG) methods were employed as the inference operator 

and defuzzification methods, respectively. The prediction results of the measured data 

by the developed fuzzy model are shown in Table 5.4 According to Table5.4 the fuzzy 

model predicted the measured data successfully, and its performance was as good as the 

other ANN models. The results indicated a PAAE of 11.6% (R2=0.885) for the fuzzy 

model. This quantity was about 10.0% (R2=0.883) for the ANN model created in 

(Yalcintas and Akkurt 2005) and 10.3% (R2=0.875) for the 5 parameter ANN model 

created in this study. Both ANN models were similar as far as their errors are 

concerned. The fuzzy model gave slightly higher error. Comparison of the observed 

total chiller plant power and predicted values by the fuzzy model is presented in Figure 

5.8 The results of the seven parameter ANN model is shown in Figures 5.9 and 5.10, 

The results of the five parameter ANN model is shown in Figures 5.11 and 5.12. 

 

 

Figure 5.8. Comparison of the observed total chiller plant power and predicted values  
 by the fuzzy model. 
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Figure 5.9. Comparison of the observed total chiller plant power and predicted values  
                        by the seven parameter ANN model. 
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Figure 5.10. Comparison of the observed total chiller plant power & predicted values by    

           the seven parameter ANN model. Calculation of R2=0.88 is shown. 
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y = 0.8739x + 35.587
R2 = 0.8745
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Figure 5.11. Comparison of the observed total chiller plant power & predicted values by     
 the five parameter ANN model. Calculation of R2=0.87 is shown. 
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Figure 5.12. Comparison of the observed total chiller plant power and predicted values  

                         by the five parameter ANN model. 
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Table 5.4 Fuzzy logic and ANN model constructions-testing results. 

 
 

 

 

  Model predictions PAE 

  
Yalcintas  

ANN ANN model Fuzzy model 
Yalcintas  

ANN ANN model Fuzzy model 
 Measured model   in this study in this study model   in this study in this study 
 Power Power Power Power Power Power Power 

Data set kW kW kW kW kW kW kW 
81 347.3 331.5 325.0 315.5 4.5 6.4 9.1 
82 193.9 209.3 212.1 196.1 7.9 9.4 1.1 
83 329.7 337.0 328.8 307.1 2.2 0.3 6.8 
84 178.1 229.1 235.7 197.0 28.6 32.4 10.6 
85 365.2 348.0 344.2 330.0 4.7 5.7 9.6 
86 360.1 357.0 358.0 331.0 0.9 0.6 8.1 
87 188.5 215.9 207.7 195.5 14.6 10.2 3.7 
88 274.0 271.2 259.9 211.8 1.0 5.1 22.7 
89 154.2 172.5 178.5 195.8 11.9 15.7 27.0 
90 221.7 200.1 206.1 196.1 9.7 7.0 11.6 
91 179.3 157.4 156.3 195.8 12.2 12.8 9.2 
92 347.3 333.8 335.4 331.0 3.9 3.4 4.7 
93 184.2 154.0 156.4 194.9 16.4 15.1 5.8 
94 203.4 173.3 179.2 195.8 14.8 11.9 3.8 
95 212.3 206.7 209.5 197.0 2.6 1.3 7.2 
96 204.7 224.0 221.7 196.1 9.4 8.3 4.2 
97 326.1 319.1 310.4 278.3 2.1 4.8 14.7 
98 212.2 177.9 176.1 195.6 16.2 17.0 7.8 
99 177.1 245.1 245.7 197.0 38.4 38.8 11.3 

100 167.0 169.0 168.6 197.0 1.2 1.0 18.0 
101 150.1 174.2 174.3 194.8 16.0 16.1 29.7 
102 158.9 154.3 157.7 197.0 2.9 0.7 24.0 
103 332.6 353.6 362.1 319.3 6.3 8.9 4.0 
104 179.2 209.3 212.1 196.1 16.8 18.3 9.4 
105 248.8 238.8 246.4 196.6 4.0 1.0 21.0 
106 381.2 351.5 347.9 331.0 7.8 8.7 13.2 
107 350.8 356.0 359.6 331.0 1.5 2.5 5.6 
108 318.5 356.8 367.8 330.1 12.0 15.5 3.6 
109 315.3 346.0 353.7 331.0 9.7 12.2 5.0 
110 347.3 338.4 339.3 330.8 2.6 2.3 4.8 
111 159.7 169.6 172.6 195.6 6.2 8.1 22.4 
112 296.4 239.1 248.2 277.8 19.3 16.3 6.3 
113 235.7 205.1 208.8 196.6 13.0 11.4 16.6 
114 205.7 244.6 245.7 197.0 18.9 19.4 4.2 
115 337.3 338.8 339.8 319.3 0.4 0.7 5.3 
116 159.5 200.4 194.0 195.6 25.7 21.7 22.6 
117 155.7 162.2 164.3 194.8 4.2 5.6 25.1 
118 345.9 308.5 302.3 312.4 10.8 12.6 9.7 
119 351.8 336.3 340.0 286.2 4.4 3.3 18.6 
120 322.7 346.6 345.6 287.2 7.4 7.1 11.0 
121 167.2 195.7 203.2 196.1 17.1 21.6 17.3 

PAAE 10.0 10.3 11.6 
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In addition, the ANN models in the work cited here have used building energy 

data from building simulation, laboratory experiments and actual building measurement 

data. While for the sake of simplicity the simulation data in the initial ANN modeling 

stages are useful, it is essential to use actual building data during the later development 

stages to account for the possible imperfections in the measured data. Also, the actual 

building data are the best indicator of the building features, operation and equipment 

efficiency. However, as mentioned earlier, the noise in the measurement data also has to 

be dealt with when employing actual measurements in the ANN modeling. Therefore, 

repeated building data measurements from different buildings should be used in 

developing the ANN model. 

An advantage of the fuzzy logic is that all the rules are written verbally, much 

like the human thought process. ANN models, however, are black box models, not 

immediately visible to the user. The ANN model provides only a set of weight matrices 

that does not provide explicit results. Chiller plant operators can easily adapt to the 

verbal rule creation process.  
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                                 CHAPTER 6 

 

 

CONCLUSIONS 
 

A fuzzy logic model was successfully created to predict the chiller plant power 

consumption obtained from the commercial building. Input parameters used in model 

creation process included time, wet bulb temperature, dew point temperature, 

percentage relative humidity, and wind speed.  

The model was created from independent hourly climate data that were obtained 

from the National Climate Data Center, in Hawaii, USA. A five-parameter ANN model 

was used to compare the fuzzy model output and the ANN model output. 

 Successful predictions of the observed outputs by the fuzzy logic model 

indicated that fuzzy logic could be a useful modeling tool for engineers and the 

operators of the chiller system. 

The successful predictions of the total chiller plant power consumption data by 

the fuzzy model indicated that the employed prod activator and centroid deffuzzification 

methods were appropriate. 

Future study may involve other modeling techniques like gene expression 

programming. Chiller plant data can be collected for longer periods in the post retrofit 

period to better understand effects of retrofits in the HVAC system. 
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