
Des. Codes Cryptogr. (2008) 46:329–342
DOI 10.1007/s10623-007-9159-1

Obtaining a secure and efficient key agreement protocol
from (H)MQV and NAXOS

Berkant Ustaoglu

Received: 27 March 2007 / Revised: 14 October 2007 / Accepted: 6 December 2007 /
Published online: 29 December 2007
© Springer Science+Business Media, LLC 2007

Abstract LaMacchia, Lauter and Mityagin recently presented a strong security definition
for authenticated key agreement strengthening the well-known Canetti-Krawczyk definition.
They also described a protocol, called NAXOS, that enjoys a simple security proof in the
new model. Compared to MQV and HMQV, NAXOS is less efficient and cannot be readily
modified to obtain a one-pass protocol. On the other hand MQV does not have a security
proof, and the HMQV security proof is extremely complicated. This paper proposes a new
authenticated key agreement protocol, called CMQV (‘Combined’ MQV), which incorpo-
rates design principles from MQV, HMQV and NAXOS. The new protocol achieves the
efficiency of HMQV and admits a natural one-pass variant. Moreover, we present a relatively
simple and intuitive proof that CMQV is secure in the LaMacchia-Lauter-Mityagin model.

Keywords Key agreement protocols · MQV · Provable security

AMS Classification 94A60

1 Introduction

Researchers from IBM and Microsoft have recently proposed two-pass Diffie-Hellman
authenticated key agreement protocols called HMQV [8], KEA+ [12] and NAXOS [11].
In these protocols the two communicating parties exchange static (long-term) and ephemeral
(short-term) public keys, and thereafter combine them to obtain a session key. The papers
[8,11,12] highlight certain security issues with previous related key agreement protocols and
propose solutions to address those issues. The goal of this paper is to devise a new protocol
that has the best of all worlds incorporated in its design.

Communicated by C. Boyd.

B. Ustaoglu (B)
University of Waterloo, Waterloo, ON, Canada N2L 3G1
e-mail: bustaogl@math.uwaterloo.ca

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@IZTECH Institutional Repository

https://core.ac.uk/display/324142018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

330 B. Ustaoglu

Table 1 Protocol comparison Protocol Efficiency Security Assumptions

MQV 2.5 Unproven ?

HMQV 2.5 CK, wPFS, KCI, LEP KEA1, GDH, RO

KEA+ 3 CK, KCI GDH, RO

NAXOS 4 eCK GDH, RO

CMQV 3 eCK GDH, RO

Security models and definitions. Choo, Boyd and Hitchcock [7] compared the most com-
monly used security models for key agreement [3,4,6]. Their conclusion was that none of the
models as defined provides a significant advantage over the rest of the models. Furthermore,
these models fail to capture some desirable properties of key agreement. Most significantly,
the adversary is not allowed to obtain certain secret information about the session that is being
attacked. Krawczyk [8] addressed many of these concerns by providing a stronger version
of the Canetti-Krawczyk model [6] that captures additional security properties. These desir-
able properties include resistance to key-compromise impersonation (KCI) attacks, weak
perfect forward secrecy (wPFS), and resilience to the leakage of ephemeral private keys
(LEP). More recently LaMacchia, Lauter and Mityagin [11] provided a single definition that
simultaneously captures all these security properties. Their security model will henceforth
be called the extended Canetti-Krawczyk (eCK) model.

Protocols. Currently only NAXOS is proven to be secure in the eCK model. NAXOS is
less efficient in that it requires 4 exponentiations per party compared to 2.5 exponentiations
for MQV and HMQV. In addition there is no natural modification of NAXOS to a one-pass
protocol. Unlike MQV [13], the HMQV [8] protocol has a formal security proof.1 How-
ever the proof is extremely long and complicated, and some significant (but fixable) flaws
[15,16] have been discovered. The security proof for KEA+ [12] is in a model that is weaker
than eCK; for example the adversary is not allowed to obtain the static private keys of both
communicating parties. Table 1 compares MQV, HMQV, KEA+ and NAXOS in terms of
efficiency (number of exponentiations per party), security and underlying assumptions. (See
Sect. 3.3 for a more detailed analysis of the efficiency of CMQV.) As usual CK stands for
Canetti-Krawczyk [6], GDH refers to the Gap Diffie-Hellman assumption [18], RO is short
for the random oracle model, and KEA1 is the knowledge of exponent assumption [2].

Goals. This paper presents the two-pass CMQV protocol that achieves the following
objectives: (i) intuitive design principles; (ii) efficiency of MQV and HMQV; (iii) relatively
straightforward security proof with minimal assumptions in the eCK model; and (iv) a natu-
ral one-pass variant. The security proof was inspired by the HMQV argument [8], however
NAXOS’ idea of hashing ephemeral private keys with static private keys is essential to show
security in the eCK model. Moreover, unlike the HMQV proof, the CMQV security proof
does not need the KEA1 assumption in order to demonstrate resilience to the leakage of
ephemeral private keys. On the negative side, the security of CMQV is not tight. As in the
case of HMQV, the reduction uses the Forking Lemma of Pointcheval and Stern [19], which
results in a highly non-tight reduction.

Organization. Section 2 outlines the extended Canetti-Krawczyk security model and for-
malizes the security definition. The CMQV protocol is described in Sect. 3, and the complete
security proof is provided in Sect. 4. Finally, the one-pass variant of CMQV is presented in
Sect. 5.

1 The security proof for MQV presented in [10] is in a very restricted security model.

123

Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS 331

Notation. Let q be a prime, and let Zq denote the integers modulo q . We denote by G = 〈G〉
a multiplicatively-written cyclic group of order q generated by G, and by G∗ the set of non-
identity elements in G. For group elements A, B, . . . the corresponding lowercase letters
will denote the discrete logarithms in base G; for example a = logG A, where a ∈ Zq . Key
agreement protocols take place between two parties, from among a set of n parties, denoted
by Â, B̂ and so on. Party Â’s static public key is A ∈ G and its corresponding static private
key is a = logG A. In general, lower case letters represent secret information, whereas upper
case letters are publicly known values. Finally, the symbol “∈R” means “selected uniformly
at random”.

2 Extended Canetti-Krawzcyk security model

In this section we outline the eCK model; for further details the reader is referred to [6,11].
In the eCK model there are n parties each modeled by a probabilistic Turing machine. Each
party has a static public-private key pair together with a certificate that binds the public key
to that party. We do not assume that the certifying authority (CA) requires parties to prove
possession of their static private keys, but we insist that the CA verifies that the static public
key of a party belongs to G∗. For simplicity, we will only describe the model for two-pass
Diffie-Hellman protocols that exchange ephemeral and static public keys—this is without
loss of generality as all the protocols in Table 1 are of this kind. More precisely, two parties
Â, B̂ exchange static public keys A, B ∈ G∗ and ephemeral public keys X, Y ∈ G∗; the
session key is obtained by combining A, B, X, Y and possibly the identities Â, B̂.

Sessions. A party Â can be activated to execute an instance of the protocol called a session.
Activation is made via an incoming message that has one of the following forms: (i) (Â, B̂)

or (ii) (Â, B̂, Y). If Â was activated with (Â, B̂) then Â is the session initiator, otherwise the
session responder. If Â is the responder of a session then Â prepares an ephemeral public
key X and creates a separate session state where all session-specific ephemeral information
is stored. The session is identified via a session identifier (Â, B̂, X, Y). If Â is the initiator
of a session, then Â prepares an ephemeral public key X and creates a session state as in
the responder case. At the onset of the protocol the initiator does not know the incoming
ephemeral public key. However the session can be uniquely2 identified with (Â, B̂, X,×),
and hence this string can be used as the (temporary and incomplete) session identifier. When
Â receives the corresponding ephemeral public key Y , the session identifier is updated to
(Â, B̂, X, Y). A session (B̂, Â, Y, X) (if it exists) is said to be matching to the session
(Â, B̂, X,×). On the other hand, the session matching to (Â, B̂, X, Y) can be any session
identified by (B̂, Â, Y,×) or (B̂, Â, Y, X). Since it is not possible (except with negligible
probability) to simultaneously have two different sessions with identifiers (B̂, Â, Y,×) and
(B̂, Â, Y, X), a session (Â, B̂, X, Y) can have at most one matching session. For a session
(Â, B̂, ∗, ∗), we call Â the owner of the session, and B̂ the peer of the session.

Adversary. The adversary M is modeled as a probabilistic Turing machine and controls all
communications. Parties submit outgoing messages to the adversary, who makes decisions
about their delivery. The adversary presents parties with incoming messages via Send(mes-
sage), thereby controlling the activation of sessions. The adversary does not have immediate
access to a party’s private information, however in order to capture possible leakage of private
information the adversary is allowed the following queries:

2 Since ephemeral keys are selected at random on a per-session basis, the probability that an ephemeral public
key X is chosen twice by Â is negligible.

123

332 B. Ustaoglu

• EphemeralKeyReveal(sid)—The adversary obtains the ephemeral private key held by the
session sid.

• SessionKeyReveal(sid)—The adversary obtains the session key for a session sid, pro-
vided that the session holds a session key.

• StaticKeyReveal(party)—The adversary learns the static private key of the party.
• EstablishParty(party)—This query allows the adversary to register a static public key

on behalf of a party. In this way the adversary totally controls that party. Parties against
whom the adversary did not issue this query are called honest.

Adversary goal. The aim of the adversary M is to distinguish a session key from a random
key. Formally, the adversary is allowed to make one special query Test(sid). The adversary
is then given with equal probability either the session key held by sid or a random key. The
adversary wins the game if he guesses correctly whether the key is random or not. To define
secure protocols we need the following.

Definition 2.1 (fresh session) Let sid be the session identifier of a completed session, owned
by an honest party Â with peer B̂, who is also honest. Let sid∗ be the session identifier of the
matching session of sid, if it exists. Define sid to be fresh if none of the following conditions
hold:

(i) M issues a SessionKeyReveal(sid) query or a SessionKeyReveal(sid∗) query (if sid∗
exists);

(ii) sid∗ exists and M makes either of the following queries:
– both StaticKeyReveal(Â) and EphemeralKeyReveal(sid), or
– both StaticKeyReveal(B̂) and EphemeralKeyReveal(sid∗);

(iii) sid∗ does not exist and M makes either of the following queries:
– both StaticKeyReveal(Â) and EphemeralKeyReveal(sid), or
– StaticKeyReveal(B̂).

We are now ready to present the eCK security notion.

Definition 2.2 (eCK security) A key agreement protocol is secure if the following conditions
hold:

(i) If two honest parties complete matching sessions then, except with negligible proba-
bility, they both compute the same session key (or both output indication of protocol
failure).

(ii) No polynomially bounded adversary M can distinguish the session key of a fresh
session from a randomly chosen session key, with probability greater than 1/2 plus a
negligible fraction.

The adversary M is allowed to continue interacting with the parties even after issuing the
Test query. However, the test session must remain fresh through the experiment.

As mentioned at the end of Sect. 1, this security definition is very strong in the sense
that it simultaneously captures most of the desirable security properties for authenticated
key agreement that have been identified in the literature including resistance to key-com-
promise impersonation attacks, weak perfect forward secrecy, and resilience to the leakage
of ephemeral private keys. Unlike in the CK model [6], the adversary in the eCK model
is not equipped with a SessionStateReveal query which enables it to learn the entire ses-
sion state of a particular session. This does not represent a deficiency in the eCK model
since protocols such as HMQV [8] proven secure in the CK model typically specify that the

123

Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS 333

Fig. 1 Fig. Two-pass CMQV

ephemeral private key is the only private information stored in the session state in which case
the EphemeralKeyReveal query is functionally equivalent to the SessionStateReveal query.
In general, by specifying that the session specific private information (the session state) is
part of the ephemeral private key, the SessionStateReveal and EphemeralKeyReveal queries
can be made functionally equivalent.

3 Two-pass CMQV

Two-pass CMQV is a Diffie-Hellman authenticated key agreement protocol that aims to estab-
lish a secure session key between two parties; see Fig. 1 for an informal description. In addition
to the notation adopted at the end of Sect. 1, let H1 : {0, 1}λ ×Z

∗
q → Z

∗
q , H2 : {0, 1}∗ → Zq ,

and H : {0, 1}∗ → {0, 1}λ be hash functions modeled as random oracles.

3.1 Protocol description

We assume for the remainder of the paper that a party never executes the protocol with itself.
The two-pass CMQV protocol is formally given in the following.

Definition 3.1 (two-pass CMQV protocol) Party Â’s static private key is a ∈R [1, q − 1]
and Â’s static public key is A = Ga . Similarly, B̂’s static key pair is (b, B). To establish a
session key with B̂, party Â performs the following steps.

1. Select an ephemeral private key x̃ ∈R {0, 1}λ.
2. Compute x = H1(x̃, a) and the ephemeral public key X = Gx .
3. Destroy x .
4. Send (B̂, Â, X) to B̂.

Upon receiving (B̂, Â, X), party B̂ verifies that X ∈ G∗. If so, B̂ performs the following
steps.

1. Select an ephemeral private key ỹ ∈R {0, 1}λ.
2. Compute y = H1(ỹ, b) and the ephemeral public key Y = G y .
3. Destroy y.
4. Send (Â, B̂, X, Y) to Â.

123

334 B. Ustaoglu

Upon receiving (Â, B̂, X, Y), party Â checks if he owns a session with identifier (Â, B̂, X,×).
If so, Â verifies that Y ∈ G∗.

To compute the session key both parties compute

d = H2(X, Â, B̂), e = H2(Y, Â, B̂).

In addition Â computes

σ = (Y Be)
H1(x̃,a)+da

and B̂ computes

σ = (X Ad)
H1(ỹ,b)+eb

.

If all checks are satisfied the session key is

k = H(σ, X, Y, Â, B̂).

It is straightforward to verify that both parties compute the same shared secret σ , and therefore
also the same session key.

3.2 Design rationale

In this section we explain the underlying principles behind the design of the CMQV protocol.
Public-key validation. Public-key validation (i.e. checking that static and ephemeral public

keys belong to G∗) prevents potential invalid-curve [1] and small subgroup attacks [14] (see
also [16]). In other words, with validation a party obtains some assurance that computations
involving its static private key do not reveal any information about the key itself, as long as
the underlying group is cryptographically strong.

Hashing ephemeral and static private keys. A careful reader observes that in Definition 3.1
the value x = H1(x̃, a) is never stored. Whenever H1(x̃, a) is needed, it is computed. This
implies that the session state does not store x . The idea is that without knowing both the
ephemeral private key x̃ and the static private key a, no entity is able to compute the discrete
logarithm x of an ephemeral public key X . This elegant idea, first described in [11], allows the
protocol to attain resistance to ephemeral private key leakage without resorting to non-trivial
assumptions like KEA1 (as needed for HMQV [8]).

Rationale for e and d. Given a Computational Diffie-Hellman challenge with inputs
U, V ∈R G, knowledge of either of the discrete logarithms of U or V is enough to solve
the CDH instance. If an adversary M, given a static public key B, is able to find a group
element Y such that M knows the discrete logarithm of T = Y Be, then it is easy to see that
M can impersonate B̂ to other parties (since M can compute the shared secret σ = (X Ad)

t

where t = logG T , thereby impersonating B̂ to Â). Defining e to depend on Y ensures that
the adversary is not able to compute the discrete logarithm of Y Be. Moreover, including the
identity of the intended peer in the derivation of e prevents the adversary from potentially
benefiting from the replay of Y to two distinct parties Â and Ĉ . One may argue that the
inclusion of B̂’s identity in the derivation of e is not needed since σ in any case depends on
B̂’s static public key B. However, since the CA does not require parties to prove possession
of their static private keys, M may establish a new party with static public key B. Hence B̂
is included in the derivation of e.

We note that a very similar definition of e was used in HMQV [8]. For both HMQV and
CMQV, this definition of the exponents is crucial for the security proof, but in both cases

123

Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS 335

Table 2 Efficiency comparison
in terms of group exponentiations

DSA groups Elliptic curves Elliptic curves of

of prime order nearly prime order

CMQV 3.25 (4) 2.25 (3) 2.25 (3)

MQV 3.25 (3.5) 2.25 (2.5) 2.25 (2.5)

HMQV-P1363 2.5/3.5 2.25 2.25

the reduction is non-tight. It is worth investigating if the requirements on e and d can be
modified to attain a tight security reduction.

Session key derivation. The session key is k = H(σ, X, Y, Â, B̂). The secrecy of σ guar-
antees that only the intended parties can possibly compute k. Including identities in the key
derivation is a generic way to prevent unknown-key share attacks (see [5]). Furthermore,
inclusion of X and Y in the key derivation allows for a simple argument that non-matching
sessions have different session keys.

3.3 Efficiency of CMQV

The efficiency comparison in Table 1 is simplified; in particular, it does not take into account
validation and various speedups that may be applicable. Consider the following groups of
practical interest: (i) DSA-type groups (order-q subgroups of the multiplicative group of
prime fields Fp); and (ii) elliptic curves of prime order q or nearly prime order hq . Validation
for DSA-type groups requires a full exponentiation; in contrast validating points on elliptic
curves of prime order is essentially free. For nearly prime order curves, rather than verifying
that the order of a public key is q , parties could use the corresponding public keys multiplied
by the cofactor h. If the two public keys Y and B are validated, then computing (Y Be)x+da

is equivalent to computing Y s1 Bs2 , where s1 = x + da mod q and s2 = e(x + da) mod q .
Therefore, CMQV computations can be speedup using Shamir’s trick (Algorithm 14.88 in
[17]), reducing the cost by 0.75 exponentiations on average.

Table 2 compares CMQV with HMQV as described in [9], accounting for the validation
and Shamir’s speedup. The numbers in parentheses for MQV and CMQV represent the naive
count of group exponentiations without accounting for possible improvements in the compu-
tations. The numbers for HMQV correspond to the two versions of HMQV as described in
[9]. For HMQV, the difference is significant only in DSA-type groups as the more efficient
version avoids full validation. However, the security proof in the case where validation is not
required assumes that no ephemeral private keys are leaked to the adversary.

4 Security of CMQV

This section presents a formal security argument for two-pass CMQV. The GDH assumption
in G is that the CDH problem in G cannot be solved in polynomial time with non-negligible
success probability even when a DDH oracle for G is available.

Theorem 4.1 If H1,H2 and H are random oracles, and G is a group where the GDH
assumption holds, then CMQV is eCK secure.

Proof Let λ denote the security parameter, whence q = |G| = �(2λ). Let M be a poly-
nomially (in λ) bounded CMQV adversary. We say that M succeeds with non-negligible

123

336 B. Ustaoglu

probability if M wins the distinguishing game described in Sect. 2 with probability 1
2 + p(λ),

where p(λ) is non-negligible. Assume that M succeeds with non-negligible probability in
an environment that involves at most n(λ) parties, M activates at most s(λ) sessions, and
makes at most h1(λ), h2(λ) and h(λ) queries to oracles H1,H2 and H respectively. A guess
for the answer to the Test query succeeds with probability 1

2 . Since H is a random oracle,
M can only distinguish a session key from a random string with probability significantly
greater than 1

2 in one of the following ways:

A1. Guessing attack: M correctly guesses the session key.
A2. Key replication: M forces two distinct non-matching sessions to have the same ses-

sion key. In that case M can select one of the sessions as the test session and query
the key of the other session.

A3. Forging attack: M computes σ and queries H with (σ, X, Y, Â, B̂).

The probability of guessing the output of H is O(1/2λ), which is negligible; thus event
A1 can be ruled out.

The input to the key derivation includes all information contained in the session iden-
tifier. Since two non-matching sessions cannot have the same communicating parties and
ephemeral public keys (except with negligible probability), key replication is equivalent to
finding a collision for H. Therefore event A2 occurs with probability O(s(λ)2/2λ), which is
negligible.

It remains to consider event A3—forging attacks. The rest of this section is devoted to
the analysis of this event. Following the standard approach we will show how to construct
a GDH solver, that uses an adversary M that succeeds with non-negligible probability in a
forging attack. The solver S is given a CDH challenge (U, V), where U, V ∈R G, and its
task is to compute CDH(U, V) = U v = V u . The solver is also given a DDH oracle for G,
which on input (R1, R2, R3), where R1, R2, R3 ∈ G, returns 1 if R3 = CDH(R1, R2) and 0
otherwise.

Let M denote the event that M is successful, H denote the event that M queries H with
(σ, X, Y, Â, B̂), and H denote the complement of event H . By definition event A3 is equal
to (M ∧ H). Since H is a random oracle and events A1 and A2 were ruled out, we have that
Pr(M | H) = 1

2 , where negligible terms were ignored. Hence

Pr(M) = Pr(M ∧ H) + Pr(M | H)Pr(H) ≤ Pr(M ∧ H) + 1

2
,

and therefore Pr(A3) ≥ p(λ). Consider the following complementary events:

E1. There exists an honest party B̂ such that M, during its execution, queries H1 with
(∗, b), before issuing a StaticKeyReveal(B̂) query. (Note that M does not necessarily
make a StaticKeyReveal(B̂) query.)

E2. During its execution, for every honest party B̂ for which M queries H1 with (∗, b),
M issued StaticKeyReveal(B̂) before the first (∗, b) query to H1.

If M succeeds in a forging attack with non-negligible probability then either (A3 ∧ E1)
or (A3 ∧ E2) occurs with non-negligible probability. These two events will be considered
separately.

4.1 Event E1

We use M to construct an algorithm S that succeeds with non-negligible probability provided
that the event (A3 ∧ E1) occurs. In this case S prepares n(λ) parties. One party, which we call

123

Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS 337

B̂, is selected at random and assigned static public key V . (Recall that V is one of the group
elements from the CDH challenge.) The remaining n(λ)—1 parties are assigned random
static key pairs. The adversary M is initiated on this set of parties and S awaits the actions
of M. When M activates a party whose static private key S possesses, then S follows the
protocol description. We next discuss the actions of S when M queries the random oracles
H1, H2 or H, or when M activates sessions owned by B̂.

1. Send(B̂, Ĉ): S selects ỹ ∈R {0, 1}λ and y ∈R Z
∗
q , and computes Y = G y . Then S

creates a new session with identifier (B̂, Ĉ, Y,×) and presents M with the outgoing
message (Ĉ, B̂, Y).

2. Send(B̂, Ĉ, X): S selects ỹ ∈R {0, 1}λ and y ∈R Z
∗
q , computes Y = G y , and creates

a new session with identifier (B̂, Ĉ, Y, X). Furthermore, if Ĉ is an honest party, then
S checks if Ĉ owns a matching session; in this case S computes the shared secret
σ using the information in the matching session and assigns a random session key
k = H(σ, X, Y, Ĉ, B̂). If on the other hand, Ĉ is not honest, or if Ĉ does not own a
matching session, then S assigns a random session key k = H(×, X, Y, Ĉ, B̂). Finally,
S presents M with the outgoing message (Ĉ, B̂, X, Y).

3. Send(B̂, Ĉ, Y, X): S checks if B̂ owns a session with identifier (B̂, Ĉ, Y,×); if not the
session is aborted. Otherwise, S updates the identifier to (B̂, Ĉ, Y, X). Next, S checks
if H was queried with (σ, Y, X, B̂, Ĉ), where DDH(Y Be, XCd , σ) = 1, in which case
the answer to that query is selected as the session key k. (Such a query was made if
the session has a matching session owned by an honest party whose static private key
S possesses, or by an adversary controlled party.) If no such query was made then S
assigns a random session key k = H(×, Y, X, B̂, Ĉ).

4. H1(s, c): S checks if Gc = V ; if the equation holds then S stops M and computes
U c = CDH(U, V). In all other cases queries are answered in the usual way (by return-
ing a random value from Z

∗
q for new queries, and replaying answers if the queries were

made before).
5. EphemeralKeyReveal(sid): S submits the value ỹ selected for sid.
6. SessionKeyReveal(sid): S submits the session key held by sid.
7. StaticKeyReveal(B̂) or EstablishParty(B̂): S aborts.
8. H2 queries: S simulates a random oracle in the usual way.
9. H queries: S simulates a random oracle in the usual way except for queries of the form

H(σ, X, Y, Ĉ, B̂) and H(σ, Y, X, B̂, Ĉ). The problem with answering these queries is
that it is possible that S had to assign a value to an H query for which S did not know all
of the input (cf. items 2 and 3 above). In particular, there may exist queries recorded as
H(×, X, Y, Ĉ, B̂) or H(×, Y, X, B̂, Ĉ) for which the first entry is not known to S. For
these queries S verifies that DDH(XCd , Y Be, σ) = 1. If so, S returns the previously
selected string; otherwise S returns a random value.

10. Test(sid): S selects γ ∈R {0, 1}. If γ = 0 then S returns a randomly chosen key;
otherwise S returns the session key held by sid.

Analysis. It is easy to see that S’s simulation of M’s environment is perfect except with
negligible probability. With probability at least 1/n(λ), S assigns the public key V to B̂,
where B̂ is an honest party for whom M will query H1(∗, b) without first issuing a Stat-
icKeyReveal(B̂) query. In this case the abortion in item 7 does not occur. Suppose event
(A3 ∧ E1) occurs, then at a certain stage M queries H1 with (∗, v), in which case S is
successful as described in item 4. The probability that S is successful is

Pr(S) ≥ 1

n(λ)
p1(λ), (1)

123

338 B. Ustaoglu

where p1(λ) is the probability of event (A3 ∧ E1) and negligible terms are ignored. The sim-
ulation requires S to perform group exponentiations, access the DDH oracle, and simulate
random oracles. Since q = �(2λ), a group exponentiation takes time TG = O(λ) group
multiplications, whereas a DDH oracle call takes time TDDH = O(1). Responding to an H
query takes time TH = O(1); and similarly for H1 and H2 queries. Therefore, the running
time of S is bounded by

TS ≤ (
TG + (TDDH + 2TG + TH) + (TG + TH1) + TH2

)
TM, (2)

where TM is M’s running time. Since all term of the left hand side of Equation 2 are
polynomial in λ, the running time TS is also polynomial in λ.

4.2 Event E2

We consider two cases:

M1. The test session has a matching session.
M2. No party owns a matching session to the test session.

Events M1 and M2 are complementary. Therefore, if event (A3 ∧ E2) occurs with non-negli-
gible probability, then either (A3 ∧ E2 ∧ M1) or (A3 ∧ E2 ∧ M2) occurs with non-negligible
probability.

4.2.1 Matching session exists

We use M to construct an algorithm S that succeeds with non-negligible probability pro-
vided that the event (A3 ∧ E2 ∧ M1) occurs. In this case S establishes n(λ) honest parties
and randomly selects two sessions sid and sid∗. Suppose that M selects one of these sessions
as the test session and the other as its matching session; if not then S aborts. The simulation
follows the protocol description except for sessions sid and sid∗. For these sessions, owned
by parties Â and B̂, S selects ephemeral private keys x̃, ỹ ∈R {0, 1}λ, sets the ephemeral
public keys as U and V , thereby defining H1(x̃, a) = u and H1(ỹ, b) = v. Both sessions
are assigned the same random session key k. The simulation fails if and only if M queries
H1 with (x̃, a) or (ỹ, b).

Analysis. With probability at least 2/s(λ)2 the adversary selects one of the two sessions
sid and sid∗ as the test session and the other as its matching session. Without loss of gen-
erality, assume that Â is the initiator of the test session. A successful adversary is allowed
to query for at most one of the values in each pair (x̃, a) and (ỹ, b). Suppose event E2
occurs. Then M issues StaticKeyReveal(Â) before a (x̃, a) query to H1. Similarly, M issues
StaticKeyReveal(B̂) before a (ỹ, b) query to H1. Since x̃ and ỹ are used in only one ses-
sion and H1 is a random function, M cannot obtain any information about x̃ and ỹ (except
with negligible probability) without querying for them. Therefore if M selected the ses-
sions with ephemeral public keys U and V as the test session and its matching session, the
simulation does not fail. Suppose that event A3 occurs. Then a successful M queries H
with (σ, U, V, Â, B̂), where σ is such that DDH(U Ad , V Be, σ) = 1. To solve the CDH
problem, S observes all H queries made by M of the form (σ, U, V, Â, B̂); for every such
query S checks if DDH(U Ad , V Be, σ) = 1. When the DDH oracle returns 1, S computes
CDH(U, V) = σ G−abedU−beV −ad . The success probability of S is

Pr(S) ≥ 2

s(λ)2 p2(λ), (3)

123

Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS 339

where p2(λ) is the probability of event (A3 ∧ E2 ∧ M1). The simulation requires S to access
the DDH oracle for (some of) the H queries made by M, and therefore the running time of
S satisfies

TS ≤ (
TG + (TDDH + 2TG + TH) + TH1 + TH2

)
TM. (4)

4.2.2 Matching session does not exist

We use M to construct an algorithm S that succeeds with non-negligible probability provided
that the event (A3 ∧ E2 ∧ M2) occurs. Then S selects at random two distinct parties, which
we call Â and B̂, and a session sid. Furthermore, S assigns static public key V for B̂, and
random static key pairs for the remaining n(λ) − 1 parties. The adversary M is initiated on
this set of parties. We suppose that M selects sid as the test session, and furthermore that Â
is the owner of sid and B̂ its peer; if not S aborts. When M activates a party whose static
private key S possesses, then S follows the protocol description. The only exception is the
test session, for which S selects x̃ ∈R {0, 1}λ, sets the ephemeral public key equal to U , and
chooses a random key k as the session key. Sessions owned by B̂ are simulated as in Sect. 4.1.

Analysis. With probability at least 1/n(λ)2 M selects Â as the owner and B̂ as the peer of
session sid. With probability at least 1/s(λ) M selects session sid as the test session. As in
Sect. 4.2.1, the experiment may fail if M makes the query (x̃, a) to H1. If event (A3 ∧ E2)
occurs, then M makes this query with only negligible probability. The freshness of the test
session implies that M does not query StaticKeyReveal(B̂), and therefore the experiment
does not abort as described in item 7 of Sect. 4.1.

Without loss of generality assume that Â is the initiator of the test session. Denote by Y
the incoming ephemeral public key selected by M for the test session. According to event
A3 M queries H with (σ, U, Y, Â, B̂), where DDH(U Ad , Y Be, σ) = 1, in which case S
computes

� = σY −ad V −ade = Guve+uy . (5)

Without knowledge of y, S is unable to compute CDH(U, V). Following the approach of the
Forking Lemma [19], S runs M on the same input and the same coin flips but with carefully
modified answers to H2 queries. Note that M must have queried H2 with (Y, Â, B̂) in its first
run, because otherwise M would be unable to compute σ except with negligible probability.
For the second run of M, S responds to H2(Y, Â, B̂) with a value e′
= e selected uniformly
at random. Another way of describing the second run is: M is rewound to the point where
M queried H2 with (Y, Â, B̂) and the query is answered with a random value e′ different
from e. If M succeeds in the second run, S computes

�′ = σ ′Y −ad ′
V −ad ′e′ = Guve′+uy, (6)

and thereafter obtains

CDH(U, V) =
(

�

�′

)(e−e′)−1

.

The forking is at the expense of introducing a wider gap in the reduction. The success prob-
ability of S, modulo negligible terms, is

Pr(S) ≥ 1

s(λ)

1

n(λ)2

C

h2(λ)
p3(λ), (7)

123

340 B. Ustaoglu

where p3(λ) is the probability of event (A3 ∧ E2 ∧ M2), and C is a constant, which arises
from the Forking Lemma. The running time analysis of the simulation is similar to the run-
ning time analysis in Sect. 4.1, except that S does not perform any additional checks for the
H1 queries. Hence

TS ≤ (
TG + (TDDH + 2TG + TH) + TH1 + TH2

)
TM. (8)

4.3 Analysis

Combining Eqs. 1, 3 and 7, the success probability of S is

Pr(S) ≥ max

{
1

n(λ)
p1(λ),

2

s(λ)2 p2(λ),
1

s(λ)

1

n(λ)2

C

h2(λ)
p3(λ)

}
, (9)

which is non-negligible in λ. Equations (2), (4) and (8) bound the running time of S; taking
the largest bound we obtain

TS ≤ (
TG + (TDDH + 2TG + TH) + (TG + TH1) + TH2

)
TM. (10)

Thus, if M is polynomially bounded, then there is an S that succeeds in solving the GDH
problem in G with non-negligible probability. Furthermore S runs in polynomial time, con-
tradicting the GDH assumption in G. This concludes the proof of Theorem 4.1. �

5 One-pass CMQV

In a nutshell, one-pass CMQV is two-pass CMQV, where the ephemeral public key Y of the
responder is the identity element in the group. To that end there is no need to include Y in
the key derivation.

Definition 5.1 (one-pass CMQV) Party Â’s static private key is a ∈R [1, q − 1] and Â’s
static public key is A = Ga . Similarly, B̂’s static key pair is (b, B). To establish a session
key with B̂, party Â performs the following steps.

1. Select an ephemeral private key x̃ ∈R {0, 1}λ.
2. Compute x = H1(x̃, a) and the ephemeral public key X = Gx .
3. Compute d = H2(X, Â, B̂), σ = Bx+da , and k = H(σ, X, Â, B̂).
4. Destroy x .
5. Send (Â, B̂, X) to B̂.

Upon receiving (Â, B̂, X) party B̂ does the following:

1. Verify that X ∈ G∗.

2. Compute d = H2(X, Â, B̂), σ = (X Ad)
b
, and k = H(σ, X, Â, B̂).

The session key is k.

Even though the definition of secure protocol (Definition 2.2) does not depend on the num-
ber of protocol flows, the definition of fresh session has to be modified to fit the needs of a
one-pass protocol. In particular, one-pass protocols cannot achieve wPFS since an adversary
can compute a session key by learning the static private key of the responder.

Definition 5.2 (one-pass fresh session) Let sid be the session identifier of a completed ses-
sion, owned by an honest party Â with intended peer B̂, who is also honest. Let sid∗ be the
session identifier of the matching session of sid, if it exists. Define sid to be fresh if none of
the following conditions hold:

123

Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS 341

(i) M issues a SessionKeyReveal(sid) query or a SessionKeyReveal(sid∗) query (if sid∗
exists);

(ii) if Â is the initiator then M makes either of the following queries:

– both StaticKeyReveal(Â) and EphemeralKeyReveal(sid), or
– StaticKeyReveal(B̂);

(iii) if Â is the responder then M makes either of the following queries

– StaticKeyReveal(Â) or
– StaticKeyReveal(B̂).

We point out that by replaying messages from Â to B̂ an adversary M could force multiple
sessions owned by B̂ sharing the same session key k. Let Sk be the set of sessions owned
by B̂ with the same session key k. Since all sessions in Sk have the same session identifi-
ers, M cannot compromise a single session in Sk without compromising all sessions in Sk .
Therefore, the definition of session identifier accounts for replay attacks.

The security argument for one-pass CMQV is very similar to the security argument for
two-pass CMQV (Sect. 4). As before it is enough to consider forging attacks and events E1
and E2. For event E1, the reduction requires only minor technical changes to account for the
modified actions of the parties. For event E2, S selects two parties Â and B̂ that are given
static public keys U and V . Both Â and B̂ are simulated as parties whose static private keys
S does not possess. The simulation of Â and B̂ is similar to the simulation of B̂ in event
E1. It is straightforward to verify that the simulation is perfect. Let sid be the test session
identifier and assume that S made a correct guess for the communicating parties Â and B̂
and the test session selected by M. Following the approach of Sect. 4.2.2 by rewinding M
to the query d = H2(Y, B̂, Â), where Y is the ephemeral public key for the test session, S is
able to compute

CDH(U, V) =
(σ

σ ′
)(d−d ′)−1

.

If the owner of the test session, say B̂, is also the initiator, then S knows the discrete loga-
rithm of Y . In that case instead of rewinding the adversary, S can compute CDH(U, V) =
(σU−y)

d−1
.

6 Concluding remarks

The paper presented CMQV, a modification of the MQV key agreement protocol. On the
positive side the new protocol is secure in the extended Canetti-Krawzcyk model. Moreover
it achieves the performance of the original MQV protocol, and has intuitive design principles
and a relatively simple security proof. On the negative side the reduction argument is not
tight, in particular the Forking Lemma appears to be essential for the security argument. It
remains to be seen if there exists a protocol that achieves the performance of MQV and at the
same time enjoys a security reduction that is as tight as the security reduction for NAXOS.

Acknowledgments This paper owes much to the suggestions, help and advice of Alfred Menezes. I would
also like to thank Hugo Krawczyk and the two anonymous referees for their valuable comments.

123

342 B. Ustaoglu

References

1. Antipa A., Brown D., Menezes A., Struik R., Vanstone S.: Validation of elliptic curve public keys. Public
Key Cryptography – PKC 2003, LNCS, vol. 2567, pp. 211–223 (2003).

2. Bellare M., Palacio A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols.
Advances in Cryptology – CRYPTO 2004, LNCS, vol. 3152, pp. 273–289 (2004).

3. Bellare M., Pointcheval D., Rogaway P.: Authenticated key exchange secure against dictionary attacks.
Advances in Cryptol. – EUROCRYPT 2001, LNCS, vol. 1807, pp. 139–155 (2001).

4. Bellare M., Rogaway P.: Entity authentication and key distribution. Advances in Cryptol. – CRYPTO ’93,
LNCS, vol. 773, pp. 110–125 (1993).

5. Blake-Wilson S., Menezes A.: Unknown key-share attacks on the station-to-station STS protocol. Public
Key Cryptography – PKC ’99, LNCS, vol. 1560, pp. 154–170 (1999).

6. Canetti R., Krawczyk H.: Analysis of key-exchange protocols and their use for building secure channels.
Advances in Cryptology – EUROCRYPT 2001, LNCS, vol. 2045, pp. 453–474, Full version available at
http://eprint.iacr.org/2001/040 (2001).

7. Choo K-K., Boyd C., Hitchcock Y.: Examining indistinguishability-based proof models for key establish-
ment protocols. Advances in Cryptology – ASIACRYPT 2005, LNCS, vol. 3788, pp. 585–604 (2005).

8. Krawczyk H.: HMQV: A high-performance secure Diffie-Hellman protocol. Advances in Cryptology –
CRYPTO 2005, LNCS, vol. 3621, pp. 546–566, Full version available at http://eprint.iacr.org/2005/176
(2005).

9. Krawczyk H.: HMQV in IEEE P1363. submission to the IEEE P1363 working group, July 2006, http://
grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/krawczyk-hmqv-spec.pdf.

10. Kunz-Jacques S., Poincheval D.: About the security of MTI/C0 and MQV. Security and Cryptography
for Networks – SNC 2006, LNCS, vol. 4116, pp. 156–172 (2006).

11. LaMacchia B., Lauter K., Mityagin A.: Stronger security of authenticated key exchange. ProvSec 2007,
LNCS, vol. 4784, pp. 1–16, Preliminary version available at http://eprint.iacr.org/2006/073(2007).

12. Lauter K., Mityagin A.: Security analysis of KEA authenticated key exchange. Public Key Cryptography
– PKC 2006, LNCS, vol. 3958, pp. 378–394 (2006).

13. Law L., Menezes A., Qu M., Solinas J., Vanstone S.: An efficient protocol for authenticated key agreement.
Des. Codes Cryptogr. 28, 119–134 (2003).

14. Lim C., Lee P.: A key recovery attack on discrete log-based schemes using a prime order subgroup.
Advances in Cryptology – CRYPTO ’94, LNCS, vol. 1294, pp. 249–263 (1994).

15. Menezes A.: Another look at HMQV. J. Math. Cryptol. 1, 148–175 (2007).
16. Menezes A., Ustaoglu B.: On the importance of public-key validation in the MQV and HMQV key agree-

ment protocols. Progress in Cryptology – INDOCRYPT 2006, LNCS, vol. 4329, pp. 133–147 (2006).
17. Menezes A., van Oorschot P., Vanstone S.: Handbook of Applied Cryptography. CRC Press, Boca Raton,

Florida, USA (1997).
18. Okamoto T., Pointcheval D.: The Gap-Problems: a new class of problems for the security of cryptographic

schemes. Public Key Cryptography – PKC 2001, LNCS, vol. 1992, pp. 104–118 (2001).
19. Poincheval D., Stern J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3),

361–396 (2000).

123

http://eprint.iacr.org/2001/040
http://eprint.iacr.org/2005/176
http://grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/krawczyk-hmqv-spec.pdf
http://grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/krawczyk-hmqv-spec.pdf
http://eprint.iacr.org/2006/073

	Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS
	Abstract
	Introduction
	Extended Canetti-Krawzcyk security model
	Two-pass CMQV
	Protocol description
	Design rationale
	Efficiency of CMQV
	Security of CMQV
	Event E1
	Event E2
	Matching session exists
	Matching session does not exist
	Analysis
	One-pass CMQV
	Concluding remarks
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

