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Abstract 

 

We report a facile method for systematic tuning the hydrodynamic diameter of uniformed 

fluorescent silica particles in the size range from 12 to 465 nm.  Dynamic light scattering and 

electron microscopy studies demonstrate that the hydrodynamic size distribution of the silica 

particles is uniform.  We show that the initial amounts of ethanol and ammonia are essential to 

tune the size of these particles.  The hydrodynamic diameter of such a particle increases as the 

amount of ammonia is increased.  On the other hand, an increase in the amount of ethanol leads to 

the formation of smaller particles.  Higher initial amount of ethanol yield an increase in the 

concentration of ethoxide ions and a decrease in the concentration of hydroxide ions.  Such control 

over the concentration of hydroxide ion, which is responsible for the formation of siloxane bonds, 

causes a controlled-growth of the silica particles, resulting in precise tuning the hydrodynamic size.  

We confirm that a linear relationship exists between size and brightness of particles, demonstrating 

that the amount of dye molecules in such particles can be regulated by the presented method.  We 

prove that the silica network provides protection for dye molecules encapsulated in particles 

against solvents, fluorescence quenchers, and unfavorable pH of environments.  Moreover, the 

fluorescent silica particles with the size of 12, 50 and 250 nm were found to not be cytotoxic 

against the epithelial cell lines of MCF7 and PC3 even when the dosage levels up to 1.0 mg/ml and 

incubation periods up to 72 hours were applied. 
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Introduction 

 

Fluorescent silica nanoparticles are one of the preferred materials for labeling in bioanalysis 

and biotechnological applications.  Their silica shell shown to be biocompatible and non-toxic [1], 

protects fluoroscent dye molecules from the surrounding environment and encapsulates the dyes in 

its network [2], providing photostability and signal enhancement, respectively [3-12].  Moreover, 

easy surface modification of silica promotes conjugation of biomolecules such as proteins, peptides, 

antibodies, oligonucleotides, etc. [4, 5, 12-18].  In general, two methods have been used for the 

synthesis of silica-based nanoparticles: the reverse microemulsion [19-25] and the Stöber method 

[26].  These methods offer certain advantages with some limitations.  For instance, in the reverse 

microemulsion method, excellent uniformity of the particles at the nanometer scale can be 

obtained and their surfaces are easily modified with functional groups including thiol, amine, and 

carboxylate during reaction [19-25].  On the other hand, dye molecules can be released from 

silica matrix because of the lack of the covalent attachment of a fluorophore to the silica matrix, 

leading decreased brightness [27, 28].  In addition, this method requires large amount of 

surfactants and organic solvents.  Alternatively, the method introduced by Stöber in 1968 [26] is 

usually the choice for the preparation of pure silica particles and hydrophobic organic dye-doped 

particles [29-33].  This method is comparatively simple, yet limited by the uniformity of particles, 

particularly those in the sub-50 nm range.  Therefore, filtration and further separation techniques 

are usually applied to obtain particles with uniform size distribution.  Additional silica coating (post-

coating) with functional groups after particle synthesis is a way to modify surfaces of particles for 

specific applications. 

Studies aiming of controlling particle size have been focussed on how nanoparticle 

synthesis is effected by the relative amounts of reagents used [16, 29-33, 39, 44, 47-52]; 

however, diverse results regarding to control size were reported in the literature of silica particles.  

Yokoi et al. introduced a novel method to prepare particles in the presence of octane, water, and 

basic amino acids instead of ammonia in weakly basic conditions (pH of 9 - 10).  This new method 

produced highly monodisperse particles in the size range of 12 to 23 nm [47, 48].  Recently, the 

formation mechanism of this new technique and the role of the amino acids, L-lysine and arginine 

were explained [49].  In a similar study, successful control of the size of particles was achieved by 

Hartlen et. al. by using arginine as the basic amino acid in the medium [52]. 

The integration of fluorescent molecules into silica particles have been well studied [27-

42].  Incorporating dyes into a silica matrix may be realized by covalent binding as well as via 

electrostatic interactions between the dye molecules and the silica matrix [43-44].  Van Blaaderen 

et al. introduced covalent binding of dye molecules into silica particles.  Larson et al. synthesized 

particles with three different architectures possessing the same size, about 30 nm.  They 

demonstrated that the brightness of the particles increased due to enhanced radiative rate.  The 

Weisner group successfully improved their method and achieved to prepare fluorescent particles 

with hydrodynamic diameter as small as 6.6 nm [45].  They showed that silica particles circulate 

in the mouse body upto six hours without the accumulation in organs such as liver and kindey.  

This study proves the possible utilization of silica nanoparticles for clinical applications.  Ma et. al. 

investigated the effects of interactions between dye molecules for the particles in range from 15 
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nm to 200 nm showed that the quantum yield of particles increased in the case of covalent bonding 

[46].  Hence, they recommend that dyes should be conjugated into a silica network by covalent 

bonding.  Recently, Ha et. al. initiated a new coupling method [51].  In this method, the 

consecutive allylation and hydrosilation processes were applied to organic dyes to derivatize them.  

The new method aimed to eliminate the use of (3-aminopropyl) triethoxysilane (APTES) which 

otherwise cause agglomeration of particles.  After modifying the structure of the dye molecules in 

two steps, the derivatives were conjugated into the silica matrix by the Stöber method.  

Additionally, they varied the size of particles from 30 to 500 nm by adjusting the concentration of 

TEOS, ammonia and water.  Relatively longer processing and purification times after allylation 

require more reagents and a higher amount of dye may be considered as disadvantage for the 

method introduced by Ha et al. 

Even though there are many reports regarding how to control the size and uniformity of 

nanoparticles.  Some of the methods have been successful at producing particles bigger than 30 

nm while others have focused on the preparation of particles smaller than 30 nm.  In addition, 

controversial results regarding the effect of amount of reagents on particle size were reported in 

the silica literature, although silica chemistry is well understood.  Synthesis of particles by the 

Stöber method usually resulted in a polydispersed size distribution for the size less than 50 nm.  

Therefore, a systematic study of controlling the solution chemistry is needed to explore how to 

control size and uniformity of particles.  The aim of our study is systematically to control and tune 

the hydrodynamic size of fluorescent silica particles by varying the concentrations of the reagents 

and solvent. 

Here we report a systematic method to produce uniform fluorescent particles by modifying 

the Stöber method.  How relative amounts of reagent influence the particle size, monodispersity, 

and photophysical properties, are investigated here in details.  We showed that the amount of 

ethanol and ammonia precisely tunes the size of silica nanoparticles.  Lastly, we evaluated size 

dependent cytotoxicity of the fluorescent silica nanoparticles against cancer cell lines. 

 

 

Experimental 

Tetraethyl orthosilicate (TEOS) and fluorescein isothiocyanate (FITC, isomer I) were 

purchased from Fluka.  3-aminopropyl triethoxysilane (APTES, Alfa Aesar), NH4OH (ammonium 

hydroxide, 25 wt%, Merck), ethanol (Riedel) were used as received.  Deionized (DI) water was 

used throughout the study. 

 In a typical synthesis, APTES (0.385 mmol) and FITC (0.0135 mmol) were dissolved in 1.0 

ml of absolute ethanol in the dark and stirred magnetically for about 18 h at room temperature 

under a nitrogen atmosphere.  The stock solution of the APTES – FITC conjugate was kept in the 

dark to prevent photobleaching and later used as a fluorescent silane reagent for the production of 

the fluorescent part of the nanoparticles.  To form a silica network around the APTES-FITC 

conjugate, appropriate amounts of ammonia, ethanol and TEOS given in Table 1 (22 independent 

batches) were mixed in a 100 ml round-bottom flask with a magnetic stirring.  Reaction times were 

kept constant for each experiment to prevent adventitious kinetic factors.  The solution was 

allowed to stir for 24 h.  Lastly, 245 μl TEOS was added as the post-coating step for particles and 
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stirred for 24 hours more in the same reaction flask.  This last step provides a facile means by 

which to modify the surface of particles via a rich library of silicates.  The FITC-conjugated silica 

particles were washed four times with ethanol to remove unconjugated dyes and other reagents.  

The purified samples were then dried under nitrogen for physicochemical characterization. 

The size and uniformity of the synthesized particles were measured by SEM (Scanning 

Electron Microscope, Phillips (FEI) XL30- SFEG) and DLS (Dynamic Light Scattering, Zetasizer - 

3000HSA).  Absorption and fluorescence spectra were recorded by Varian Cary 50 UV-Visible and 

Varian Eclipse fluorescence spectrophotometers, respectively. 29Si NMR measurements were carried 

out on a Bruker Avance 500WB 99 MHz NMR spectrometer.  13C-NMR experiments were performed 

with a Bruker 400 MHz spectrometer. 

 Viability of cell lines of MCF7 and PC3 was evaluated by MTT assay.  Particles with the size 

of 12, 48 and 255 nm were dispersed in PBS with dosages up to 1000 g / mL.  Incubation times 

were varied up to 72 hours. 

 

Results 

 Silica particles at nanometer scales were prepared by a procedure based on a modified 

Stöber method as described in the experimental section.  To tune and optimize particle size during 

preparation of each batch, the amount of one of the reagents was systematically adjusted while the 

amounts of the other reagents were kept constant; in total there were 22 independent batches.  

Table 1 summarizes the amounts of reagents, experimental conditions, and measurements of the 

hydrodynamic size of silica particles. 

The first series of experiments (the set of Exp. No. 1) dealt with the amount of ammonia 

that was varied in range of 0.3 to 4.8 ml (0.13 – 1.78 M).  The hydrodynamic size of particles was 

determined DLS measurements confirming that particle size distributions were monodispersed 

(standart deviations given in Table 1).  Figure 1 shows representative results of hydrodynamic size 

distributions of particles prepared under different set of conditions.  The size and shape of particles 

were verified by SEM images as shown in Figure 2 illustrating that the particles were uniformly 

spherical. 

Following evidence the particles were monodisperse, the relationship between the size and 

the initial amount of reagents were analyzed in details.  A plot of particle size versus the volume of 

ammonia (Figure 3A) indicated two regions around a turning point of 1.2 ml (0.49 M).  The size of 

particles in both regions was linearly proportional to the amount of ammonia.  For experiments 

where more than 1.2 ml ammonia was used in the reaction, particle becomes larger as a function 

of initial volume of ammonia increased.  This result suggests that silica particles in a desired size 

can be produced by simply adjusting the initial amount of ammonia within the conditions provided 

here. 
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Table 1.  Experimental conditions and results of DLS measurements - hydrodynamic diameter of 

particles measured under various experimental conditions. 

 

Exp. No. 1a 2b 3c 4d 

Reagents Ammonia Ethanol TEOS APTS-FITC 

 
[NH3] 
(M) 

DDLS 

(nm) 
[EtOH] 

(M) 
DDLS 

(nm) 
[TEOS] 

(M) 
DDLS 

(nm) 
Vol. 
(ml) 

DDLS 

(nm) 

A 0.13 17 ± 2 11.4 465 ± 109 0.07 48 ± 6 0.060 32 ± 4 

B 0.25 27 ± 6 13.7 255 ± 10 0.14 46 ± 7 0.100 38 ± 8 

C 0.49 37 ± 2 14.7 105 ± 29 0.20 44 ± 2 0.160 22 ± 4 

D 0.95 181 ± 50 15.2 48 ± 4 0.27 31 ± 6 0.320 28 ± 9 

E 1.78 445 ± 76 15.8 31 ± 2 0.33 27 ± 9 0.640 36 ± 10 
F   16.1 12 ± 4 0.39 26 ± 7   

The experiments were performed at room temperature in the presence of 
a 0.1 ml APTES-FITC, 1.2 ml TEOS, 30 ml ethanol and 0.3 – 4.8 ml ammonia. 
b 0.1 ml APTES-FITC, 1.2 ml ammonia, 1.2 ml TEOS, and 5.0 – 60 ml ethanol. 
c 0.1 ml APTES-FITC, 1.2 ml ammonia, 30 ml ethanol, and 0.5 – 3.0 ml TEOS. 
d 1.2 ml ammonia, 1.2 ml TEOS, 30 ml ethanol. 
Standart deviations were determined from the size distributions. 

  

 All reactions including the synthesis of the fluorescent conjugate and formation of the silica 

network were performed in the presence of ethanol.  Therefore, ethanol is the solvent of the 

reaction medium in this work.  The amount of ethanol was adjusted from 60.0 to 5.0 ml (Table 1, 

the set of Exp. No. 2).  Ethanol produced during the hydrolysis of TEOS was not taking into account 

since a constant amount of TEOS was used in the set of Exp. No. 2.  The effect of the amount of 

ethanol on the size of the particles is presented in Figure 3B.  The adjustment of the volume of 

ethanol yields highly uniform nanoparticles in the size range from 12 nm to 465 nm.  As shown in 

Figure 3B, there is an exponential dependence of the particle size to the initial volume of ethanol.  

The exponential dependence indicates that the initial amount of ethanol is the major factor 

regulating the particle size. 

 After determining how amounts of ammonia and ethanol tune the size of particles, the 

effect of the amount of TEOS on the size was studied. The amount of TEOS was increased from 0.5 

ml to 3.0 ml (Table 1, the set of Exp. No. 3).  Figure 3C shows that amounts of TEOS up to 1.5 mL 

were not effective the within experimental error on the particle size (about 45 nm), however, when 

the amount of TEOS was higher than 1.5 mL the particle size was meaningfully reduced to 25 nm.  

The change in particle size was not proportional to the amount of TEOS in the reaction flask 

although the amount of TEOS increased by a factor of six.  Thus, the variation in the amount of 

TEOS does not greatly affect the particle size in the concentration range used in this study, as 

compared to the profound effects of the amount of ammonia and ethanol. 

 We next investigated the amount of APTES-FITC conjugate on particle size (Table 1, the set 

of Exp. No. 4).  DLS results showed that particle size varied with increasing amounts of APTES-

FITC (Table 1).  There was a fluctuation in size when a lower amount of APTES-FITC conjugate 

(less than 0.1 mL) was employed.  The particle size was increased in a linear fashion as the 

amount of the conjugate was increased as shown Figure 3D.  The effect of the amount of conjugate 

on particle size is determined to be not substantial. 
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 Under these experimental conditions, the results point out that the amount of ammonia 

and ethanol are very effective to tune the hydrodynamic size of particles.  The two other reagents 

TEOS and APTES-FITC conjugate played a limited role on the size and monodispersity of particles 

under the experimental conditions presented here. 

13C and 29Si CP-MAS NMR spectroscopy are powerful methods for characterizing the 

chemical structure of substances that can be prepared from (organo)-alkoxysilanes [31, 53].  

Using these methods, it is also possible to obtain information about the surface characteristics of 

silica particles such as type and amount of coverage and number of the bonds that have been 

formed in the coating reactions.  29Si CP-MAS NMR spectra revealed well-defined broad lines, as 

expected, at –111.4 (Q4), – 101.5 (Q3) and –92.7 (Q2) ppm (Figure 4A).  It is easy to distinguish 

between the Q4, Q3, and Q2 silicons, because their chemical shifts are all separated by 

approximately 10 ppm.  The existence of an Si-C bond causes a shift at approximately 45 ppm and 

again there is a separation of about 10 ppm between the the T3, T2, and T1 silicons [31].  

However, such formations were not observed except a tiny peak at –67.4 ppm that can be ascribed 

to T3 silicons.  13C CP-MAS NMR measurements were used to qualitatively characterize the fate of 

the ethoxy and aminopropyl groups of the (organo)-alkoxysilanes on the particle surface (Figure  

4B).  Two major 13C–NMR signals were observed at 17.7 and 59.1 ppm that were attributed to the 

equivalent carbons of the –CH3 and –O–CH2– of TEOS, respectively.  However, the formation of 

small peaks at 10.0 (Si-CH2), 23.5 (-CH2-CH2-CH2-) and 43.1 ppm (-CH2-NH2) can be ascribed to 

APTES (Figure 4B).  These spectra are considered as proof of the existence of –NH2 groups in the 

particle structure, although an additional amount of TEOS was used at the post coating step.  

Overall, NMR measurements along with microscopic and scattering measurements identified the 

formation of siloxane bonds and silica particle formation. 

It is important to control the number of FITC molecules conjugated to silica particles.  To 

determine the amount of conjugated FITC, the silica particles were intentionally disintegrated in a 

1M aqueous solution of NaOH.  Figure 5 shows the absorption and fluorescence spectra of FITC 

released as a result of the degradation of silica particles prepared in the set of Exp. No. 1.  Figure 

5A shows an increase in absorbance as the particle size was increased.  The released number of 

FITC molecules was determined by absorbance measurements of the supernatant obtained as a 

result of the disintegration of silica particles.  The amount of FITC released into the solution was 

determined to be from 0.02 μM for the smallest particle to 1.40 μM for the largest one.  This 

indicates that the number of FITC molecules disintegrated from the particles increased as the 

particles become larger, with supporting evidence being that the larger particles contained a higher 

number of FITC molecules.  Similarly Figure 5B demonstrates that the intensity of fluorescence was 

amplified for larger particles.  These results verify that there is a linear relationship between the 

number of FITC molecules conjugated to particles and particle size.  The results lead us to conclude 

that the density of the FITC molecules per particle is equivalent.  The same results (Figures 5C and 

5D) were observed when the size of the particles varied as a function of the amount of ethanol (the 

set of Exp. No. 2); there is an exponential trend.  Figure 6, a 3D-plot, reveals the relationships 

among size, absorbance, and fluorescence intensity. 

To confirm whether the silica network protects dye molecules, the particles were treated 

with environmental factors such as solvents, pH and quenchers.  The fluorescence spectra of FITC 
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molecules both dissolved in and conjugated to the silica particles dispersed in dimethyl formamide, 

ethanol, and water are presented in Figure 7.  The shape of the fluorescence spectra of FITC 

dissolved in the solvents changed, and the peak position shifted to red due to the solvatochromatic 

effect (increased orientational polarizability) as the solvent molecules interact freely with FITC 

molecules.  However, the spectra of FITC conjugated to the particles (Figure 7B) showed no 

variation with the solvents.  Apparently the solvent molecules do not reach the FITC molecules 

conjugated to the particle; an effective protection layer against solvents has been provided by the 

silica network for FITC molecules. 

Fluorescence quenching is a process causing a reduction in the fluorescence intensity of a 

fluorophore if a quencher interacts with the fluorophore.  Accordingly, quenching studies can be 

used to reveal the interaction of a quencher with dye molecules conjugated to silica.  We 

performed fluorescence quenching studies by using CuCl2 and KI as quenchers to assess the 

protection ability of the silica network for dye molecules against the quenchers.  The fluorescence 

spectra of FITC conjugated-silica particles with the size of 30 and 180 nm dispersed in aqueous 

solutions were recorded.  The Stern-Volmer plots were obtained for the assessment of quenching.  

For comparison, the aqueous solutions of FITC were also prepared and its fluorescence monitored 

by increasing the amounts of the quenchers.  Figure 8 depicts The Stern–Volmer plots showing that 

quenching of FITC in aqueous solutions by Cu2+ and I- ions is strong, but the FITC conjugated to 

the particles is weakly affected by the quenchers depending on its type and amount.  When the 

[Cu2+] is higher than 0.1 M, a precipitation was observed, limiting the quenching study for higher 

concentrations.  On the other hand, the negatively charged quencher I- interacts with FITC 

conjugated to particles and the fluorescence intensity was quenched in to a certain extent, 

quantified by the Stern-Volmer coefficient, KSV (FITC conjugated) that is calculated to 3.5.  The 

quenching of FITC in aqueous solution was substantial and was quantified by the coefficient K SV 

(FITC-free) to be equal to 15.1.  By comparing the SV coefficients, we see that FITC molecules easily 

interact with quenchers in aqueous solution.  The silica network provides a certain level of 

protection for FITC-conjugated to the particles.  It indicates that the quencher ions are able to 

penetrate into the silica network and interact with some of the FITC molecules presumably close to 

the surface of the particles.  Diffusion ability of the quenchers to the conjugated FITC indicates that 

the silica particles may possess an open structure or surfaces that allow ions to diffuse the silica 

network. 

It is well known that pH of environment through protonation of FITC modulates 

fluorescence intensity and therefore the fluorescence of FITC is sensitive to solution pH of its 

environment.  Therefore, investigating the influence of pH on FITC conjugated to particles could 

further demonstrate the protective nature of the silica matrix.  The pH of the aqueous solution was 

adjusted from 6 to 13.  Figure 9 represents how the pH of the solution makes an impact on the 

fluorescence spectra of FITC in solution or conjugated to silica particles.  Reduction in the 

fluorescence intensity was observed for FITC when dissolved in aqueous solution, but the intensity 

of the FITC-conjugated to particles remained almost unchanged.  There was a 30% decrease in 

intensity for pH higher than 11 that indicates the disintegration of the particles.  The spectral shape 

and position also did not change with pH.  These findings confirmed the protection provided by the 

silica matrix to FITC against changes in pH of the environment. 
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Photostability performance of the particles was checked by photobleaching of FITC 

emission.  The test was applied to particles containing different amounts of dye molecules (Table 1, 

Exp. No. 4).  Variation in the fluorescence intensity of the particles with time was monitored up to 

100 min under continuous illumination.  It was observed that the fluorescence intensity reduced 

rapidly within 5 minutes and remained unchanged after 20 minutes as seen in Figure 10.  The 

fluorescence intensity of the larger particles containing higher amounts of APTES-FITC conjugate 

was determined to be decreased by 3% and 13% at 5 and 100 min, respectively.  The intensity 

was decreased by 5% at 5 min., and by 21% at 100 min. for the smaller particles.  The rate of 

photobleaching was greater for the particles containing a lower number of dye molecules.  These 

measurements illustrated that particles encapsulating a higher number of FITC molecules are much 

brighter for a prolonged period of time. 

 Assessment of cell viability is important for the biological and medical applications of silica 

particles.  Figure 11 shows the results of size dependent cell viability determined by the MTT assay 

for MCF7 and PC3 cells.  Cells were incubated with the particles (size of 12 to 255 nm) at dosages 

up to 1000.0 g/mL.  Incubation times up to 72 hours were employed.  Under these experimental 

conditions cell viability of MCF7 and PC3 cells with respect to particle size, dosage, and incubation 

time remained unchanged.  The results point out no size dependent cytotoxicity.   Silica particles 

do not stimulate cell death on MCF7 and PC3 cell lines. 

 

Discussion 

The discussion section is mainly devoted to particle formation. Hydrolysis and condensation 

of silicates leads to the formation of silica particles.  Concurrently, solution chemistry is important 

for the formation of these particles.  In this work, based on a modified Stöber method, the initial 

amounts of reagents were systematically varied to better elucidate the role of each reagent on the 

hydrodynamic size of fluorescent silica nanoparticles. 

The formation of silanols [(EtO)3SiOH and (EtO)2Si(OH)2] as key intermediates during TEOS 

polymerization is well known.  Condensation of silanol, ≡Si-O-H, as an intermediate via an SN2 

mechanism, yields the siloxane bonds, ≡Si-O-Si≡.  Under base-catalyed conditions there is an 

equilibrium between the hydroxide and ethoxide nucleophiles because of the similar pKa values of 

their conjugate acids.  Nucleophilic attack of the ethoxide ion to a silicon center of TEOS will not 

yield formation of any product (the Scheme A).  On the other hand, nucleophilic attack of a 

hydroxide ion to the silicon center will produce a silanol structure which is more acidic than 

ethanol.  A Bronsted acid-base reaction will form a nucleophilic silyloxide, which will react further 

with a second TEOS molecule to form a ≡Si-O-Si≡ bond (the Scheme A).  An increase in the 

concentration of ethanol may shift the equilibrium to the right thus increasing the concentration of 

ethoxide ions and decreasing the concentration of hydroxide ions.  Such control over the hydroxide 

ion concentration plays a key role in the nucleation and growth and therefore the size of the silica 

nanoparticles. 

As explained in the Scheme A the concentration of ethanol in the reaction medium is critical 

to the formation of siloxane bonds.  We found that the size of particles exponentially decreased 

with increasing initial amount of ethanol (11-16 M in the presence of 0.49 M ammonia) as shown in 

Figure 3B.  Higher amounts of hydroxide ions are available when lower volumes of ethanol are 
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used thus yielding more interactions between the initial nucleate and hydrolyzed monomer.  On the 

other hand, the number of interactions decreases with the increasing amount of ethanol.  Ethanol 

and methanol as solvent were used in some studies [30, 56, 57].  Smaller particles were formed in 

methanol as compared to ethanol.  However, in the literature neither ethanol nor methanol has 

been progressively varied to comprehend the effect of solvent on the size of silica particles.  In one 

particular study, Rao et al. showed that ethanol in the range of 4-10 M (in 3 different batches) 

yielded an increase for the size of particles in the presence of 14 M ammonia.  The increase in 

particle size may be attributed to the presence of a very high concentration of ammonia, producing 

an excess amount of hydroxide ions in the reaction medium.  There is a consensus in the literature 

that a progressive increase in the amount of water yields formation of larger silica nanoparticles.  

We verified the effect of increased amounts of water on the size of particles. 

 

 

Scheme A: Formation of silanol and siloxane bonds 
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 Amount of ammonia strongly controls the particle size and our results agrees very well with 

the literature.  Ammonia served as a reactant and a catalyst for the hydrolysis of TEOS.  One of the 

reactant OH- ions provided by ammonia is important for the formation of particles.  The literature 

shows that the concentration of the basic catalyst is responsible to tune particle size [39, 44, 47-

51, 56, 57, 62].  In our study, we systematically varied the amount of ammonia from 0.13 M to 

1.78 M and showed that the size of the particles increased as the amount of ammonia was raised.  

The reports regarding the effects of ammonia on the size of particle are controversial.  Rao et. al. 

observed that the size of particle decreased with increasing the ammonia concentration (2.80 - 

28.0 M) in the presence of 1.0 – 8.0 M ethanol and 3.0 -14.0 M water [62].  On the other hand, 

Bagwe et. al. showed that the increase in the amount of ammonia (0.16 - 0.64M) yielded larger 

particles [50].  In addition to these, Ha et. al. reported that the greater the amount of ammonia 

the larger the particle size [51], but they concurrently increased the amount of water (2.0-7.8 M) 

and the reaction time.  Furthermore, Wiesner and Ow showed that larger particles (100-500 nm) 
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were obtained in the presence of higher amounts of ammonia (3.4-6.1 M) and water (10.8- 16.8 

M), while particles smaller than 100 nm were prepared with lowered amount of ammonia (0.2- 

0.0085 M) [63].  Tan et. al. controlled the size of particles and demonstrated the particle size was 

decreased from 70 nm to 25 nm when the amount of ammonia was reduced three-fold of its initial 

value [10, 11].  These reports clearly point out that the solution chemistry is detrimental to tune 

the size of particle.  A systematic investigation to generate a set of data regarding the effect of the 

amounts of reagents on the size of particles is essential.  However, each report used different set 

of experimental conditions and the concentration of reagents was not systematically varied.  Our 

study clears the inconsistency among the results reported in the literature. 

The influence of the amount of TEOS on particle size is limited in our study (16 M ethanol, 

0.49 M ammonia).  Many studies in the literature again are controversial.  Tunability on the particle 

size as a function of the increased concentration of TEOS has been studied [49 - 51, 60-62].  

Bagwe et. al. reported that there was no change in particle size when they increased the 

concentration of TEOS from 0.025 to 0.1 mM [50].  Rao et. al. found that as the concentration of 

TEOS was increased from 0.012 to 0.12 M, increase in particle size from 60 to 417 nm were 

obtained in the presence of 8 M ethanol, 3 M water, and 14 M ammonia [62].  Yokoi et. al. 

reported that TEOS increased particle size by three fold (~12-36 nm) although the amount of TEOS 

was increased by twelve-fold (from 1 to 12 M) [36].  It is well known that four moles of ethanol 

are produced for each mol of TEOS during the hydrolysis and condensation reactions.  Thus, the 

initial amount of TEOS contributes to the total amount of ethanol in the reaction medium.  We 

already stated that the amount of ethanol is the most important parameter to control the size of 

particles.  Increase in the amount of hydrolyzed ethanol may cause a reduction in the size of the 

particle as the concentration of TEOS increased.  This is exactly what we observed. 

 As expected, the amount of APTES - FITC conjugates did not have an impact on particle 

size.  Imhof et. al. investigated the effect of APTES-FITC conjugate amount by varying the 

conjugate concentration between 10 and 640 μl [39].  In their experiments the conjugate was 

steadily increased, as a result particle size increased slightly from 200 to 250 nm .  They obtained 

their largest particles when the amount of the FITC conjugate was increased from 320 to 640 μl in 

different volumes of ethanol.  Our work validates the particle size is not greatly affected by amount 

of the FITC-conjugate.  But, silica particles are much smaller under the experimental conditions 

presented when the fluorescent conjugate was not added during the synthesis.  The separate set of 

experiments in the absence of the fluorescent conjugate summarized in the supporting information. 

 Many biological applications rely on fluorescence properties such as intensity and emission 

wavelength and thus it is desirable to have fluorescent particles with spectral features that remain 

unaffected by the environmental factors.  Solvent, pH, and ions in solutions or cellular environment 

may change spectral properties of fluorescent particles if the fluorophore that is conjugated to silica 

is accessible to the environment.  We show that the silica network keeps the spectral properties of 

FITC unaffected against the pH of the solution and the solvent.  This is imperative for biological 

applications such as tracking the motions of proteins and the locations of drug carriers.  Such 

applications depend on stable fluorescent intensity because the motions and locations of proteins 

and DNAs may be probed by a fluorescent molecule or a single fluorescent particle.  Fluorescent 

silica particles may contain many fluorophores; therefore, the particles may emit for a longer 
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period of time, allowing an extended period of observation.  Only a limited number of fluorescent 

probes may present such stability.  Many probes report fluctuations and variations of their 

environment. 

 Biocompatible, biodegradable and non-toxic materials are required for biological and 

medical applications.  Silica is shown to possess these features and, as a result, it is a biomaterial 

of choice.  To this end, we demonstrated that the fluorescent silica particles produced in this work 

are not toxic against cancer cells MCF7 and PC3.  Many studies agree that silica is not toxic at all 

and safe for use in biological applications.  For medical application, it is crucial that the 

hydrodynamic diameter of silica nanoparticles must be smaller than 7.0 nm to be cleared out from 

body [45].  This indicates that the hydrodynamic size of silica must be reduced for clinical 

applications such as the safe delivery of drugs to organs and tissues.  This fact requires more 

systematic work to figure out how to reduce the hydrodynamic size of silica particles, albeit one 

study already has been reported by the Weisner group [45].  It is reported that silica particles are 

approved by FDA for the first clinical trials.  Surface potential, basicity, and acidity of silica surfaces 

are important factors to elucidate the fate of the silica particle for biological and medical 

applications.  We will direct our attention to these areas and extend our work to determine the 

locations and motions of fluorescent silica particles in normal and cancerous cell lines as a function 

of surface chemistry and surface potentials. 

 

 

Conclusions 

We present a method to systematically synthesize monodispersed FITC conjugated silica 

particles by using a modified Stöber method.  The hydrodynamic size of fluorescent particles was 

tuned in the range from 12 to 465 nm.  We demonstrated that the systematic control of 

hydrodynamic size of particles can be achieved by regulating the solution chemistry.  We showed 

that the size strongly depends upon the amount of ethanol and ammonia.  Higher amount of 

ethanol regulated the concentration of hydroxide ion leading to controlled-growth of the silica 

particles and resulting in precisely tuning the hydrodynamic size.  Moreover, we showed that the 

amount of dye conjugated to the particles can be controlled by the size of the particles.  The 

concentration of FITC molecules conjugated to particles was varied between 0.02 to 1.40 μM.  The 

silica network protects FITC molecules against pH, solvent, and partially to ionic quenchers in a 

limited extent.  Penetration ability of ionic quenchers may be interpreted that silica particles may 

have open structure in the sub-nanometer scale on the surface of the particles because solvent 

molecules do not reach conjugated FITC molecules to induce solvent effects.  We propose that 

fluorescent silica nanoparticles may possess an open structure on the surface of the particles and 

may not have a fluorescent core/silica shell structure as assumed in the literature.  Furthermore, 

the silica particles are not cytotoxic up to 1.0 mg/mL and up to 72 hours of incubation period, 

respectively.  The particles may be ready for biological applications, but they are not ready for 

medical applications without evidence of their clearance from the body.  Moreover, other biological 

functions such as inflammation and genotoxicity must be studied because the biological response of 

cells is not limited to cytotoxicity. 
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Figures Captions: 

 
Figure 1: DLS histograms for particles with sizes of 466, 255, 31, 12 nm (Exp. No; 2A, 2B, 

2F, 2G), respectively.  Amount of ethanol was varied between 60 and 5 ml by 
keeping the amount of 0.1 ml APTES-FITC, 1.2 ml ammonia, 1.2 ml TEOS constant. 

Figure 2: Representative SEM images of FITC-conjugated to silica nanoparticles .  Particle 
sizes are (A) 460 nm, (B) 190nm, (C) 42nm and (D) 30nm. 

Figure 3: Plots showing dependence of particle size on initial amount of reagents. (A) 
ammonia (B) ethanol, (C) TEOS, (D) APTES-FITC.  Size of particles exponentially 
decreases with increasing amount of ethanol, and increases with ammonia. 

Figure 4: (A) 29Si CP-MAS NMR and (B) 13C CP-MAS NMR spectra of particles. 
Figure 5: Absorption (A and C) and fluorescence spectra (B and D) of FITC released by 

disintegrating 5 mg/mL of silica particles in 1M NaOH.  Excitation wavelength is 490 
nm.  The particles prepared by the set of experiments Exp. No. 1. and Exp. No. 2 
were used.  Disintegrated FITC molecules was separated by centifugation. 

Figure 6: The graphs (A and B) were plotted for fluorescence intensity versus absorbance for 

the set of Experiment 1 (1A to 1E in the Table 1) and the set of experiment 2 (2A 
to 2F).  3D plots (C and D) of particle size versus fluorescence intensity and 

absorbance were shown.  The correlation coefficient R2(for the exp. set of 1)= 
0.9522, R2 (for the exp. set of 2)= 0.9665.  The graphs on the left is related to 
effect of amount of ammonia, the plots on the right show effect of amount of 
ethanol. 

Figure 7: The solvent effect:  Fluorescence spectra of free FITC (left) dissolved in water and 
FITC conjugated to particles (right) dispersed in different solvents, 
dimethylformamide (DMF), ethanol (EtOH), and water (H2O). 

Figure 8: Quenhing effect:  The Stern–Volmer plots of free FITC and FITC-conjugated silica 

particles in the presence of quenchers (A) I- (B) Cu2+ ions. 

Figure 9: The pH dependence of fluorescence spectra for free FITC (on the left) and particles 

(on the right).  The pH of the solution was varied from 7 to 13.  The pH dependence 

of fluorescence intensity is shown by taking the intensity at pH 7 as reference.  

Solutions with higher pH values cause a reduction in the fluorescence intensity of 

FITC. 

Figure 10: Assessment of photostability of silica particles by continuous illumination by a 

pulsed Xe lamp.  Amount of FITC encapsulated in particles varied but the size of 

particles is constant around 30 nm.  Black, Exp. No. 4E; red, Exp No. 4D; blue, Exp. 

No. 4C; green, Exp. No. 4B. 

Figure 11: Cell viability assayed by MTT for the cell lines MCF 7 and PC3.  Variables are 

particles with different sizes (12, 48, 251 nm), incubation times (24, 48, 72h), and 

dosages (1 – 1000 µg/ml). 
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