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Abstract
The exact grand-canonical solution of a generalized interacting self-avoid
walk (ISAW) model, placed on a Husimi lattice built with squares, is pre-
sented. In this model, beyond the traditional interaction e k T

1 B1w = between
(nonconsecutive) monomers on nearest-neighbor (NN) sites, an additional
energy 2 is associated to next-NN (NNN) monomers. Three definitions of
NNN sites/interactions are considered, where each monomer can have,
effectively, at most two, four, or six NNN monomers on the Husimi lattice.
The phase diagrams found in all cases have (qualitatively) the same thermo-
dynamic properties: a non-polymerized (NP) and a polymerized (P) phase
separated by a critical and a coexistence surface that meet at a tricritical (θ-)
line. This θ-line is found even when one of the interactions is repulsive,
existing for 1w in the range 0,[ )¥ , i.e., for k TB1 in the range ,[ )-¥ ¥ .
Thus, counterintuitively, a θ-point exists even for an infinite repulsion between
NN monomers ( 01w = ), being associated to a coil–‘soft globule’ transition.
In the limit of an infinite repulsive force between NNN monomers, however,
the coil–globule transition disappears, and only NP–P continuous transition is
observed. This particular case, with 02w = , is also solved exactly on the
square lattice, using a transfer matrix calculation where a discontinuous NP–P
transition is found. For attractive and repulsive forces between NN and NNN
monomers, respectively, the model becomes quite similar to the semiflexible-
ISAW one, whose crystalline phase is not observed here, as a consequence of
the frustration due to competing NN and NNN forces. The mapping of the
phase diagrams in canonical ones is discussed and compared with recent
results from Monte Carlo simulations on the square lattice.
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(Some figures may appear in colour only in the online journal)

1. Introduction

A polymer in solution usually may exist in three different conformations, depending on
temperature T or solvent quality: (i) extended: coil-like chains (high T and/or good solvents);
(ii) collapsed: the chains have globule-like shapes (low T and/or poor solvents); and (iii) θ:
this point marks the (continuous/tricritical (TC) [1, 2]) transition between the coil and globule
phases (occurring at Tq and in a ‘θ-solvent’) [3, 4]. The differences among these phases can be
characterized, for example, through the metric exponent ν—from the scaling of the gyration
radio Rg with the number N of monomers, R Ng ~ n -, being coil globulen n n> >q .

For linear polymers, the coil phase can be modeled by self-avoiding walks (SAWs),
where the excluded volume is the only interaction present (athermal system). Generalizing
this model, by including self-attraction in the chain, the globule phase as well as a coil–
globule transition arise. When the polymer is placed on a lattice, the standard interacting
SAW (ISAW) model consists in assigning an energy ò (yielding an attractive force) between
monomers on nearest-neighbor (NN) sites nonconsecutive in the walk [2, 4, 5]. Coil and
globule phases, separated by a TC (θ)-point, are indeed observed in this model. In two
dimensions, the exponents 3 4coiln = , 4 7n =q , and 1 2globulen = are exactly known
[3, 5, 6]. The more general case of semiflexible polymers has been modeled by introducing a
bending energy b in the ISAW model (see, for instance, references [7–10]). In this semi-
flexible-ISAW (sISAW) model, a stable crystalline (solid-like) phase also exists in the system
(for low T and large b ), in addition to the coil and globule ones.

Lee et al [11, 12] have proposed another interesting generalization of the ISAW model by
associating different energies 1 and 2 with monomers on NN and next-NN (NNN) sites,
respectively. From exact enumeration of walks with up to 38 monomers on the square lattice,
a line of θ-points (a θ-line) separating the coil and globule phases was found. Similar results
were also observed in recent Monte Carlo simulations of this model on the square and cubic
lattices [13]. Interestingly, this last study showed that the θ-line exists even for competing
interactions between monomers ( 01 < and 02 > or 01 > and 02 < ). Actually, a θ-line
and the absence of other phases (beyond the coil and globule ones) is quite expected when
both forces are attractive ( 01 > and 02 > ), but for competing interactions this is not
necessarily the case, due to the frustration arising from such competition, which might change
the critical properties of the system. As a classical example of this, one may cite the Ising
model on the square lattice with competing NN and NNN interactions, where different
ordered phases, transitions, and universality classes are observed. (For a recent survey see
[14].) In polymers, competing (on-site) interactions in the multiple monomer per site (MMS)
model by Krawczyk et al [15] are known to change the coil–globule transition in a certain
region of its phase diagram, but the order of transition still remain unclear [16].

Another interesting feature of the ISAW model when the force between NNN monomers
is repulsive is its semiflexibility, because 02 < acts as a bending energy, though it also
repels NNN monomers that are not part of a bend. Anyway, for large enough 01 > and

02 < , a crystalline phase could be expected in this model. However, at least in the range of
energies analyzed in reference [13], this crystalline phase was not observed.

In order to analyze in more detail whether competing forces between monomers can or
cannot change the coil–globule transition, as well as whether or not it yields an ordered
(crystalline) phase in the ISAW with NNN interactions, here we solve this model on a Husimi
lattice built with squares. Different definitions of NNNs (and interactions between monomers

J. Phys. A: Math. Theor. 49 (2016) 155001 T J Oliveira

2



on them) on this lattice are analyzed, but in all cases the same qualitative results are obtained:
no crystalline phase is found, and the θ-line extends over the whole phase diagram for 1 in
the range ,[ )-¥ ¥ , which includes the regions of competing interactions. Only in the
extreme case of an infinite repulsive force between NNN monomers is a breakdown of the
coil–globule transition observed, which is quite expected, since in this case the chains are
straight.

The rest of this work is organized as follows. In section 2 the model is defined on a
Husimi lattice built with squares and solved in terms of recursion relations. The thermo-
dynamic properties of the model are presented in section 3. In section 4 our final discussions
and conclusion are summarized. The calculations of the free energy and of the θ-lines are
demonstrated in appendices A and B, respectively.

2. Definition of the model and its solution in terms of recursion relations

We investigate interacting self- and mutually avoiding walks on a Husimi lattice—the core of
a Cayley tree [17]—built with squares (see figure 1). The endpoints of the walks are placed on
the surface of the tree. In our grand-canonical solution, the thermodynamic variables of
interest are the monomer fugacity z and the Boltzmann weights k Texp B1 1( )w = and

k Texp B2 2( )w = associated with each pair of nonconsecutive monomers on NN sites and
pairs of monomers on NNN sites on the lattice, respectively. Hereafter, we will refer to them
as NN and NNN monomers. Then, the grand-canonical partition function of the model is
given by

Y z , 1M M M
1 2

NN NNN ( )å w w=

where the sum runs over all configurations of the walks on the tree, and M, MNN, and MNNN

are, respectively, the total number of monomers and the number of NN and NNN monomers.
At this point, one notices that on the Husimi lattice there exists an ambiguity in definition of
NNN sites:

Figure 1. (a) Example of contribution to the partition function of the model on a Husimi
tree with three generations. The polymer chains are represented by full thick (blue)
lines, and the dashed lines give examples of each type of monomer interaction. The
weight of this configuration is z18

1
2

2
8

2
4w w w¢ . (b) Definition of the second neighbor

(circles)—by the chemical distance—of the site i (square).
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(a) The neighborhood of a given site, let us say i, can be defined according to the
chemical distance (associated with the number of steps along the lattice edges to reach a site j
starting at i). So, at first, any site would have ten second neighbors, as shown in figure 1(b).
However, four of these sites (7–10 in figure 1(b)) would correspond to third neighbors on the
square lattice. Since our aim is to compare the Husimi solution with results for the ordinary
lattice, we will consider only six NNN sites: the 1–6 ones in figure 1(b).

(b) Another option is to state that second neighbors are the sites in opposite vertices of an
elementary square (e.g., sites 1-i and 2-i, in figure 1(b)). Then, each site will have two
NNN ones.

Since definition a (b)—hereafter called approach A (C)—overestimates (underestimates)
the number of second neighbors on a square lattice, which is four, both approaches will be
analyzed in the following. It is easy to see in figure 1(b) that the overestimate in case A comes
from the ‘out-square’ sites 3–6, because in the square lattice 3 and 4 (and also 5 and 6) would
be a single site. So, this ‘excess’ of second neighbors can be compensated by assigning only
half of NNN energy ( 22 ) for ‘out-square’ NNN monomers. In this way, the contribution to
the partition function of the possible six NNN monomers is effectively the same as the one of
four (regular) NNN ones (i.e., 2

4w ). This case will be called approach B. In order to consider
all these cases in a general way, we assign a weight 2w to ‘in-square’ NNN monomers and a
weight 2w¢ to ‘out-square’ ones (see figure 1(a)). Thence, the approaches A, B, and C are
recovered by making 2 2w w¢ = , 2 2w w¢ = , and 12w¢ = , respectively.

A subtree with generation M 1+ can be obtained by attaching three subtrees (each one
withM generations) in three vertices of an elementary square. The remaining vertex is usually
called the ‘root site’ and, associated to it, a partial partition function (ppf) gi is defined. Nine
root sites and, consequently, nine ppfs are required to correctly account for the NNN inter-
actions in the homogeneous (isotropic) solution of the model, shown in figure 2(a). The ppf gi

Figure 2. Definition of (a) the root sites for each partial partition function and (b) the
types of possible vertices. Circles indicate the presence of monomers in the vertex and
their bonds are represented by full lines.
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in generation M 1+ is determined, counting all possible configurations produced by
attaching three (M-generation) subtrees in a square with a root site of type i. Instead of doing
this directly, it is convenient to determine first the contribution coming from each type of
vertex of the elementary square (depicted in figure 2(b)), being

v g g g a2 , 20,0 0,0 0,1 0,2 ( )= + +

v g g g b1 , 20,1 0,0 2 0,1 2 0,2( ) ( )w w= + + ¢ + ¢

v g g g c2 , 20,2 0,0 2 0,1 2
2

0,2 ( )w w= + ¢ + ¢

v zg d, 21,0 3 ( )=

v z g e, 21,1 2 3 ( )w= ¢

v z g f, 21,2 2
2

3 ( )w= ¢

v z g g g1 2 , 22,0 2 2,0 2 2,1[( ) ] ( )w w= + ¢ + ¢

v z g g h2 , 22,1 2 2,0 2
2

2,1( ) ( )w w= ¢ + ¢

v z g g g i2 . 23 1,0 2 1,1 2
2

1,2( ) ( )w w= + ¢ + ¢

In terms of these expressions, it is quite simple to determine the recursion relations for
the ppfs of the model, given by

g v v v a, 30,0 0,0
3

0,1
2

1,0 ( )¢ = +

g v v v v v v v b, 30,1 0,0 0,1 1,0 1 0,1 1,1
2

0,1 2,0
2 ( )w¢ = + +

g v v v v v v v v v c2 , 30,2 2 0,2 1,0
2

1
2

1,1
2

1,2 1 1,1 2,0 2,1 2,0
2

3[ ] ( )w w w¢ = + + +

g v v v v d, 31,0 0,0 0,1
2

2 0,2
2

1,0 ( )w¢ = +

g v v v v v v v v e, 31,1 1 0,1
2

1,1 1 2 0,2 1,1 1,2 2 0,2 2,0 2,1[ ] ( )w w w w¢ = + +

g v v v v v v v f2 , 31,2 1
2

2 0,2 1,1
2

1
2

2 1,2
3

1 2 1,2 2,1
2

2 2,1
2

3[ ] ( )w w w w w w w¢ = + + +

g v v v v v v v v g, 32,0 0,1
2

2,0 1 2 0,2 1,1 2,1 2 0,2 2,0 3 ( )w w w¢ = + +

g v v v v v v v v v v v h, 32,1 1 2 0,2 1,1 2,0 1
2

2 1,2
2

2,1 1 2 2,1
3

1,2 2,1 3 2 2,1 3
2[ ( ) ] ( )w w w w w w w¢ = + + + +

g v v v v v v i2 , 33 2 0,2 2,0
2

1
2

2 1,2 2,1
2

1 2 2,1
2

3[ ] ( )w w w w w¢ = + +

where gi and gi
¢ are in generations M and M 1+ , respectively.

In a similar way, the partition function of the model on the Cayley tree can be found by
attaching four subtrees in a central square, which yields

Y v v v v v v v v v v v

v v v v v v v v v v

v v v v v v v v

4 4 2 4

4 8 4

4 2 2 4 . 4

0,0
4

0,0 0,1
2

1,0 1 0,1
2

1,1
2

2 0,2
2

1,0
2

1
2

2 0,2 1,1
2

1,2

1
4

2
2

1,2
4

0,1
2

2,0
2

1 2 0,2 1,1 2,0 2,1 2 0,2 2,0
2

3

1
3

2
2

1,2
2

2,1
2

1
2

2
2

2,1
4

1,2 2,1
2

3 1 2
2

2,1
2

3
2( ) ( )

w w w w

w w w w w

w w w w w w

= + + + +

+ + + +

+ + + +
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Then, the densities of monomers (ρ) and of NN ( NNr ) and NNN ( NNNr ) monomers are

z

Y

Y

z Y

Y

SY

Y

4
,

4
and , 5NN NNN

1

1

2

2
( )r r

w
w

r
w

w
=

¶
¶

=
¶
¶

=
¶
¶

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

where S=10, 6, and 2 are used in approaches A, B, and C, respectively, to make the
maximum value of NNNr equal 1 in all cases.

In the thermodynamic limit, when the number of generations of the tree and, conse-
quently, the length of the polymers reaching the core of the tree tend to infinity, the ppfs
diverge, so we will work with ratios of them, defined as R g g1 0,1 0,0= , R g g2 0,2 0,0= ,
R g g3 1,0 0,0= , R g g4 1,1 0,0= , R g g5 1,2 0,0= , R g g6 2,0 0,0= , R g g7 2,1 0,0= , and R g g8 3 0,0= .
This leads to the recursion relations (RRs):

R zABR z BR z BD R a, 61 8
2

1 2
2

8
2 2 2

0( ) ( )w w¢ = + +a

R z CR z R z DER z D F R b4 , 62 2
2

8
2 3

1
2

2
4

8
3 3

1 2 8
3 2

0( ) ( )w w w w w¢ = + + +a a

R AB z C R R ,3
2

2
2

8 0( )w¢ = +

R z B R z CR z CDE R c2 , 64 1 2
2

8
2

1 2
3 1

8
2 2

2 0( ) ( )w w w w w¢ = + +a a+

R z CR z R z E R z E F R d8 4 , 65 1
2

2
2

2
2

8
2 3

1
2

2
6 1

8
3 3

1 2
2 1 2

8
3

2
2

0( ) ( )w w w w w w w w¢ = + + +a a a+ +

R zB D z CER z CDF R e2 , 66
2 2

1 2
1

8
2

2 0( ) ( )w w w¢ = + +a+

R z CDR z ER z E z EFR

z EF R f

2 8 2

2 , 6
7 1 2

2
2 8

3
1
2

2
4 1

8
2

1 2
3 3 3

2
2

8

3
2

2
0

[ ( )
] ( )

w w w w w w w w
w

¢ = + + +
+

a a a+

R z CD z E R z E F R g4 8 , 68 2
2 2 3

1
2

2
2 1 2

8
3

1 2
2

0( ) ( )w w w w w¢ = + +a+

with

R R R z R R R h1 2 1 1 , 60 1 2
3

2 1 2 2
2

8( ) [ ( ) ] ( )w w= + + + + + +a a

A R R i1 2 , 61 2 ( )= + +

B R R j1 1 , 62 1 2 2( ) ( )w w= + + +a a

C R R k1 2 , 62 1 2
2

2 ( )w w= + +a a

D R R l1 2 , 62 6 2 7( ) ( )w w= + +a a

E R R m, 62 6 2
2

7 ( )w w= +a a

F R R R n2 , 63 2 4 2
2

5 ( )w w= + +a a

where 1a = , 1/2, and 0 in cases A, B, and C, respectively. In the case C ( 12w¢ = ), it is easy
to see that v v v g g g20,0 0,1 0,2 0,0 0,1 0,2( )= = = + + , v v v zg1,0 1,1 1,2 3= = = ,
v v z g g22,0 2,1 2,0 2,1( )= = + , and v z g g g23 1,0 1,1 1,2( )= + + , and thus only the combinations
g g g g20 0,0 0,1 0,2( )º + + , g g g g21 1,0 1,1 1,2( )º + + , and g g g2 2,0 2,1( )º + appear in the
RRs. Thus, one may work with simplified ratios of ppfs, defined as R g g1 1 0= , R g g2 2 0= ,
and R g g3 3 0= , yielding

R z R z R z R z R

z R R z R R R a

1 2 3 8

8 4 , 7
1 1 2 3

2
1
2

2 3
2 3

1
4

2
2

3
3 2

1 2 2
2

3
1
3

2
2

2
2

3
3

1
2

2
2

1 2
2

0

[ ( )
] ( )

w w w w w w w w

w w w w

¢ = + + + + +

+ +
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R zR z R z R z R z R

z R R z R R b

2 1 2 4

, 7
2 2 1 2 3

2
1
3

2
2

3
2 2

1
2

2
2

2
2

2 1

2
1
2

2
2

1 3
2

1 2
2

1
2

0

(
) ( )

w w w w w w w

w w w w

¢ = + + + +

+ +

R z R z R z R R c4 1 2 , 73
2

2
2

2 1
2

2 3 1 2 1 0( ) ( )w w w w w¢ = + +

with

R zR z R z R z R

z R R z R R d

1 3 2 8

8 4 . 7

0 3
2

1 2 3
2 3

1
2

2 3
3 2

2
2

3
1 2 2

2
3

3
2 1 2

2

( )
( )

w w w w

w w w

= + + + + +

+ +

It is worth noting that the partition functions (equation (4)) for approach X, with X= A,
B, or C, can be written as Y g yX X0,0

4= , where yX is finite (since is depends only on the ratios

Ri, beyond z, 1w , and 2w ), while YX diverges as g0,0
4 in the thermodynamic limit. Notwith-

standing, the densities (equation (5)) remain finite, because they are in fact functions of yX
instead of YX.

3. Thermodynamic properties of model

The thermodynamic phases of the model on the Husimi lattice are given by the real and
positive fixed points of RRs (equations (6)). Similarly to the classical ISAW model ( 12w = ),
the grand-canonical phase diagram for general 2w presents only two phases: (i) a non-
polymerized (NP) phase, where R 13 = and Ri=0 otherwise; and (ii) a polymerized (P)
phase, with R 0i ¹ for i 1, ,8= ¼ . In the former, the density of the monomers vanishes
( 0r = ), and, consequently, 0NN NNNr r= = . On the other hand, in the P phase these den-
sities are, in general, non-null and depend on the parameters z, 1w , and 2w . Obviously,
working with the reduced set of RRs (equations (7)) in approach C, one finds a similar
behavior, with R 11 = , R R 02 3= = in the NP phase and R 0i ¹ in the P one.

Each phase is stable in the region of the parameter space (z, ,1 2w w ), where the largest

eigenvalue λ of its Jacobian matrix Ji j
R

R,
i

j( )= ¶ ¢

¶
is smaller than 1. The condition 1l = gives

the thermodynamic stability limit (the spinodal) of the respective phase, which is easy to
calculate in the NP phase, being

z

z z z z

z z z z

1

2

1

1
, 81 3

2
2 1

2
2

2
2

2
1

2
2

2
2

2
1

( )( )w
w

w w w
w w w

=
- + + + +
- - + - +a

a a

a a+

+

+

⎛
⎝⎜

⎞
⎠⎟

recalling that 1a = , 1/2, and 0 in approaches A, B, and C, respectively. For the P phase, the
stability limit is determined numerically. In a certain region of the phase diagram, the NP and
P spinodals are coincident, forming a critical surface.

There exists also a coexistence region in the phase diagram—where the spinodals do not
match, and both phases are stable—with a coexistence surface separating the NP and P phases
there. A simple way to determine this surface is through the free energy of the model, which
can be calculated using Gujrati’s prescription [18]. The derivation of this free energy for the
Husimi lattice built with squares is presented in appendix A, leading to

R y
1

2
2 ln ln 9b X X0,( ) ( )f = - -

with X = A, B, or C, and R X0, and yX defined as above and calculated at the fixed point. In the
NP phase, R y 1X X0, = = , so that 0b

NPf = , and then the coexistence surface—where the free
energies of both phases are equal—is given by 0b

P
b
NPf f= = .
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These critical and coexistence surfaces meet (tangentially) at a TC line, which was
calculated exactly by locating the points along the spinodal of the NP phase, where the
solution of the RRs is triply degenerate. This is demonstrated in detail in appendix B.

Let us first discuss the thermodynamic behavior for approach A. Figure 3(a) shows phase
diagrams for several values of (fixed) 2w in the range 0.4, 2.2[ ]. For any 1.921 76922w < , the
same properties of the classical ISAW model ( 12w = ) are found: there is a continuous NP–P
transition at small 1w that becomes discontinuous at a TC (θ) point. The location of the θ

point, however, strongly depends on 2w , forming a continuous θ-line.
In general, a decrease in the coordinates (z , 1wq q) of the TC point is observed as 2w

increases. In fact, for attractive forces between the NN and NNN monomers, this is quite
expected, since k T 0B2 >/ will facilitate the collapse and, thus, k TB1 / becomes smaller.
When 1.155 39562w = , the NN energy is null at the θ point; i.e., 11w =q (and
z 0.308 5453=q ), so that the collapse transition happens due solely to the NNN interaction.
For larger 2w , the θ-line still exists, but for 11w <q , meaning that the NN monomers repel each
other. The value of 1w

q decreases for increasing 2w until it reaches the 0 at 1.921 76922w = .
Therefore, even for an infinite repulsive force between NN monomers, a coil–globule
transition exists for a finite (attractive) interaction between the NNN ones. This will be
discussed in more detail in the following. For 1.921 76922w > , only a NP–P coexistence
surface is found.

The θ-line extends also to the region of repulsive NNN interactions ( 12w < ), where,
again, increasing zq and 1w

q are observed as 2w decreases. When 2w approaches the 0, one
finds 1w  ¥q and z 1q . This is quite reasonable, since 12w  will prevent the formation
of bends in the walks and, consequently, of a globular phase. Notwithstanding, if 11w  , the
attractive NN force can overcome the NNN repulsion, yielding this phase.

Phase diagrams for approach C are presented in figure 3(b), where the same qualitative
behavior of A is observed with a θ-line existing, since 01w = until 1w  ¥. Analogous
phase diagrams are also found for the intermediate approach B (not shown). These similarities
are more evident in the comparison of the θ-lines for all approaches, which is presented in

Figure 3. Phase diagrams in the variables 1w versus z for approaches (a) A and (b) C. In
(a) diagrams for 2w varying by 0.2 in the range 0.4, 2.2[ ] are shown, while in b) they
are for 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 8.02w = , and 16.0. The full (red) and dashed
(blue) lines are the critical and coexistence lines, respectively. The black dots indicate
the θ points, and the θ line is given by the dotted (black) line.
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figure 4. In case A (B), the θ-line starts at z 0.235 592=q (0.208 304)—where 01w =q and
1.921 7692w =q (3.345 581)—and ends at z 1q , where 1w  ¥q and 02w q . On the other

hand, in case C a quite different z-range is found for the θ-line, which starts at
z 0.164 47819=q —where 01w =q and 12.402 35262w =q —and ends at z 1 2q , where

1w  ¥q and 02w q . Notice that C B A2 2 2( ) ( ) ( )w w w> >q q q for attractive NNN interactions,
and C B A2 2 2( ) ( ) ( )w w w< <q q q for repulsive ones is quite expected, since the effective number
of possible NNN monomers decreases from A to C.

We notice that in approach C a repulsive (attractive) NNN interaction introduces an
energetic penalty (advantage) whenever the polymer is bending within an elementary square
but doing not when it bends in the opposite direction. This unrealistic feature of the Husimi
lattice in case C certainly explains why z 1q (in cases A and B) and z 1 2q (in C), when

02w q (with 1w  ¥q ).
It is important to remark that when NNN monomers repel each other, the polymer is

semiflexible, and thus a crystalline phase could be expected in the phase diagrams for large
enough 1w . However, we have exhaustively looked for any new stable phase in this region
and did not find any. One recalls that the crystalline phase is dense ( 1r » )—it is a quasi-
Hamiltonian walk—featured by straight parallel chains, maximizing the number of NN
monomers and minimizing the bending. Therefore, to correctly analyze this phase—with
chains aligned in one direction of the lattice—at first, more general RR’s are required,
defining the root sites (and ppfs) to account for the directional anisotropy (as done for the
sISAW in [9], for example). In the homogeneous solution we are considering (equations (6)),
both directions are assumed to be equivalent, and thus the symmetry-breaking of the phase
cannot arise. In any case, however, a dense phase should appear as a diverging fixed point of
the RRs, because they were defined as R g gi i 0,0= , and configurations of type g0,0 (see
figure 2) do not exist in a fully occupied lattice, so that g 00,0  , and, consequently, Ri  ¥.
Thus, although we are analyzing only the homogeneous solution, the absence of a divergence
in the RRs strongly suggests that no stable crystalline phase exists in the model on the Husimi
lattice. In fact, in contrast to the bending energy in the sISAW, in our model the repulsive
NNN force acts also between monomers that are not part of a bending (see figure 1(a)) and, in
a phase formed by aligned chains, the NNN repulsion would be maximized, together with the

Figure 4. Values of (a) 1w
q and (b) 2w

q against zq, for all approaches. The horizontal
(dotted, black) line separates the regions where interactions are attractive and repulsive.
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NN attraction. This frustration in the system is certainly responsible for the absence of the
ordered (crystalline) phase.

3.1. Infinite repulsion between NN monomers (ω1 ¼ 0)

Now, we consider the case where NN monomers are forbidden ( 01w = ). As noted above,
phase diagrams similar to the ones for a finite NN interaction are found also in this limit.
Indeed, from equation (8), the NP spinodal can be written as

z
1 1 2 4 4

2
. 102 2 2

2
2 2

1

2 2
1( )

( )
w w w w w

w w
=

- - + + + + +

+

a a a a

a

+

+

For 2 2w w< q, this expression defines also the critical line. Once more, 1a = (in case A),
1 2a = (in B), and 0a = (in C). From the analysis in appendix B, the values of 2w

q are
given by the real positive root of the polynomial

b
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with b 1 2 4 42 2
2

2 2
1w w w w= + + + +a a a+ . Actually, in each approach there are two such

roots, but one of them leads to inconsistent values of z, being 1.921 76932w =q (A),
3.345 58162w =q (B), and 12.402 35262w =q (C), the physical ones. Inserting these values in

equation (10), one readily finds z 0.235 5927=q (A), z 0.208 3038=q (B), and
z 0.164 4782=q (C). In the region z z< q (where 2 2w w> q), both phases coexist. One
example of this phase behavior is presented in figure 5 for case A, and analogous ones are
obtained in other approaches (not shown).

Although a coil–globule transition is present in this case, the globule phase is different
from the one for 01w > , since 01w = forbids NN monomers in the system (i.e., 0NNr = ).
For instance, from the expressions for the densities of monomers ρ and NNN monomers NNNr
(not shown explicitly here), it is possible to demonstrate that 1r  and 1NNNr  , in the
limit z  ¥ and 2w  ¥, for any approach when 01w > . On the other hand, for 01w = ,
diverging z and 2w lead to 3 4r  and 7 10NNNr  (in case A), 3 4r  and

2 3NNNr  (in B), and 3 4r  and 1 2NNNr  (in C), which corresponds to ‘soft’ P
phases (and respective ‘soft globules’), since the maximal occupation of the lattice is smaller
than 1. In a canonical situation (with polymers with fixed size), this ‘soft’ phase (for 01w = )
shall occupy a volume larger than the ‘regular’ globule phase (for 01w > ).

We claim that this ‘soft’ globule phase is not a feature of the Husimi lattice, but it might
exist also in the square (and other regular) lattices. In fact, although NN monomers are
forbidden, the attractive force between NNN monomers that are not part of a bending can act
to collapse the chains, in a similar way as the NN one in the ordinary ISAW model.
Moreover, the NNN interaction enhances the formation of bends and, consequently, the
formation of globules. Anyhow, more studies are necessary to confirm this.

3.2. Infinite repulsion between NNN monomers (ω2 ¼ 0)

Now, we turn to the analysis of the case of forbidden NNN monomers. By making 02w = in
the RR’s (equations (6)), it is possible to find their solution exactly for the P phase, being
R R R R R 02 4 5 7 8= = = = = , and R a z z a z24 24 24 1 21

2( )= + + + - , with
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a z z z z z36 216 24 3 812 3 3 2 1 3( )º + + + + , R R z1 23 1( )= + , and
R R R z16 1 1( )= + , in approaches A and B. In case C, one finds R z 1 21 = - , R 13 = ,
R z4 2 26 = - , and Ri=0 otherwise. It is noteworthy that these fixed points are inde-
pendent of 1w , demonstrating that the thermodynamic properties of the model do not depend
on this parameter, as expected.

In approaches A and B, the only non-null eigenvalue of the Jacobian matrix in the NP
phase is zl = , so this phase is stable for z 1 , and its spinodal is at z=1. The fixed point
above for the P phase is physical (and stable) for z 1 , and its stability limit is at z=1.
Therefore, the phase diagrams in both approaches present only a critical line at z=1,
separating the NP and P phases, which is consistent with a θ-point located at z 1=q and

1w  ¥q , as already discussed. In case C, one finds the same scenario, but the critical line is
at z 1 2= .

Notice that 02w = leads to 0NNNr = , so that all polymer chains are straight in cases A
and B. As already noticed, in case C, the chains are not necessarily straight, since they can
bend out the elementary squares and still have 0NNNr = . In all cases, 0NNr = is also found,
as expected, since the infinite repulsion between NNN monomers also forbids NN ones. The
density of monomers ρ, in the P phase, is a monotonic increasing function of z, being

z z2 1 4 1( ) ( )r = - - , for z 1 2 , in approach C. In the other approaches the expressions
are too long to be given here, but one also finds 0r = at z=1 and 1 2r  for z  ¥. On
the square lattice this shall correspond to a ‘soft crystalline’ phase, where half of the rows (or
columns) of the lattice are alternately occupied by straight (parallel) chains. Indeed, placing
such aligned (repulsive) polymer chains on a square lattice is analogous to the athermal
problem of placing infinite rigid rods with (infinite) NNN exclusion. We remark that athermal
lattice gases with exclusion of neighbors have been considered in the literature for several
ranges of exclusion (or particle sizes) [19, 20], as well as mixtures of them [21]. Furthermore,
isotropic–nematic transitions in rigid rods are a problem largely studied. (see, e.g, [22, 24] for
recent surveys.) However, for the best of our knowledge, rigid rods with neighbor exclusion
have been considered only in the case of dimers with NN exclusion [23].

Anyhow, the case of infinite rods with NNN exclusion can be solved on the square
lattice, for example, following the recent transfer matrix (TM) calculation by Stilck and
Rajesh [24]. Considering the limit of infinite rods, without neighbor exclusion, on a roted
square lattice yielding a diagonal TM, those authors showed that the (degenerated) spectrum

Figure 5. Phase diagram for approach A and 01w = . The full (red) and dashed (blue)
lines are the critical and coexistence lines, respectively. The black dot indicate the TC
point.
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of eigenvalues of the TM is given by zk
mL = , with m L0, 1, ,= ¼ or 0kL = [24]. This

result is for an infinite stripe (in the vertical) with width L and periodic boundary conditions in
the horizontal. (For more details see [24].) One notices that all rods are parallel in this limiting
case and that an eigenvalue of type zm is associated to a state of the system with m parallel
rods in the horizontal direction. So, it is easy to particularize these results for the case with
infinite NNN repulsion by imposing that two rods cannot occupy adjacent columns (or rows)
of the lattice, which simply reduce the number of states of the TM. Consequently, the
spectrum of eigenvalues is also reduced to zk

mL = , with m L0, 1, , 2= ¼ or 0kL = , since
on a stripe of (even) width L it is possible to exist at most L 2 parallel rods/chains, due to
exclusion. Thence, the largest eigenvalue lL and, consequently, the free energy f ln

L l
1= L

and the density of monomers z f

z( )r = ¶
¶

are: 1lL = , f=0, and 0r = for z 1; and

zl
L 2L = , f zln1

2
= , and 1 2r = for z 1> . Namely, the system undergoes a discontinuous

transition at z=1 from an empty lattice (the NP phase—for z 1 ) to a low-density nematic
phase (the ‘soft crystalline’ P phase—for z 1> ).

Although the Husimi solution yields the correct transition point z=1 (at least in the
more realistic A and B approaches), the nature of the transition (continuous) is different from
the one in the square lattice. At first, it seems unexpected to find a continuous transition in a
mean-field calculation, whereas the real transition is discontinuous. A possible cause of this
inconsistency may be the fact that our homogeneous solution (on the Husimi lattice) does not
capture correctly the anisotropy/structure of the ‘soft crystalline’ phase. One recalls, not-
withstanding, that similar scenarios, with discontinuous transitions observed in simulations on
ordinary lattices and continuous ones in exact solutions on hierarchical lattices, have been
observed in other models for θ-polymers without structured phases [15, 16, 25].

4. Final discussions and conclusions

In summary, we have studied a generalized ISAW model—where different forces exist
between NN and NNN monomers—on a Husimi lattice built with squares. Three definitions
of second neighbors—or interactions between them—have been considered, which effec-
tively overestimate, match, or underestimate the number of NNN monomers, compared with a

Figure 6. Canonical phase diagrams, in variables K ln2 2w= against K ln1 1w= , for
approaches A (full, red), B (dash-dotted, green) and C (dashed, blue line), and
simulational results from [13] (circles). The inset shows the same data in the region of
attractive interactions.
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square lattice. Since all approaches lead to analogous thermodynamic behaviors, this suggests
that a similar scenario can exist also on the regular lattice.

Indeed, our findings are in good agreement with the ones from Monte Carlo simulations
on square and cubic lattices [13], where only a θ-line was observed, as well as with previous
results from exact enumerations [12]. Interestingly, approximately linear θ-lines were found
in the canonical phase diagrams reported in those works, around the region of positive
energies. Figure 6 shows the mapping of our grand-canonical phase diagrams in the canonical
variables K k Tb2 2º ln 2( )w= versus K k Tb1 1º ln 1( )w= , and, indeed, almost linear
behaviors are found around the first quadrant of the diagrams, but the whole θ-lines are
curved. For comparison, the θ-line found in simulations of the model on a square lattice,
K K0.6099 0.40662 1- + [13], is also shown in figure 6. In the region corresponding to
attractive interactions (highlighted in the inset), the θ-lines from approaches A and B are
always below the one from simulations, which is expected, since mean-field results generally
underestimate the (tri)critical points. A similar behavior is observed for small K2 in approach
C, but as this parameter increases, the corresponding θ-line crosses the one from simulations,
which is simply due to the underestimate in the number of NNN sites/monomers in this
approach. Linear fits of the θ-lines in the attractive region return the slopes −0.333 (in case
A), −0.522 (in B), and −1.221 (in C), which are approximately 55%, 86%, and 200% of the
value found in simulations. These behaviors are physically reasonable, because in a collap-
sing chain each monomer can have at most two NN monomers, while in approaches A, B, and
C it can have effectively a maximum of six, four, and two NNN monomers, respectively,
which is consistent with K K 32 1~ - (in A), K K 22 1~ - (in B), and K K2 1~ - (in C).
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Appendix A. Free energy

The grand-canonical free energy of the model on the Cayley tree with M generations is
k T YlnM B MF̃ = - , and one may, conveniently, define the adimensional free energy as

k TM M B
˜F = F . Assuming that each surface site has a free energy sf , while the ones in bulk

have bf [18], it reads

N N , A1M s
M

s b
M

b ( )f fF = +

where Ns
M and Nb

M are the number of sites at surface and bulk, respectively, in generation M.
Considering a Cayley tree built with squares and ramification σ (coordination number
q 2 1( )s= + ), these numbers are

N N4 3 and 4
3 1

3 1
. A2s

M M
b
M

M
1

1
( ) ( ) ( )s

s
s

= =
-

-
-

-

From these equations, one finds

Y

Y

1

4
3

1

4
ln , A3b M M

M

M
1

1
3

[ ] ( )f s= F - F = - s+
+

⎡
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⎤
⎦⎥
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which is the reduced free energy in the bulk of the Cayley tree built with squares, i.e., the
Husimi lattice.

As discussed in section 2, in general, one may write Y g yM
M

0
4( )= s , and so

Y g yM
M

1 0
1 4( )= s

+
+ (where y yA= , yB or yC , depending on the approach). In addition, it is easy

to see that g g RM M
0

1
0

3
0( )= s+ , then

Y

Y

R

y
lim , A4

M

M

M

1
3

0
4

3 1
( )=s

s

s¥

+
-

leading finally to

R y
1

4
4 ln 3 1 ln . A5b 0[ ( ) ] ( )f s s= - - -

For the case 1s = considered in this work, the expressions for R0 are given in
equation (6h), while y Y g00

4º can be easily calculated from equation (4), setting 1a = (in
approach A), 1 2a = (in B), or 0a = (in C).

Appendix B. Tricritical lines

At the TC condition the solution of the recursion relations (RRs, equations (6) and (7)) must
be triply degenerated. Then, one may find the points at the parameter space where this
happens, bearing in mind that they shall be on the NP spinodal.

In the NP phase R 1i = for i=3 and R 0i = otherwise, so, near the critical surface (and
the TC line), one may expand the RRs around, for example, R6 keeping only the terms up to
the third order. A simple inspection of the RRs (equation (6)) shows that R a Ri i 6

2 for
i 1, 2, 4, 5= , and 8, R a R13 3 6

2+ , and R a R a R7 7,1 7,2 6
3+ . Inserting this in the RRʼs

and expanding them up to order R6
3, one finds

D C R a1 B10 6
2 ( )» +

Da R C R bB11 6
2

1 6
2 ( )»

Da R C R cB12 6
2

2 6
2 ( )»

D a R C R d1 1 B13 6
2

3 6
2( ) ( )+ » +

Da R C R eB14 6
2

4 6
2 ( )»

Da R C R fB15 6
2

5 6
2 ( )»

DR C R C R gB16 6,1 6 6,2 6
3 ( )» +

D a R a R C R C R hB17,1 6 7,2 6
3

7,1 6 7,2 6
3( ) ( )+ » +

Da R C R iB18 6
2

8 6
2 ( )»

where

C a a za a6 3 B20 1 2 8 ( )= + +

C za z b bB21 8
2 2 ( )= +

C z b cB22
3

2
2 ( )w=
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C a a a a z a d2 1 2 2 B23 2 1 2 2 1 2 2 8( ) ( )w w w= + + + + +a a

C z a z b a e2 B24 1 2 8 2
2

2 2
2

7,1[ ( )] ( )w w w w w= + +a a a

C z a f4 B25 1
2

2
2 3

2 2
2

7,1
2( ) ( )w w w w= +a a

C zb z b gB26,1 2
2 ( )w= +

C z b a a a z a a a z b

z a a z a a a zb
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2 2 2
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w w w w w w w
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= + + + + +

+ + + + + +
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2 3
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2
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7,1 3 2 4 2
2

5 2
2 1 3
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a a a a a a
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+

C z b z a k8 B28 2
2 2

1
3

2 2 2
2

7,1
2[ ( ) ] ( )w w w w w= + +a a

with b a1 22 2 7,1w wº + +a a and 1a = (in case A), 1 2a = (in B), or 0a = (in C).
Equating the terms of the same order in equations (B1a)–(i), the relations a Ci i= for

i 1, 2, 4, 5, 8= , and a C C a C,3 0 3 7,1 7,1+ = = , and a a C C7,2 7,1 0 7,2+ = are obtained,
allowing us to determine all ai s as functions of z, 1w , and 2w . Using these functions in the
two additional equations C 16,1 = —which leads to the same expression for the stability limit
of the NP phase (equation (8))—andC C6,2 0= , the TC line is found. Although we do not find
a closed expression for this line, it can be easily calculated with the help of an algebra
software.
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