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a b s t r a c t 

Volterra systems have had significant success in modelling nonlinear systems in various real-world ap- 

plications. However, it is generally assumed that the nonlinearity degree of the system is known before- 

hand. In this paper, we contribute to the literature on Volterra system identification (VSI) with a numerical 

Bayesian approach which identifies model coefficients and the nonlinearity degree concurrently. Although 

this numerical Bayesian method, namely reversible jump Markov chain Monte Carlo (RJMCMC) algorithm 

has been used with success in various model selection problems, our use is in a novel context in the 

sense that both memory size and nonlinearity degree are estimated. The aforementioned study ensures 

an anomalous approach to RJMCMC and provides a new understanding on its flexible use which enables 

trans-structural transitions between different classes of models in addition to transdimensional transi- 

tions for which it is classically used. We study the performance of the method on synthetically generated 

data including OFDM communications over a nonlinear channel. 

© 2017 Elsevier B.V. All rights reserved. 

1

 

m  

O  

d  

e  

d  

m  

e

 

e  

fl  

t  

m  

v  

S  

t  

e  

t  

w

e

 

o  

d  

m  

c  

c  

s  

v  

a  

a  

f  

b

c  

F  

e  

a  

e  

[  

s  

l

 

h

0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@IZTECH Institutional Repository
. Introduction 

Nonlinear models can be favorable compared to linear ones in

any real life phenomena which exhibit nonlinear characteristics.

n the other hand, usage of these models is limited because they

o not have easy to implement solutions for estimating nonlin-

ar model parameters. Linear-in-the-parameters nonlinear models

o not share these shortcomings as far as various mathematical

ethods which are developed for linear models can be applied

asily [1] . 

Volterra models are appealing linear-in-the parameters mod-

ls for nonlinear modelling for several reasons. Firstly, they are

exible enough to represent various nonlinear systems since con-

inuously differentiable transfer functions can be easily approxi-

ated by Volterra models with Taylor series expansion. Moreover,

arious nonlinear differential equations such as Lotka–Volterra,

chrödinger [2] , can be rewritten as a Volterra system. Secondly,

heir inverses are also Volterra type which provides considerable

ase in the identification of these systems [3] . This paper is in-

erested in the nonlinearity degree estimation of Volterra models,

ithin the system identification (SI) problem. 
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The application areas of Volterra models cover almost all areas

f signal processing, including speech, image, communications, au-

io, mechanical systems, etc. To name a few: in audio, Volterra

odel has been used for parametric loudspeaker system identifi-

ation in [4] and for acoustic echo cancellation in [5] . Nonlinear

ommunication channels in satellite links have been modelled as

parse third order (cubic) Volterra systems which were estimated

ia adaptive algorithms [6] . Volterra system models were applied

lso in [7] to coherent optical fiber systems outperforming the

daptive reference methods on equalizing the fiber link channel ef-

ects. Volterra systems with complex coefficients have been used in

lind identification of single-input-single-output (SISO) communi- 

ation channels with second order nonlinearity in [8] and for LTI

IR multiple-input-multiple-output (MIMO) systems in [9] . A gen-

ral approach in the literature, which is shared by the mentioned

pplications, is to apply Volterra SI (VSI) methodology to the mod-

ls with predetermined nonlinearity degree and system memory

4–9] . Preknowledge of nonlinearity degree is an unrealistic as-

umption for most of these applications and estimating the non-

inearity degree of the nonlinear model is of utmost importance. 

The Bayesian approach proposed in this paper utilizes reversible

ump Markov chain Monte Carlo (RJMCMC) algorithm in the VSI

roblem to estimate the nonlinearity degree, the system memory

nd model coefficients at the same time. Model space includes lin-

ar and nonlinear models with different degrees of nonlinearity

hile the generally accepted procedure is to use RJMCMC in spaces

https://core.ac.uk/display/324142219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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which include only models of the same class that are spaces con-

taining only linear system parameters or spaces containing only

nonlinear system parameters of the same degree of nonlinearity.

However, although RJMCMC has been used for transdimensional

sampling only, the formulation in the original paper by Green

[10] does not exclude the potential to explore spaces which include

different classes of models, such as linear and nonlinear spaces,

or nonlinear spaces with different degrees. Restructuring RJMCMC

sampling strategy from that defined by Green [10] sampling from

the spaces of different classes of models, enables applying RJMCMC

in more complicated problems such as nonlinear model identifica-

tion or nonlinear SI. 

In this paper, firstly we contribute to the literature with a

Bayesian VSI scheme and in contrast to previous works, we provide

means to estimate nonlinearity degree in addition to the mem-

ory size, hence droping the requirement of preknowledge of non-

linearity degree. This offers greater flexibility in modelling, which

can cover a wide spectrum of nonlinear characters observed in the

measured data. 

Secondly, we broaden the interpretation of RJMCMC transi-

tions with trans-structural transitions beyond trans-dimensionality

by performing the original formulation in [10] between different

structural models. This also offers a Bayesian test procedure to de-

fine the nonlinear relationship between input and output data sets

of real life experiments, such as mechanical systems, optical com-

munication systems, biological systems, in terms of Volterra series

expansion model structure. In our previous works, this potential

was exploited in the estimation of polynomial autoregressive and

polynomial moving average models [11,12] . 

Furthermore, in addition to the model orders the proposed

method also estimates the model coefficients with superior perfor-

mance in applications on synthetically generated data sets includ-

ing a nonlinear communication channel estimation problem. We

provide also model selection results obtained by Akaike information

criterion (AIC) and Bayesian information criterion (BIC) as bench-

marks to which our method can be compared. Performance com-

parison for estimating the model coefficients is provided for error

measure normalized mean square error (NMSE) using nonlinear least

squares (NLS) estimation. 

Rest of the paper is organized as follows: background infor-

mation for Volterra system models is presented in Section 2 . The

general RJMCMC procedure and the proposed approach for trans-

structural RJMCMC are expressed in Section 5.4 . Construction of

RJMCMC for identifying Volterra systems is examined in Section 5 .

Section 6 exhibits simulation setup, reference methods, simulation

results and performance comparison study. Section 7 concludes the

paper with a discussion of experimental results. 

2. Volterra system models 

A discrete time Volterra model with the output y ( l ) is given by

[13] : 

y (l) = μ + 

p ∑ 

m =1 

q ∑ 

τ1 =1 

. . . 

q ∑ 

τm = τm −1 

h 

(m ) 
τ1 , ... ,τm 

m ∏ 

j=1 

x (l − τ j ) (1)

h 

(p,q ) = 

[
h 

(1) 
1 

, h 

(1) 
2 

, . . . , h 

(1) 
q , h 

(2) 
1 , 1 

, h 

(2) 
1 , 2 

, . . . , h 

(2) 
q,q , . . . , 

X = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

x (0) x (−1) . . . x (1 − q ) x 2 (0) x (0) x (−
x (1) x (0) . . . x (2 − q ) x 2 (1) x (1) x (0

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

x (n − 1) x (n − 2) . . . x (n − q ) x 2 (n − 1) x (n − 1) x (n
here x ( ·) refers to the input of the model and h (m ) 
τ1 , ... ,τm 

denotes

he m th order discrete Volterra model coefficients (kernels). The

onlinearity degree is represented by p and q specifies the system

emory size. This Volterra model can be represented with the no-

ation: V( p, q ). 

Observing (1) , Volterra models can be represented in

atrix-vector form by using the linear-in-the-parameters

roperty: 

 = X h 

(p , q ) (2)

here the η × 1 coefficient vector h 

(p, q) and n × η data matrix X

re given by: 

 

 ... ,q 

]T 
, (3)

. . . x 2 (1 − q ) . . . x p (1 − q ) 

. . . x 2 (2 − q ) . . . x p (2 − q ) 

. . . 
. . . 

. . . 
. . . 

) . . . x 2 (n − q ) . . . x p (n − q ) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (4)

where n represents the data length. The number of Volterra coef-

cients has been denoted by η and can be calculated for a V( p, q )

odel by: 

= 

(
p + q 

p 

)
− 1 = 

(p + q )! 

p! q ! 
− 1 . (5)

.1. Identification of Volterra systems 

Methods used in SI problems provide information about the un-

ertainties which describe formulations or mathematical expres-

ions about the unknown system in the case of lack of structural

physical) information about the system. SI methods are well es-

ablished when system to be identified is linear. Most of real life

pplications, however, have somewhat nonlinear nature, and solu-

ion for a nonlinear SI problem can be difficult since the under-

ying systems may have a large number of possible nonlinearities

nd the number of possible model structures might be very high

14] . 

In the literature, adaptive algorithms are very popular in recent

ears. These methods generally perform Volterra system coefficient

stimations based on nonlinear least mean squares (NLMS), least

ean pth power (LMP), nonlinear recursive least squares (NRLS) and

xtended Kalman filters [7,15–21] . Furthermore, genetic algorithms

22,23] , QR decomposition [24] , neuro-fuzzy [25] and neural net-

ork [26] architectures have also been used in VSI studies. For all

hese studies, nonlinearity degree of Volterra model is assumed to

e known. 

Several studies have used Bayesian methods for system iden-

ification problems [27,28] .In addition, simulated annealing (SA)

29] and transitional Markov chain Monte Carlo (TMCMC) [14] are

lso used in SI applications of nonlinear dynamical systems. 

. RJMCMC in a new perspective 

RJMCMC was introduced by Peter Green in [10] as a method

or transdimensional sampling between spaces of different dimen-

ions. However, the original formulation of Green lends itself to a

uch wider interpretation than just exploring spaces (“jumping ”

n RJMCMC jargon) of different dimensions. The same formulation

an be used to explore spaces of different types such as linear and

onlinear variable spaces. This is more than just exploring spaces
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f different sizes corresponding to the dimension of the parameter

ector. 

In the literature, RJMCMC has generally been used in linear

odel identification problems. Authors of [30] studied model un-

ertainty problem for autoregressive (AR) models by exploring the

paces for different AR orders via partial and full conditional pro-

osals. RJMCMC has been used in autoregressive integrated moving

verage (ARIMA) models by Ehlers and Brooks [31] and in frac-

ional ARIMA (ARFIMA) models by E ̆gri [32] . In [33–35] , RJMCMC

as been employed to Bayesian analysis of mixtures of distribu-

ions in Gaussian, Poisson and symmetric α-stable, respectively. 

RJMCMC has also been employed to the problems of identify-

ng the nonlinear model, threshold MA (TMA), in [36] . In addition,

37] employed RJMCMC in restoring nonlinearly distorted AR sig-

als. 

.1. General methodology 

In [10] , Green defined RJMCMC as an extended and generalized

ersion of the Metropolis-Hastings (M-H) algorithm [38] and stated

hat it should therefore have wide applicability in model determi-

ation problems. 

Assume a transition from a space x ∈ X to a state y ∈ X . The

cceptance ratio for the M-H algorithm can be defined by: 

in 

{
1 , 

π(y ) q (x | y ) 
π(x ) q (y | x ) 

}
(6) 

here π ( ·) represents the target distribution and q ( y | x ) refers to

roposal distribution from state x to y . 

Green’s generalization on M-H algorithm defines the densities

( x ) and q ( y | x ) with respect to an arbitrary measure as π ( dx ) and

 ( dy | x ). The transition kernel of the Markov chain has been con-

tructed in two steps, firstly drawing a new candidate state y and

hen accepting this transition with a probability α( x, y ). 

Assuming that π ( dx ) q ( dy | x ) has a density f with respect to a

ominating symmetric measure ξ on X × X , then the detailed bal-

nce for a transition defined above is given by: 

(x, y ) f (x, y ) = α(y, x ) f (y, x ) , (7) 

(x, y ) π(dx ) q (dy | x ) = α(y, x ) π(dy ) q (dx | y ) . (8) 

his equation can be solved as in the standard M-H procedure by

etaining the detailed balance and making the acceptance proba-

ilities as large as possible if we choose α( x, y ) as: 

(x, y ) = min 

{
1 , 

π(d y ) q (d x | y ) 
π(d x ) q (d y | x ) 

}
. (9) 

ollowing Green [10] , when the current state is x with parameter

pace θ, a move type m is proposed with probability Pr ( x → y ),

hich changes dimension, and takes the state to y with parameter

pace θ∗. 

This transition is required to sample an auxiliary random vector

 from distribution q 1 ( u ). Another vector u 

′ will be generated from

istribution q 2 ( u 

′ ) to switch back to the state x from y . In order to

uarantee the detailed balance, the dimension matching should be

atisfied provided by dim (x ) + dim (u ) = dim (y ) + dim (u 

′ ) . Then,

he resulting acceptance probability α( x, y ) of RJMCMC is defined

y: 

(x, y ) = min 

{
1 , 

π(y ) P r(y → x ) q 2 (u 

′ ) 
π(x ) P r(x → y ) q 1 (u ) 

∣∣∣∣∂(y, u 

′ ) 
∂(x, u ) 

∣∣∣∣}, (10) 

here 

∣∣∣∣∂(y, u 

′ ) 
∂(x, u ) 

∣∣∣∣ is the magnitude of the Jacobian which is needed

o account for change of variables. 
For the constructed RJMCMC structure two types of moves can

e defined. Moves of the first type, between-model moves, namely

irth and death moves, change dimension up and down respec-

ively. The others, within-model moves, which we call as life move,

pdate the parameter space by applying a classical M-H algorithm.

.2. Trans-structural RJMCMC 

The formulation of Green offers deeper interpretation of tran-

ition between spaces which is not limited to transdimensional

ampling. Thus, exploring spaces with the ”same dimensions” but

ifferent structures (say trans-structural), or both different dimen-

ions and structures, are possible by applying reversible jump

echanism of Green. Transitions from a linear model to a non-

inear model may be indicated as an example for this. Trans-

tructural RJMCMC reveals the great potential of RJMCMC within

uch wider scenarios including transitions from states with the

ame dimensionality and different structures other than being

ransdimensional. 

Suppose that there is a state space X = 

⋃ 

k { k } × R 

n k denotes

nion of k subspaces which includes models with indicator k, X k =
 k } × R n k and each can be defined as different types. We mean

ith different types, for example, linear and nonlinear models or

odels which are driven with different probability distributions,

tc. Now suppose we have two subspaces X 1 and X 2 whose types

re different where the dimensions n 1 and n 2 may be equal. Target

ensity π is proper on both subspaces and defined with respect to

 1 and n 2 dimensional Lebesgue measures, respectively. The sub-

paces X 1 and X 2 have parameters spaces θ1 and θ2 and both have

roper densities in R 

n 1 and R 

n 2 . 

Now, define a move type ”m ”, which performs a transition from

tate x ∈ X to state y ∈ X , with probability p m 

and retains the same

tate with probability 1 − p m 

. This transition will be applied by a

ransition kernel in two steps as indicated in the previous section.

hus, detailed balance in (8) should be provided. Transitions be-

ween models of different structures, contrary to the previous ap-

roaches, may include both birth of new parameters and death of

xisting parameters at the same time. In addition, number of pa-

ameters may be the same for both states. These transitions pro-

ose to switch models with different structures, and hence will be

amed as switch moves in trans-structural RJMCMC concept. 

Nevertheless, proposing vectors of variables and change-of-

ariables operations are needed to define parameter vector for can-

idate state. So, for this type of problems, we define a vector u of

ength l 1 for a transition from x to y . Also, we define a vector u 

′ of

ength l 2 for the reverse transition from y to x . Both of the vectors

 and u 

′ are sampled from proper densities q 1 and q 2 with respect

o Lebesgue measures in R 

l 1 and R 

l 2 , respectively. 

Following the assumption in [10] , the general form of the trans-

tructural acceptance ratio also necessitates defining the density f

the Radon–Nikodym derivative) of a symmetric measure ξ on X ×
 which dominates the density π ( dx ) q ( dy | x ). Now, let the density

 be selected for both directions of the transitions as: 

f (x, y ) = π(x ) q 1 (u ) p m 

, (11) 

f (y, x ) = π(y ) q 2 (u 

′ ) p m 

R 

∣∣∣∣∂(y, u 

′ ) 
∂(x, u ) 

∣∣∣∣, (12) 

here p m 

R is the reverse move probability of m . Then, the accep-

ance ratio can be easily constructed by (9) : 

(x, y ) = min 

{
1 , 

π(y ) p m 

R q 2 (u 

′ ) 
π(x ) p m 

q 1 (u ) 

∣∣∣∣∂(y, u 

′ ) 
∂(x, u ) 

∣∣∣∣}. (13) 

emark. It can be clearly stated that the acceptance ratio of trans-

tructural RJMCMC including transitions between the same dimen-



128 O. Karaku ̧s et al. / Signal Processing 141 (2017) 125–136 

Fig. 1. Toy example model estimation histograms - (a) V(1,2) (b) V(2,1). 
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sionality of the models with different structures in (13) , has the

same form with the one which is derived by Green [10] for the

transdimensional transitions in (10) . So, Green’s formulation can be

directly used within much wider implementations. Although RJM-

CMC has been defined as a model determination tool in transdi-

mensional cases, it will be more meaningful to define RJMCMC as

a general model determination tool whether or not the parame-

ter spaces are of different dimensions. As far as the subspaces are

of different structures, transitions between them require the re-

versible jump mechanism. Then, in the acceptance ratio, the cost

of these transitions are fulfilled in the Jacobian term, which is re-

quired to be calculated due to the change of variables operation. 

In order to see that the use of RJMCMC is not limited to trans-

dimensional models, a simple example is given as follows. For this

simple example, we consider 2 models each having the same num-

ber of parameters, however, one of them is a linear Volterra model

say V(1,2), and the other one is nonlinear, say V(2,1). The general

expressions of the models from (1) , are given below: 

y (l) = h 

(1) 
1 

x (l − 1) + h 

(1) 
2 

x (l − 2) , (14)

y (l) = h 

(1) 
1 

x (l − 1) + h 

(2) 
1 , 1 

x 2 (l − 1) . (15)

Suppose, we are given the data, y , observed from one of the

candidate models and there are two parameter subspaces X k ,

which are X 1 = { 1 } × R 

2 and X 2 = { 2 } × R 

2 . Parameter subspaces

will be defined for V(1,2) as x = (1 , h (1) 
1 

, h (1) 
2 

) ∈ X 1 and for V(2,1)

as x ′ = (2 , h (1) 
1 

, h (2) 
1 , 1 

) ∈ X 2 . Also, we define a move which switches

subspaces with probability p m 

and retains the same subspace with

probability 1 − p m 

. When it remains in the same subspace, RJM-

CMC is going to update model coefficients. 

When we need to make a transition from V(1,2) to V(2,1), al-

though the parameter dimensions are the same, just one of the

model coefficients is common, say h (1) 
1 

. The remaining candidate

coefficient, say h (2) 
1 , 1 

, should be proposed and h (1) 
2 

will be set to 0.

For the reverse move from V(2,1) to V(1,2), the mechanism will be

the same; h (1) 
2 

will be proposed and h (2) 
1 , 1 

will be set to 0. Coeffi-

cient updating mechanism for the moves can be defined as: 

Move m → 

ˆ h 

(1) 
1 

= h 

(1) 
1 

, ̂  h 

(2) 
1 , 1 

= u, h 

(1) 
2 

= 0 , (16)

Reverse move m 

R → 

ˆ h 

(1) 
1 

= h 

(1) 
1 

, ̂  h 

(1) 
2 

= u 

′ , h 

(2) 
1 , 1 

= 0 , (17)
 n
here coefficients with hats on them, e.g ˆ h (1) 
1 

represent the can-

idate model coefficients, variables u and u 

′ have been proposed

rom the densities q 1 and q 2 , respectively which makes Jacobian of

he change-of-variables operation unity. 

The acceptance ratio from (13) appears as: 

(x, y ) = min 

{
1 , 

π(x ′ | y ) p m 

R q 2 (u 

′ ) 
π(x | y ) p m 

q 1 (u ) 

∣∣∣∣∂(x ′ , u 

′ ) 
∂(x, u ) 

∣∣∣∣}, (18)

here π ( · | y ) represents the target distribution of interest given

he data y . 

A computer simulation has been performed for this problem,

nd RJMCMC has been constructed to decide the true model given

oth input and output data of the Volterra models and estimate

he model coefficients at the same time. For both of the models,

JMCMC detects true model with 100% performance after 100 real-

zations. For each model, histograms of model estimates belonging

o a single realization are shown in Fig. 1 . 

. On convergence and complexity of (RJ)MCMC algorithms 

The central objective of MCMC sampling is to create a Markov

hain with a stationary distribution equal to the target distribution

r the posterior for the model parameters. If we run the simulation

ong enough, the distribution of our samples converges to this sta-

ionary distribution. This makes MCMC fundamentally more out-

tanding than the other sampling algorithms such as importance

ampling, etc. [39] . In the absence of techniques to select the right

un length a priori, the convergence of (RJ)MCMC requires online

onitoring of the estimation statistics such as the mean and the

utocorrelation. The estimation of optimal run length a priori is

till an open problem. 

There are some advanced statistical studies [40–43] in the lit-

rature which propose methods for monitoring convergence. In

articular, Gelman and Rubin in [40,41] have proposed a way to

eplicate multiple chains to decide whether or not the algorithm

chieves stationarity. Brooks and Guidici in [42] generalized the

ethod of Gelman and Rubin in a two-way analysis of variance

ANOVA) based method. In [44] , Castelloe and Zimmerman pre-

ented a two-way ANOVA based approach as in [42] but they ex-

ended the approach from univariate to multivariate cases. A more

ecent approach which is a specific distance-based diagnostic has

een proposed by Sisson and Fan in [45] . This diagnostic is de-

igned for trans-dimensional chains and covers the modelling sce-

arios like finite-mixture problems and change point analyses. 
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In addition to the convergence of RJMCMC, another key issue is

he computational complexity which is high as in the other sam-

ling algorithms. The computational complexity is directly related

ith their convergence and is also an open problem. However,

here are some studies which investigate the computational com-

lexity of these methods. For example, Belloni and Chernozhukov

46] stated that computational complexity of MCMC methods are

ower than generic maximum likelihood and extremum estimation

ethods when log-likelihood or quasi-likelihood are nonconcave

r nonsmooth. Moreover, it is also stated that computational time

f MCMC algorithms is polynomial in the dimension of parameter

pace. 

Regarding the convergence and computational issues, we will

eal with the computational gain of RJMCMC in this study. RJM-

MC calculates posterior probabilities for models automatically us-

ng a hierarchial MCMC sampling scheme hence avoids visiting all

andidate models. It uses likelihood and prior and learns from the

ata in order to visit only plausible model classes. Other sam-

ling methods in the literature such as Nested sampling, transi-

ional MCMC (TMCMC), etc. need to enumerate and obtain posteri-

rs for each model class. This superiority of RJMCMC becomes very

lear in the presence of a large number of candidate model classes

nd RJMCMC provides computational gains compared to the sam-

ling methods which perform exhaustive search on model class

pace. 

. Implementation of RJMCMC for Volterra systems 

dentification 

For the purposes of this study, firstly we define what refers to a

inear space and a nonlinear space within the scope of VSI (Please

ee [47] for axioms of a linear space). 

roposition 5.1. It can be easily stated that if a Volterra model, V(p,

) with p = 1 and q ∈ Q, namely V (1, q ), is a linear space S q , then S q 
atisfies all the axioms of a linear space. 

roof. Using (1) , a V(1, q ) model can be expressed as: 

 (l) = μ + 

q ∑ 

i 

h 

(1) 
i 

x (l − i ) . (19) 

It is seen that model output n -vector y = [ y (1) , y (2) , . . . , y (n )]

s a linear combination of the input n -vector x =
 x (1) , x (2) , . . . , x (n )] . Thus, it can be easily shown that a V(1,q)

odel satisfies all the linear space axioms and is closed under

oth addition and scalar multiplication. �

roposition 5.2. Assume that a Volterra model, V(p, q) with p > 1

s a nonlinear space, S p, q for p > 1 and q ∈ Q, then S p, q does not

atisfy at least one of the axioms of linear space definition. 

roof. Assume we define two nonzero processes, y ( l ) and z ( l ) from

 V(2, 1) model, with model inputs x ( l ) and w ( l ), respectively as: 

 (l) = h 

(1) 
1 

x (l − 1) + h 

(2) 
1 , 1 

x 2 (l − 1) , (20) 

(l) = h 

(1) 
1 

w (l − 1) + h 

(2) 
1 , 1 

w 

2 (l − 1) . (21) 

Let us define new processes from the summation of the outputs

nd the inputs of the systems above, as r ( l ) and t ( l ), respectively: 

(l) = y (l) + z(l) , (22) 

(l) = x (l) + w (l) . (23) 

Thus, Volterra model V( p, q ) to be a linear space, S p, q , the pro-

ess r ( l ) should be expressed as: 

(l) = h 

(1) 
1 

t(l − 1) + h 

(2) 
1 , 1 

t 2 (l − 1) . (24) 
To show this, we start from the definition of r ( l ): 

(l) = y (l) + z(l) (25a)

(l) = h 

(1) 
1 

x (l − 1) + h 

(2) 
1 , 1 

x 2 (l − 1) + h 

(1) 
1 

w (l − 1) + h 

(2) 
1 , 1 

w 

2 (l − 1) , 

(25b) 

(l) = h 

(1) 
1 ( x (l − 1) + w (l − 1) ) + h 

(2) 
1 , 1 

(
x 2 (l − 1) + w 

2 (l − 1) 
)
, 

(25c) 

(l) = h 

(1) 
1 

t(l − 1) + 2 h 

(2) 
1 , 1 

x (l − 1) w (l − 1) −2 h 

(2) 
1 , 1 

x (l − 1) w (l − 1) 

+ h 

(2) 
1 , 1 

(
x 2 (l − 1) + w 

2 (l − 1) 
)
, (25d) 

(l) = h 

(1) 
1 

t(l − 1) + h 

(2) 
1 , 1 [ x (l − 1) + w (l − 1) ] 

2 

−2 h 

(2) 
1 , 1 

x (l − 1) w (l − 1) , (25e) 

(l) = h 

(1) 
1 

t(l − 1) + h 

(2) 
1 , 1 

t 2 (l − 1) − 2 h 

(2) 
1 , 1 

x (l − 1) w (l − 1) . (25f)

The term −2 h (2) 
1 , 1 

x (l − 1) w (l − 1) in (25f) is nonzero if h (2) 
1 , 1 

is

onzero. Thus, the sequence r ( l ) does not correspond to a V(2,1)

odel output and is not closed under addition. It is straightfor-

ard that this result can be generalized to all Volterra models with

onlinearity degree, p > 1. Then, a Volterra model, V( p, q ) with

 > 1 is not a linear space, or equivalently is a nonlinear space,

 p, q . �

orollary 5.3. Linear and nonlinear Volterra systems can be defined

s linear and nonlinear spaces, respectively under the assumption of

he Propositions 5.1 and 5.2 . 

.1. Defining the likelihood 

The Gaussianity of the output distribution of a Volterra system

hen the input is normally distributed, is not guaranteed due to

he polynomial operations on the input. However, in a previous

tudy [48] , it was shown that output distribution of a narrowband

olterra system with white inputs is Gaussian. Following this, a

olterra system whose memory tends to infinity, generates Gaus-

ian outputs due to the summation of a large number of terms

ollowing the central limit theorem. 

On the other hand, the likelihood is expressed as a measure

f how well the estimated model represents the observed data in

ayesian SI studies. For the purposes of this study, we are assum-

ng that the model prediction, ˆ y = [ ̂  y (1) , ̂  y (2) , . . . , ̂  y (n )] , and ob-

erved system output, y = [ y (1) , y (2) , . . . , y (n )] satisfy the predic-

ion error equation [49] : 

 = 

ˆ y + e . (26) 

In previous studies [29,49–51] , error-prediction model is as-

umed to be zero mean Gaussian. In Fig. 2 , prediction error dis-

ributions of three Volterra models which are used for the simu-

ations in this study are depicted. Kullback–Leibler (KL) divergence

alues are calculated with the fitted Gaussian distributions and

t has been clearly seen that prediction error distributions for all

hree Volterra models are Gaussian with a 0.05 significance value

f KL divergence. 

Thus, the likelihood function can be written simply, using a

aussian error-prediction model as: 

f (y | θ ) = (2 πσ 2 
e ) 

−n/ 2 exp 

( 

1 

2 σ 2 
e 

n ∑ 

t=1 

(y t − ˆ y t ) 
2 

) 

(27) 

≈ N (e | 0 , σ 2 
e I n ) . (28) 

here θ is a vector including all the parameters of

 p, q, h 

(p,q ) , σ 2 
e , σ

2 
h 
} , n is the length of observed data vector y .

lso e = [ e (1) , e (2) , . . . e (n )] corresponds to the prediction error

nd σ 2 
e is the error variance. 
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Fig. 2. Prediction error histograms and fitted Gaussians for models - (a) V(1,10) (b) V(2,5) (c) V(3,3). 
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5.2. Hierarchical Bayes model 

Target distribution of RJMCMC, namely the joint posterior dis-

tribution, f ( θ| x ) can be decomposed via Bayes theorem for the pa-

rameter vector θ = { p, q, h 

(p,q ) , σ 2 
e , σ

2 
h 
} : 

f (p, q, h 

(p,q ) , σ 2 
e , σ

2 
h | y ) ∝ f (y | p, q, h 

(p,q ) , σ 2 
e ) 

× f (h 

(p,q ) | p, q, σ 2 
h ) f (σ

2 
h ) f (σ

2 
e ) f (q ) f (p) . (29)

5.3. Prior selection 

In the absence of real prior information, use of noninformative

priors is common practice [52] . In the previous studies for time se-

ries model determination problems using uniform prior for model

order has been a common choice [11,30,31] . In addition, as stated

in [33] , results obtained by uniform priors, can be easily converted

to those corresponding to other priors, using the identity: 

f ∗(k, θ(k ) | y ) ∝ f (k, θ(k ) | y ) f 
∗(k ) 

f (k ) 
(30)

where f ∗( · | y ) represents the posterior for the prior f ∗. 

So in this study, we define upper bounds p max and q max for

model order values p and q , respectively and assume that the

model orders are independent and each model is equally likely.

Therefore, uniform priors for the model memory q , and the non-

linearity degree p are used: 

f (q ) = U(1 , q max ) and f (p) = U(1 , p max ) . (31)

Volterra model coefficients are assumed to be normally dis-

tributed a priori and for the variances, σ 2 
e and σ 2 

h 
, we use con-

jugate priors which are inverse Gamma [31] : 

f (h 

(p,q ) | p, q, σ 2 
h ) = N (h 

(p,q ) | 0 , σ 2 
h I η) , (32)

f (σ 2 
h ) = IG(σ 2 

h | αh , βh ) , (33)

f (σ 2 
e ) = IG(σ 2 

e | αe , βe ) . (34)

5.4. Acceptance ratio and moves 

RJMCMC has three different moves to perform the VSI study .

These are, between-model (switch), within-model (life) and update

moves. 

5.4.1. Between-model move (Switch) 

Between-model move corresponds to a move which explores

the spaces of different Volterra models at each time it is proposed.

Models which are proposed to be switched have different struc-

tures and their space dimension can be different or the same. 
The acceptance ratio for a switch move from ( p, q ) to ( p ′ , q ′ ), is
efined as αswitch = min { 1 , r switch } . Then, r switch is: 

 switch = 

f (y | p ′ , q ′ , h 

(p ′ ,q ′ ) , σ 2 
e ) 

f (y | p, q, h 

(p,q ) , σ 2 
e ) 

× f (h 

(p ′ ,q ′ ) | p ′ , q ′ , σ 2 
h 
) 

f (h 

(p,q ) | p, q, σ 2 
h 
) 

×χ( u 

′ ) 
χ(u ) 

×
∣∣∣∣∂(h 

(p ′ ,q ′ ) ) , u 

′ ) 
∂(h 

(p,q ) , u ) 

∣∣∣∣. (35)

here χ ( · ) will be defined in (45) . Model changes are proposed

y switch moves and in order to turn back to the previous state af-

er a switch move another switch move should be proposed. Con-

equently, the reverse move of the switch move is itself. Thus, the

atio p m 

R /p m 

in (13) is equal to 1 and invisible in (35) . 

The target joint posterior distribution is proportional to the

roduct of likelihood and priors via Bayes theorem, and hence first

wo terms in (35) correspond to likelihood and prior ratios, respec-

ively. Proposal ratio is given as the third term and the magnitude

f the Jacobian is shown as the fourth term. 

.4.2. Within-model move (Life) 

RJMCMC not only estimates model orders of a system, but

lso estimates the coefficients of the model. Hence, the proposed

nd accepted coefficients in between-model moves, are updated

n within-model move, namely the life move. A life move will

e applied in a case when RJMCMC intends to remain at the

ame model. Acceptance ratio of the life move is defined as αlife =
in { 1 , r life } . Hence, r life is: 

 life = 

f (y | p, q, ̂  h 

(p,q ) , σ 2 
e ) 

f (y | p, q, h 

(p,q ) , σ 2 
e ) 

× f ( ̂  h 

(p,q ) | p, q, σ 2 
h 
) 

f (h 

(p,q ) | p, q, σ 2 
h 
) 

×ψ(h 

(p,q ) | p, q, ̂  h 

(p,q ) ) 

ψ( ̂  h 

(p,q ) | p, q, h 

(p,q ) 
) . (36)

Updating model coefficients includes proposing from the distri-

ution ψ( ·): 
 

 

(p,q ) ∼ ψ( ̂  h 

(p,q ) | p, q, h 

(p,q ) ) (37)

= N ( ̂  h 

(p,q ) | μn , �
−1 
n ) , (38)

here μn = σ−2 
e �−1 

n X 

T y , and �n = σ−2 
e X 

T X + σ−2 
h 

I η . 

.4.3. Update move - updating variances 

RJMCMC setup for VSI problem includes an error term within

ost of the definitions. The variance of this error term, σ 2 
e is up-

ated at each iteration via Gibbs Sampling. The full conditional dis-
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Fig. 3. The proposed method VSI block diagram. 
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ribution for σ 2 
e is constructed as derived in [30] : 

f (σ 2 
e | y , p, q, h 

(p,q ) ) ∝ f (y | p, q, h 

(p,q ) , σ 2 
e ) f (σ

2 
e ) (39) 

≈ N (e | 0 , σ 2 
e I n ) IG(σ 2 

e | αe , βe ) (40) 

= IG(σ 2 
e | αen , βen ) , (41) 

here αen = αe + 

1 

2 
n and βen = βe + 

1 

2 
e T e . 

Similarly, the full conditional distribution for σ 2 
h 

is obtained as

30] : 

f (σ 2 
h | y , p, q, h 

(p,q ) ) ∝ f (h 

(p,q ) | σ 2 
h ) f (σ

2 
h ) (42) 

≈ N (σ 2 
h | 0 , σ 2 

h I η) IG(σ 2 
h | αh , βh ) (43) 

= IG(σ 2 
h | αhn , βhn ) , (44) 

here αhn = αh + 

1 

2 
η and βhn = βh + 

1 

2 
(h 

(p,q ) ) T h 

(p,q ) and η has

een defined in (5) . 

.5. Proposing candidates 

Each RJMCMC iteration requires to select one of the switch or

ife move firstly with probabilities P switch and P life . Uniform prior

s selected for all candidate switchable models (with probability

 switch / ρ for ρ possible models). 

All candidate coefficients should be proposed from the proposal

istribution. For instance, in case of a switch move corresponding

o a model change from p = 1 to p ′ = 2 when q = 2 , λ = 5 − 2 = 3

andidate coefficients are needed to be proposed. The λ-vector u

as been proposed from a multivariate Gaussian distribution and

( u ) is assumed to be: 

(u ) = N 

(
0 , 

(
σ 2 

h 

ζE[ | y | ] 
)

I λ

)
, (45) 

here E [| y |] is the expected value of the absolute value of the data

ector y and ζ is the modulation constant. 

The variance of the joint distribution is chosen to depend on

he data. Cases in this study include additional noise processes to

he I/O data sets of the Volterra system. In order to take additional

oise into consideration in the proposals, E [| y |] has been used in

( · ). Furthermore, when a modulation has been performed in the

ystem, this information is also utilized in the proposal distribution

( · ) via parameter ζ . This data and modulation dependent adhoc

hoice adds variety for candidate proposals according to the given

ata. For synthetically generated data case, i.e. no modulation case

Simulation 1) ζ is assumed to be 1 and for M -ary modulations

Simulation 2) ζ is equal to log 2 ( M ). 

Moreover, the proposal distribution for candidate coefficients is

elected in a way that the candidates will be independent from

ecent coefficients. Consequently, the change of variables operation

s accomplished through an identity function and thus the Jacobian

quals to unity. 

. Experimental analysis 

In this section, we study the performance of the proposed

SI algorithm experimentally. The block diagram of the proposed

ayesian VSI procedure has been shown in Fig. 3 for a system

hose input and output are defined with the vectors x and y , re-

pectively. Moreover, additive noise sequences for these input and

utput vectors are u and w , respectively. 

Estimated model order parameter pair ( ̂  p , ̂  q ) and resulting

odel coefficient vector ̂ h 

( ̂  p , ̂  q ) will be used to generate one-step 

head prediction of the output data, ̂  y , by using the Volterra model
xpression in (1) . In Table 1 RJMCMC implementation steps for VSI

tudy has been depicted briefly. 

.1. Simulation 1: synthetically generated data 

The proposed method has been employed in synthetically gen-

rated data sets for this simulation scenario. 3 Volterra models

hich are V(1, 10), V(2, 5) and V(3, 3) have been implemented

odel coefficients of which have been depicted in Table 2 . Each

odel has been given an input sequence which is a Gaussian pro-

ess of mean 0 and variance 1 and outputs for each model have

een collected. Each data set has a length of 1,0 0 0 samples and

ean value, μ, is chosen as 0 for simplicity. Four cases have been

mployed in order to show the performance of the proposed meth-

ds under different conditions (See Table 3 ). 

Initial values for hyperparameters of prior distribution of σ 2 
e ,

re selected as αe = 1 and βe = 1 and those for σ 2 
h 
, are selected as

h = 35 and βh = 2 . The initial nonlinearity degree p 0 and system

emory q 0 are set to 1 and upper bounds p max and q max are set to

 and 12, respectively. h 

(p 0 ,q 0 ) is sampled from the prior distribu-

ion in (32) . Move probabilities, P switch and P life are both selected

s 0.5. Calculated signal-to-noise ratio (SNR) values in decibels for

ach model and each case has been depicted in Table 2 . 

Model order estimation performance of RJMCMC is compared to

wo commonly used model order selection methods AIC and BIC.

he equations for these are given below: 

IC = 2 N + n log ( RSS /n ) , (46) 

IC = log (n ) N + n log ( RSS /n ) , (47) 

here N is number of parameters for the model, n refers to the

ata length and RSS corresponds to the residual sum of squares

hich is calculated as: 

SS = y T y − y T X (X 

T X ) −1 X 

T y . (48) 

IC rewards goodness of fit but penalizes the number of estimated

arameters of the model. BIC is more informed then AIC and the

enalty term of BIC is more stringent than the penalty term of AIC.

onsequently, BIC tends to favor smaller models than AIC. 

A similar penalization is also present in RJMCMC whenever

odel tries to add redundant variables. For example, increasing or-

er by one and setting the additional coefficient to zero does not

hange the likelihood, but the prior takes a lower value than be-

ore, yielding a posterior probability lower than the previous one

53] . 

Table 4 shows the model selection performance of RJMCMC and

eference methods AIC and BIC after 100 simulations for 100 dif-
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Table 1 

RJMCMC Algorithm for VSI. 

Table 2 

Details for Volterra models in simulation 1. 

V( p, q ) h (p,q ) = [ h (1) , h (2) , . . . , h (p) ] T Calculated SNR(dB) values a 

V(1,10) h (1) = [0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5] 14.13/22.62/10.42/14.19 

V(2,5) h (1) = [0 . 7 , 0 , 0 . 2 , 0 , −0 . 7] 13.52/22.24/10.42/13.58 

h (2) = [0 , 0 . 1 , 0 , 0 , −0 . 25 , 0 . 15 , 0 , 0 . 42 , 0 . 02 , 0 , 0 . 7 , 0 , −0 . 31 , 0 , 0 . 28] 

V(3,3) h (1) = [ −0 . 06 , 0 . 2331 , −1 . 3619] 17.69/26.33/10.44/17.77 

h (2) = [0 , 0 . 7 , 0 , 0 . 3 , −0 . 25 , 0 . 15] 

h (3) = [0 . 5 , 0 , 0 , −0 . 44 , 0 . 15 , −0 . 25 , 0 , −0 . 37 , 0 , 0 . 58] 

a Calculated SNR values in dBs are presented for Case 2/Case 3/Case 4-Input/Case 4-Output, respectively. 

Table 3 

Cases for simulation 1. 

Details 

Case 1 Both I/O are noise free 

Case 2 Output is corrupted by a white Gaussian 

noise process of mean 0 and variance 0.1 

Case 3 Output is corrupted by a colored Gaussian noise process. 

The white noise in Case 2 is filtered by an FIR filter, 

and the output of the filter is used to corrupt the output. 

Case 4 Both I/O are corrupted by white Gaussian 

noise processes of mean 0 and variance 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Percentage of detecting correct model orders. 

Case 1 Case 2 Case 3 Case 4 

V(1,10) RJMCMC 100% 100% 100% 100% 

AIC 99% 84% 89% 76% 

BIC 100% 100% 100% 100% 

V(2,5) RJMCMC 100% 99% 100% 93% 

AIC 93% 68% 85% 0% 

BIC 99% 100% 100% 11% 

V(3,3) RJMCMC 100% 100% 100% 89% 

AIC 98% 83% 93% 0% 

BIC 99% 100% 100% 13% 

e  

r

 

c  

m  

d

h  

w  

t

 

m  
ferent data sets from 3 different Volterra models. In each RJMCMC

realization the most visited model after burn-in period is taken as

the detected model. Examining the correctly detected model order

percentages in the Table 4 , AIC always falls short of selecting true

model order pair as compared to that of RJMCMC and BIC. RJMCMC

and BIC achieve generally the same percentages, however, when

the model is nonlinear (V(2,5) and V(3,3)), RJMCMC performs bet-

ter. For case 4, performance of RJMCMC is superior for nonlinear

models and its percentage of detection is at least 89%, however

BIC achieves at most 13% for the same models. 

Fig. 4 shows the joint posterior density of the model orders,

p and q for the simulated models and randomly selected cases

in a single example realization. It has been stated that RJMCMC
stimates true model order higher than 50% for each example

ealizations. 

Next we compare the success of RJMCMC in estimating model

oefficients with NLS estimate which is obtained via the aug-

ented data matrix X . NLS has been given the correct model or-

ers p , and q and performs estimation for model coefficients as: 

ˆ 
 NLS = (X 

T X ) −1 X 

T y , (49)

here vector y is output data and X is the data matrix which has

he form defined in (4) . 

The performance comparison study has been made on the

odel coefficient estimation of RJMCMC and NLS methods in terms
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Fig. 4. The joint posterior density of the model orders of (a) - V(1,10), (b) - V(2,5), (c) - V(3,3). 

Fig. 5. Estimated output histograms for all cases and all models in simulation 1 via RJMCMC. Real data mean values are plotted using vertical lines with “o” markers. Each 

row shows the results for simulated models and each column shows the results for simulation cases. 

Table 5 

Performance comparison of model coefficient estimation in terms of NMSE. 

Case 1 Case 2 Case 3 Case 4 

V(1,10) RJMCMC 5.89E −07 2.36E −06 2.47E −06 1.43E −03 

Informed NLS 2.42E −09 8.46E −07 7.86E −07 1.26E −03 

V(2,5) RJMCMC 6.76E −08 2.06E −05 1.12E −07 1.42E −03 

Informed NLS 8.42E −09 1.93E −05 7.73E −08 1.32E −03 

V(3,3) RJMCMC 1.69E −04 1.84E −04 1.74E −04 6.07E −03 

Informed NLS 6.76E −08 2.28E −07 3.90E −08 3.46E −03 
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f error measure, NMSE, which can be defined by: 

MSE = 

1 

η

η∑ 

i =1 

(h i − ̂ h i ) 
2 

‖ h ‖ 

2 
2 

, (50) 

here h is the η−vector of model coefficients, ̂  h is its estimate and

 h ‖ 2 is the l 2 -norm of h . 

Model coefficient estimation performance for all three models

nd all four cases are shown in Table 5 . Examining NMSE values in

able 5 shows that NLS estimation achieves lower error values than

JMCMC for all the cases. Notwithstanding, RJMCMC shows very

lose performance to the NLS method. Note that the NMSE figures

f NLS are hypothetical since they are based on unavailable perfect

odel order estimates. Consequently, model coefficient estimation
erformance of RJMCMC appears remarkable because it estimates

odel orders and coefficients at the same time. 

Fig. 5 shows estimated output data histogram for each of the

welve synthetically generated Volterra model data. Observing the

ubplots in Fig. 5 depicts that real data means stand in the high

robability ranges of estimated data distributions and this re-

eals the good model estimation performance of the proposed

ethod. 

As stated in the previous sections, RJMCMC is a learning algo-

ithm which avoids performing exhaustive searches, instead per-

orms a model search by using the likelihood, the priors and the

ata to visit only plausible models. In Table 6 , calculations on com-

utational gain of RJMCMC for simulation 1 has been depicted. Ex-

mining ”Total” columns shows that higher than 50% of the can-

idate models (in all the cases these are wrong models) have

ot been visited and RJMCMC decides ”true model” only visiting

 small subset of the model space. Analysing the ”Avg.” columns

hows that the search subset is smaller than the total amount

nd we can state that RJMCMC decides ”true model” by exam-

ning at most only one fifth of the model space (at most 12–13

odels over 60 possible models). Thus, this exhibits the compu-

ational gains of RJMCMC compared with the other model selec-

ion methods AIC, BIC or the sampling algorithms Nested sam-

ling, TMCMC, etc. where all perform exhaustive searchs on model

pace. 
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Table 6 

RJMCMC computational gain. 

Case 1 Case 2 Case 3 Case 4 

Total a Avg. b Total a Avg. b Total a Avg. b Total a Avg. b 

V(1,10) 16 12.37 18 12.65 16 12.31 17 12.51 

V(2,5) 20 10.22 15 9.08 20 10.98 20 13.3 

V(3,3) 18 8.11 20 8.06 19 8.5 26 9.79 

Each RJMCMC run has performed 30,0 0 0 iterations, and number of visited Volterra models has been recorded for each 

run. 

Model space includes 60 Volterra models. 
a Numbers at Total cells represent the total number of distinct Volterra models visited after 100 RJMCMC runs. 
b Numbers at Avg. cells refer to the average number of Volterra models visited at a single run after 100 RJMCMC 

runs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Percentage of correctly estimated model order via RJMCMC for varying SNR. 

(Nonlinear channel, V(3,2)). 
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6.2. Simulation 2: nonlinear channel estimation 

In communication systems, due to high-power amplifiers at the

transmitter side and filtering operations at the receiver side, non-

linear input-output characteristics are frequently observed. Most

of these nonlinearities can be approximated via Volterra series.

A nonlinear communication channel is expressed in terms of dis-

crete time baseband Volterra model with symmetric coefficients as

[16,54] : 

y (l) = 

p+1 
2 ∑ 

ν=1 

q ∑ 

m 1 =1 

. . . 

q ∑ 

m 2 ν−1 = m 2 ν−2 

h 

(2 ν−1) 
m 1 , ... ,m 2 ν−1 

ν∏ 

i =1 

x (l − m i ) 

×
2 ν−1 ∏ 

j= ν+1 

x ∗(l − m j ) . (51)

where x ( l ) and y ( l ) represent the complex input and output en-

velopes of the system, p is the nonlinearity degree and q is the

memory of the channel. The ( 2 ν − 1 )st-order Volterra coefficient is

referred to as h (2 ν−1) 
m 1 , ... ,m 2 ν−1 

. Moreover, it has been stated in [55] that

powers of even-ordered terms do not contribute to the output.

Thus, only odd-ordered terms ( p = 1 , 3 , . . . ) are taken into account

for baseband Volterra representation in (51) . 

Many modern communication systems such as asymmetric dig-

ital subscriber line (ADSL) modems, digital video broadcasting and

recent mobile communication systems in 4G, utilize OFDM tech-

nique. However, due to its high peak-to-average power ratio, OFDM

is very vulnerable to nonlinearities [54] . For these reasons, an

OFDM communication system which transmits through a nonlin-

ear communication channel has been implemented. The proposed

Bayesian VSI model has been employed to estimate this nonlinear

channel in terms of Volterra series. 

We assume that a baseband Volterra model in (51) represents

the unknown nonlinear communication channel with nonlinearity

degree of 3 and memory of 2. Uniformly distributed message bits

have been modulated via M -QAM modulations for M = 4 , 16 , 64 .

(4QAM is the same as quadrature phase-shift keying (QPSK) and will

be notated as QPSK for the rest of the text.) Modulated symbols

have been sent through an OFDM system with 512 sub-carriers.

Resulting symbols have been parallel-to-serial converted and trans-

mitted through the nonlinear channel. After adding white Gaussian

noise, the transmitted corrupted signal has been received at re-

ceiver. 

Pilot messages have been employed in order to apply a VSI

procedure. Hence, both pilot OFDM output and the corrupted re-

ceived signal are known at the receiver as input and output of the

unknown system, respectively. RJMCMC uses these I/O signals to

identify the unknown nonlinear channel. Consequently, proposed

method estimates the nonlinearity degree, the system memory and

the corresponding channel coefficients. Initial values have been se-
ected as αe = 1 , βe = 1 , αh = 35 and βh = 2 . The initial system or-

ers are q 0 = 1 and p 0 = 1 . The upper bounds are q max = 12 and

p max = 5 . RJMCMC takes all the model orders into account be-

ween p = 1 and p = 5 whether it is odd or even and decides

he true Volterra model for the nonlinear channel. For additive

oise processes, symbol-to-noise ratio ( E s / N 0 ) values between −5 dB

nd 25 dB have been used in order to measure performance of

he proposed method under different noisy conditions. A single

JMCMC run have performed 20,0 0 0 iterations and simulations

ave been repeated for 100 Monte Carlo runs and results are pre-

ented as average of these repetitions in order to remove random

ealization effects. Simulated channel coefficients have been se-

ected as h 1 = [0 . 5 , 0 . 3] and h 3 = [ −0 . 7 , −0 . 2 , 0 . 34 , −0 . 27]

or linear and cubic terms of the baseband Volterra model in (51) ,

espectively. 

Percentages of correctly estimated model orders for varying

NR values are shown in Fig. 6 . Examining Fig. 6 it can be clearly

tated that, RJMCMC correctly estimates the true nonlinear chan-

el, V(3,2), with a remarkable performance by obtaining at least

9% after 100 RJMCMC runs for all the modulations at SNR values

igher than 0 dB. Below 0 dB, true channel is correctly estimated

t least 85% times of the repetitions. 

Fig. 7 depicts the NMSE values in logarithmic scale between

stimated channel coefficients and true coefficients. Examining

ig. 7 shows that for all modulation schemes and noise scales

he proposed method achieves very close results to Informed NLS

ethod. For lower SNR values, estimation performances are lower

s expected and NMSE values are around 10 −3 for SNR of 0 dB,

hen NMSE values for all the cases are below 10 −5 at SNR of

5 dB. 
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Fig. 7. NMSE values for channel coefficients estimation of RJMCMC & Informed NLS for QPSK, 16-QAM and 64-QAM modulation schemes. 
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. Conclusion 

In this study, we propose a new perspective on RJMCMC which

efines trans-structural transitions between different classes of

odels such as linear and nonlinear, etc. This provides using RJM-

MC in model identification problems the model space of which

ncludes models with dimensions which may differ or not. 

Furthermore, this methodology has been employed as a part of

 compact VSI method by estimating the nonlinearity degree as

ell as the system memory and model coefficients. Using the pro-

osed method in VSI problems is advantageous especially when

he systems to be identified have varying degrees of nonlinearities

nd when estimating the nonlinearity degree is crucial. RJMCMC

hows remarkable performance on nonlinear channel estimation

n an OFDM communication system. Performance results for QPSK,

6-QAM and 64-QAM, are satisfactory for both channel model se-

ection and coefficients estimation studies. 

These results demonstrate the potential of RJMCMC in identi-

ying nonlinear systems and nonlinear communication channels in

erms of Volterra models. 
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