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ABSTRACT 

REFLECTION PROPERTIES OF A GAUSSIAN LASER BEAM FROM 

MULTILAYER DIELECTRIC FILMS 

A laser microphone is a surveillance device that uses a laser beam to detect 

sound vibrations in a distant object. The object is typically inside a room where a 

conversation is taking place, and can be anything that can vibrate (for example, picture 

or window) in response to the sound waves of the conversation. The object preferably 

has a smooth surface. The laser beam is directed into the room through a window, 

reflected off the object and returned to a receiver that converts the beam to audio signal. 

The beam is mostly bounced off the window itself. Usually these kinds of devices are 

used by surveillance intelligence in some parts of governments and these kinds of 

weapons analyze the laser beam which reflects from window.    

In this thesis a countermeasure to the detection of laser beam is analyzed. In 

order to make this possible, the reflection from dielectric stratified surfaces of a 

Gaussian laser beam needs to be described. 

The reflected beam profile of electromagnetic radiation exposes to various 

effects different from reflected plane waves. Gaussian beams which reflect from a 

dielectric slab experience in a shifting maximum point in one direction; lateral shift, 

focal shift and angular divergence are the shift and distortion of the beam profile.  

The Gaussian beam propagates in z direction and broadens in transverse plane, 

in two dimensions and is decomposed into plane wave components. Upon analyzing the 

reflection coefficient and beam profile, reduction of beam power after reflection from 

stratified films is described. 
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ÖZET 

GAUSS LAZER ISINLARININ ÇOK KATMANLI DİELEKTRİK 

FİLMLERDEN YANSIMA ÖZELLİKLERİ 

Lazer mikrofon, belirli bir mesafede bulunan cisimdeki ses titreşimlerini lazer 

ışık huzmesiyle gizlice tespit ederek çalışan bir izleme cihazıdır. Cisim klasik olarak 

münazaranın yer aldığı bir odanın içindedir ve titreyen herhangi bir şey olabilir.(örneğin 

tablo veya cam). Lazer ışık huzmesi camdan geçirilerek odaya yönlendirilir, nesneden 

yansıtılır ve ışık huzmesini ses sinyaline çeviren bir alıcıya geri döndürülür. Çoğunlukla 

ışık huzmesi pencerenin kendisinden yansıtılır. Genelde bunun gibi cihazlar hükümetin 

gizli dinleme yapan istihbarat kısımlarında kullanılır ve bu çeşit silahlar pencereden 

yansıyan lazer ışık huzmesini inceler. 

Bu tezde lazer ışık huzmesinin tespit edilmesine mukabil bir karşı tedbir 

incelenmiştir. Bunu mümkün kılmak için Gaussian ışık huzmeli lazerin bir yüzeyden 

nasıl yansıdığı tanımlanmıştır.  

Elektromanyetik ışımalı yansımış ışık huzmesi profili, yansımış düzgün 

dalgaların karşılaştığı etkilerden farklı etkilere maruz kalır. Dielektrik bir tabakadan 

yansıyan Gaussian ışık huzmeleri maksimum noktalarında bir yöne kayma yapar; 

gecikerek kayma, odaksal kayma ve açısal kayma bu kaymayı ve ışık huzmesi 

görüntüsündeki bozulmayı temsil eder. 

Gaussian ışık huzmesi z yönünde ilerler ve iki boyutlu yayılmaktadır ve düzgün 

dalga bileşenlerinden oluşmuştur. Yansıma katsayısını ve huzmenin şeklini 

tanımlamamızla birlikte katmanlar halindeki filmlerden yansımadan sonraki ışık 

huzmesinin gücündeki azalma tanımlanmıştır.  
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CHAPTER 1 

 

INTRODUCTION 

 
Laser beam structures are used in various fields. Usually there is a source from 

where the light source is composed of. From this source the light propagates and while 

spreads. The energy distribution of a laser beam is shown in Figure 1.1. The peak point 

is in the direction of propagation it travels. And the power it has is in the axis it 

propagates. The very usage of this representation is more common and can be analyzed 

by getting around with some examples. 

 

 
Figure 1.1. Energy Distribution of a Gaussian Beam Propagation Along One Direction 

 

Usually the beam is reflected from a point and after reflection the beam has the 

information from which it is reflected. For example in the airborne ocean lidar system, 

laser beam is launched in the air and reflected and refracted on the water surface [1]. 

The wavy surface changes the energy distributions of reflective and refractive laser 

beams (Figure 1.2). Thus any different object on or under the sea level can be detected. 

It can be designed for oceanographic and coastal measurements, coastal topographic 

surveys, wave measurements, and coral reef research. Analyzing reflection form wavy 

surfaces is the base structure of these applications. According to the wave model on the 
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water surface, the returned laser power expression for the airborne laser bathymetry can 

be defined describing reflection. 

 

 

 

 

 

 

 

 

 
 

Figure 1.2. Gaussian Beam Reflection From A Wavy Surface 

 

One such application of this technology is the designation of analyzing the beam 

reflected from blood vessels and detecting the blood pressure. By the help of this 

detection health organizations can understand what kind of illness the person has. And it 

is also used for detecting Land mines. Gaussian beam shape laser beams are 

backscattered from land mines and thus they are detected even if buried and nonmetallic 

materials. After analysis, backscattered photons from mines and soil or any other 

materials are differed by detection. 

One usage fields of this technology is detecting vibrations on rotational targets 

[2]. Any kind of robotic material whose rotational stabilization needs to be analyzed 

smoothly detects by reflection of a Gaussian beam shape laser. 

 

 

 

 

 

 

 

 

 

Figure 1.3. Gaussian Beam Reflection From A Surface 

Source 

Observe 

Vibrating Object 
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As it is known properly, laser beams are used for detecting the sound waves [3]. 

This device is called laser microphone (Figure 1.4). The people’s sound waves talking 

in a room makes the window quiver. The sound vibrations cause the hard surface to act 

as a diaphragm and vibrate along with the sound. This vibration has the voice 

information and outside the window, a laser beam directed to the window is reflected 

and the reflected beam may be used for unauthorized listening by the help of the 

information it carries. In order to use the reflected laser beam, the source and the 

receiver must be on the same location or close to each other (Figure 1.3) [4-9]. Because 

the reflected beam profile must be matched with its original form and after voice 

recognition the pure voice can be listened. For the need of being in the same or near 

place, laser must be directed from exactly across the window because if, in the nature of 

reflection, the beam is directed to the window with 89º, the angle between reflected and 

transmitted wave is 2º. And if we increase the angle, for example about 45 º with the 

window, the beam reflects with nearly the same angle, then, the angle between 

reference beam and achieved beam is 90º.  

 

 
 Figure 1.4. Unauthorized Listening Using Laser Microphone 

 

So, larger angles force the source and the receiver to be on different sides (an 

unwanted situation). But in order to eliminate just this, retro reflective tape applications 

are wide spread (Figure 1.5).  A retro reflective tape in fact is being used for reflecting 
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the beam exactly backwards regardless of which angle it came from. Using the retro 

reflective tape, laser beam is reflected more purely than from any kind of place in the 

surface of building, mostly from window. It can be sticked to the car and by reflection, 

even if the engine is on and even if there is music inside, sound waves talking inside the 

car can be detected. But the nature of retro reflective tapes makes it necessary to stick it 

to the target. While you are doing such a job, trying to listen the target in an 

unauthorized manner, you don’t want to be detected. And while you are not trying to be 

detected, you don’t want to get closer to the target although you have to stick the retro 

reflective tape.  

 

 
Figure 1.5. Retroreflective Tape Usage Fields 

 

It can be understood that while listening within laser beams, using retro 

reflective tapes are nonsense. So the smoothest place that needs to be used to detect the 

laser beam profile is the most vibrating surface, window. And they do so.  

In fact, the invisible laser beam is usually directed to a window within 

approximately maximum 50 meters. So light reflects backward and that means it travels 

round 100 meters. That means we will mostly study with far field divergence. More 

than 100m traveling may cause the beam profile diverge and would make it little 

possible to analyze. Assuming the wavelength 1000nm,  0.1mm and after 100m 

traveling, the electric field distribution of Gaussian beam in transverse plane is nearly 

3cm. As we know we can diverge or decrease the divergence of the beam using lenses. 

But maximum divergence must not be wider than window within 50m because these 

kind of systems work in this range. Our distance to the window is 50m and assuming 

the window not being wider than 1m, theoretically our beam will travel maximum 10 

degree. Making our beam travel more than 10 degrees may decrease the beam power so 

much that after refection it can not be detected. That can be done by using lenses, and 

we can say that theoretically it is possible. As one might imagine, this has interesting 
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surveillance applications. This technology is currently being used by the CIA and many 

other surveillance-related organizations to eavesdrop. The infrared laser is used in real-

world scenarios because of the fact that it is invisible; the ruby laser might cause the 

surveillance subject to realize that they are being watched.  

In this thesis I will investigate a means of elimination for not being detected by 

this kind of unauthorized listening. There are various technical opportunities to apply 

this. For example the window surface can be designed as sinusoidal shape being the 

wavelength of this designation the same as the laser beams wavelength but it has some 

disadvantages by disrupting window function. We want the window to continue its 

functions properly. Doing so would cause the people talking inside the window unable 

to see the nature from inside.  

Also the window can be vibrated using a buzzer onto the surface. That could be 

a solution for being undetected when the buzzing of window has a sinusoidal shape 

being the wavelength of this the same as the laser light. But this can also cause a 

buzzing sound and the vibration of window would cause the people unable to see the 

nature from inside. An unwanted buzzing and annoying sound spreads around the room. 

And these kind of structures must be mechanical and although the wavelength of 

buzzing sound has to be stable, it can not be. Because there is always distortion and this 

distortion causes the wavelength to be changed.  

The most remarkable solution for not being detected by this kind of listening is 

using a material that could be sticked on the surface of the window. We need to design 

that kind of material which we know how it reacts to the light waves. The best structure 

is using multilayer films on the surface of the window, by the way we can alter the 

beam shape or reducing the beam power in the reflection more than 20db would give a 

hard time to be listened unauthorized.  

 

 

 

 

 

 

 

 

5 



  

CHAPTER 2 

 

REFLECTION OF LIGHT WAVES FROM A DIELECTRIC 

SLAB USING MATRIX APPROACH 

 
In this chapter the main properties of the electromagnetic field and the effect of 

matter on the propagation of the electromagnetic disturbance is described formally in 

terms of the usual material constants. 

When a plane wave falls on to a boundary between two homogenous media of 

different optical properties, it is split into two waves: a transmitted wave proceeding 

into the second medium and a reflected wave propagated back into the first medium [5]. 

The existence of these two waves can be demonstrated from the boundary conditions, 

since it is easily seen that these conditions can not be satisfied without postulated both 

the transmitted and the reflected wave [10-11]. We shall tentatively in this chapter 

assume that these waves are also plane and derive expressions for their directions of 

propagation and their amplitudes. By the help of these descriptions I will study the 

reflection coefficient.  

In this chapter a matrix approach will be described such that multilayer slab 

structures or cascaded films can be obtained by multiplication of characteristic matrices. 

 

2.1. Reflection Law 

 

A plane wave propagated in the direction specified by the unit vector is 

determined when the time behaviour at one particular point in space is known [5]. For if 

F(t) represents the time behaviour at any one point,  whose position vector relative to 

the first point is r, is given by . At the boundary between the two media, 

the time variation of the secondary fields will be the same as that of the incident 

primary fields. Hence, if  and  denote unit vectors in the direction of propagation 

of the reflected and transmitted wave, one has, on equating the arguments of the three 

wave functions at a point r on the boundary plane z=0: 
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 and  being the velocities of propagation in the two media. Written out more 

explicitly, we have with : 

 

 

 

Since equation (2.2) must hold for all values x and y on the boundary, 

 

  ,  

 

The plane specified by and the normal to the boundary is called the plane of 

incidence. Equation (2.3) shows that  and  lie in this plane.  

 Taking the plane of incidence as the plane and denoting by  and  

the angle which  and  make with 0z, one has 

 

,  ,  , 

,  ,  , 

,  ,  . 

 

For waves propagated from the first into the second medium, the z components 

of the s vectors are positive; for those propagated in the opposite sense, they are 

negative: 

 

, ,  

 

 

 

(2.4) 

(2.1) 

(2.2) 

(2.5) 

(2.3) 
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Figure 2.1. Refraction And Reflection Of A Plane Wave Plane Of Incidence 

 

The first set in equation (2.3) gives within equation (2.4) 

 

 

 

Hence, , and we find, also using equation (2.5), that 

, so that  

 

 

 

 This relation, together with the statement that the reflected wave normal  is 

in the plane of incidence, constitutes the law of reflection. 

 Also from equation (2.6), using Maxwell relation known as , where  

is nonmagnetic substance, n is absolute refractive index and  is static dielectric 

constant, we can define 

,   

 

 

  

 
 

 

 

 

 

 

  

x 

2 

1 

z 
 

(2.6) 

(2.7) 

(2.8) 
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known as Snell’s law. 

 

2.2. Fresnel Formulae 

 
 Assume two homogeneous and isotropic media are both of zero conductivity and 

consequently perfectly transparent; their magnetic permeabilities will then in fact differ 

from unity by negligible amounts, and accordingly we take . 

 Let A be the amplitude of the electric vector of the incident field. We take A to 

be complex, with its phase equal to the constant part of the argument of the wave 

function; the variable part is  

 

 

 

 We resolve each vector into components parallel (denoted by subscript ll) and 

perpendicular (subscript ) to the plane of incidence. The choice of the perpendicular 

components must be visualized at right angles to the plane of the figure. 

 The components of the electric vector of the incident field then are  

 

   

   

 

 

The components of the magnetic vector are immediately obtained by using 

Maxwell relations;   

 

, ,  

 

Being R and T are the complex amplitude of the reflected and transmitted 

waves, the corresponding components of the electric and magnetic vectors are: 

(2.11) 

(2.10) 

(2.9) 
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Reflected wave 

 

, ,   

, ,   

 

With the phase of 

 

 

 

Transmitted wave 

 

, ,  

, ,  

 

With the phase of 

 

 

 

As we know that the tangential components of E and H should be continuous 

across the surface and we have; 

 

,    

,    

 

By substituting the electric and magnetic field vectors and using the fact that 

 we have; 

 

 

 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

10 



  

=  

+ =  

+ =  

+ =  

 

Within boundary conditions we can say that we have four relations representing 

two groups, one of which contains only the components parallel to the plane of 

incidence, while the other contains only those which are perpendicular to the plane of 

incidence. These two kinds of waves are, therefore, independent of one another. 

 

 

 

 

 

 

We can solve equation (2.18) for the components of the reflected and transmitted 

terms of those of the incident wave, using  from Maxwell relations; 

 

 

 

 

 

 

 

Are called Fresnel Formulae, we can write these in alternative form using 

Snell’s law and trigonometric functions; 

 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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 Since  and  are real1 because of total internal reflection, the trigonometric 

factors on the right hand sides of equation (2.21) and equation (2.22) will also be real 

and one can say that the phase of each component of the reflected or transmitted wave is 

either equal to the phase of the corresponding component of the incident wave or differs 

from it by . Since  and  have the opposite signs, the phase will depend on the 

relative magnitudes of  and . For if the second medium is optically denser then the 

first medium (our usual case), then . According to equation (2.22), the signs of 

 and  are different and the phases therefore differ by . Under the same 

circumstances we expect  and have the same phase differences2 and if we look 

closer by the help of Figure 2.1 we can see that becomes negative for 

 whereas  is positive.  

                                                
1 When , the second medium is optically denser than the first medium, there is a real angle  of 

refraction for every angle of incidence.  

 

2 From equation (2.10) and (2.12) we conclude that in the plane z=0, the phase of  and  differ 

by , whereas the phases of  and are equal to each other. This difference in the behaviour of 
phases of the y and x components are formal according to the definition of reflected angle from the Figure 
(2.1) 
 

,  

 

(2.21) 

(2.22) 
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 For normal incidence (our usual case),  and consequently  and the 

reflection formulas reduce to  

 

 

 

 

2.3. Wave Propagation in a Stratified Medium 

 
A medium whose properties are constant throughout each plane perpendicular to 

a fixed direction is called a stratified medium. If the z-axis of a Cartesian reference 

system is taken along this special direction, then , . 

 We shall consider the propagation of a plane, time harmonic electromagnetic 

wave through such a medium; this is a natural generalization of the simple case treated 

in the previous section. 

 The theory of stratified media is of considerable importance in connection with 

multilayer parallel thin films. Such films have many useful applications, as can be 

employed as antireflection films. On the other hand such films can be designed to 

enhance the reflection of electromagnetic waves. In order to use dielectric stratified 

films to prevent from being detected, we need to understand the stratified medium. 

 

2.3.1. Wave Propagation  

 
 When a plane, time harmonic electromagnetic wave propagated through 

stratified medium is linearly polarized with its electric vector perpendicular to the plane 

of incidence we shall speak of a transverse electric wave (TE); when it is linearly 

polarized with its magnetic vector perpendicular to the plane of incidence we shall 

speak of a transverse magnetic wave (TM). So, the arbitrary polarized wave is resolved 

in two ways. These two waves either be independent of each other or mutually 

independent. And moreover, Maxwell’s equations remain when E and H and 

simultaneously  and  are interchanged. Thus any theorem relating to TM waves 

(2.23) 
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may immediately be deduced from the corresponding result for TE waves by making 

this change.    It is sufficient to study only on TE waves. 

 

We take the plane of incidence y, z-plane (different from previous section), z 

being the direction of stratification. For a TE wave,  and Maxwell’s 

equations reduce to the following six scalar equations (time dependence  

being assumed) 

 

  (2.24)     (2.27) 

   (2.25)    (2.28) 

   (2.26)    (2.29) 

 

 These equations show that ,  and  are functions of y and z only. 

Eliminating  and  between equations (2.24), (2.28) and (2.29); 

 

 

 

Where  

 

,   

 

To solve equation (2.30) we take, as a trial solution, a product of two functions, 

one involving y only and the other involving z only: 

 

 

 

And equation (2.30) becomes 

 

(2.30) 

(2.31) 

(2.32) 
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Now the term on the left belongs to y while the term on the right belongs to z. 

This holds only when both sides are equal to . 

 

 

 

 

When we set (convenience)   , 

 

 

 

So from equation (2.30),  

 

 

 

From equations (2.26) and (2.27),  and  are given by expressions of the 

same form: 

 

 

 

 

On the account of equations (2.24), (2.28) and (2.29), the amplitude functions U, 

V and W are related by the following equations: 

 

 

 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 
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The prime denotes the differentiation with respect to z. Substituting for W from 

equation (2.42) into equation (2.40) we have, together with equation (2.41), a pair of 

simultaneous first order differential equations for U and V: 

 

 

 

 

 Elimination between there equations finally give the following second-order 

linear differential equations for U and V: 

 

 

 

 

 U, V and W are in general complex functions of z. The surfaces of constant 

amplitude of  are given by constant, while the surfaces of constant phase 

have the equation ; constant, 

Where  is the phase of U. The two sets of surface do not in general coincide 

so that  is an homogeneous wave. For a small displacement (dy,dz) along a cophasal 

surface, ; hence if  denotes the angle which the normal to the co-

phasal surface makes with OZ, then  

 

 

 

When the wave is an homogenous plane wave, 

 

(2.42) 

(2.43) 

(2.44) 

(2.45) 
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,   

 

2.3.2. The Characteristic Matrix of a Stratified Medium 

 
 In need of usage properties of matrices, we need to determine the definitions and 

properties of matrices that are only ones necessary for our purposes [12-13]. The 

solutions we reached can most conveniently be expressed in terms of matrices. By a 

matrix one can understands a system of real or complex numbers, arranged in a 

rectangular or a square array: 

   denoting the element in the ith row and the jth column 

since it contains m rows and n columns. The matrix is denoted symbolically by A or 

, and is said to be an m by n matrix since it contains m rows and n columns. In the 

special case when m=n, A is said to be a square matrix of order m. If A is a square 

matrix, the determinant whose elements are the same, and are in the same positions as 

the elements of A, is said to be the determinant of the matrix A; it is denoted by or 

. If , A is said to be unimodular [5]. 

 By definition two matrices are equal only if they have the same number of 

rows(m) and the same number of columns (n) and if their corresponding elements are 

equal. If  and  are two matrices with the same number of rows and the 

same number of columns, then their sum A+B is defined as the matrix C with elements 

. Similarly their difference A-B is defined as the matrix D with elements 

. 

 A matrix is having every element zero is called a null matrix. The square matrix 

with elements when and for every value of i is called unit matrix and 

will be denoted by I. 

 The product of a matrix A and a number (real or complex) is defined as the 

matrix B with elements . 

(2.46) 
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 The product of AB of two matrices is defined only when the number of columns 

in A is equal to the number of two rows in B. If A is an matrix and B is a  

matrix the product is then by definition the  matrix with elements. 

 

 

 

The process of multiplication of two matrices is thus analogous to the row-by-

column rule for multiplication of determinants of equal orders. In general . In 

the special case when AB=BA, the matrices A and B are said to commute.  

 Since the functions U(z) and V(z) each satisfy a second-order linear differential 

equation (2.44) and (2.45), it follows that U and V may each be expressed as a linear 

combination of two particular solutions, say  and . These particular 

solutions cannot be arbitrary; they must be coupled by the first order differential 

equations (2.43):  

 

      

     

 

From these relations; 

 

   

 

So that              

 

This implies that the determinant associated with two arbitrary solutions of 

equation (2.43) is constant. 

 

 

 

(2.47) 

(2.48) 

(2.49) 

(2.50) 
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For our solution the most convenient choice of the particular solution is  

 

   

   

 

Such that  f(0)=G(0)=0  and  F(0)=g(0)=1 

 

Then with the solutions,  and , it can be expressed that; 

 

 

 

 

Or in matrix solution, 

 

 

 

,  ,   

 

On the account of relation D=constant, the determinant of the square matrix N is 

a constant. The value of this constant may immediately be found by taking z=0, giving 

, it is usually more convenient to express  and  as functions of 

U(z) and V(z). Solving for  and  we obtain 

 

 

 

Where;    

 

This matrix is also unimodular,    

(2.51) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 
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 The significance of M is clear: it relates the x- and y-components of the electric 

vectors in the plane z=0 to the components in an arbitrary plane z=constant. These 

information given is sufficient for the complete specification of the field. Hence for the 

purposes of determining the propagation of a plane monochromatic wave through a 

stratified medium, the medium only need be specified by an appropriate two by 

unimodular matrix M. For this reason we shall call M the characteristic matrix of the 

stratified medium. The constancy of the determinant  may be shown to imply the 

conservation of energy.  

 

2.3.3. Homogeneous Dielectric Film 

 

 In this case   and  are constants. If  denotes the angle which the 

normal to the wave makes with the z-axis, we have  . For TE wave, we have 

according to equations (2.44) and (2.45), 

 

 

 

 

The solution of these equations, subject to the relations, equation (2.43) can be 

noticed as; 

 

 

 

 

Hence the particular solutions equation (2.51) which satisfy the boundary 

conditions equation (2.52) are 

 

 

(2.58) 

(2.59) 

20 



  

, 

, 

, 

. 

 

If we set 

 

 

 

Then the characteristic matrix of a TE wave can be seen as; 

 

 

 

And the characteristic matrix of a TM wave is replaces p by . 

As it can be seen that the characteristic matrix of a stratified matrix is in the form of; 

 

  where a, b, c and d are real. 

 

 If we are talking about more than one dielectric films, say first one extends from 

 to  and second one extends from  to , electromagnetic 

definition of these combined dielectric films can be described by matrix method. 

If and  are the characteristic matrices of two stratified medium, 

overall matrix of these two adjacent mediums can be represented as; 

 

 

 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

(2.64) 
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If we generalize these formulae by using more than one matrices adjacent to 

each other; 

 

 

 

2.3.4. Representation of Reflection Coefficient 

 
 As we have studied so far, we found out the Fresnel Formulae and matrix 

definition of the characteristic matrix of a TE wave in which we will derive the 

reflection matrix. 

 Let A, R and T represent the amplitudes of electric vectors of the incident, 

reflected and transmitted waves;  and  be the angles which the normal to the 

incident and the transmitted waves make with the z axis. 

 According to the boundary conditions, the tangential components of E and H 

must be continuous across each of the two boundaries of the stratified medium. So as 

we know, 

 

 ,  

 

Thus for a TE wave the Fresnel coefficients of wave components can be 

expressed as; 

 

    

   

 

   

 

By evaluating equations (2.55) and (2.67) we can define these coefficients in 

matrix formation; 

 

(2.65) 

(2.66) 

(2.67) 

(2.68) 
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If we derive these formulas we can discriminate reflection and transmission 

coefficients each other. Thus we reach our reflection coefficient as; 

 

 

 

 

 

We can evaluate reflectivity (R) for TM wave by replacing  and  with 

 

   

 

 As we derived the reflection coefficient, approving our definitions exactly, we 

can now start representing what in fact we really deal with and find ways to diminish 

the amplitude of reflecting waves. It is apparent that reflection from a dielectric slab 

depends on the electric and magnetic permeabilities, incident angle (we will assume the 

beam come nearly with zero angle), index and thickness of the slab and wavelength. 

The reflection coefficient in which some books call it reflectance is derived for plane 

waves. Our laser is in Gaussian shape and we need to analyze which effects it exposes 

to.  

 

 

 
 
 

(2.69) 

(2.70) 

(2.71) 

(2.72) 

(2.73) 
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CHAPTER 3 

 

REFLECTION OF A GAUSSIAN BEAM FROM A 

DIELECTRIC SLAB 

 
Optical communication systems have been a part of daily communication 

systems because of its speedy applications and its ever lasting applicable designs [14]. 

Above these in lightwave communication by the help of precisely detectable systems, 

differences that are not mere to be seen can be observed more accurately.  

 Light is an electromagnetic wave phenomenon described by the same theoretical 

principles that govern all forms of electromagnetic radiation [15-17]. Electromagnetic 

radiation propagates in the form of two mutually coupled vector waves, an electric field 

wave and a magnetic field wave.  

 Although the wave nature of light precludes the existence of being confined and 

transported in free space without angular spread idealization, light can take the form of 

beams that come as close as possible to spatially localized and non diverging waves.  

In most laser applications it is necessary to focus, modify, or shape the laser 

beam by using lenses and other optical elements. In general, laser-beam propagation can 

be approximated by assuming that the laser beam has an ideal Gaussian intensity 

profile, which corresponds to the theoretical TEM  mode. In order to select the best 

optics for a particular laser application, it is important to understand the basic properties 

of Gaussian beams. 

 

3.1. Gaussian Beam Propagation 

 
Unfortunately, the output from real-life lasers is not truly Gaussian (although 

helium neon lasers and argon-ion lasers are a very close approximation). To 

accommodate this variance, a quality factor, M  (called the “M-squared” factor), has 

been defined to describe the deviation of the laser beam from a theoretical Gaussian. 

For a theoretical Gaussian, M  = 1. Collimated TEM  diode laser beams usually have 

an M  ranging from 1.1 to 1.7. For high-energy multimode lasers, the M  factor can be 
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as high as 25 or 30. In all cases, the M  factor affects the characteristics of a laser beam 

and cannot be neglected in optical designs. The beam waist is magnified by M, the 

beam depth of focus is magnified by M , and the angular divergence is minified by the 

factor M. 

Although in some respects component design and tolerancing for lasers is more 

critical than for conventional optical components, the designs often tend to be simpler 

since many of the constraints associated with imaging systems are not present. For 

instance, laser beams are nearly always used on axis, which eliminates the need to 

correct asymmetric aberration.  

Because laser light is generated coherently, it is not subject to some of the 

limitations normally associated with incoherent sources. All parts of the wavefront act 

as if they originate from the same point; consequently, the emergent wavefront can be 

precisely defined. Starting out with a well-defined wavefront permits more precise 

focusing and control of the beam than otherwise would be possible. 

For virtually all laser cavities, the propagation of an electromagnetic field, E(0), 

through one round trip in an optical resonator can be described mathematically by a 

propagation integral, which has the general form 

 

 

 

where K is the propagation constant at the carrier frequency of the optical signal, p is 

the length of one period or round trip,  and the integral is over the transverse coordinates 

at the reference or input plane. The function K is commonly called the propagation 

kernel since the field after one propagation step, can be obtained from the 

initial field through the operation of the linear kernel or 

“propagator” . 

By setting the condition that the field, after one period, will have exactly the 

same transverse form, both in phase and profile (amplitude variation across the field), 

we get the equation 

 

 

(3.1) 

(3.2) 
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where  represents a set of mathematical eigenmodes, and  a corresponding set 

of eigenvalues. The eigenmodes are referred to as transverse cavity modes, and, for 

stable resonators, are closely approximated by Hermite-Gaussian functions, denoted by 

. 

The lowest order, or “fundamental” transverse mode,  has a Gaussian 

intensity profile, shown in Figure 3.1, which has the form 

 

 

 

3.1.1. Beam Waist And Divergence 

 
In order to gain an appreciation of the principles and limitations of Gaussian 

beam optics, it is necessary to understand the nature of the laser output beam. In  

mode, the beam emitted from a laser begins as a perfect plane wave with a Gaussian 

transverse intensity profile as shown in Figure 3.1. The Gaussian shape is truncated at 

some diameter either by the internal dimensions of the laser or by some limiting 

aperture in the optical train. 

 

 
 

Figure 3.1. Intensity Profile Of A Gaussian  Mode 
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Figure 3.2. Diameter Of A Gaussian Beam 

 

The diameter at which the beam irradiance (intensity) has fallen to  (13.5 

percent) of its peak, or axial value and the other is the diameter at which the beam 

irradiance (intensity) has fallen to 50 percent of its peak, or axial value, as shown in 

Figure 3.2. This second definition is also referred to as FWHM, or full width at half 

maximum. General usage is the definition as described and compared above. 

 Diffraction causes light waves to spread transversely as they propagate, and it is 

therefore impossible to have a perfectly collimated beam. The spreading of a laser beam 

is in precise accord with the predictions of pure diffraction theory; aberration is totally 

insignificant in the present context. Under quite ordinary circumstances, the beam 

spreading can be so small that it can go unnoticed. The accurately describe beam 

spreading, making it easy to see the capabilities and limitations of laser beams are 

described above. 

Even if a Gaussian  laser-beam wavefront were made perfectly flat at 

some plane, it would quickly acquire curvature and begin spreading in accordance with 

 

 

 

(3.4) 
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where z is the distance propagated from the plane where the wavefront is flat,  

is the wavelength of light,  is the radius of the  irradiance contour at the plane 

where the wavefront is flat, w(z) is the radius of the  contour after the wave has 

propagated a distance z, and R(z) is the wavefront radius of curvature after propagating 

a distance z. R(z) is infinite at z = 0, passes through a minimum at some finite z, and 

rises again toward infinity as z is further increased, asymptotically approaching the 

value of z itself. The plane z=0 marks the location of a Gaussian waist, or a place where 

the wavefront is flat, and  is called the beam waist radius. 

 The intensity distribution of the Gaussian  beam, namely, 

 

 

 

where w=w(z) and P is the total power in the beam, is the same at all cross 

sections of the beam. 

 The invariance of the form of the distribution is a special consequence of the 

presumed Gaussian distribution at z = 0. If a uniform irradiance distribution had been 

presumed at z = 0. 

Simultaneously, as R(z) asymptotically approaches z for large z, w(z) 

asymptotically approaches the value 

 

 

 

where z is presumed to be much larger than  so that the  irradiance 

contours asymptotically approach a cone of angular radius 

 

 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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This value is the far-field angular radius (half-angle divergence) of the Gaussian 

 beam. The vertex of the cone lies at the center of the waist, as shown in Figure 

3.3.  

 It is important to note that, for a given value of , variations of beam diameter 

and divergence with distance z are functions of a single parameter, , the beam waist 

radius. 

 

 
Figure 3.3. Growth In  Radius With Propagated Away From Gaussian Waist 

 

3.1.2. Near-Field vs Far-Field Divergence 

 
 Unlike conventional light beams, Gaussian beams do not diverge linearly. Near 

the beam waist, which is typically close to the output of the laser, the divergence angle 

is extremely small; far from the waist, the divergence angle approaches the asymptotic 

limit described above. The Raleigh range ( ), defined as the distance over which the 

beam radius spreads by a factor of , is given by 

 

 

 

At the beam waist (z = 0), the wavefront is planar  Likewise, at z=∞, 

the wavefront is planar . As the beam propagates from the waist, the 

wavefront curvature, therefore, must increase to a maximum and then begin to decrease, 

as shown in figure 3.4. The Raleigh range, considered to be the dividing line between 

(3.9) 
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near-field divergence and midrange divergence, is the distance from the waist at which 

the wavefront curvature is a maximum. Far-field divergence (the number quoted in laser 

specifications) must be measured at a distance much greater than (usually  

will suffice). This is a very important distinction because calculations for spot size and 

other parameters in an optical train will be inaccurate if near- or mid-field divergence 

values are used. For a tightly focused beam, the distance from the waist (the focal point) 

to the far field can be a few millimeters or less. For beams coming directly from the 

laser, the far-field distance can be measured in meters. 

 

Figure 3.4. Changes In Wavefront Radius With Propagation Distance 

 

Typically, one has a fixed value for and uses the expression 

 

 

 

to calculate w(z) for an input value of z. However, one can also utilize this 

equation to see how final beam radius varies with starting beam radius at a fixed 

distance, z.  

The beam radius at 100m reaches a value for a starting beam waist of about 0.1 

mm ( ). Therefore, if we want to achieve the best combination of beam 

diameter and spread (or best collimation) over a distance of 100m,  is 

approximately calculated as 3 cm. 

We can find the general expression for the optimum starting beam radius for a 

given distance, z. Doing so yields 

(3.10) 
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 As can be seen, Gaussian beam diverges as it propagates. Defining the Gaussian 

beam in these parameters will help us to understand how a laser propagates, diverges 

and which distribution it has. Now Gaussian beam shape laser in plane wave 

decomposition will be described according to our situation in terms of representing laser 

beam.  

 

3.2. Description of Gaussian Beam Propagation In Terms Of Plane 
Wave Decomposition 

 
We can say that when a Gaussian beam comes to a dielectric slab, the beam 

changes according to the propagation and reflection to the slab. The reflected wave with 

the shape of a Gaussian beam does not properly protect its own structure. By the way 

until the beam comes to a dielectric slab, the beam profile changes and broadens along 

the x-axis [7].  While the beam reflects from the dielectric slab, the amplitude and phase 

changes and the beam profile alters.  

 The reflected beam profiles of electromagnetic radiation have different effects 

from reflected plane waves [18-21]. Gaussian beams which reflect from a dielectric slab 

have a shifting maximum point in one direction. Lateral shift, focal shift and angular 

shift represent this shifting and the distortion of the beam profile. The Gaussian beam 

propagates in the z direction and broadens in x direction in two dimension and is 

composed of plane wave components [7].  

 Above consideration the results indicate that the path followed by the reflected 

maximum does not evolve a lateral shift, but consists of an angular deviation to one side 

only of the geometric path.   

 The reflected beam profile must be evaluated according to the incident angle, the 

thickness, reflective indices of the slab and wavelength of the Gaussian beam. Although 

the beam first propagates, then reflects and then propagates again, we will reflect the 

beam and combine the propagating distance before and after reflection then take into 

account.  

(3.11) 
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 The electric field distribution along the x axis is described with  and the 

Fourier transform of it is  where f is the spatial frequency and  is the 

wavelength. We need to decompose it in Fourier series and after analyzing the 

reflection effects I will compose it and the transverse plane will help us to see the 

results. 

 

 as  

 

 is described and can be thought as a plane wave traveling along z 

direction and making an angle . The radiation field of a beam propagating at z 

direction has a spatial spectrum that can be appreciable when . Then 

paraxial approximation can also be used. The launched beam at z=0 is in the form of 

 

 

 

Where A is the amplitude,  is the width of the beam which is being assumed in 

one dimension. Thus the corresponding spatial spectrum of the beam is called antenna 

function. 

 

 

 

3.2.1 Propagation Effects 

 
 The beam changes its profile in x axis as it propagates in z direction. We mean 

the width of the beam enlarges according to the wavelength, spatial frequency and the 

propagation distance. We can take into account the after and before reflection effects 

and combine them and can think about just like the beam is reflected at z=0 and 

propagated the total distance.  

(3.12) 

(3.13) 

(3.14) 
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 Under paraxial approximation the transfer function of the propagating beam is 

described as  

  

 

 

 The beam propagating along z axis broadens in the x axis and this can be seen 

when multiplying the transfer function and antenna function and then taking the Fourier 

transform of the product as described in equation (3.12) that will take us to a Gaussian 

field with a broadened profile and a phase curvature both being the function of the 

propagating distance. 

 

3.2.2 Reflection Effects 

 
 As I define; before reflection is taken into account, the beam never propagated 

before. The beam reflects from a dielectric slab at an angle close to the incident angle 

. As described in second chapter, the reflection is taken into account with film 

structure assuming all the media to be non-magnetic  and as we know  

 

So, equation (2.59) becomes as      (i=1,2,3..) 

 

 The subscriptions  are the indices of the materials and D is the 

thickness of the slab is denoted. We take  because we decide to use one material 

and want to measure just the reflecting part for only Gaussian beam for one material.  

is the angle between the normal of the slab and the Gaussian beam waist point. 

 In accordance, we can show the situation in schematic form.    

 

 

 

 

 

 

(3.15) 
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Figure 3.5. One Slab Configuration 

From Chapter 2 we know that reflectivity can be represented as matrix form and 

when we take   

 

    (x=1,2,3…) 

 

The reflection coefficient becomes as; 

 

    

   

 

Given in the Chapter 2, the reflection coefficient is described by  

       

 

 

 

With , according to equation (2.19); 

 

 

 

 

 

According to the definitions given above we can evaluate the reflection 

coefficient from a dielectric slab. 

 

 

 

 

 

 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 
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And becomes in the form of: 

 

 

 

 

Taking the parenthesis of cos and sin functions, 

 

 

 

 

      

 

As we know, 

 

 ,  

 

Then we substitute the parts    

 

 

 

 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 
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  ,  

 

  where  ,  

 

For only one dielectric slab 

 

  ,  

 

 

 

 

 

   (Snell’s Law) 

 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 
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   ,  

 

  ,  

 

  ,  

 

    

 

 

 

 

 

 

 

In order to identify the Gaussian beam we define F above. In this equation we 

decompose the Gaussian beam using  components as the angle between decomposed 

beams which is shown in Figure 3.4 and denoted as . 

 

    

 

     

 

 

 

 

 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 
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We can say that the Gaussian beam which comes from the source reflects from 

one dielectric slab with the angle . And the divergence of the beam is defined and 

used in the identification of the beam with . So if we just focus on the reflection we 

can say that the beam reflects according to the wavelength , index parameter N, 

incident angle  and  that shows the divergence of the beam representing the angle 

of the k vector in beam. Above you will see some figures calculated and drawn for the 

given parameters clarified.  

 

3.2.2.1. Figures Related to the Reflection Coefficient 

 

    F changes from 0 to 1 increasing by 0.001 

 
Figure 3.6.  Derived From Boundary Conditions 
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Figure 3.7. (Reflection From One Boundary Of One Dielectric Slab) 

 

 

 
Figure 3.8. (Reflection From One Dielectric Slab) 
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F changes from 0 to 1 increasing 0.001 step by step. 

 

   

 
Figure 3.9.  And  Representation For Various Thicknesses 
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Figure 3.10.  Representation For Various Thicknesses 
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3.2.2.2. Phase Effects of Reflection 

 

 
Figure 3.11. The Beam Profile Before And After Reflection Related To The Reflection                       

Effects 

 

 Before talking about our total beam shape we need to look at how reflection 

coefficient effects on the beam; 

 

    is the complex reflection transfer function 

and let’s look at how the phase of the reflection coefficient changes with reflection. 
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  Taylor Series of phase term 

 

      dc-term    linear       quadratic   

 

First term is independent of f and will not affect the beam profile: 

 

 

 

The second term is the linear term and will affect the profile most. Any phase 

shift in the Fourier space will shift the plane beam in the transverse plane: 

 

 

 

 As we can see rms is the width of the Gaussian beam in transverse 

plane propagating in z direction. 

 

Lateral shift in ,   

 

 

 

In quadratic term, the propagating beam diverges just like it has been while 

propagating in free space and a focal shift occurs; 

 

 

 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 
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In free space propagation; 

 

   

 

In quadric term occurs with reflection; 

 

    

 

   

 

Where  

 

Thus it can be noticed that reflection has two effects. One is lateral shift which 

shifts the beam profile in the transverse plane by an amount L, the other is focal shift 

( ) which focally shifts the propagating beam profile as we can see in Figure 3.11. 

And we can say that the shift after reflection (lateral and focal shift) depends on the 

wavelength of the beam, the index of the slab and the incident angle [22]. 

 

3.2.2.3. Amplitude Effects of Reflection 

 
 The amplitude of the beam which is reflecting from a dielectric slab also 

changes with respect to the optical thickness of the slab, wavelength and the angle of 

incidence. The reflected beam profile composes of the launched spectrum and reflection 

function. So if we define the maximum amplitude of the reflected beam profile: 

 

 

 

 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

44 



  

 

 

    

 

if fm is not far from the f=0; 

 

 

 

F changes the direction of the peak of the profile which propagates in the far 

zone. According to the plane-wave component having largest amplitude being in the 

direction f  we define ; 

 

Angular Shift:    

 

 

 

Angular shift is inversely proportional to the square of the beam width and 

directly proportional to the rate of change of r with f. By the way wave components are 

unnoticeably changes with the reflection. And this is smaller in narrow beams [23,24].  

 

3.2.3. Phase, Amplitude and Propagation Effects of Reflection 

 

Total propagation distance  from waist will be gained by taking the 

Fourier transform of the launched beam. 

 

 

(3.59) 

(3.60) (3.60) 

(3.61) 

(3.62) 

(3.63) 

(3.70) 
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And according to the method of stationary phase, phase term can be defined by

  

 

 

 

so the phase term consists of three term, first of which comes from the reflection 

factor and depends on the properties of the slab, the wavelength and the angle of 

incidence. Second term comes from beam propagation effects and the third term 

represents the Fourier transform.  

 When we discuss the propagated and reflected beam equation (3.70) profile we 

can easily see that reflection from a dielectric slab have some effects on the beam. The 

beam profile does not stay still and does not behave the way it is first designed. These 

are the effects we want in order not to be detected by. And this equation for one slab can 

be graphed as; 

 
Figure 3.12. Electromagnetic Field Representation Of A Gaussian Beam Without 

Propagation 

 

(3.71) 
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Figure 3.13. Electromagnetic Field Representation Of A Gaussian Beam After 

Propagation (60cm) 

 

 
Figure 3.14. Electromagnetic Field Representation Of A Gaussian Beam After 

Propagation (120cm) 
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Figure 3.15. Electromagnetic Field Representation Of A Gaussian Beam Without 

Propagation 

  

 
Figure 3.16. Electromagnetic Field Representation Of A Gaussian Beam After 

Propagation (60cm) 
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Figure 3.17. Electromagnetic Field Representation Of A Gaussian Beam After 

Propagation (120cm) 
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CHAPTER 4 

 

REFLECTION FROM MULTILAYER DIELECTRIC 

SLABS USING MATRIX REPRESENTATION 

 
 In the previous chapters, the reflection of a Gaussian shape laser beam from a 

dielectric slab is discussed entirely. Within analysis, the beam faces off with various 

effects that can be expressed mathematically. In this chapter we will investigate these 

reflection and propagation effects numerically by using diagrams, define minimum 

reflection from multilayer dielectric films which is the aim of our proposal using 

paraxial approximation [25-28]. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.1. Schematic Representation Of Multilayer Reflection 

 

In order to reduce the reflection and diverge it to undetectable regions, we need 

to investigate the reflection coefficient using graphical analysis and need to compute the 
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minimum reflection parts. Now that the reflection of a Gaussian shape laser beam is 

computable and the differences in variables makes it understandable, redefining the 

reflection coefficient would help us to prove our suggestion. 

 

4.1. Derivation of Reflectivity for Multilayer Dielectric Slabs 
 

 We got the reflection of a Gaussian beam and how it treats by using equation 

(3.70) as far as we found out in the previous chapter. We have to redefine this 

expression for multilayer structure.  

 From this equation the components represent propagation and reflection of a 

Gaussian beam are described. As one can guess multilayer structures will not affect the 

propagation factor [29-31]. We need to redefine the reflection coefficient. 

 For multilayer structure, the representation of matrix changes as described in 

section 2.3.2. In order to compute the reflection coefficient for two adjacent layers, we 

need to define the matrix as; 

 

 

 

 

 

 

Where   are represented in section 3.2.2 and; 

 

   

 

Both related to equation (3.39). We can define  as the thickness of first,  as 

the index of first and  as the index of second slab which our light faces off. After 

(4.1) 

(4.2) 

(4.3) 
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evaluating  using Snell’s law,  and  can be redefined from equation (3.46) and 

described as; 

 

 

 

 

Where f is defined in equation (3.44) in order to use the Gaussian plane wave 

decomposition. When we expand equation (4.2) we get the reflection matrix for two 

layered dielectric film structure: 

 

    

 

4.1.1. Figures Related to Reflectivity for Two Dielectric Slabs 

 

 Using the  components which are derived in equation (4.5) and 

putting them in equation (2.69) we get the reflection coefficient. When we get the 

square of reflection coefficient, we could easily get the reflectivity equation (2.72) 

which will affect our beam profile profoundly. 

 In order to minimize the reflectivity, the whole graph needs to be defined and the 

minimum points need to be analyzed. Various fields of graphs can give us precise 

solution and it is better for testing whether the definition is correct. 

 

 

 

 

 

 

 

(4.4) 

(4.5) 
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4.1.1.1. Reflectivity upon Wavelength 

 

 
Figure 4.2. Reflection Representation For Various Wavelengths 

 

 It is shown in the figure that reflection is dependent upon the thickness and 

indices of the slabs, incident angle and divergence angle of Gaussian beam and the 

wavelength. We can notice that reflectivity does not usually get above 0.15; and more, 

in some wavelengths, depending on other numerous inputs, becomes close zero which is 

the case we are looking for. 

 

4.1.1.2. Reflectivity upon Thicknesses of the First Slab 
 

 
Figure 4.3. Change Of Reflectivity For Various Thicknesses Of First Slab 
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 In this graph we hold each variable stable and make differences only on the first 

thickness of the slab. As we can observe from the graph, when we hold each variable 

stable, and make difference only using the thickness of the first, we could notice that 

reflectivity changes periodically and in this periodicity reflectivity either increases or 

decreases. According to this periodical structure thickness affects reflectivity limitedly 

and we can decrease reflectivity using the thickness of the slab. 

 

4.1.1.3. Reflectivity upon the Index of the First Slab 

 

 
Figure 4.4. Change Of Reflectivity For Various Indices Of First Slab 

 

 Here it can be noticed that as index increases reflection increases and it is better 

for us not to choose greater indices and we can see that reflectivity becomes zero or 

becomes closer to zero. Because these kind of dielectric film structures indices are 

usually between 1 and 2, the index has to be chosen between these values. We need to 

analyze the places where reflectivity is zero and choose closer variables to these points. 

 Although it can be seen that when index is chosen in the vicinity of 1.35, 

reflectivity is close to zero, it is true only for given parameters. But it can be understood 

that we need to choose small index of first slab. 
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4.1.1.4 Reflectivity upon the Index of the Second Slab 

 

 
Figure 4.5. Change Of Reflectivity For Various Indices Of Second Slab 

 

 In case of any increase in wavelength causes an increase in reflectivity. 

Although in some cases reflectivity becomes close to zero, there we can see that this 

depends on too many variables. But it is clear that we can decrease the reflectivity. It 

would be good to choose the indices close to 1.  
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4.1.2. Figures for Two Dielectric Slabs Within Two Variables 

 

4.1.2.1. Reflectivity upon the Change on Indices of Both Two Media 

 

 
Figure 4.6. Reflection Value For Various Indices Of Both Medias 

 

 In these graphs x axis represents the index of first slab, and y axis represents the 

index of the second slab, and z axis represents the reflectivity. Although it seems that 

indexes changes from 10 to 30, in fact this corresponds to 1-3 in my formula. There are 

two graphs one of which is drawn in 3-D and the other is the counter plotted of the 

other. The change in indices causes reflectivity to change. As can be understood from 
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the graph, it would be better for us not to choose the indices more than 2 although in 

some regions there is a decrease in reflectivity.  

 

4.1.2.2. Reflectivity upon the Change on Thicknesses of Medias 

 

 
 

 
Figure 4.7. Change Of Reflectivity For Various Thicknesses Of Both Medias 
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4.1.2.3. Reflectivity upon the Change on Incident Angle and the Index 
of the First Slab 

 

 

 
Figure 4.8. Change Of Reflectivity According To The Incident Angle And The Index Of 

The First Slab 
 

 

 In this figure, x axis represents the incident angle and y axis represents the index 

of the first slab. Although it seems to be changing from 100-300, in fact it changes from 
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1-3. Here we can see that as index increases reflection increases and incident angle 

affects reflection slightly.  

 

4.2. Calculating the Minimum Reflectivity 

 
 As we have observed from the figures, we can minimize the reflectivity. We 

need to analyze and decide what changes can be made. Reflectivity depends on the 

matrix representation of the two adjacent slabs which is discussed in equation (4.5).  

In order to minimize the reflectivity we need to analyze the equation (4.5). 

Taking; 

 

 and  

 

And equation (4.3) becomes as; 

 

 and  

 

Assuming incident angle is 0º and a plane wave with  angle . 

So equation (4.7) becomes as  

 

 

 

And equation (4.5) becomes as ; 

 

 

 

Thus we can write reflection coefficient from (2.69) as; 

  ,where; 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 
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,   

,   

,   

,   

 

 Assuming 2 dielectric adjacent film layers in the air , reflection 

coefficient becomes zero. What we don’t have to forget is that this is the case which 

incident angle is exactly zero for a plane wave. Incident angle is close to zero and we 

need to assume a Gaussian beam. But our case is close to this. Our Gaussian beam does 

not diverge and incident angle can not be more than a few angles.  

 

4.2.1. Figures Related to Minimum Reflectivity for Two Dielectric 
Slabs 

  
 Finding out the minimum reflection positions, we need to find the minimum 

parts by using figures.  is used for calculated thickness instead of  in all 

figures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

(4.11) 

60 



  

4.2.1.1. Reflectivity upon Wavelength 

 

 
Figure 4.9. Change Of Minimum Reflectivity According To Change On Wavelength 

 

 Although in section 4.1.1.1 reflectivity does not becomes more than 0.15, here 

we can see that reflectivity is not more than . 

 
Figure 4.10. Calculated Change Of Minimum Reflectivity And Normal Reflectivity 

According To The Change On Wavelength In Log Scale. 
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 In this figure is calculated with normal thickness and  is calculated 

with minimum thickness. Y-axis is presented as log scale in order to make observable 

the differences of between R’s. It can be easily calculated that  

where as . The decrement is more than we expected. But while 

analyzing the figure we don’t have to forget that as wavelength changes, the minimum 

thickness depending on the R changes. In order to minimize the reflectivity we have to 

know in which frequency the device works. 

 

4.2.1.2. Reflectivity upon Incident Angle 

 

 
Figure 4.11. Calculated Change Of Minimum Reflectivity Upon Change On Incident 

Angle 
 

While defining minimum reflection, we assumed the Gaussian beam comes to an 

angle close to zero. Thus as incident angle increases, reflectivity also increases. Our 

case validates itself in small incident angles.  
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Figure 4.12. Calculated Change Of Minimum Reflectivity And Normal Reflectivity 

According To The Change On Incident Angle In Log Scale 
 

 Also it can be easily seen that when the incident angle is zero our reflectivity 

decreases with 300 db. In this case reflectivity without defining minimum thickness is 

0.1 by choosing thickness as . It is absolute that as incident angle increases 

reflectivity increases. In a few angles it increases sharply. The most important 

observable part is that when incident angle is zero, our gain is more than 300db and no 

matter how much incident angle increases calculated minimum reflectivity is below the 

normal calculated reflectivity. 
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4.2.1.3. Reflectivity upon the Index of the First Slab 

 

 

Figure 4.13. Calculated Change Of Minimum Reflectivity Upon Change On The Index 
Of The First Media 

 

 
Figure 4.14. Calculated Change Of Minimum Reflectivity And Normal Reflectivity 

According To The Change On The Index Of The First Media In Log Scale 
 

 As it can be analyzed that because the minimum thickness depends on the index 

of the first slab and as slab index changes, thickness changes. Thus reflectivity is in 

decrease of 300 db like we expected. 
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4.2.1.4. Reflectivity upon the Index of the Second Slab 

 

 
Figure 4.15. Calculated Change Of Minimum Reflectivity According To The Change 

On The Index Of The Second Media  
 

 

 
Figure 4.16. Calculated Change Of Minimum Reflectivity And Normal Reflectivity 

According To The Change On The Index Of The Second Media In Log 
Scale. 
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4.2.2. Figures Related to Minimum Reflectivity for Two Dielectric 
Slabs Depending on the Change in the Value of Two Variables 

 
 Section 4.1.2. can help us to see the whole situation but we need to be sure 

whether our solutions are true and applicable. Because of this we need to see three 

dimensions and analyze each of them related to each other. But until this point we 

noticed that after defining the thicknesses by calculation and reaching an exact point of 

minimum reflection reflectivity decreased by a factor of nearly 300db. This is an 

amazing result but when incident angle is 15º, the gain in reflectivity becomes 20 db. 

 

4.2.2.1. Reflectivity upon the Change on Indices of Both Two Media 

 

 
 

 

Figure 4.17. Calculated Change Of Minimum Reflectivity According To The Change 
On The Indices Of Both Medias 
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Figure 4.18. Calculated Change Of Minimum Reflectivity According To The Change 

On The Indices Of Both Medias In Contour Plot 
 

 Expected results can be seen from the graph while index of the first slab changes 

from 1 to 2.9 and second changes from 1 to 33 

 

4.2.2.2. Reflectivity upon the Change on the Index of the First Media     
and Gaussian Beam 

 
Figure 4.19. Calculated Minimum Reflectivity For A Gaussian Beam And Various 

Indices Of First Media 
 

                                                
3 Scales are chosen for beter results from 0 to 29 and 0 to 30. They represent 0 to 2.9 and 0 to 3.  
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Figure 4.20. Minimum Reflectivity Representation In Contour Plot 

 

 Here, x-axis represents the index of the first media. For calculational 

disadvantages it is designed from 1 to 3 though it seems 0-30. And y-axis represents the 

divergence of Gaussian beam. For its obedience of being matrix, it is drawn with these 

parameters. 20 corresponds to  . Thus, our represented Gaussian 

beam propagates with diverging from 0 º to 11,459º. This is also an extreme situation 

because our beam does not diverge more than a few degrees. So our reflectivity is 

nearly zero within defined values.  
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4.2.2.3. Reflectivity upon the Change of the Incident Angle and 
Gaussian Beam 

 

 
Figure 4.21. Minimum Reflectivity Representation Of A Gaussan Beam For Various 

Incident Angles 
 

 
Figure 4.22. Minimum Reflectivity Representation In Contour Plot 

 

Assuming a Gaussian beam not diverging more than 11.459º and an incident 

angle not more than 15º, the graph tells us every detail. We have to have a laser beam 
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which needs to diverge more than it is and an incident angle more than espionage can 

use. 
 

4.2.2.4. Reflectivity upon the Change of the Incident Angle and Index 
of the First Slab 

  
Figure 4.23. Minimum Reflectivity Representation For Various Incident Angle And 

Various Indices 
 

 
Figure 4.24. Minimum Reflectivity Representation In Contour Plot 
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4.2.2.5. Reflectivity upon the Change of the Wavelength and Index of 
the First Slab 

 
Figure 4.25. Minimum Reflectivity Representation For Various Wavelengths And 

Various Indices 
 

 
Figure 4.26. Minimum Reflectivity Representation In Contour Plot 
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 In this graph x-axis represents the index of the first slab changing from 1 to 3 

and y-axis represents the wavelength changing from 800nm to 1500nm (usually our 

case). 

After analyzing the graphs we can say that reflectivity depends upon 

wavelength, indices of the media, incident angle, divergence angle of the Gaussian 

beam and the thicknesses of the slabs. If we focus on the minimum reflectivity case, we 

can easily notice that after minimizing reflectivity the most important factor for non-

reflectance is the incident angle and divergence angle of the Gaussian beam. They need 

to be narrow angles and it seems that it is our natural case.  

The next optimization parameter is a stable wavelength. We always assumed to 

know the wavelength of the laser because these kinds of weapons technical 

characteristics same. After knowing the wavelength not exactly but nearly, we can 

minimize the reflectivity in order not be detected by these kind of unauthorized 

weapons. 
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CHAPTER 5 

 

RESULTS 

 
The mathematical model developed in previous sections is applied for the 

problem of reflection of the Gaussian beam from two slabs configuration. The purpose 

of our project is to minimize light reflection from this two layer structure, therefore; the 

thickness of the slabs adjusted such that at the normal incident the reflectivity will be 

zero at the same time minimum for the oblique incidents. In the case of Gaussian beam, 

which decomposed into plane waves, consist of all sorts of plane waves at the same 

time and location.  

It is not possible to make the Gaussian beam not reflected for all case because 

representing laser beam as plane wave decomposition, it comes to the target with  

angles. Because plane waves come to the surface with  angle, it is applicable to make 

non-reflectance by adjusting the thickness. Because reflection depends on the incident 

angles and Gaussian beam is composed of plane waves in different incident angles, non-

reflection is not possible. 

At the beginning of our project a 20 dB decrease is desired by reflection in order 

to diminish the reflected beam power. Using minimum reflectivity for multilayer 

structures it is believed to be done.  

Although R represents the reflectivity which has its meaning in and when R is 

minimized the beam power is expected to be minimized, we need to look the whole 

table whether decreasing it decreases our laser beam shape or not.  The Gaussian beam 

shape is defined in equation 3.70. All calculations and graphs above are made referring 

to this equation.  

Calculating the beam profile after reflection, it can be analyzed that when the 

amplitude of the Gaussian beam is 1, the reflected Gaussian beam amplitude must be; 
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In order to optimize the amplitude of the Gaussian beam profile, a normalization 

factor A is used. In Figure 5.1. the amplitude of the Gaussian beam is 0.2 as 

emphasized. It is graphed to compare with the Gaussian beam shape from only a surface 

of a dielectric film.  

The parameter R parameter is changed for only one surface with the matrix 

 because with one surface reflection, our reflection coefficient 

is redefined from Fresnel Formulas.  In Figure 5.1. the reflected Gaussian beam doesn’t 

change in response to the reflection from one surface because no reflection from the 

backwards of the film is taken into account.  

 

 
Figure 5.1. Minimum Reflected Gaussian Beam From Only One Surface Of A 

Dielectric Surface ( ) 
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Figure 5.2. Minimum Reflected Gaussian Beam From Single Film ( ) 

 

  
Figure 5.3. Comparison Of Both Reflected Gaussian Beams ( ) 

 

 These graphs show that when the thickness of one dielectric film is adjusted and 

the laser beam is reflected from it, it gives us a total power reduction of 51.312 dB and a 

peak power gain of 54.734 dB when normal reflected Gaussian laser beam from only 

one surface is compared with it. 
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 It can be noticed from figure 5.2 that when thickness is adjusted for minimum 

reflection, the center point goes nearly to zero. When incident angle is zero and when 

plane wave decomposition is made for the frontier light wave of this Gaussian beam, the 

frontier of the Gaussian beam is expected to be close to zero as graphed because from 

equation 3.70 a Gaussian beam is the representation of laser beam in plane wave 

components. And because the midpoint of the Gaussian beam having a zero incident 

angle is the integration of all the plane wave components of Gaussian laser beam, the 

TE components of the Gaussian beam’s divergence waves hinder the midpoint being 

zero.  

 
Figure 5.4. Minimum Reflected Gaussian Beam From Double Slabs ( ) 
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Figure 5.5. Comparison Of Both Reflected Gaussian Beams ( ) 

 It can be noticed that when we adjust both two dielectric slabs for their indices 

and wavelengths we can easily reduce the reflected Gaussian beam total power as 53.1 

dB and peak power as 56.478 dB. 

 

 

 
Figure 5.6. Minimum Reflected Gaussian Beam From Only One Surface Of A 

Dielectric Surface ( ) 
 

 What is expected when laser beam is reflected from only surface of a dielectric 

slab is of course shift a little (if we look closer, it can be seen) which is described in 

Chapter 3 and preserve its power except for a little change.  
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Figure 5.7. Minimum Reflected Gaussian Beam From One Slab( ) 

 

 It is noticed that when we increase the incident angle for 10 degrees minimum 

reflection which is counted when incident angle is zero increases. But there is still a 

decrement as expected. Also it can be seen that reflected Gaussian beam is exposed to 

lateral shift and focal shift after reflection.  

 

 
Figure 5.8. Comparison Of Both Reflected Gaussian Beams ( ) 
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 From figure 5.8 it is clearly seen when incident angle is 10 degree, one of the 

plane wave decomposed components is in the temp of being zero. It is the case when we 

decomposed Gaussian beam for plane wave components, the interaction of plane wave 

which comes to the surface with -10 degree. 

 When we analyze figure 5.6, 5.7 and 5.8 using a Gaussian beam comes to one 

slab with 10 degree, we can notice that although we had set and calculated our 

minimum reflection for zero degree, there is still total power gain of 36.642 dB and 

peak power gain of  35.738 dB . 

 
Figure 5.9. Minimum Reflected Gaussian Beam From Double Slabs ( ) 

 

 
Figure 5.10. Comparison Of Both Reflected Gaussian Beams ( ) 
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CHAPTER 6 

 

CONCLUSION 

 
 These results show that when a Gaussian beam shape laser beam reflects from a 

dielectric slab, its maximum point shifts which is defined as lateral shift in equation 

(3.51) and broadens in transverse plane which is defined as focal shift in equation(3.55). 

Because of reflection Gaussian beam changes its propagation direction by an amount L 

which is represented by Lateral Shift. Also the Gaussian Beam exposes to a Focal shift 

which can be defined as extra broadening after reflection. 

 Although the reflectivity is adjusted for non reflectance, for a Gaussian laser 

beam non reflectance is not possible. Non reflectance of one point in Gaussian laser 

beam after reflection is not possible because Gaussian beam after reflection is the 

combination of the decomposed plane waves which propagate over different directions. 

Although it is minimized for one incident angle, decomposed plane waves comes to the 

surface with different angles. And Gaussian beam is represented by composing all the 

plane waves after reflection. Because all plane waves have TE components in different 

directions, their integration after reflection would never result a non reflectance. But the 

decrement of the power in one point can be seen. For example in Figure 5.2, the 

incident angle is zero and the film thickness is adjusted for minimum reflectance. The 

decrement in zero axis is observable. 

 

Table 1.  Comparison of Power and Advantages of Stratified Film Structures 

 PEAK POWER TOTAL POWER 

 0° 10° 0° 10° 

Normal 

Reflection 
-13.979dB -13.979dB -27.535dB 

-

27.535Db 

Single Slab 

Reflection(Minimum) 
-68.714dB -49.717dB -78.847dB 

-

64.177dB 

Double Slab 

Reflection(Minimum) 
-70.458dB -51.502dB -80.635dB 

-

65.919dB 
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In Table 1., loss of normal reflection which can be thought as reflection from 

only one surface of a slab, loss of minimum reflection which can be thought as 

reflection from one slab that has a thickness, loss of reflection which can be thought as 

minimum reflection from double slabs that have various thicknesses are configured. 

Reflectivity may be minimized either for the total power or peak power, or may be both 

by selecting proper thicknesses for the slabs.  

Using the solutions defined above it can be exactly said that when the window is 

covered with a proper dielectric slab/slabs structure none of the laser listening devices 

can detect the voice of the signals talking inside because of a decrement at least 50 dB. 

Using double or more than two slabs can be a more precise solution in order to 

reduce the reflection but needs more slabs whose thicknesses are adjusted and designed 

properly. And these requirements make the structure cost more. So, two-layer slab 

structure is a conclusive solution in order not to be detected by these kind of devices.  
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APPENDIX A 

 

METHOD OF STATIONARY PHASE 

  
Let’s consider the integrals of the form ; 

 

  as  

 

Which we can call “generalized Fourier Integral”. Riemann-Labergue Lemma 

says that If  is continuously differentiable on  and not constant on any sub-

integral of , then 

 

 

Integration by parts of  given 

 

 

 

 

If         , then   

 

And   

Provided that   does not vanish at the end points. 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

(3.69) 
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