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Abstract 

 

Method of decomposition has been successfully applied to function generation with multi-loop mechanisms. For a two-loop 

mechanism, a function y = f(x) can be decomposed into two as w = g(x) and y = h(w) = h(g(x)) = f(x). This study makes use 

of the method of decomposition for two-loop mechanisms, where the errors from each loop are forced to match each other. 

In the first loop, which includes the input of the mechanism, the decomposed function (g) is generated and the resulting 

structural error is determined. Then, for the second loop, the desired output of the function (f) is considered as an input and 

the structural error of the decomposed function (g) is determined. By matching the obtained structural errors, the final error 

in the output of the mechanism is reduced. Three different correction methods are proposed. The first method has three 

precision points per loop, while the second method has four. In the third method, the extrema of the errors from both loops 

are matched. The methods are applied to a Watt II type planar six-bar linkage for demonstration. Several numerical 

examples are worked out and the results are compared with the results in the literature. 

Keywords: Function generation, decomposition and correction method, Watt II linkage 

 

1. Introduction 

 

There are several methods for the kinematic synthesis of function generating mechanisms. Polynomial 

approximation methods such as interpolation, least squares and Chebyshev approximation methods are 

some of the commonly used methods [1]. Among these, interpolation approximation method is the 

easiest one to implement. On the other hand, least squares approximation method provides more 

accurate approximation with respect to least squares (or L2) norm and Chebyshev approximation 

method provides more accurate approximation with respect to Chebyshev (or L) norm, provided that 

these two methods are applied for a single loop function generator mechanism. 

The approximation accuracy in function generating mechanism synthesis can be enhanced by 

increasing the number of design parameters of the mechanism. This can be accommodated by either of 

the following methods: 1) introducing artificial frames of reference for the input or output of the 

mechanism [1]; 2) also considering the amount of displacements of the input or the output link [2]; 3) 

combining linkages with gears [3]; 4) using a mechanism with more design parameters [4]; 5) using 

additional loops for a selected mechanism [5]. There are several studies on function generating planar 

six-link mechanisms. Svoboda [6] considered a Watt II type six-bar linkage as a double three-bar 

linkage and specified nine design parameters (three link lengths per loop – taking scaling into account 

and three rotation ranges for the three links connected to the ground). He formulized the function 

generation problem as composition of two functions corresponding to the two loops, which we call the 

method of decomposition. He proposes alternative uses of the approach. The first use is such that the 

first loop is designed to approximately generate the desired function and the second loop is used to tune 

the result. In the second use, the desired function is decomposed into two identical functions such that 
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the square root of the function is generated by each of the identical four-bar loops with equal input and 

output travels. Svoboda calls this latter method as the method of successive approximations. The 

generalized decomposition method proposed by Alizade et al. [7] allows the decomposition of the 

function arbitrarily. This enables an extra design parameter for the designer. McLarnan [8] utilized an 

iterative numerical method for synthesis of planar six-bar linkages for at most 9 precision points with 

Watt linkages and at most 11 precision points with Stephenson linkages. Rao et al. [9] utilized 

Burmester theory in order to design six-bar linkages performing function and path generation 

simultaneously. Several examples of such dual-purpose (combination of function, path, motion 

generation with the same mechanism) are presented in [10]. Dhingra and Mani [11] derived the 

input/output (I/O) relationship for Stephenson III and Watt II type planar six-bar linkages and used 

Newton-Raphson numerical method to solve the function generation synthesis problem with 9 and 11 

precision points. Dhingra et al. [12] used homotopy methods for function generation with planar six-bar 

linkages. 

Liu et al. [13] made use of homotopy methods for function generation with six-bar linkages for five 

precision points. Simionescu and Alexandru [14] worked on the optimal design of Stephenson linkages 

by increasing the degree-of-freedom to two by removing one of the links. [15] devised a modular 

approach for design of six-bar function generators. Shiakolas et al. [16] devised a methodology that 

combines differential evolution and geometric centroid of precision positions technique in order to 

perform synthesis of Stephenson III type six-bar linkages for dwell and dual-dwell mechanisms with 

prescribed timing and transmission angle constraints. Kinzel et al. [17] used the so-called geometric 

constraint programming (GCP) to design a Stephenson III type planar six-bar linkage for function 

generation with up to 11 precision points. Both graphical and analytical methods are used in GCP and it 

makes use of commercially available CAD packages to simultaneously meet precision point conditions. 

Hwang and Chen [18] applied constrained optimization techniques for designing Stephenson II type 

function generators avoiding order, circuit, and branch defects. Sancibrian [19] made use of an 

improved version of the generalized reduced gradient optimization method for function generation 

synthesis of several planar linkages including the Stephenson II, Stephenson III and Watt II type six-

bar linkages. 

Plecnik and McCarthy [20] also worked on Stephenson II type type of six-bar linkages for function 

generation with eight precision points. By assuming some of the link lengths, a set of 22 equations with 

a total degree of 705,432 is obtained. Later on, Plecnik and McCarthy [21] also worked on function 

generation with a Stephenson II type planar six-bar linkage for 11 precision points. The loop closure 

equations constitute a set of 70 quadratic equations and the system is reduced to 10 eighth-degree 

polynomials. The resulting set of equations have a total degree of 1.07×109. In both of the last two 

studies, the equations are solved using continuation method. The latter study resulted in 1,521,037 

nonsingular solutions. Agarwal et al. [22] used a genetic-algorithm-based multi-objective optimizer for 

function generation with a Stephenson-III type planar six-bar linkage. In addition to the structural error 

defined based on the I/O relationship, the derivative of the structural error is also taken into account, 

therefore the formulation is called the dual-order formulation. Also, analytical conditions are derived 

for the identification of the candidate designs which are free of singularities, mobility or branch 

defects. The numerical examples result in comparable values with the ones that are presented in [20]. 

All methods mentioned above are based on numerical methods, whereas an analytical formulation is 

presented in this study. The drawback of the proposed method is that relatively few number of 

precision points are used. The powerful side of the analytical formulation is that the designer can carry 

out hundreds of trials in several minutes. Furthermore, the methods proposed in this study allow the 

designer to tune the design while monitoring several properties such as link length ratios, transmission 

angle and etc.  
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The decomposition method is applicable when there are multiple loops in the generator mechanism and 

is based on decomposition of the function to be generated into as many functions as the number of 

loops. Maaroof and Dede [23, 24] have worked on application of the interpolation approximation for a 

Bennett 6R linkage using the decomposition method. Although interpolation approximation seems to 

result in inferior results compared to the other two approximation methods, Maaroof et al. [25] showed 

that superiority of one method over the others is lost when the decomposition method is used.  

In this study we apply the decomposition method to a Watt II type planar six-bar mechanism. We 

propose three correction methods to improve the accuracy of function generation. These methods can 

be easily and conveniently applied to other two-loop mechanisms, as well. The proposed methods are 

based on correction of the function generation errors of the first loop in the second loop. Interpolation 

approximation is used as the synthesis method.  

 

2. Description of the Mechanism and Function Synthesis Problem 

The Watt II type planar six-bar mechanism is composed of two ternary and four binary links connected 

to each other by seven revolute joints. In Fig. 1, the input of the mechanism is the  angle and the 

output is  angle.  angle is the output of the first loop and will be used as an intermediate variable. A 

Cartesian coordinate frame with origin at A0 is to be used such that the x-axis passes through B0. The 

input angle  and the intermediate angle  are measured from their respective fixed reference axes 

which make angles of * and *, respectively with the x-axis. The fixed reference axis of the output 

angle  makes an angle of * with respect to B0D0 direction. In general, *, * and * are design 

parameters to be determined via synthesis. Since the I/O relationship of a mechanism with revolute 

joints does not change when the mechanism is scaled, the four bar loops A0ABB0 and B0CDD0 can be 

independently resized arbitrarily. So, without loss of generality we may assume |A0B0| = |B0D0| = 1 for 

the fixed link lengths. The other link lengths of the mechanism are denoted as |A0A| = a, |AB| = b, |B0B| 

= c, BB0C = , D0B0x = , |B0C| = d, |CD| = e and |D0D| = f. A careful inspection shows that angles 

 and  are not independent design parameters, but  +  is effective in the I/O relationship of four-bar 

loop B0CDD0, because the effective input of the loop is CB0D0 =  +  - ( + ).  also contributes to 

the reference axis angle * of the output link D0D, but it just acts as a constant offset to the output 

angle. Since  and do not independently effect the I/O relationship, without loss of generality we 

assume B0A0D0 =  = 0 during our analyses. If the designer wishes to make use of a nonzero , it is 

sufficient to replace  by  – . Assigning  a nonzero value is just rotating the B0CDD0 by an angle  

without affecting the I/O relationship of the loop. Note that neither taking |A0B0| = |B0D0| = 1 or  = 0 

loses generality of the function generation synthesis problem. Also, for computational ease we assume 

* =  (= 0 during the computations) and * = 0 in this study. The readers can examine [4] to learn 

about the tools for handling nonzero intermediate (*) and output (*) reference angles. 

The I/O relationships for the loops will be derived separately for different correction methods, because 

the angle * and/or  will be assumed zero in some of the methods.

We want to generate y = f(x) for x0 ≤ x ≤ xf using the Watt II type planar six-bar linkage. We 

decompose f() function into two as w = g(x) and y = h(w) = h(g(x)) = f(x). g() function may be selected 

arbitrarily. Initial and final values of w and y are found as w0 = g(x0), wf = g(xf), y0 = f(x0) and yf = 

f(xf). Also let x = xf – x0, w = wf – w0 andy = yf – y0. We associate function variables x, w, y with 

mechanism variables , ,  linearly as 

 0 0 0 0 0 0x x w w y y
 ,  , 

x w y

       
  

     
 (1) 
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



 

Fig. 1 Kinematic diagram of a Watt II linkage 

 

where 0 ≤  ≤ f,0 ≤  ≤ f, 0 ≤  ≤ f and  = f – 0,  = f – 0, = f – 0. The limits of the 

angles are chosen arbitrarily. From Eq. (1), desired mechanism variables , ,  can be determined in 

terms of function variables x, w, y as follows:  

      0 0 0 0 0 0x x  ,  w w  ,  y y
x w y

  
            

  
 (2) 

Eq. (2) is used for determining the precision points for interpolation approximation. The precision 

points can be selected with equal spacing, Chebyshev spacing or any other spacing. Usually Chebyshev 

spacing gives good results. Conversely, x, w, y can be determined in terms of , ,  as follows 

      0 0 0 0 0 0

x w y
x x  ,  w w  ,  y y

  
          
  

 (3) 

Eq. (3) is used after the synthesis is performed in order to check the error in between the desired y(x) 

and the generated y(). 



3. Correction Methods 

In this section, three correction methods are presented for function generation with a Watt II type 

planar six-bar linkage. The first correction method involves only the link lengths of the mechanism 

while the second correction method involves angle references also as extra design parameters. The 

precision points of the two loops are matched in these two correction methods. In the third correction 

method, the synthesis of the first loop is the same as the other methods; however precision points of the 

first loop are not used in the second loop. Instead, the points which correspond to the extrema of the 

error in the first loop are used for the second loop. 

3.1 Correction Method 1 

The first correction method is the most basic one. In Fig. 1 assume * = 0 and  = 0. For loop A0ABB0 

the I/O relationship is obtained as follows 



5 

 

 
   

 

2 22

o o

2 2 2

AB A B A A b 1 ccos a cos csin a sin

b 1 a c 2a cos 2accos 2ccos

           

         
 (4) 

Eq. (4) can be written in the polynomial form as 

    
n

j j i i

j 1

Pf F 0


  x x  for i = 1, ..., m (5) 

where m = n = 3, xi = {i, i}, 
2 2 2

1

1 a b c
P

2c

  
  , 

2

a
P

c
 , 3P a ,  1f 1

i
x ,  2f cos 

i
x , 

   3f cos  
i

x  and  F c 
i

x  for Eq. (4). For three precision points x1, x2, x3, Eq. (5) results in a 

linear set of equations:  

 

 

 

 

 

 

 

1

1 2 1 3 1 1 1 1 1 1 1 1

1 2 2 3 2 2 2 2 2 2 2 2

1 2 3 3 3 3 3 3 3 3 3 3

P P cos P cos cos P 1 cos cos cos

P P cos P cos cos P 1 cos cos cos

P P cos P cos cos P 1 cos cos cos



              
    

                
                  

 (6) 

Once P1, P2, P3 are found from Eq. (6), a, b, c can be uniquely determined as 3a P , 2c a P  and 

2 2

1b 1 a c 2cP    , provided that b is real. If a gets a negative value, one can add  to the assumed 

limits (0 and f) of  in order to make a get a positive value. Similar argument is valid for c and limits 

(0 and f) of . Analyzing the resulting four-bar loop with the designed link length parameters, the 

generated  angle values corresponding to the desired  angle values can be calculated from which the 

generated w values can be determined. One should be careful about the assembly mode of the loop. Let 

1 = wdesired – wgenerated1 represent the error in loop A0ABB0. The error curve 1 versus x will be as in 

Fig. 2. 

 

 

Fig. 2. Error curve for loop A0ABB0 

 

Although  is the output of the mechanism, for loop B0CDD0 we shall assume  is given and resulting 

 is monitored in order for the errors of the two loops be comparable. Therefore, for loop B0CDD0, the 

error in the intermediate variable w will be monitored as well. Let 2 = wdesired – wgenerated2 represent the 

error value calculated for given desired y and corresponding  angle values. For the synthesis we will 

1 

x xi x1 x2 x3 

 

xf 
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use the same precision points as the first loop and try to approximately equate 2 and 1. The I/O 

relationship for the loop B0CDD0 is obtained as  

 

   

 

2 22

o o

2 2 2

CD D D B C e 1 f cos d cos f sin dsin

1 d e f f
cos f cos cos

2d d

          

  
      

 (7) 

Eq. (7) can be written in polynomial form (5) with m = n = 3, xi = {i, i}, 
2 2 2

4

1 d e f
P

2d

  
 , 

5

f
P

d
 , 6P f ,  4 if 1x ,  5 i if c x ,    6 i i if c    x  and  i iF c x . The three precision 

points are selected such that the  angles coincide with those of the precision points of loop A0ABB0. 

The linear equations can be solved as 

 

 

 

 

 

 

 

1

4 1 5 1 1 6 1 4 1 1 1 1

4 3 5 3 3 6 3 5 3 3 3 3

4 5 5 5 5 6 5 6 5 5 5 5

P cos P cos P cos P 1 cos cos cos

P cos P cos P cos P 1 cos cos cos

P cos P cos P cos P 1 cos cos cos



                 
    

                   
                     

 (8) 

After P4, P5 and P6 are found, the design parameters of the loop can be uniquely determined as 6f P , 

5d f P  and 2 2

4e 1 d f 2dP    , provided that e is real. If d receives a negative value, this means 

that  =  instead of  = 0, which is acceptable. If f is negative, then one can add  to the assumed 

limits (0 and f) of the output angle  to force f to be positive. Analyzing the resulting four-bar loop 

with the designed link length parameters, the generated  angle values corresponding to the desired  

angle values and hence the generated w values can be determined. Representative error curves 1 and 

2 versus x are illustrated in Fig. 3. As a result of the whole design process, the  angle values as the 

output of the mechanism will result in corresponding y values as the output of the generated function. 

For given x, and hence corresponding angle , the error y = ydesired – ygenerated variance is also depicted 

in Fig. 3. Definitely y = 0 at the precision points x1, x2 and x3. There may be other points where y = 0 

whenever 1 curve intersects 2, such as the x* point demonstrated in Fig. 3.    



 

Fig. 3. Error curves for the two loops and function output 

 

The resemblance of 1 and 2 directly effects y. In order to obtain lower amounts of y, the designer 

has several parameters to adjust. The limits 0, f, 0, f, 0 and f are free to choose, unless there are 

xi x1 
x2 x3 

 

xf 

  

x* 

1 

-- 2 

∙∙∙ y 
 

x 
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some constraints on these parameters. Also, it is possible to adjust the intermediate function g(∙) for 

most of the functions. If a design environment such as Microsoft Excel® is used, the designer can 

assign spin buttons for the limits of the angles and the intermediate function parameter. By using these 

spin buttons, the designer can simultaneously see the tendency of change in the variations of 1, 2 and 

y. Meanwhile the designer can monitor |y|max or root mean square of y – whichever is convenient – 

and minimize it. While performing these adjustments, it is also possible to monitor certain design 

considerations such as maximum link length to minimum link length, transmission angles, etc. 



3.2 Correction Method 2 

In the second correction method, * and  are assumed nonzero. In this case, the I/O equation for loop 

A0ABB0 becomes 

 

     

   

2 2
2

o o

2 2 2

AB A B A A b 1 cc ac cs as

1 a b c a a
c c s s ac c as s c

2c c c

 

   

             

  
               

 (9) 

Eq. (9) can be written in polynomial form (5) with m = 4, n = 5, xi = {i, i}, 
2 2 2

1

1 a b c
P

2c

  
  , 

2

a
P c

c

  , 3

a
P s

c

  , 4P ac   , 5P as   ,  1 if 1x ,  2 i if c x ,  3 i if s  x ,    4 i i if c  x , 

   5 i i if s  x  and  i iF c x . There are four design parameters (a, b, c and *), so there should 

be four precision points: x1, x2, x3 and x4. However there are five Pj’s, hence they cannot be 

independent of each other. Indeed, P3P4 = P2P5. The problem can be linearized by using a Lagrange’s 

variable. Let P5 =  and Pj = mj + nj for j = 1, 2, 3, 4, 5. Substituting into the polynomial equations:  

 

         

         

         

       

1 1 2 2 1 3 3 1 4 4 1 1 1 1 1

1 1 2 2 3 3 3 3 4 4 3 3 3 3 3

1 1 2 2 5 3 3 5 4 4 5 5 5 5 5

1 1 2 2 7 3 3 7 4 4 7 7 7 7

m n m n c m n s m n c c s

m n m n c m n s m n c c s

m n m n c m n s m n c c s

m n m n c m n s m n c c s

                    

                    

                    

                   7 

 (10) 

In order for Eqs. (10) to be satisfied, the coefficients of  and the rest of each equation need to be 

equated to zero. In matrix form:  

 

 

 

 

 

 

 

 

 

1 1 1 1 1 1 1 1 11 1

3 3 3 3 3 3 3 3 32 2

5 5 5 5 5 5 5 5 53 3

7 7 7 7 7 7 7 7 74 4

1 c s c c 1 c s cm n

1 c s c c 1 c s cm n
 and 

1 c s c c 1 c s cm n

1 c s c c 1 c s cm n

                
     

                
               
     

                   

 

 

 

 

1 1

3 3

5 5

7 7

s

s

s

s

   
  
     
     
  
     

 (11) 

m1, m2, m3, m4, n1, n2, n3 and n4 are solved by matrix inversion.  is solved as follows:  
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    

   

   

 

3 3 4 4 2 2

2

3 4 2 3 4 3 4 2 3 4

2

2 3 4 3 4 3 4 3 4 2

3 4 2 5

3 4 3 4 2

3 4 2

m n m n m n

n n n m n n m m m m 0

m m n n m m n n m m

P P  P P

4m m n n n

2 n n n

        

        

     
 






 (12) 

Next, Pj = mj + nj for j = 1, 2, 3, 4 are evaluated. After determining P1, P2, P3, P4, P5, 
2 2

4 5a P P  , 

 4 5atan2 P ,P  , 2c ac P   and 2 2

1b 1 a c 2cP    . All design parameters are uniquely 

determined provided that b is real. If c is negative, limits of  should be increased by . The resulting 

error variation 1 = wdesired – wgenerated1 has at least four precision points (x1, x2, x3 and x4) if the correct 

assembly mode of the four bar loop is selected.

For loop B0CDD0 the I/O relationship is obtained as 

 

     

   

2 22

o o

2 2 2

CD D D B C e 1 fc dc fs ds

1 d e f f
c fc t s ft s c

2dc dc

           

  
             

 

 (13) 

Eq. (13) can be written in polynomial form (5) with m = 4, n = 5, xi = {i, i}, 
2 2 2

6

1 d e f
P

2dc

  



, 

7

f
P

dc



, 8P f , 9P t  , 10P ft  ,  6 if 1x ,  7 i if c x ,    8 i i if c    x ,  9 i if s  x , 

   10 i i if s   x  and  i iF c x . There are four design parameters (d, e, f and ) and hence four 

precision points x1, x2, x3 and x4. The same precision points for loop A0ABB0 are used and 

corresponding i and i angles for i = 1, 2, 3, 4 are to be used. There are five Pj’s, but P10 = P8P9. Let 

P10 =  and Pj = mj + nj for j = 6, 7, 8, 9. Substituting into the polynomial equations:  

 

           

           

           

         

6 6 7 7 1 8 8 1 1 9 9 1 1 1 1

6 6 7 7 3 8 8 3 3 9 9 3 3 3 3

6 6 7 7 5 8 8 5 5 9 9 5 5 5 5

6 6 7 7 7 8 8 7 1 9 9 7 77

m n m n c m n c m n s c s

m n m n c m n c m n s c s

m n m n c m n c m n s c s

m n m n c m n c m n s c s

                      

                      

                      

                    7 7  

 (14) 

Equating coefficients of  and the rest to zero in Eqs. (14) and writing in matrix form: 

 

 

 

 

 

 

 

 

 

1 1 1 1 6 1 1 1 1 1 6

3 3 3 3 7 3 3 3 3 3

5 5 5 5 8 5 5 5 5 5

7 7 7 7 9 7 7 7 7 7

1 c c s m c 1 c c s n

1 c c s m c 1 c c s
 and 

1 c c s m c 1 c c s

1 c c s m c 1 c c s

                    
      

                    
                    
      

                       

 

 

 

 

1 1

7 3 3

8 5 5

9 7 7

s

n s

n s

n s

     
  
      
      
  
       

 (15) 

m6, m7, m8, m9, n6, n7, n8 and n9 are solved by matrix inversion.  is solved as follows:  
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  

 

 

10 8 9 8 8 9 9

2

8 9 8 9 8 9 8 9

2

8 9 8 9 8 9 8 9 8 9 8 9

8 9

P P P m n m n

n n m n n m 1 m m 0

1 m n n m m n n m 1 4m m n n

2n n

       

       

    
  

 (16) 

Next, Pj = mj + nj for j = 6, 7, 8, 9 are evaluated. Then, 8f P , 1

9tan P  ,  7d f P c   and 

2 2

6e 1 d f 2dc P     . Solution results in a mechanism if e is real. In this case, the solution is not 

unique, because 1

9tan P   is also a feasible solution. If d is positive for 1

9tan P  ,  is kept as 

it is. Otherwise,  is added to . If f is negative,  can be added to limits of . The error variation 2 = 

wdesired – wgenerated2 is determined with at least four precision points with the right assembly mode of the 

loop. As in the first correction method, y = ydesired – ygenerated is obtained and minimized by adjusting 

the angles and the intermediate function parameter while monitoring the necessary design 

considerations.



3.3 Correction Method 3 

In the first two correction methods explained above, numerical examples showed that mostly the 

maximum error occurs due to the difference in the local extrema of 1 and 2. A third correction 

method is developed to equate local extrema rather than the precision points. In this last correction 

method, * = 0, but  is nonzero. In this case, the I/O equation for loop A0ABB0 is given by Eq. (4) 

and the I/O equation for loop B0CDD0 is given by Eq. (13). Synthesis is performed for loop A0ABB0 

with three precision points x1, x2 and x3. The resulting error variation 1 = wdesired – wgenerated1 is given 

once again in Fig. 4, however in this case the two local extrema inside the domain and the 

corresponding x4 and x5 locations are also shown. (x4, (x4)) and (x5, (x5)) points in the error curve in 

Fig. 4 will be used for the design of loop B0CDD0. 



 

Fig. 4. Error curve for loop A0ABB0 

 

x4 and x5 are analytically determined from 1 0
x





 as follows:  

1 

x 
xi 

x4 
x1 x2 x5 x3 

 

xf 

  



10 

 

   g gd d1
d g

w ww w
w w

x x x x x x

       
     

         
 (17) 

where wd is wdesired and wg is wgenerated1.    is to be evaluated by differentiating the I/O equation of 

loop A0ABB0 with respect to :  

 

   

 

 

1 2 3 2 3

2 3

3

P P c P c c P s P s 1 s

P s P s

s P s

  
             

  

  
 

    

 (18) 

Substituting in 1/x in Eq. (17) and equating to zero:  

  
 

 
 g g g2 3d d d

2 3

3

w w wP s P sw w w
0 s s P s P 0

x x s P s x x x x

          
           

             
 (19) 

Eq. (19) is a nonlinear equation in x and can be solved for x using a numerical method. There should be 

two solutions corresponding to the local extrema inside the domain of x. In Excel, the built-in function 

“Goal Seek” can be used to find the roots. The “Goal Seek” function of Excel is based on the Newton-

Raphson root finding algorithm. Also a simple macro can be written inside the spin button codes so that 

the Goal Seek function is automatically employed when the function limits or the intermediate function 

parameter are altered. When the initial value for the Goal Seek is set to the previous value of the roots, 

the convergence is immediate, because the initial value will be very close to the solution. 

For loop B0CDD0 we impose 2(x4) = 1(x4), 2(x5) = 1(x5) and 2/x = 0 at both of x4 and x5.The 

first two conditions are generated from the I/O relationship of loop B0CDD0 by using generated  

values from loop A0ABB0 and desired  corresponding to x4 and x5:  

 
   

   

4 4 5 4 4 6 4 7 4 4 8 4

4 5 5 5 5 6 5 7 5 5 8 5

P c P c P s P s P c

P c P c P s P s P c

             

             
 (20) 

We need to take derivative of 2 and equate to zero at x4 and x5 for the extrema conditions:  

  2
d g

w w y w w y
w w

x x x y x x y x

           
     

           
 (21) 

where wd is wdesired and wg is wgenerated2.    is to be evaluated by differentiating the I/O equation of 

loop B0CDD0 with respect to :  

 

   

   

   

   

4 5 6 7 8

5 6 7 8

5 6 8

6 7 8

P P c P c P s P s c

P s P s 1 P c P c 1 s

P s P s P c

s P s P c P c

             

      
                   

      

        
 

           

 (22) 

Substituting in 2/x in Eq. (21) and equating to zero:  
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   

   

 

 

5 6 82

6 7 8

5 6

7 8

P s P s P cw w y
0

x x y x s P s P c P c

y w y
w s P y w s P ...

x x x

w w y w
... y c P y w c P y s

x x x x

           
  

               

   
                

    
                    

 (23) 

Eq. (23) is linear in P5, P6, P7 and P8. Eq. (20) and Eq. (23) written for x4 and x5 constitute four 

equations in 5 unknowns (P4, P5, P6, P7, P8). However, P8 = P6P7, so not all Pj’s are independent. Let P8 

=  and Pj = mj + nj for j = 4, 5, 6, 7. Substituting in Eq. (20) and Eq. (23): 

 

          

          

     
4 4 4

4

4 4 4 5 5 4 4 6 6 4 7 7 4 4 4

4 4 5 5 5 5 5 6 6 5 7 7 5 5 5

4 5 5 4 4 6 6

x x x

d
4 7

x

   m n c m n c m n s m n c s

   m n c m n c m n s m n c s

y w y
   w s m n s y w m n ...

x x x

w
... y c m

x

                       

                       

   
                 

    


    


   

     

   

4 4 4

5 5 5

5 5 55

7 4 4 4

x x x

5 5 5 5 5 6 6

x x x

d
5 7 7 5 5 5

x x xx

w w y
n y s c y w

x x x

y w y
   w s m n s y w m n ...

x x x

w w w y
... y c m n y s c y w

x x x x

   
              

    

   
                 

    

    
                   

     

 (24) 

Equating coefficients of  and the rest to zero in Eq. (24) and writing in matrix form:  

    

 

 

 

 

4 44

5
5 5

4 4
4

5 5
54 4

5 5
4 44

x xx6 6

7 7

5
5 5

x
x x

sc

scm n

w ywm n
c y wy sA  and A

x xxm n

m nw w yy s c y w
x x x

      
          
                                   
                                 











 (25) 

where  

 

 

 

 

4 4 4 4

5 5 5 5

4 4 4 4

5 5 5 5

d
4 4 4 4

x x x x

d
5 5 5 5

x x x x

1 c c s

1 c c s

wy w y
0 w s s y w y cA

x x x x

wy w y
0 w s s y w y c

x x x x

        
 

       
     
                     
 

    
                     

. 

m4, m5, m6, m7, n4, n5, n6 and n7 are solved by inverting [A].  is solved as follows:  
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    

 

2

8 6 7 6 6 7 7 6 7 6 7 6 7 6 7

2

6 7 6 7 6 7 6 7 6 7 6 7

6 7

P P P m n m n n n m n n m 1 m m 0

1 m n n m m n n m 1 4m m n n

2n n

               

    
  

 (26) 

Next, Pj = mj + nj for j = 4, 5, 6, 7 are evaluated. Then d, e and f are found as 6f P , 1

7tan P  , 

5

f
d

P c



 and 2 2

4e 1 d f 2dc P     . Once again e should be real, if d is positive for 1

9tan P  , 

otherwise, 1

9tan P    and if f is negative,  can be added to limits of . The error variation 2 = 

wdesired – wgenerated2 is determined with at least three precision points with the right assembly mode of the 

loop. y = ydesired – ygenerated is obtained and minimized by adjusting the angles and the intermediate 

function parameter while monitoring the necessary design considerations. 

 

4. Numerical Examples 

All formulations in the Section 3 are implemented in Excel and several different function synthesis 

tasks are performed. In this section, we present the application of each of the three correction methods 

for generation of a power function, an exponential function and a trigonometric function. 

First function worked on is y = x2 for 1  x 5. y = x2 is decomposed as w = xk and y = w2/k. Second 

function is y = e0.5x for 1  x 5 and the function is decomposed as w = e0.5x/k and y = wk. For both of 

the functions, k is the intermediate function parameter. k is a design parameter which can be selected 

arbitrarily by the designer and can be adjusted to minimize the function generation error. The third 

function is y = sin(x) for 0  x /2 and the function is decomposed as w = tan(x/2) and y = 

2w/(1+w2). In this case, there is no intermediate function parameter.  

For the three correction methods, the mechanism angle limits and, if exists, the intermediate function 

parameter are varied to minimize the maximum absolute error |y|max subject to the conditions that the 

maximum to minimum link length ratio (rll) of the mechanism is less than 10 and ,  or  is not 

less than 20. Recall that the fixed link lengths are |A0B0| = |B0D0| = 1, but the loops can be 

independently scaled as one wishes. Therefore, rll is monitored independently for the two loops, but the 

relative sizes of the two loops is also considered. Since there are 6 angle limits and 1 intermediate 

function parameter for the first two functions and no intermediate parameter for the last function, there 

is a 7 or 6 dimensional optimization space. Using the spin buttons in Excel, several trials can be 

performed in a short time to find an optimum solution. Use of complicated numerical optimization 

techniques is not necessary. After several trials for the three functions with the three correction 

methods, the resulting designed link lengths are provided in Tables 1, 2 and 3 for y = x2, y = e0.5x and y 

= sin(x), respectively.  

 

Table 1. Intermediate function parameter, angle limits and designed link lengths of the 6-bar linkage 

for generation of y = x2 for 1  x 5 

Method k  f  f  f  a b c  d e f rll |y|max 

1 1.2 155 33 99 44 230 309 0 0.119 1.090 0.259 0 0.379 1.052 0.303 9.177 6.91×10-2 

2 1.2 80 0 110 58 82 59 73.4 0.780 1.536 1.338 239.1 1.873 4.534 2.347 4.534 2.97×10-4 

3 1.3 247 315 170 140 60 120 0 0.341 0.693 0.585 169.2 0.459 0.635 0.160 6.244 2.15×10-3 
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Table 2. Intermediate function parameter, angle limits and designed link lengths of the 6-bar linkage 

for generation of y = e0.5x for 1  x 5 

Method k  f  f  f  a b c  d e f rll |y|max 

1 2 159 265 250 317 205 231 0 0.649 1.680 0.856 0 5.477 4.711 1.571 5.477 4.08×10-2 

2 2 273 230 120 54 133 107 148.2 1.840 0.716 1.570 229 1.893 2.903 1.423 2.903 1.81×10-3 

3 2 159 268 248 323 205 275 0 0.742 1.752 0.898 -61.0 8.750 8.503 1.471 8.750 2.48×10-2 

 

Table 3. Angle limits and designed link lengths of the 6-bar linkage for generation of y = sin(x) for 0  

x /2 

Method  f  f  f  a b c  d e f rll |y|max 

1 213 75 150 45 57 105 0 1.577 1.973 1.994 180 0.329 1.447 0.823 4.398 1.99×10-3 

2 180 96 150 270 265 185 244.1 0.684 0.422 0.514 177.3 0.594 0.678 0.854 1.682 3.00×10-3 

3 183 90 148 80 42 90 0 0.705 1.128 0.816 255.2 0.147 1.154 0.117 9.837 1.39×10-3 

 

All error curves of the worked out nine examples will not be presented here. To illustrate, the error 

curves for generation of y = x2 with correction method 2 is presented in Fig. 5. 

 

 
Fig. 5. Error curves for y = x2 with correction method 2 

5. Performance Evaluation 

For y = x2 and y = e0.5x, the solutions found for correction method 2 are superior than the solutions 

found for correction method 3 and correction method 1 yields the worst results. It is expectable that 

correction method 2 with four precision points is better than the correction method 1 with three 

precision points. On the other hand, we were expecting to get the best results with correction method 3, 

which makes use of the first order derivatives. Unlike the other two functions, for y = sin(x), correction 

method 3 gives the best results and correction method 2 gives the worst results. Once again, we do not 

claim that the results cannot be improved, however, the obtained numerical results indicate that any of 

the correction methods may be better than the others depending on the function to be generated and the 

domain of the independent variable. 

Different types of mechanisms, different functions and different independent variable domains are used 

in the examples in the literature. Still, for comparing our results with the previously published results, 

we can take a look at the order of magnitudes of the errors. As a measure to be compared let us use the 

percentage error defined as 

% = 100 · |Maximum error|/|Range of the output| 
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For our examples the best results are as follows: %= 0.00124% for y = x2 with 1  x 5, %= 

0.0172% for y = e0.5x with 1  x 5 and %= 0.139% for y = sin(x) with 0  x /2. The maximum 

percentage error we get is 0.139%. 

Kinzel et al. [17] designed a Stephenson III type six-bar linkage for generation of y = log10(x) for 1  

x 2 with eleven precision points. The maximum error in the output of the function can be evaluated 

from the link lengths provided in the paper as 1.62×10-5, so %= 0.0054%. For comparison, we also 

worked out y = log10(x) for 1  x 2 with Correction method 2, i.e. for four precision points for both 

loops. A good solution is obtained for the angle limits listed in Table 4. The percentage error is 

evaluated as %= 0.0018% which is better than the error of Kinzel et al. [17]. But, note that the 

linkages utilized are of different type. 

Table 4. Angle limits and designed link lengths of the 6-bar linkage for generation of y = log10(x) for 1 

 x 2 

Method  f  f  f  a b c  d e f rll |y|max 

2 40 164 60 131 1 67 45.03 1.432 8.181 8.846 -32.5 1.126 3.250 2.012 8.846 5.47×10-6 



Hwang and Chen [18] designed a Stephenson II type function generator as an example for generation 

of y = x2 for –1  x 1. The result is a maximum error of 0.498 for an output range of . This 

corresponds to a percentage error of %= 0.83%. Sancibrian [19] presented several design examples 

with different types of linkages for several different functions. The best result with the smallest 

magnitude of error is obtained with a Stephenson III type six-bar linkage for generation of a rise-dwell-

return type simple harmonic motion for 24 oscillation of the output link. When the mechanism is 

analyzed, we found that the maximum amount of absolute error is 0.411 within the range of 24, 

which corresponds to a percentage error of %= 1.71%. These results are summarized in Table 5. 

  

Table 5. Comparison of designs 

Author Function 
Input 

domain 
Output range Linkage % 

Kinzel et al. [17] y = log10(x) 1  x 2 0  y 0.301 Stephenson III 0.0054% 

Hwang and Chen [18] y = x2 –1  x 1 0  y 1 Stephenson II 0.83% 

Sancibrian [19] 

  

  

1 cos 2x 30 for 0 x 2

y 15 for 2 x 3 2

1 cos 2x 30 for 3 2 x 2

    


     
     

 0  x 2 0  y 2 Stephenson III 1.71% 

Kiper et al. y = log10(x) 1  x 2 0  y 0.301 Watt II 0.0018% 

Kiper et al. y = x2 1  x 5 1  y 25 Watt II 0.00124%  

Kiper et al. y = e0.5x 1  x 5 1.65  y 12.2 Watt II 0.0172% 

Kiper et al. y = sin(x)  0  x /2 0  y 1 Watt II 0.139% 

 

6. Conclusions 

In this study, the method of decomposition is successfully applied to a Watt II type planar six-bar 

linkage. The method also can be easily adapted for the Stephenson III type planar six-bar linkage, as 

well, provided that the input link of the mechanism is a binary link connected to the ternary links. The 

three types of proposed correction methods are applied for three different functions: a power function, 

an exponential function and a trigonometric function. 
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Using a two-loop function generator mechanism instead of a single-loop mechanism has the obvious 

advantage of reduced generation error. This can be seen by comparing the two plots in Fig. 5. The left 

plot for the single-loop mechanisms has errors in the order of 0.001s, while the right plot for the two-

loop mechanism has errors in the order of 0.0001s. This is of course just an example, however it is 

natural to expect the superiority of a two-loop mechanism over a single-loop mechanism since the two-

loop mechanism has more number of design parameters in total, regardless of it has been decomposed 

into two single-loops or not. Also via the examples presented in Section 5, we have demonstrated the 

power of the proposed methods in this study compared to the other methods presented in the literature 

for two-loop planar 6-bar mechanisms. 

The application of the synthesis methods enclosed herein require specification of the six mechanism 

angle limits and, if exists, the intermediate function parameter by the designer. This gives the designer 

a flexibility in design. Although the selection of these six or seven design parameters is done manually 

in this study, it is also possible to run a numerical optimization technique with these free design 

parameters. We do not prefer to use such an optimization technique, because we want to see the 

changing behavior of the error variation as the free parameters are continuously varied. However, with 

this manual operation, we can only obtain limited number of feasible solutions and cannot guarantee 

that there is no better solution with less amount of error. Still, we can speculate on the results of the 

numerical examples in order to compare the three correction methods for the generation of the three 

different functions and conclude that superiority of the methods with respect to each other depends on 

the function to be generated. 
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