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Abstract. Double-spherical six-bar linkage is one of the Bennett over-constrained 6R linkages. Kine-
matic synthesis of such linkages can be tedious and impossible to solve for analytically. In order to
cope with higher number of unknowns in these types of linkages, decomposition method is a valuable
tool. This paper focuses on the function generation synthesis of double-spherical six-bar linkage. Two
procedures for applying decomposition method are explained. Two numerical studies are conducted for
both procedures to evaluate the performance of each procedure.
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1 Introduction

There have been numerous studies on kinematic synthesis procedures for spherical
four-bar linkages to solve for path generation [1], function generation [2, 3, 4, 5].
Also, there have been recent studies on function generation synthesis with in-
creased number of independent parameters [6].

The nonlinearity in analytical equations increases as number of independent pa-
rameters increases. Hence, function generation of linkages with higher number of
independent parameters can become very tedious if not impossible to solve for an-
alytically. This study focuses on the decomposition method, which is presented in
[7], to decompose the double-spherical six-bar linkage into two serially connected
spherical four-bar mechanisms with a passive revolute joint in between. Validity
of such a method and the explanation of the synthesis procedure was given in [§]
and also briefly discussed in Section 2 and 3 respectively.

Aim of this paper is to investigate and evaluate two possible procedures in us-
ing interpolation approximation method for function generation of double-

1



2 0. W. N. Maaroof, and M. 1. C. Dede

spherical six-bar mechanism. Through this investigation, findings can be extrapo-
lated for remaining Bennett over-constrained 6R linkages.

2 Description of the double-spherical six-bar linkage

A mechanism with a single general constraint, such as double-spherical six-bar
linkage, has motion in subspace A=5. Six revolute joints are arranged in such a
way that while joint axes of first three are intersecting at one center, joint axes of
remaining three intersect at a different center. In Fig. 1, joint axes that denote
these two groups of three revolute joints are S14-S15-Sq9 and S¢-S4-S,. It must be
noted for readers that vectors are denoted with bold fonts throughout this paper.

Decomposition method enables to decompose this linkage into two spherical
four-bar mechanisms by adding a passive revolute joint whose rotation axis is
aligned with virtual line that connects two centers that was described in the previ-
ous paragraph. Rotation axis of passive joint is denoted with Sg in Fig. 1. There-
fore, passive joint is included in both spherical four-bar mechanisms that can be
separately indicated as Sy4-S1-S19-Sg and Sg-S¢-S4-S; spherical four-bar linkages.
Overall, for input-output function synthesis of the double spherical linkage, mech-
anism is described as two spherical four-bar linkages as shown in Fig. 1. It can be
observed from Fig. 1 that as passive joint, {, is output for the first spherical mech-
anism with input ¢, it is also the input of second spherical four-bar mechanism that
has output denoted as Y. In order to relate unit vectors assigned in Fig. 1, trans-
formation unit vector equation described in [9] is used. With respect to formula-
tion given in [9], for each S; (I;, m;, n;) that rotates around S;(I;, m;, n;) by angle
Qx> Sk(lx, my, ny) can be calculated as shown in Eq. (1).

Sk = Si COS Uk + S]l sin [067% (1)

where, S;; = §; X S; . Screws defined for revolute pairs of double-spherical six-
bar mechanism are shown as joint unit vectors, where S;= (1,0,0) and S, =(0,0,1).
Other screws are found as indicated in Table 1.

3 Objective functions for the spherical linkages

There will be a single objective function for the whole mechanism. However,
since decomposition method is used, objective functions for both decomposed
spherical four-bar mechanisms have to be formulated independently. Input-output
relation/equation, which is commonly called as objective function in function gen-
eration synthesis, of first four-bar is calculated presented in Eq. (2), and (3). In
equations, cosine and sine functions are abbreviated as Ca = cosa and Sa = sina.
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Fig.1 Double-spherical six-bar linkage mechanism with joint axes [8]

Table 1. Calculation of the screws of the double-spherical six-bar linkage

First four-bar of the mechanism Second four-bar of the mechanism
Si,S2and o3 — S35 S;,Szand a4 — Sy Ss, Syand ag 14 — S145 S1, Sigand ay13 — Spz
Sz, Syand opg — Sg5S1, Sgand a5 — Sis Sis, Sizand oug 12 — S125 81, Sgand a9 — Sy
Ss, Sis and ags — Se Ss, Sy and ag 10 — Sio
SG . S4_ = C(X4_'6 (2)

When the values of Sy and S¢ are substituted and Eq. (2) is re-arranged and the
function is re-written in polynomial form, Eq. (3) can be formulated. Necessary
manipulations to formulate Eq. (3) are explained in [8].

Pofo(d) + Pif; (d) + Pof,(d) + Psf3(d) — F(p) =0 3)

Where PO = (CO(4_’6 - CO(ZACO(Z‘SC(Xsﬁ)/(SO(ZASO(S’G) 5 Pl = — C(X8‘6SO(2‘8/SO(8’6 .
P, = —Cayzg ,~P3 = Ca2,4Sa2§/Sa2,4 fo(d) =~1, fi () = Co,
f2(d) = COCY, f3(dp) = CY, F(P) = SdSy.

Objective function for the second four-bar is calculated similarly by using Eq. (4).
Si2. Si0= Coyo,12 4)

The function for the second spherical four-bar that is written in the polynomial
form using similar manipulations is detailed in [8].
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4 Equal spacing and precision points

In decomposition method, a given function can be decomposed into a function of
function and therefore, the overall function can be shared between two spherical
four-bar linkages. Procedure for function generation synthesis by decomposition
method starts with selecting an overall double-spherical six-bar linkage function,
function, y = f(x). Following this, an arbitrary function ¥ = h(x) can be selected
as first function. Range of x is given as Xy, < X < X, and respectively y, <y <
Vm Where ¥, = h(x) and ¥, = h(x).

First, the arbitrary function y = h(x) is scaled for input (¢) and output () of
first mechanism. When range of input is ¢y < ¢ < ¢, and a range of output is
selected as Po <P <y, and scaling equations are calculated as
¢ =4x+4,, P=Dby+b,.

Selected function for output angle for first mechanism becomes by =

bsh (q)_éz) + b,. A function is found by making synthesis of first four-bar linkage

4
after defining input-output relations as indicated in Eq. (5).

¥ =h(¢,0) ©)

where C is the vector containing the designed construction parameters of first four-
bar linkage. Following the design of construction parameters for first four-bar
linkage, function for second spherical four-bar linkage is calculated. The calcula-
tion is conducted to find a function y = g(¥), where y = g(h(x)) = f(x). It should
be noted that range of input for second spherical linkage is selected to be the same
as the range of output of first spherical linkage. In addition, range of output should
be selected as the range of output for whole mechanism, Yy, < ¢ < . Scaling
equations are with respect to these criteria are ( = b,y + b, , y = b,y + b,.
Desired function for output angle of whole mechanism is calculated as

U =Dbg (wg bz) + b,. After defining the input output relations, a function is
1
found by making synthesis of the second four bar linkages as;

v =g(hd) . (6)

Substituting Eq. (5) in Eq. (6), objective function for double-spherical six-bar
mechanism can be calculated as { = g(h(d), ), c_l), where € and d are designed
construction parameters of first and second four-bar linkages respectively.

Interpolation approximation is used for finding the construction parameters of
the mechanism. For exact solution, 4 positions of the mechanism are required four
unknown parameters for each spherical linkage must be determined. Thus, n = 4
(n is number of equations or precision points) and as an example, precision points
are distributed for exact synthesis equally in range of x from x, = 1 to x,,, = 2 as
Xp = Xp_1 +6;n=1,23,4,where § = (x, —%0)/(n+1) for n=4 . y val-
ues of given and selected functions can be calculated by y; = f(x;), i=0,n+ 1.
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Constant parameters are calculated using Eq.(7) for first and second linkage.
Using equal spacing for the second mechanism is not the only option towards a so-
lution. Another option is using outputs of first spherical four-bar mechanism’s
precision points as precision points for second spherical four-bar mechanism. In
this way, it is foreseen that in total error calculation of whole mechanism, there
will be exactly four locations where error will be zero and these will be for preci-
sion points set for input of mechanism while solving for first spherical four-bar.

a; = (dg — dm)/ (X0 — Xm), a; = (Xmbo — XoPm)/ (Xm — Xo)

l’)1 = (LT’o - lTJm)/(}"o —Vm), l,)2 = (Ym‘TJO - YOITJm)/(}"m —¥o) ™

5 Derivation of design equations of spherical four-bar

Generalized equations for objective function of both spherical four-bar mecha-
nisms are shown in Eq. (8). Number of precision points is four, thus, four linear
equations with four unknowns are required for each objective function. After ar-
ranging equations as matrices, values of P, and R; are found by using Cramer’s
rule, and unknown construction parameters of first spherical four-bar linkage are
determined as shown in [8]. Thus, construction parameters for both mechanisms
are calculated as; ¢ = {0(2,8, 0y 4, Og g, 0(4,6}, andd = {0(8,14, Oy4.12,0g 10, 0(12,10}.

Yrso Pef(p) —F(p)) =0, i=1n

~ —~ 8
YRoo Rug(Wi) —G(P;) =0, i=1n ®

6 Numerical examples

Two sets of numerical example studies are conducted. Equal spacing is used for
both spherical four-bar designs in first set of numerical examples. In second set,
equal spacing is used only for first spherical four-bar mechanism and output of the
precision points set for first bar are used as precision points for second mecha-
nism. Procedure for equal spacing and calculation method of errors are explained
in [8]. First function to be generated by double-spherical six-bar is y = x*3. This
function is shared between two mechanisms as ¥ = x°8 and y = %25, Second
function is y = e?*. This function is divided into two as § = e'** and y = y(?/12).

Since the method of choosing the precision points for second spherical four-bar
and its effect on the whole mechanism’s design precision is in question, only con-
struction parameters of second spherical four-bar mechanisms and error graphs of
second four-bar mechanisms double-spherical six-bar linkage are presented. Er-

rors are calculated for second four-bar by e, = |(b1 g (17};152) + bz) - g(t/j, J)|

and similarly for the whole mechanism.
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6.1 Results by using equal spacing

Precision points and designed construction parameters of the second spherical
four-bar mechanisms for both functions are presented in Table 2 and 3 with re-
spect to the appearance of the function in Section 6.

Error for first function is calculated to be e,= 0.0993 for a step size of
Ay = 0.0314. Error calculated for second function is e,= 0.2342 for a step size
of Ay = 0.0314. Total error of double-spherical six-bar linkage is calculated as
€wotal= 0.0738 for a step size of Ad = 0.0377 and eyy= 0.0744 for a step size
of Adp = 0.0377 respectively for both functions. Total error graph for both
functions are presented in Fig. 2 (a) and (b). It is clearly observed that errors do
not go to zero at four points for whole mechanism.

Table 2. Precision points & construction parameters for 2™ spherical four-bar with y = y1:625

. . ~ Second four-bar parameters
i i Vi Wirad) W (rad) Ry ad)

1 1.1186 1.1998 0.5655 1.7377 -0.4954 agy4 = 0.8245

2 1.2668 1.4686 0.8797 1.9623 0.8375 Q412 = —0.7198

3 1.4150 1.7578 1.1938 2.2040 -0.6789 agio = 0.5035

4 1.5632  2.0667 1.5079 2.4620 -1.3329 Q310 = 09214

Table 3. Precision points & construction parameters for 2™ spherical four-bar with y = y(2/12)

Second four-bar parameters

i Yi Yi lTJi(rad) Y; (rad) R; (rad)

1 45526  12.5054 0.5655 1.7032 -3.3772 ag1q = 1.5969
2 6.0932  20.3271 0.8796 1.9056 3.8417 Oyq12 = -0.2546
3 7.6338  29.5961 1.1938 2.1455 0.0261 agyo = 0.1952
4 9.1744  40.2065 1.5080 2.4201 -5.0564 0510 = 14302

etotal

ey g
| | | | |

Y Ny ——r =t == - =
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Fig.2 Total error graph using equal spacing for function (a) y = x*3 (b)y = e2X
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6.2 Results by using the outputs of first four-bar

In this case, outputs of first spherical four-bar mechanisms for its four precision
points are taken as the precision points for seond spherical four-bar mechanism.
Precision points and designed construction parameters of the second spherical
four-bar mechanisms for both functions are presented in Table 4 and 5 with re-
spect to the appearance of functions in Section 6.

Table 4. Precision points & construction parameters for 2™ spherical four-bar with y = 71625

j ~ Second four-bar pa-
X; Yi Yi Yi(rad) ¢, (rad) R; rametel:s (rad)p

~

12200 1.1724 12950  0.6796 1.8173 26165 ag14 = 1.9330
14200 1.3238 1.5775  1.0005 2.0533 2.9938 Q14,12 = —0.3027
1.6200 1.4710 1.8723 13125 2.2996 0.3544 ag1o = 0.2322
1.8200 1.6146 2.1782  1.6168 2.5552 -3.9540 @210 = 1.7210

AW N -

Table 5. Precision points & construction parameters for 2" spherical four-bar with y = y2/12)

Second four-bar

i X Vi Yi Pi(rad) ¥; (rad) R; parameters (rad)
1 12800 4.6460 129358 05845 17143  -3.6848 Qg4 = 17265
2 14800 59062 192980  0.8415  1.8790 41595  Oygqp = —0.2332
3 16800 7.5082 287892  1.1682  2.1246 0.1551 gy = 0.1791
4 18800 9.5448 429484 15835 24910  -54560  @Qiz10 = 15676

Error for the first function is calculated to be e,= 0.1751 for a step size of
Ay = 0.0312. The error calculated for the second function is e,= 0.1891 for a
step size of Ay = 0.0333. Total error of the double-spherical six-bar linkage is
calculated as eyo= 0.1233 for a step size of AP = 0.0377 and eyya= 0.0486
for a step size of Ap = 0.0377 respectively for both functions. Total error graph
for both functions are presented in Fig. 3 (a) and (b). It is clearly observed that the
errors go to zero at four points for the whole mechanism.
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Fig.3 Total error graph using the outputs of first four-bar for function (a) y = x'* (b)y = e
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7 Conclusions and Discussions

Decomposition method with interpolation approximation is used for function gen-
eration synthesis of procedure of double-spherical six-bar linkage by using four
precision points. While synthesis procedures of both four-bars are similar, selec-
tion of precision points for second spherical four-bar can be a different procedure.
One of the options is to use equal spacing in between set limits as it is the case for
first spherical four-bar and the other option is to use outputs of precision points at
passive joint as precision points for the second spherical four-bar synthesis. Sec-
ond option guarantees that total error for double-spherical six-bar mechanism is
zero at exactly four points. This is clearly observed in the error plots presented in
Fig. 3. On the contrary, in error graphs drawn for first option, in one of the func-
tion generations there are three locations that total error goes to zero while in the
other function generation total error does not approach to zero at any point.

Total error using second option is increased with respect to the result obtained
for first option when first selected function is generated. However, when second
function is generated, second option produced decreased total error with respect to
the first option. Therefore, although second option for selecting precision points
for synthesis of second spherical four-bar is shown to guarantee that total error
goes to zero at exactly four points for four precision point synthesis, it does not
guarantee that total errors decrease with respect to the first option.
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