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ABSTRACT

Various real world phenomena such as optical communica-

tion channels, power amplifiers and movement of sea ves-

sels exhibit nonlinear characteristics. The nonlinearity de-

gree of such systems is assumed to be known as a general

intention. In this paper, we contribute to the literature with a

Bayesian estimation method based on reversible jump Markov

chain Monte Carlo (RJMCMC) for polynomial moving aver-

age (PMA) models. Our use of RJMCMC is novel and unique

in the way of estimating both model memory and the nonlin-

earity degree. This offers greater flexibility to characterize

the models which reflect different nonlinear characters of the

measured data. In this study, we aim to demonstrate the po-

tentials of RJMCMC in the identification for PMA models

due to its potential of exploring nonlinear spaces of different

degrees by sampling.

Index Terms— Polynomial MA, Nonlinearity degree es-

timation, Reversible Jump MCMC.

1. INTRODUCTION

Modelling of real world problems employs nonlinear mod-

els, generally with fixed degree of polynomial nonlinearity or

it necessitates an exhaustive search over all model order val-

ues. Hence, having an idea about this nonlinearity degree of

the aforementioned models is of utmost importance. In this

study, we propose a Bayesian approach which estimates the

nonlinearity degree as well as the moving average (MA) or-

der and the model coefficients of a Volterra series expansion

based nonlinear model, namely polynomial MA (PMA).

In the literature, nonlinear moving average (NMA) mod-

els [1] have been preferred for modelling various real life sig-

nals and systems, such as radio frequency power amplifiers

(RF-PAs) [2], bridge aerodynamics [3], finance [4] and adap-

tive control of the nonlinear systems [5]. This preference is

motivated by the cases when the weighted sum of past values

of errors (or shocks) is more important than the weighted sum

of past values of data itself. Taking the errors into considera-

tion rather than or in conjunction with autoregression, is cru-

cial in finance when modelling exchange rates and volatility

in particular [4].

Polynomial moving average (PMA) models are Volterra

based NMA models with linear-in-the-parameters property

and defined as:

x(n) = µ+

q
∑

i=1

b
(1)
i e(n−i)+

q
∑

i=1

q
∑

j=1

b
(2)
i,j e(n−i)e(n−j)+...

+

q,...
∑

i,...

b
(p)
i,...e(n− i)...+ e(n), (1)

where e(n) is the excitation sequence with distribution

N (0, σ2
e), b

(1)
i , b

(2)
i,j and b

(p)
i,... are PMA model coefficients

for first order, second order and pth order polynomials, re-

spectively, p is the nonlinearity degree and q is the MA order

of the PMA model. A PMA model can be represented with

the notation: P(p)MA(q). In modelling problems, it is impor-

tant to be able to estimate the degree of nonlinearity p as well

as the MA order and the process coefficients. To the best of

our knowledge, very limited work on the estimation of PMA

nonlinearity order exists.

Reversible jump Markov chain Monte Carlo (RJMCMC)

was first introduced in [6] as a Bayesian model identifica-

tion tool which is an extended and generalized version of the

MCMC algorithm. RJMCMC provides an algorithm for the

construction of reversible Markov chain samplers which ex-

plores parameter subspaces of different dimensions. General

intention is to employ RJMCMC on problems which include

exploring spaces of varying dimensions of the same classes

of models. In the literature, RJMCMC has been generally

used in linear model identification problems, e.g. in [7, 8]

for autoregressive (AR), in [9] for autoregressive integrated

moving average (ARIMA) and in [10] for fractional ARIMA

(ARFIMA) models.

However, the formulation of Green in [6] provides a far

more general usage potential for RJMCMC and its sampling

strategy is not limited to linear models. RJMCMC can also

be used for nonlinear model identification problems in a wide

range of applications such as a model identification tool for

2016 24th European Signal Processing Conference (EUSIPCO)

978-0-9928-6265-7/16/$31.00 ©2016 IEEE 1543

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@IZTECH Institutional Repository

https://core.ac.uk/display/324143601?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


polynomial autoregressive (PAR) models in [11] and thresh-

old moving average (TMA) models in [12].

In a previous study [11], we demonstrated the success of

RJMCMC algorithm in the estimation of PAR processes with

unknown degree of nonlinearity. In this study, we reformu-

late this PAR model estimation problem for the synthetically

generated PMA models. The procedure differs from the pre-

vious studies [7–10] which apply RJMCMC for choosing a

model from a set of linear models. In the present work, RJM-

CMC explores linear and nonlinear models together and tests

the nonlinearity of the model. Meanwhile, it estimates the

nonlinearity degree and the MA order for the corresponding

PMA model. In addition to the model selection procedure,

PMA model coefficients are estimated as well.

The rest of the paper is organized as follows: PMA mod-

els and RJMCMC methodology for PMA model selection and

the problem of estimating coefficients are examined in Sec-

tion 2. The results of the simulations are provided in Section

2.5. Section 4 concludes the paper with a brief summary.

2. METHODOLOGY

2.1. PMA Models

A P(p)MA(q) model given by (1) can be represented in

matrix-vector form by using the linear-in-the-parameters

property:

x = Bǫ(p,q) + e, (2)

where x is a n−vector of data samples, and e is a n−vector

of excitation sequence with independent and identically dis-

tributed N (0, σ2
e). B is a matrix whose rows are constructed

in a way as to generate data in the correct form. Past sam-

ples and their polynomial products are included in a (n ×
w)−vector, ǫ(p,q). B and ǫ(p,q) have the form:

B =











b
(p,q)

0 0 . . . 0

0 b
(p,q)

0 . . . 0

...
...

...
. . .

...

0 0 0 . . . b
(p,q)











, (3)

ǫ(p,q) =
[

ǫ
(p,q)
1 , ǫ

(p,q)
2 , ǫ

(p,q)
3 , . . . , ǫ

(p,q)
n

]T

. (4)

where w refers to the number of coefficients of P(p)MA(q)

model, 0 represents a zero row vector with w zeros, and

b
(p,q) and ǫ

(p,q)
t , for any t = 1, 2, . . . , n, have the form:

b
(p,q) =

[

b
(1)
1 b

(1)
2 . . . b

(1)
q b

(2)
1,1 b

(2)
1,2 . . . b

(2)
q,q . . . b

(q)
q,...

]

, (5)

ǫ
(p,q)
t = [e(t− 1), e(t− 2), . . . , e(t− q), e2(t− 1),

e(t− 1)e(t− 2), . . . , e2(t− q), . . . , ep(t− q)]T. (6)

2.2. Likelihood for PMA models

Studies [13,14], derive the likelihood for linear MA. In PMA,

the Gaussianity of the likelihood is not guaranteed. How-

ever, in [15] it is shown that for white inputs and narrow-

band Volterra systems, the output is Gaussian. We have ex-

perimentally verified this result and seen that the Gaussian

likelihood is a good practical approximation for narrowband

Volterra models.

In particular, for this case [13] provides an approximation

on the likelihood function which attains estimations for the

unobserved values in the model itself. This method has been

employed in studies for Bayesian analysis of ARMA based

time series models [8–10, 16].

An approximate likelihood function for a linear MA(q)

process can be defined as [13],

f(x|θ) =
1

√

(2πσ2
e)

(n−qmax)
exp

(

−1

2σ2
e

n
∑

t=qmax+1

e2t

)

(7)

≈ N (e|0, σ2
eIn). (8)

where qmax represents the maximum MA order and n is the

length of data vector x and excitation sequence vector e. The

authors of [13] have derived this form of likelihood under the

assumption of both the MA process x, and the excitation e

are normally distributed.

The expression in (7) can be directly used for PMA

models with e ∼ N (0, σ2
eIn) and parameter vector θ of

{p, q,b(p,q), σ2
e , σ

2
b}, provided that the data coming from the

PMA model is normally distributed.

As seen clearly, likelihood function in (7) requires ele-

ments of vector e to be known. However, excitation sequence

is an unobserved quantity, approximations [17, 18] or sam-

pling strategies [16] are available to solve this problem.

In this study, we apply a sampling strategy to employ the

likelihood function in (7) by expressing the excitation in terms

of x,B and ǫ(p,q) as x−Bǫ(p,q) from (2). The details will be

discussed in next sections.

2.3. Bayesian Hierarchy & Priors

The joint posterior density, i.e. target distribution of RJM-

CMC, f(θ|x), can be easily written from Bayes Theorem:

f(p, q,b(p,q), σ2
e , σ

2
b |x) ∝ f(x|p, q,b(p,q), σ2

e)×

f(b(p,q)|p, q, σ2
b )f(σ

2
b )f(σ

2
e)f(q)f(p). (9)

In previous studies [7–11], making an assumption that all

model subspaces are equally likely a priori, appears as a natu-

ral choice in the absence of real prior information about model

orders of an observed data. Given these, we assume that the

MA order q, and the nonlinearity degree p are uniformly dis-

tributed with upper bounds pmax and qmax:

f(q) = U(1, qmax) and f(p) = U(1, pmax). (10)
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In order to provide conditional conjugacy, prior for PMA

coefficients are assumed to be normally distributed with zero

mean and σ2
b variance. Also, the excitation variance σ2

e and

variance of model coefficients, σ2
b , are assumed as inverse-

Gamma distributed. This choice of priors for scale parame-

ters is due to the conditional conjugacy of the inverse-Gamma

distribution. Then, the full posterior conditional distribution

becomes also inverse-Gamma [9]:

f(b(p,q)|p, q, σ2
b ) = N (b(p,q)|0, σ2

b Iw), (11)

f(σ2
b ) = IG(σ2

b |αb, βb), (12)

f(σ2
e) = IG(σ2

e |αe, βe). (13)

2.4. RJMCMC Methodology

RJMCMC [6] is a general strategy of sampling from a tar-

get distribution, f(θ|x), whether the dimensions of param-

eter spaces are the same or not. It applies the standard

MCMC strategy for within-model moves, which we call as

life move, and reversible jump strategy for between-model

moves, namely birth and death moves.

Following [6], when the current Markov chain state is κ
with parameter vector θ, we propose a move type m with

probability Pr(κ→ κ′), which changes dimension, and takes

the state to κ′ with parameter vector θ∗. The acceptance prob-

ability, which is denoted byα(κ→ κ′), needs to be calculated

to ensure convergence to the correct posterior.

Given the observed data x, the general expression for

α(κ→ κ′) which is similar to eqn. (8) of [6], is;

(14)min

{

1,
f(θ∗|x)Pr(κ′ → κ)

f(θ|x)Pr(κ→ κ′)χ(u)

∣

∣

∣

∣

∂θ∗

∂(θ,u)

∣

∣

∣

∣

}

,

where f(·|x) is the target distribution of interest, Pr(κ→ κ′)
and Pr(κ′ → κ) represent the probabilities for the move m
and its reverse move, χ(u) is the proposal distribution for the

auxiliary variable vector u which is required to provide di-

mension matching for the move m and

∣

∣

∣

∂θ∗

∂(θ,u)

∣

∣

∣
is the magni-

tude of the Jacobian.

2.4.1. Between-Model Moves (Birth & Death)

For a birth move from q to q′ where p is fixed, the acceptance

ratio is defined as αbirth = min{1, rbirth}. The corresponding

value for rbirth:

(15)

rbirth =
f(x|p, q′,b(p,q′), σ2

e)

f(x|p, q,b(p,q), σ2
e)

×
f(b(p,q′)|p, q′, σ2

b )

f(b(p,q)|p, q, σ2
b )

×
Pdeath

Pbirthχ(u)
×

∣

∣

∣

∣

∣

∂b(p,q′)

∂(b(p,q),u)

∣

∣

∣

∣

∣

.

If a move from q to q′ where q′ < q, is selected, no new

parameters are proposed and a death move will be applied.

We remove the coefficients which belong to q of parame-

ter vector b
(p,q). The acceptance ratio of the death move,

αdeath(q → q′) = min{1, 1/r′birth}.

2.4.2. Within-Model Move (Life)

When the newly proposed model order is equal to the recent

value, e.g. q′ = q, a life move will be applied. Acceptance

ratio is defined as αlife = min {1, rlife}. So rlife is:

(16)

rlife =
f(x|p, q′,b(p,q′), σ2

e)

f(x|p, q,b(p,q), σ2
e)

×
f(b(p,q′)|p, q′, σ2

b )

f(b(p,q)|p, q, σ2
b )

×
ψ(b(p,q)|p, q′,b(p,q′))

ψ(b(p,q′)|p, q,b(p,q))

where f(x|·) is likelihood distribution and f(b(p,q′)|·) is

prior distribution for parameter vector. Updating model coef-

ficients includes proposing from the distribution ψ(·);

b
(p,q′) ∼ ψ(b(p,q′)|p, q,b(p,q)), (17)

= N (b(p,q′)|µn,Σ
−1
n ), (18)

where µn = σ−2
e Σ−1

n X
T
x and Σn = σ−2

e X
T
X+ σ−2

b Iw.

Each row of (n×w)-matrix X consists of ǫ
(p,q)
t for row t

(See expression in (6)).

2.4.3. Gibbs Moves

Excitation variance, σ2
e and variance of model coefficients,

σ2
b are updated at each iteration via Gibbs Sampling. The full

conditional distribution for σ2
e is [8];

f(σ2
e |x, p, q,b

(p,q)) ∝ f(x|p, q,b(p,q), σ2
e)f(σ

2
e) (19)

≈ N (e|0, σ2
eIn)IG(σ

2
e |αe, βe) (20)

= IG(σ2
e |αen, βen), (21)

where αen = αe + 1
2n, βen = βe + 1

2e
T
e and excitation

sequence vector e = x−Bǫ(p,q) from (2).

Similarly, the full conditional distribution for σ2
b is ob-

tained as [8];

f(σ2
b |x, p, q,b

(p,q)) ∝ f(b(p,q)|σ2
b )f(σ

2
b ) (22)

≈ N (σ2
b |0, σ

2
b Iw)IG(σ

2
b |αb, βb) (23)

= IG(σ2
b |αbn, βbn), (24)

where αbn = αb +
1
2w and βbn = βb +

1
2 (b

(p,q))Tb(p,q).

Model estimation procedure in this study requires past

samples of unobserved excitation sequence. These samples

and their polynomial extensions are elements of the vector,

ǫ(p,q) in (2) and the matrix, X in (18).

In [16], a Gibbs sampling methodology for ARMA mod-

els has been constructed for reconstruction of audio signals.

Applying the method of [16] for MA models and employing
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second order method used in [9], the full conditional distribu-

tion for vector ǫ(p,q) is obtained as;

f(ǫ(p,q)|x, p, q,b(p,q), σ2
e) = N (ǫ(p,q)|µǫ,Σ

−1
ǫ ), (25)

where, µǫ = σ−2
e Σ−1

ǫ B
T
x and Σǫ = σ−2

e

(

B
T
B+ In

)

.

2.5. PMA Model Selection Procedure

PMA model selection procedure requires 2-stage RJMCMC

procedure for q and p at each iteration. Equations between

(15)-(18) correspond to the 1st RJMCMC stage used to esti-

mate q when p is fixed to its value in previous iteration. In the

2nd stage, q is set to the recently estimated value in the first

stage and p is estimated which can be described modifying

Equations (15)-(18) suitably.

Each RJMCMC stage updates one of the model parame-

ters that is either p or q. In case of a birth move correspond-

ing to a model change from p = 2 to p = 3 when q = 2,

that move requires λ = 9−5 = 4 candidate coefficients to be

proposed from a proposal distribution to satisfy the dimension

matching criteria. Each element, ui, of the proposed vector u,

where i = 1, . . . , λ is proposed from a uniform distribution

U(−δ, δ) and the joint distribution χ(u) is defined as;

χ(u) =

λ
∏

i=1

U(−δ, δ), and δ =
0.05

E[|x|]
, (26)

where E[|x|] is the expected value of the absolute value of

the data vector x. In particular, proposal distribution borders,

(δ and −δ) are selected as depending on observed data due

to sample meaningful candidates under varying conditions

of data. Moreover, proposal distribution is chosen to make

the candidates independent from recent coefficients, thus the

increase in dimensionality of the parameter space is accom-

plished through an identity function. This selection makes the

Jacobian equal to unity.

3. SIMULATION & RESULTS

6 different PMA models (2 linear and 4 nonlinear) are gener-

ated for simulations. Each data set has a length of 500 sam-

ples. Mean value, µ, for each data sets is chosen as 0 for

simplicity. Each data set is driven with a Gaussian excitation

sequence with variance of σ2
e . Normality of the each data set

is tested via Kolmogorov-Smirnov and Kullback-Leibler tests

in order to provide that the PMA process, x is normally dis-

tributed.

Hyperparameters are set to values αe = αb = 1 and

βe = βb = 2. The initial MA order q0 and nonlinearity de-

gree p0 are set to 1 and both of upper bounds pmax and qmax

are set to 6. b
(p0,q0) is sampled from the prior distribution

in (11). Move probabilities for Pbirth, Pdeath and Plife are se-

lected as 0.15, 0.15 and 0.7, respectively. 10, 000 iterations

are simulated to let sampled parameters converge.

Table 1. Model Estimation Results
P(1)MA(4) P(1)MA(5) P(2)MA(2)

Percentage of Detection 70% 70% 100%

Avg. NMSE of Coeff. Vector Estimate 0.0287 0.0448 0.0174

# of Coeff. (w) 4 5 5

P(2)MA(3) P(3)MA(2) P(4)MA(1)

Percentage of Detection 100% 65% 70%

Avg. NMSE of Coeff. Vector Estimate 0.0198 0.0308 0.0531

# of Coeff. (w) 9 9 4

Because of the space limitation, 2 results out of 6 PMA

models will be shown as examples. In Figure 1 histograms

of the four model coefficients of P(2)MA(3) and the excita-

tion sequence are plotted. The normalized mean square error

(NMSE) of the coefficient vector in Figure 1 is 1.39 × 10−2

which is defined as NMSE = 1
w

∑w
i=1

(bi−b̂i)
2

‖b‖2

where bi and

b̂i are the ith element of the w-dimensional coefficient vector

b and its estimate b̂ and ‖b‖2 is the l2-norm of b.

In Figure 2, the instantaneous estimates and the joint

posterior density of the model orders p and q for model

P(2)MA(2) are shown for one of the iterations. The proposed

method estimates the true order pair over 50% of the itera-

tions. Consequently, by using RJMCMC, we can decide the

nonlinearity degree of PMA model and the resulting parame-

ters can be used in an application to find the best model.

Table 1 depicts the RJMCMC percentage of detection of

true model order pairs and estimated model coefficient error

values in terms of NMSE values. 20 different data sets are

generated for each model and RJMCMC model detection per-

formance is measured. RJMCMC decides true model order

pairs with highest percentage within 20 simulations for all 6

candidate PMA models. Moreover, RJMCMC also estimates

model coefficients of unknown models and achieves remark-

able performance in terms of average NMSE of around 10−2

for all models.

4. CONCLUSIONS

RJMCMC algorithm has been known for its success in the

solution of model uncertainty of linear processes. This study

have used RJMCMC in an anomalous case and demonstrates

the potential of it in estimating the degree of nonlinearity of a

linear in the parameters nonlinear model.

Furthermore, by sampling in linear and nonlinear spaces

of varying dimensions for the estimation of orders p and q, we

also show that RJMCMC algorithm can jump (hence explore)

between not only spaces with different dimensions, but also

different classes of models (MA and PMA).

RJMCMC is shown to be a complete model estimation

tool which not only determines model order by applying a

search on parameter space but also estimates model coeffi-

cients, concurrently.

As a future work, the proposed method will be adapted
to a Volterra Systems Identification problem to apply in prob-
lems such as dynamical system identification, equalizing the
nonlinearities in fiber optical systems and communications
systems etc.
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