Critical singular problems via concentration-compactness lemma

Ronaldo B. Assunção ${ }^{\text {a }}$, Paulo Cesar Carrião ${ }^{\text {a,1 }}$, Olimpio Hiroshi Miyagaki ${ }^{\text {b,2,* }}$

${ }^{\text {a }}$ Departamento de Matemática, Universidade Federal de Minas Gerais, 31270-010, Belo Horizonte, MG, Brazil
${ }^{\text {b }}$ Departamento de Matemática, Universidade Federal de Viçosa, 36571-000, Viçosa, MG, Brazil
Received 16 December 2004
Available online 30 March 2006
Submitted by William F. Ames

Abstract

In this work we consider existence and multiplicity results of nontrivial solutions for a class of quasilinear degenerate elliptic equations in \mathbb{R}^{N} of the form $$
\begin{equation*} -\operatorname{div}\left[|x|^{-a p}|\nabla u|^{p-2} \nabla u\right]+\lambda|x|^{-(a+1) p}|u|^{p-2} u=|x|^{-b q}|u|^{q-2} u+f, \tag{P} \end{equation*}
$$ where $x \in \mathbb{R}^{N}, 1<p<N, q=q(a, b) \equiv N p /[N-p(a+1-b)], \lambda$ is a parameter, $0 \leqslant a<(N-p) / p$, $a \leqslant b \leqslant a+1$, and $f \in\left(L_{b}^{q}\left(\mathbb{R}^{N}\right)\right)^{*}$. We look for solutions of problem (P) in the Sobolev space $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ and we prove a version of a concentration-compactness lemma due to Lions. Combining this result with the Ekeland's variational principle and the mountain-pass theorem, we obtain existence and multiplicity results. © 2006 Elsevier Inc. All rights reserved.

Keywords: Degenerate quasilinear equation; p-Laplacian; Variational methods; Compactness-concentration

[^0]
1. Introduction and main results

In this work we consider existence and multiplicity results of nontrivial solutions for a class of quasilinear degenerate elliptic equations in \mathbb{R}^{N} of the form

$$
\begin{equation*}
-\operatorname{div}\left[|x|^{-a p}|\nabla u|^{p-2} \nabla u\right]+\lambda|x|^{-(a+1) p}|u|^{p-2} u=|x|^{-b q}|u|^{q-2} u+f \tag{P}
\end{equation*}
$$

where $x \in \mathbb{R}^{N}, 1<p<N, q=q(a, b) \equiv N p /[N-p(a+1-b)]$, λ is a parameter, $0 \leqslant a<$ $(N-p) / p, a \leqslant b \leqslant a+1$, and $f \in\left(L_{b}^{q}\left(\mathbb{R}^{N}\right)\right)^{*}$, dual space of

$$
L_{b}^{q}\left(\mathbb{R}^{N}\right) \equiv\left\{u: \mathbb{R}^{N} \rightarrow \mathbb{R}:\left.\left.5| | x\right|^{-b} u\right|_{q} ^{q}=\int_{\mathbb{R}^{N}}|x|^{-b q}|u|^{q} d x<\infty\right\}
$$

Equations of this form arise in several models (see, e.g., [2,4,14,17,31]). For another version of problem (P), we cite Clément et al. [15], who proved, for example, the Brézis and Nirenberg's result [7] for the operator in the radial form. (See also Clément et al. [16].)

We look for solutions of problem (P) in the Sobolev space $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ defined as the completion of the space $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ endowed with the norm $\|u\| \equiv\left[\int_{\mathbb{R}^{N}}|x|^{-a p}|\nabla u|^{p} d x\right]^{1 / p}$.

The starting point for the variational approach to these problems is the well known Caffarelli, Kohn and Nirenberg's inequality [9]. (See also Catrina and Wang [12].)

We begin by treating existence results of positive solutions for problem (P) with $f \equiv 0$, which has a variational formulation for the parameters in the specified intervals; specifically, we can formulate the following minimization problem with constraints:

$$
\begin{equation*}
S(a, b, \lambda) \equiv \inf _{0 \neq u \in \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)}\left\{\left.\left.E(a, b, \lambda, u) \equiv| | x\right|^{-a} \nabla u\right|_{p} ^{p}+\left.\left.\lambda| | x\right|^{-(a+1)} u\right|_{p} ^{p}:\left||x|^{-b} u\right|_{q}^{q}=1\right\} \tag{1}
\end{equation*}
$$

Using [9] we can guarantee that $S(a, b, \lambda)$ is a positive constant.
The first result is presented in the following theorem. In its statement, we use the notations: $S(a, b) \equiv S(a, b, 0)$, and given a function $v(x)$, we define the dilation by $v^{t}(x) \equiv t^{k} v(t x)$, where $k \equiv[N-(a+1) p] / p$.

Theorem 1.1. Let $1<p<N, 0 \leqslant a<(N-p) / p$ and $q=q(a, b) \equiv N p /[N-p(a+1-b)]$. Then there exists a minimum $u \in \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ for $S(a, b, \lambda)$ provided that one of the conditions below holds:
(i) $a \leqslant b<a+1$ and $-S(a, a+1)<\lambda \leqslant 0$,
(ii) $a<b<a+1$ and $0<\lambda$,
(iii) $0<a=b$ and $0<\lambda$ small.

After the pioneering work of Brézis and Nirenberg [7], several researchers have dedicated to study variants of problem (P) with $f \equiv 0$ among which we cite [3,5,19,22,24]. For the singular problems in bounded domains we would like to mention [20]. In \mathbb{R}^{N}, Lions [23] and Lieb [21] proved the existence of a minimum to $S(a, b)$ in the case $p=2, a=0$, and $0<b<1$. Chou and Chu [13] studied the existence of a minimum for $S(a, b)$ in the case $p=2, a \leqslant b<a+1$, and $\lambda=0$. On the other hand, both proved that the minimum is not attained in the case $p=2$, and $b=a+1$. Lions [22] treated the existence of a minimum in the case $p=2, a=0, b=0$ and $-S(0,1)<\lambda<0$, while Wang and Willem [31] considered the singular problem (P) with $f \equiv 0$
and $p=2$. They solved completely the problem of compactness of the minimizing sequences for $S(a, b)$ and they obtained a precise estimate to the noncompactness of the minimizing sequences. We remark that our result does not follow directly from the case $p=2$, because we obtained only an inequality (Lemma 2.2) for the estimate of the noncompactness of the minimizing sequences for $S(a, b, \lambda)$, and by a result of Smets [27, Example 2.3] there is no equality. However, even with a weaker estimate it is still possible to prove the relative compactness of the minimizing sequences. Our result generalizes the approach of Wang and Willem [31].

Remark 1.1. For $S(a, b)$ as well as for $S(a, b, \lambda)$ the ground state solutions are positive in \mathbb{R}^{N} and are differentiable everywhere except the origin. These facts follow from the classical regularity theory of elliptic equations.

For our next result, given a function $f \in\left(L_{b}^{q}\left(\mathbb{R}^{N}\right)\right)^{*}$, we prove the existence of two nontrivial solutions for problem (P) with $\lambda=0$. We recall a result of Pohozaev that, for $a=0, b=0$, $q=2 N /(N-2)$ and $f \equiv 0$, in general this problem does not have solution in star-shaped domains. However, for $a=0, b=0$, and $f \not \equiv 0$ problem (P) with $\lambda=0$ always has a solution in bounded domains by a result of Brézis and Nirenberg [8]. Tarantello [30] extended the results in [8], obtaining existence of two positive solutions for problem (P) with $\lambda=0$, still in bounded domains. For unbounded domains see, e.g., $[1,11]$ and references therein. For the singular operators, Rădulescu and Smets [26] treated the case $0<a<2, b=0$, and $p=2$ in unbounded conic domains, presenting a different type of noncompactness, as mentioned by Caldiroli and Musina [10]. Finally we mention the paper [25] for some multiplicity results for the subcritical singular problem in bounded domains.

Theorem 1.2. Suppose that $1<p<N, 0 \leqslant a<(N-p) / p$ and $a \leqslant b<a+1$. Then, for every function $g \in\left(L_{b}^{q}\left(\mathbb{R}^{N}\right)\right)^{*}$ and $g \geqslant 0$, there exists a real number $\varepsilon_{0}>0$ such that, for every $0<\varepsilon \leqslant \varepsilon_{0}$, problem (P) with $\lambda=0$ and $f=\varepsilon g$ has at least two positive solutions.

In our case we treat problems involving exponent p, not necessarily $p=2$, and we consider problem (P) with $\lambda=0$ and singularities in the operator as well as in the nonlinearity. Technically, there are several difficulties to prove existence and multiplicity of solutions of problem (P) with $f \equiv 0$ or $\lambda=0$, because the usual methods of the calculus of variations do not apply directly. The first difficulty is associated to the space $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$, which is not a Hilbert space in the case $p \neq 2$. Moreover, the differential equation involves the critical Hardy-Sobolev exponent, bringing the question of the lack of compactness in the immersion $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right) \hookrightarrow L_{b}^{q}\left(\mathbb{R}^{N}\right)$.

Addendum. After completing this paper we learned that related results with Theorem 1.1 have been independently obtained by Tan and Yang [29].

2. Minimizing sequences for $S(a, b, \lambda)$

To prove the existence of solution to the problems stated in Theorem 1.1, we have to show the existence of a minimum for the Lagrange multipliers $S(a, b)$ and $S(a, b, \lambda)$. However, since $S(a, b) \equiv S(a, b, 0)$, it suffices to treat the existence of a minimum for $S(a, b, \lambda)$.

In order to prove that $S(a, b, \lambda)$ is attained, we consider an arbitrary minimizing sequence $\left(u_{n}\right) \subset \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ for (1). Since $\left(u_{n}\right) \subset \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ is bounded, we can suppose that
$u_{n} \rightharpoonup u$ weakly in $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ and $u_{n} \rightarrow u$ a.e. \mathbb{R}^{N} for some $u \in \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$. Moreover, we have $E(a, b, \lambda, u) \leqslant \liminf _{n \rightarrow \infty} E\left(a, b, \lambda, u_{n}\right) \rightarrow S(a, b, \lambda)$.

Clearly, the problem of finding minimizers to $S(a, b, \lambda)$ is invariant by dilation. The next step consists in proving that the sequence $\left(u_{n}\right) \subset \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ is relatively compact up to dilation. Before we do this, however, we need some preliminary results.

The proof of the following lemma can be adapted from the similar result presented in [31].
Lemma 2.1. Let $a \in \mathbb{R}$ be such that $0 \leqslant a<(N-p) / p$. We define the function $g:[0,(N-$ $p) / p)) \rightarrow \mathbb{R}$ by $g(a) \equiv E(a, a, 0, \bar{u})$, where $\bar{u} \equiv u /\left||x|^{-a} u\right|_{q}, u(x) \equiv\left[1+|x|^{p /(p-1)}\right]^{-(N-p) / p}$ and $q=q(a, a)=N p /(N-p) \equiv p^{*}$ (the critical Sobolev exponent). Then $g^{\prime}(a)<0$ for $a \in$ $(0,(N-p) / p)$ and $g^{\prime}\left(0^{+}\right)=0$.

The following lemma is crucial for our work. To state it, we denote by $\mathcal{M}\left(\mathbb{R}^{N}\right)$ the space of positive, bounded measures in \mathbb{R}^{N}

Lemma 2.2. Let $1<p<N, 0 \leqslant a<(N-p) / p, a \leqslant b \leqslant a+1,-S(a, a+1)<\lambda$ and $q=$ $q(a, b) \equiv N p /[N-p(a+1-b)]$. Let a sequence $\left(u_{n}\right) \subset \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ be such that are valid the following convergences:
(1) $u_{n} \rightharpoonup u$ weakly in $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$,
(2) $\left||x|^{-a} \nabla\left(u_{n}-u\right)\right|^{p}+\left.\left.\lambda| | x\right|^{-(a+1)}\left(u_{n}-u\right)\right|^{p} \rightharpoonup \gamma$ weakly in $\mathcal{M}\left(\mathbb{R}^{N}\right)$,
(3) $\left||x|^{-b}\left(u_{n}-u\right)\right|^{q} \rightharpoonup v$ weakly in $\mathcal{M}\left(\mathbb{R}^{N}\right)$,
(4) $u_{n} \rightarrow u$ a.e. in \mathbb{R}^{N}.

We also define the measures of concentration at infinity

$$
\begin{aligned}
& \nu_{\infty} \equiv \lim _{R \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{|x| \geqslant R}|x|^{-b q}\left|u_{n}\right|^{q} d x \\
& \gamma_{\infty} \equiv \lim _{R \rightarrow \infty} \limsup _{n \rightarrow \infty}\left[\int_{|x| \geqslant R}|x|^{-a p}\left|\nabla u_{n}\right|^{p} d x+\lambda \int_{|x| \geqslant R}|x|^{-(a+1) p}\left|u_{n}\right|^{p} d x\right] .
\end{aligned}
$$

Then

$$
\begin{align*}
& \|\nu\|^{p / q} \leqslant[S(a, b, \lambda)]^{-1}\|\gamma\|, \tag{2}\\
& v_{\infty}^{p / q} \leqslant[S(a, b, \lambda)]^{-1} \gamma_{\infty}, \tag{3}\\
& \left.\left.\limsup _{n \rightarrow \infty}| | x\right|^{-a} \nabla u_{n}\right|_{p} ^{p}+\left.\left.\lambda| | x\right|^{-(a+1)} u_{n}\right|_{p} ^{p} \geqslant\left||x|^{-a} \nabla u\right|_{p}^{p}+\left.\left.\lambda| | x\right|^{-(a+1)} u\right|_{p} ^{p}+\|\gamma\|+\gamma_{\infty}, \tag{4}\\
& \left.\left.\limsup _{n \rightarrow \infty}| | x\right|^{-b} u_{n}\right|_{q} ^{q}=\left||x|^{-b} u\right|_{q}^{q}+\|\nu\|+v_{\infty} . \tag{5}
\end{align*}
$$

Moreover, for $u(x) \equiv 0$, if $b<a+1$ and $\|\nu\|^{p / q}=[S(a, b, \lambda)]^{-1}\|\gamma\|$, then the measures v and γ are concentrated at a single point.

Proof. Suppose initially that $u \equiv 0$. Choosing $h \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ we have $\left(h u_{n}\right) \subset \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$.
Arguing as in [31], and using inequality

$$
\begin{equation*}
|x+y|^{p} \leqslant(1+\varepsilon)|x|^{p}+C(\varepsilon, p)|y|^{p}, \tag{6}
\end{equation*}
$$

valid for $x, y \in \mathbb{R}^{+}$and $1<p<\infty$ with $\varepsilon>0$ fixed, we obtain

$$
\begin{align*}
& {\left[\int_{\mathbb{R}^{N}}|x|^{-b q}\left|h u_{n}\right|^{q} d x\right]^{p / q}} \\
& \quad \leqslant \frac{1}{S(a, b, \lambda)}\left[\int_{\mathbb{R}^{N}}|x|^{-a p}\left|h \nabla u_{n}\right|^{p} d x+\lambda \int_{\mathbb{R}^{N}}|x|^{-(a+1) p}\left|h u_{n}\right|^{p} d x\right] \\
& \quad+\frac{C(\varepsilon, p)}{S(a, b, \lambda)} \int_{\mathbb{R}^{N}}|x|^{-a p}\left|u_{n} \nabla h\right|^{p} d x+\frac{\varepsilon}{S(a, b, \lambda)} \int_{\mathbb{R}^{N}}|x|^{-a p}\left|h \nabla u_{n}\right|^{p} d x . \tag{7}
\end{align*}
$$

Since $\varepsilon>0$ is arbitrary, passing to the limit we obtain inequality (2).
To prove inequality (3) and that the last claim of the lemma, we follow the arguments in [31] and use the same cutoff function used there.

Now we consider the general case, in which possibly $u \not \equiv 0$; in this case we define $v_{n} \equiv u_{n}-u$ and so $v_{n} \rightharpoonup 0$ weakly in $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$. Here our result differs from that in [31], because for $p \neq 2$, in general we do not have equality. Also, we follow some ideas of Smets [27].

From Brézis-Lieb lemma applied to a nonnegative function $h \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, we have

$$
\begin{equation*}
|x|^{-b q}\left|u_{n}\right|^{q} \rightharpoonup v+|x|^{-b q}|u|^{q} \quad \text { weakly in } \mathcal{M}\left(\mathbb{R}^{N}\right) . \tag{8}
\end{equation*}
$$

Using these weak convergences in the space $\mathcal{M}\left(\mathbb{R}^{N}\right)$, the inequality (2) in the general case follows from the correspondent inequality for the sequence $\left(v_{n}\right) \subset \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$.

Following up, we have

$$
\begin{aligned}
& \left.\left|\int_{|x|>R}\right| x\right|^{-a p}\left|\nabla v_{n}\right|^{p} d x+\lambda \int_{|x|>R}|x|^{-(a+1) p}\left|v_{n}\right|^{p} d x \\
& \quad-\int_{|x|>R}|x|^{-a p}\left|\nabla u_{n}\right|^{p} d x-\lambda \int_{|x|>R}|x|^{-(a+1) p}\left|u_{n}\right|^{p} d x \mid \\
& \leqslant \varepsilon\left[\int_{|x|>R}|x|^{-a p}\left|\nabla u_{n}\right|^{p} d x+\lambda \int_{|x|>R}|x|^{-(a+1) p}\left|u_{n}\right|^{p} d x\right] \\
& \quad+C(\varepsilon, p)\left[\int_{|x|>R}|x|^{-a p}|\nabla u|^{p} d x+\lambda \int_{|x|>R}|x|^{-(a+1) p}|u|^{p} d x\right]
\end{aligned}
$$

where we used inequality (6). Taking the limit at the expression above, we have

$$
\lim _{R \rightarrow \infty} \limsup _{n \rightarrow \infty}\left[\int_{|x|>R}|x|^{-a p}\left|\nabla v_{n}\right|^{p} d x+\lambda \int_{|x|>R}|x|^{-(a+1) p}\left|v_{n}\right|^{p} d x\right]=\gamma_{\infty} .
$$

Using Brézis-Lieb lemma, we have

$$
\lim _{R \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{|x|>R}|x|^{-b q}\left|v_{n}\right|^{q} d x=v_{\infty}
$$

This way, inequality (3) follows from the correspondent inequality verified for the sequence $\left(v_{n}\right) \subset \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$.

Now we prove inequality (4). Since v is a finite measure, the set

$$
D \equiv\left\{x \in \mathbb{R}^{N} \mid \nu(\{x\})>0\right\}
$$

is at most denumerable. Let $\psi_{j} \in C_{0}^{\infty}\left(B\left(r_{j}, x\right)\right)$ be a positive function such that $\psi_{j}(x)=1=$ $\sup _{\mathbb{R}^{N}} \psi_{j}$, where $r_{j} \rightarrow 0$ as $j \rightarrow \infty$.

Given $x \in D$ and using once more inequality (6), we obtain

$$
\begin{aligned}
\gamma(\{x\})=\lim _{j \rightarrow \infty} \gamma\left(\psi_{j}\right)= & \lim _{j \rightarrow \infty} \limsup _{n \rightarrow \infty}\left[\int_{\mathbb{R}^{N}}|x|^{-a p}\left|\nabla \psi_{j}\left(u_{n}-u\right)\right|^{p} d x\right. \\
& \left.+\lambda \int_{\mathbb{R}^{N}}|x|^{-(a+1) p}\left|\psi_{j}\left(u_{n}-u\right)\right|^{p} d x\right] \\
\geqslant & S(a, b, \lambda)\left[\lim _{j \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}|x|^{-b q}\left|\psi_{j}\left(u_{n}-u\right)\right|^{q} d x\right]^{p / q} \\
= & S(a, b, \lambda) v(\{x\})^{p / q} .
\end{aligned}
$$

Define some positive, finite measure $\tilde{\gamma} \in \mathcal{M}\left(\mathbb{R}^{N}\right)$ such that

$$
\left||x|^{-a} \nabla u_{n}\right|^{p}+\left.\left.\lambda| | x\right|^{-(a+1)} u_{n}\right|^{p} \rightharpoonup \tilde{\gamma} \quad \text { weakly in } \mathcal{M}\left(\mathbb{R}^{N}\right)
$$

For the function $\psi_{j} \in C_{0}^{\infty}\left(B\left(r_{j}, x\right)\right)$, we have

$$
\begin{aligned}
& \left.\left|\int_{\mathbb{R}^{N}}\right| x\right|^{-a p}\left|\psi_{j} \nabla\left(u_{n}-u\right)\right|^{p} d x+\lambda \int_{\mathbb{R}^{N}}|x|^{-(a+1) p}\left|\psi_{j}\left(u_{n}-u\right)\right|^{p} d x \\
& \quad-\int_{\mathbb{R}^{N}}|x|^{-a p}\left|\psi_{j} \nabla u_{n}\right|^{p} d x-\lambda \int_{\mathbb{R}^{N}}|x|^{-(a+1) p}\left|\psi_{j} u_{n}\right|^{p} d x \mid \\
& \leqslant \varepsilon\left[\int_{\mathbb{R}^{N}}|x|^{-a p} \psi_{j}\left|\nabla u_{n}\right|^{p} d x+\lambda \int_{\mathbb{R}^{N}}|x|^{-(a+1) p} \psi_{j}\left|u_{n}\right|^{p} d x\right] \\
& \quad+C(\varepsilon, p)\left[\int_{\mathbb{R}^{N}}|x|^{-a p} \psi_{j}|\nabla u|^{p} d x+\lambda \int_{\mathbb{R}^{N}}|x|^{-(a+1) p} \psi_{j}|u|^{p} d x\right] .
\end{aligned}
$$

Letting $r_{j} \rightarrow 0$, we obtain

$$
\gamma(\{x\})=\tilde{\gamma}(\{x\}), \quad x \in D
$$

Since the application $v \mapsto \int_{\mathbb{R}^{N}} h|x|^{-a p}|v|^{p} d x$ is convex in $L^{p}\left(\mathbb{R}^{N}\right)$ for a positive $h \in$ $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, it follows that it is also weakly sequentially lower semicontinuous. Hence, $\tilde{\gamma} \geqslant$ $|x|^{-a p}|\nabla u|^{p}+\left.\left.\lambda| | x\right|^{-(a+1)} u\right|^{p}$. Using the orthogonality of $|x|^{-a p}|\nabla u|^{p}$ with respect to the Dirac measures, we obtain

$$
\tilde{\gamma} \geqslant|x|^{-a p}|\nabla u|^{p}+\left.\left.\lambda| | x\right|^{-(a+1)} u\right|^{p}+\|\gamma\| .
$$

This way,

$$
\begin{align*}
& \limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left[|x|^{-a p}\left|\nabla u_{n}\right|^{p}\right]\left(1-\psi_{R}\right) d x+\lambda \int_{\mathbb{R}^{N}}\left[|x|^{-(a+1) p}\left|u_{n}\right|^{p}\right]\left(1-\psi_{R}\right) d x \\
& \quad \geqslant \int_{\mathbb{R}^{N}}\left[|x|^{-a p}|\nabla u|^{p}\right]\left(1-\psi_{R}\right) d x+\lambda \int_{\mathbb{R}^{N}}|x|^{-(a+1) p}|u|^{p}\left(1-\psi_{R}\right) d x+\|\gamma\|, \tag{9}
\end{align*}
$$

where, for $R>1$, we define the cutoff function $\psi_{R} \in C^{\infty}\left(\mathbb{R}^{N}\right)$ such that $\psi_{R}(x) \equiv 1$ for $|x|>$ $R+1, \psi_{R}(x) \equiv 0$ for $|x|<R$, and furthermore, $0 \leqslant \psi_{R}(x) \leqslant 1$ for $x \in \mathbb{R}^{N}$.

Hence, we get

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left[\int_{\mathbb{R}^{N}}|x|^{-a p}\left|\nabla u_{n}\right|^{p} d x+\lambda \int_{\mathbb{R}^{N}}|x|^{-(a+1) p}\left|u_{n}\right|^{p} d x\right] \\
& \quad \geqslant \limsup _{n \rightarrow \infty}\left[\int_{\mathbb{R}^{N}}|x|^{-a p}\left|\nabla u_{n}\right|^{p} \psi_{R} d x+\lambda \int_{\mathbb{R}^{N}}|x|^{-(a+1) p}\left|u_{n}\right|^{p} \psi_{R} d x\right] \\
& \quad+\lim _{n \rightarrow \infty}\left[\int_{\mathbb{R}^{N}}|x|^{-a p}\left|\nabla u_{n}\right|^{p}\left[1-\psi_{R}\right] d x+\lambda \int_{\mathbb{R}^{N}}|x|^{-(a+1) p}\left|u_{n}\right|^{p}\left[1-\psi_{R}\right] d x\right] \\
& \quad=\limsup _{n \rightarrow \infty}\left[\int_{\mathbb{R}^{N}}|x|^{-a p}\left|\nabla u_{n}\right|^{p} \psi_{R} d x+\lambda \int_{\mathbb{R}^{N}}|x|^{-(a+1) p}\left|u_{n}\right|^{p} \psi_{R} d x\right]+\tilde{\gamma}\left[1-\psi_{R}\right] .
\end{aligned}
$$

Passing to the limit as $R \rightarrow \infty$, we have

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left[\int_{\mathbb{R}^{N}}|x|^{-a p}\left|\nabla u_{n}\right|^{p} d x+\lambda \int_{\mathbb{R}^{N}}|x|^{-(a+1) p}\left|u_{n}\right|^{p} d x\right] \\
& =\lim _{R \rightarrow \infty} \limsup _{n \rightarrow \infty}\left[\int_{\mathbb{R}^{N}}|x|^{-a p}|\nabla u|^{p} \psi_{R} d x+\lambda \int_{\mathbb{R}^{N}}|x|^{-(a+1) p}|u|^{p} \psi_{R} d x\right] \\
& \quad+\lim _{R \rightarrow \infty} \tilde{\gamma}\left(1-\psi_{R}\right) \\
& =\gamma_{\infty}+\|\tilde{\gamma}\| \geqslant \gamma_{\infty}+|x|^{-a p}|\nabla u|^{p}+\lambda|x|^{-(a+1) p}|u|^{p}+\|\gamma\| .
\end{aligned}
$$

From this, it follows that

$$
\left.\left.\limsup _{n \rightarrow \infty}| | x\right|^{-a} \nabla u_{n}\right|_{p} ^{p}+\left.\left.\lambda| | x\right|^{-(a+1)} u_{n}\right|_{p} ^{p} \geqslant\left||x|^{-a} \nabla u\right|_{p}^{p}+\left.\left.\lambda| | x\right|^{-(a+1)} u\right|_{p} ^{p}+\|\gamma\|+\gamma_{\infty}
$$

and the inequality (4) is proved.
Finally, we prove equality (5). For every real number $R>1$, using Brézis-Lieb lemma we have

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}|x|^{-b q}\left|u_{n}\right|^{q} d x= & \limsup _{n \rightarrow \infty}\left[\int_{\mathbb{R}^{N}} \psi_{R}|x|^{-b q}\left|u_{n}\right|^{q} d x+\int_{\mathbb{R}^{N}}\left(1-\psi_{R}\right)|x|^{-b q}\left|u_{n}\right|^{q} d x\right] \\
& +\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(1-\psi_{R}\right)|x|^{-b q}|u|^{q} d x .
\end{aligned}
$$

Letting $R \rightarrow \infty$ in the expression above, and using Lebesgue theorem, we obtain

$$
\lim _{R \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}|x|^{-b q}\left|u_{n}\right|^{q} d x=v_{\infty}+\|v\|+\left||x|^{-b}\right| u| |_{q}^{q},
$$

which implies equality (5). This concludes the proof of the lemma.

3. Conclusion of the proof of Theorem 1.1

Proof of Theorem 1.1(i). Let $\left(u_{n}\right) \subset \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ be a minimizing sequence for $S(a, b, \lambda)$. Let $B(x, r)$ denote the open ball with radius r centered at $x \in \mathbb{R}^{N}$. For every number $n \in \mathbb{N}$, there exists a number $t_{n} \in \mathbb{R}^{+}$such that

$$
\begin{equation*}
\int_{B\left(0, t_{n}\right)}|x|^{-b q}\left|u_{n}\right|^{q} d x=\int_{B(0,1)}|x|^{-b q}\left|v_{n}\right|^{q} d x=\frac{1}{2} \tag{10}
\end{equation*}
$$

where we used the dilation $v_{n}(x) \equiv u_{n}^{t_{n}}(x)$.
By hypotheses and using the invariance of the problem by dilation, we have

$$
\left||x|^{-b} v_{n}\right|_{q}=\left||x|^{-b} u_{n}\right|_{q}=1
$$

and

Since the sequence $\left(v_{n}\right) \subset \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ is bounded, passing to a subsequence, still denoted in the same way, we can suppose that there exists a function $v \in \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ such that are valid the hypotheses of Lemma 2.2.

By Lemma 2.2, we have

$$
\begin{align*}
& S(a, b, \lambda) \geqslant\left||x|^{-a} \nabla v\right|_{p}^{p}+\left.\left.\lambda| | x\right|^{-(a+1)} v\right|_{p} ^{p}+\|\gamma\|+\gamma_{\infty}, \tag{11}\\
& 1=\left||x|^{-b} v\right|_{q}^{q}+\|\nu\|+v_{\infty} . \tag{12}
\end{align*}
$$

From inequalities (2), (3), (11) and from the definition of $S(a, b, \lambda)$ we deduce that

$$
S(a, b, \lambda) \geqslant S(a, b, \lambda)\left\{\left[\int_{\mathbb{R}^{N}}|x|^{-b q}|v|^{q} d x\right]^{p / q}+\|v\|^{p / q}+v_{\infty}^{p / q}\right\}
$$

Using equality (12) we obtain three mutually excluding situations.
By equality (10), it follows that $v_{\infty}=0$.
Suppose now that $v=0$; we will get a contradiction. In fact, equality (12) implies that $\|\nu\|=1$.

From inequality (11), we have

$$
1=\|\nu\|=\|\nu\|^{p / q} \leqslant \frac{1}{S(a, b, \lambda)}\|\gamma\| \leqslant \frac{1}{\|\gamma\|+\gamma_{\infty}}\|\gamma\| \leqslant 1
$$

and this means that $\gamma_{\infty}=0$ and $S(a, b, \lambda)=\|\gamma\|$.

Supposing that $b<a+1$ and applying Lemma 2.2 once more, we deduce that the measures v and γ are concentrated at a single point $x_{0} \in \mathbb{R}^{N}$. Such point is not the origin, because of equality (10).

From this point on, we divide our argument in two cases.
Case $\boldsymbol{a}<\boldsymbol{b}$. In this case we have $q<p^{*}$. By the Rellich theorem we conclude that $\|\nu\|=0$. But we have already established that $\|\nu\|=1$. The contradiction leads to the situation in which $\|\nu\|=0$ and $\left||x|^{-b} v\right|_{q}^{q}=1$.

Case $\boldsymbol{a}=\boldsymbol{b}>\mathbf{0}$. In this case we have $q=p^{*}$. Given $r \in \mathbb{R}^{+}$, we define the expression

$$
A \equiv \lim _{n \rightarrow \infty} \frac{\int_{B\left(x_{0}, r\right)}|x|^{-a p}\left|\nabla v_{n}\right|^{p} d x+\lambda \int_{B\left(x_{0}, r\right)}|x|^{-(a+1) p}\left|v_{n}\right|^{p} d x}{\left[\int_{B\left(x_{0}, r\right)}|x|^{-a p^{*}}\left|v_{n}\right|^{p^{*}} d x\right]^{p / p^{*}}}
$$

Then $A=\|\gamma\|=S(a, a, \lambda)$. Let $\eta \in C_{0}^{\infty}\left(B\left(x_{0}, r\right)\right)$ be a function such that $\eta \equiv 1$ in $B\left(x_{0}, r / 2\right)$ for $r \in \mathbb{R}^{+}$sufficiently small. Then

$$
A=\lim _{n \rightarrow \infty} \frac{\int_{B\left(x_{0}, r\right)}\left|\nabla \eta v_{n}\right|^{p} d x+\lambda \int_{B\left(x_{0}, r\right)}\left|\eta v_{n}\right|^{p} d x}{\left[\int_{B\left(x_{0}, r\right)}\left|\eta v_{n}\right|^{p^{*}} d x\right]^{p / p^{*}}} \geqslant S \equiv S(0,0),
$$

because

$$
\lim _{n \rightarrow \infty} \int_{B\left(x_{0}, r\right)}|x|^{-(a+1)}\left|v_{n}\right|^{p} d x=0
$$

It follows that $S(a, a, \lambda)=A \geqslant S$. We recall that S is the best constant in Sobolev inequality [28].
On the other hand, by Lemma 2.1 we know that $S=g(0)>g(a)=S(a, a) \geqslant S(a, a, \lambda)$ if $-S(a, a+1)<\lambda \leqslant 0$. The contradiction leads again to the situation $\|v\|=0$ and $\|\left.\left. x\right|^{-b} v\right|_{q} ^{q}=1$.

In any case there exists a minimum to $S(a, b, \lambda)$. This proves item (i) of Theorem 1.1. The proof of item (ii) is similar.

Proof of Theorem 1.1(iii). Following the same ideas of the previous proof, also for $0<a=b$ and $\lambda>0$ we obtain three mutually excluding situations. In this case we proceed as we did in item (i) of Theorem 1.1 and we obtain

$$
S \leqslant\|\gamma\|=S(a, a, \lambda)
$$

On the other hand, since $S(a, a, 0)<S$, there exists $0<\varepsilon<1$ such that, for $0<\lambda<\varepsilon$, we still have $S(a, a, \lambda)<S$.

The only possibility left is $v_{\infty}=0, v=0$ and $\left||x|^{-b} v\right|_{q}=1$. Hence, $v \in \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ is a minimum to $S(a, b, \lambda)$ and $v_{n} \rightarrow v$ in $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$.

4. Nonautonomous perturbation problems: the first solution

In this section, we are going to use variational techniques. This way, associated to the problem (P) with $\lambda=0$ we have the Euler-Lagrange functional $I: \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
I(u) \equiv \frac{1}{p} \int_{\mathbb{R}^{N}}|x|^{-a p}|\nabla u|^{p} d x-\frac{1}{q} \int_{\mathbb{R}^{N}}|x|^{-b q}|u|^{q} d x-\int_{\mathbb{R}^{N}} f u d x, \tag{13}
\end{equation*}
$$

which is well defined for the parameters in the previously specified intervals.
Using the duality product, we define a weak solution of problem (P) with $\lambda=0$ as a critical point for the functional I, that is, as a function $u \in \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ such that

$$
\begin{aligned}
0 & =\left\langle I^{\prime}(u), \phi\right\rangle=\int_{\mathbb{R}^{N}}|x|^{-a p}|\nabla u|^{p-2} \nabla u \nabla \phi d x-\int_{\mathbb{R}^{N}}|x|^{-b q}|u|^{q-2} u \phi d x-\int_{\mathbb{R}^{N}} f \phi d x, \\
& \forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) .
\end{aligned}
$$

Lemma 4.1. Let $\left(u_{n}\right) \subset \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ be a Palais-Smale sequence for the functional I at the level $c \in \mathbb{R}\left((P S)_{c}\right.$, in short $)$, that is, a sequence such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I\left(u_{n}\right)=c \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|I^{\prime}\left(u_{n}\right)\right\|_{\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)^{*}}=0 . \tag{14}
\end{equation*}
$$

If $u_{n} \rightharpoonup u_{0}$ weakly in $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ for some u_{0}, then u_{0} is a weak solution for problem (P) with $\lambda=0$.

Proof. We consider an arbitrary function $\zeta \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ and denote its support by ω. Then

$$
\begin{equation*}
\left\langle I^{\prime}\left(u_{n}\right), \zeta\right\rangle \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{15}
\end{equation*}
$$

Claim 1. $|x|^{-a} \nabla u_{n} \rightarrow|x|^{-a} \nabla u$ a.e. in \mathbb{R}^{N}.
We are going to postpone the verification of this claim.
Since the sequence $\left(|x|^{-a p}|\nabla u|^{p} \nabla u_{n}\right) \subset L^{p^{\prime}}\left(\mathbb{R}^{N}\right)$ is bounded $\left(1 / p+1 / p^{\prime}=1\right)$, by Claim 1 we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\omega}|x|^{-a p}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla \zeta d x=\int_{\omega}|x|^{-a p}\left|\nabla u_{0}\right|^{p-2} \nabla u_{0} \cdot \nabla \zeta d x \tag{16}
\end{equation*}
$$

because $|x|^{-a} \nabla \zeta \in L^{p}\left(\mathbb{R}^{N}\right)$.
On the other hand, the boundedness of the sequence $\left(u_{n}\right) \subset \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ and the Caffarelli, Kohn and Nirenberg's inequality imply that $|x|^{-b(q-1)}\left|u_{n}\right|^{q-2} u_{n}$ is bounded in $L^{q^{\prime}}\left(\mathbb{R}^{N}\right)$, where $1 / q+1 / q^{\prime}=1$. Passing to a subsequence (still denoted in the same way), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\omega}|x|^{-b q}\left|u_{n}\right|^{q-2} u_{n} \zeta d x=\int_{\omega}|x|^{-b q}\left|u_{0}\right|^{q-2} u_{0} \zeta d x \tag{17}
\end{equation*}
$$

because $|x|^{-b} \zeta \in L^{q}\left(\mathbb{R}^{N}\right)$ and $u_{n} \rightarrow u_{0}$ a.e. in \mathbb{R}^{N}.
Combining Eqs. (15), (16) and (17), it follows that $\left\langle I^{\prime}\left(u_{0}\right), \zeta\right\rangle=0$ for every function $\zeta \in$ $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$. By using a density argument the lemma is proved.

Proof of Claim 1. The proof was partially inspired in the works of Boccardo and Murat [6], and
Ghoussoub and Yuan [20]. We begin by defining the family of functions

$$
\tau_{k}(s) \equiv \begin{cases}s & \text { if }|s| \leqslant k \\ k s /|s| & \text { if }|s|>k\end{cases}
$$

Affirmative 1. There exists a constant $C \in \mathbb{R}^{+}$such that the following inequality holds:

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|x|^{-b q}\left[\left|u_{n}\right|^{q-2} u_{n}-|u|^{q-2} u\right] \tau_{k}\left(u_{n}-u\right) d x \leqslant C k^{q} . \tag{18}
\end{equation*}
$$

The proof of this affirmative follows from the Hölder's inequality and by combining the boundedness of the sequence $\left(u_{n}\right) \subset \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ and the continuity of the inclusion $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right) \hookrightarrow$ $L_{b}^{q}\left(\mathbb{R}^{N}\right)$.

Passing to a subsequence, if necessary, still denoted in the same way, we get $u_{n} \rightharpoonup u$ weakly in $L_{b}^{q}\left(\mathbb{R}^{N}\right)$. Since $f \in\left(L_{b}^{q}\left(\mathbb{R}^{N}\right)\right)^{*}$, it follows that

$$
\begin{aligned}
o(1)= & \left\langle I^{\prime}\left(u_{n}\right)-I(u), \tau_{k}\left(u_{n}-u\right)\right\rangle \\
= & \left.\left.\int_{\mathbb{R}^{N}}\langle | x\right|^{-a p}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|x|^{-a p}|\nabla u|^{p-2} \nabla u, \nabla \tau_{k}\left(u_{n}-u\right)\right\rangle_{e} \\
& -\int_{\mathbb{R}^{N}}|x|^{-b q}\left(\left|u_{n}\right|^{q-2} u_{n}-|u|^{q-2} u\right) \tau_{k}\left(u_{n}-u\right) d x-\int_{\mathbb{R}^{N}} f \tau_{k}\left(u_{n}-u\right) d x,
\end{aligned}
$$

where $\langle\cdot, \cdot\rangle_{e}$ denotes the usual inner product in \mathbb{R}^{N}. Passing to the limit and using inequality (18), we have

$$
\left.\left.\limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\langle | x\right|^{-a p}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|x|^{-a p}|\nabla u|^{p-2} \nabla u, \nabla \tau_{k}\left(u_{n}-u\right)\right\rangle_{e} d x \leqslant C k^{q} .
$$

Now we define the sequence of functions

$$
\left.\left.e_{n} \equiv\langle | x\right|^{-a p}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|x|^{-a p}|\nabla u|^{p-2} \nabla u, \nabla \tau_{k}\left(u_{n}-u\right)\right\rangle_{e} .
$$

It follows that $e_{n}(x) \geqslant 0$ by a well-known inequality. (See Ghoussoub and Yuan [20, Lemma 4.1].)
Affirmative 2. For every $n \in \mathbb{N}$ we have $\int_{\mathbb{R}^{N}} e_{n}(x) d x<\infty$.
The proof of this affirmative follows by applying the Hölder's inequality in

$$
\left.\left.\int_{\mathbb{R}^{N}}\langle | x\right|^{-a p}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|x|^{-a p}|\nabla u|^{p-2} \nabla u, \nabla \tau_{k}\left(u_{n}-u\right)\right\rangle_{e} d x .
$$

Given $m \in \mathbb{N}$, we denote $\Omega_{m} \equiv B(0, m)$ and we write $\mathbb{R}^{N}=\bigcup_{m=1}^{\infty} \Omega_{m}$. For $0<\theta<1$ and $k \in \mathbb{R}$ fixed, we split Ω_{m} in

$$
A_{n}^{k} \equiv\left\{x \in \Omega_{m}| | u_{n}-u \mid \leqslant k\right\} \quad \text { and } \quad B_{n}^{k} \equiv\left\{x \in \Omega_{m}| | u_{n}-u \mid>k\right\} .
$$

For $k \in \mathbb{R}$ fixed, from the convergence in measure we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|B_{n}^{k}\right|=0 \tag{19}
\end{equation*}
$$

By the uniform boundedness of the sequence $\left(e_{n}\right) \subset L^{1}\left(\mathbb{R}^{N}\right)$, we have

$$
\limsup _{n \rightarrow \infty} \int_{\Omega_{m}} e_{n}^{\theta} d x \leqslant(C k)^{\theta}\left|\Omega_{m}\right|^{1-\theta}
$$

Fixing $m \in \mathbb{N}$ and letting $k \rightarrow 0$, it follows that $e_{n}^{\theta} \rightarrow 0$ in $L^{1}\left(\Omega_{m}\right)$. Finally, from the well-known inequality [20, Lemma 4.1], passing to the diagonal sequence it follows that

$$
|x|^{-a} \nabla u_{n} \rightarrow|x|^{a} \nabla u \quad \text { a.e. in } \mathbb{R}^{N} .
$$

This concludes the proof of the claim.
Now we prove the existence of the first solution.
Lemma 4.2. There exists a real number $\varepsilon_{1}>0$ such that problem (P) with $\lambda=0$ has at least one solution u_{0} if $f \not \equiv 0$ is such that $\|f\|_{\left(L_{b}^{q}\left(\mathbb{R}^{N}\right)\right)^{*}}<\varepsilon_{1}$ with $I\left(u_{0}\right)<0$. Furthermore, if $f \geqslant 0$, then u_{0} is a positive solution.

Proof. Fixing $\varepsilon \in(0,1)$, from Young's as well as Caffarelli, Kohn and Nirenberg's inequalities, we write

$$
I(u) \geqslant\left(\frac{1}{p}-\frac{\varepsilon^{p}}{p}\right)\|u\|^{p}-C\|u\|^{q}-C_{\varepsilon}\|f\|_{\left(L_{b}^{q}\left(\mathbb{R}^{N}\right)\right)^{*}}
$$

Hence there exist real numbers $R>0, \varepsilon_{1}>0$ and $\delta>0$ such that if $\|u\|=R$ and $\|f\|_{\left(L_{b}^{q}\left(\mathbb{R}^{N}\right)\right)^{*}}$ $<\varepsilon_{1}$, then $I(u) \geqslant \delta$.

Defining

$$
\begin{equation*}
c_{0} \equiv \inf \left\{I(u) \mid u \in \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right) \text { and }\|u\| \leqslant R\right\} \tag{20}
\end{equation*}
$$

and using $f \not \equiv 0$, it follows that $c_{0}<I(0)=0$.
Applying Ekeland's Variational Principle there exists a bounded $(P S)_{c_{0}}$ sequence $\left(u_{n}\right) \subset$ $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ such that $\left\|u_{n}\right\| \leqslant R$, and for some $u_{0} \in \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
u_{n} \rightharpoonup u_{0} \quad \text { weakly in } \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right) \quad \text { and } \quad u_{n} \rightarrow u_{0} \quad \text { a.e. in } \mathbb{R}^{N} . \tag{21}
\end{equation*}
$$

Furthermore, from Lemma 4.1 it follows that u_{0} is a weak solution for problem (P) with $\lambda=0$.
Using $I^{\prime}\left(u_{0}\right)=0$ and Fatou lemma, we obtain

$$
c_{0}=\liminf _{n \rightarrow \infty} I\left(u_{n}\right) \geqslant\left(\frac{1}{p}-\frac{1}{q}\right) \int_{\mathbb{R}^{N}}|x|^{-a p}\left|\nabla u_{0}\right|^{p} d x-\left(1-\frac{1}{q}\right) \int_{\mathbb{R}^{N}} f u_{0} d x=I\left(u_{0}\right)
$$

Since $\left\|u_{0}\right\| \leqslant R$, it follows that $I\left(u_{0}\right)=c_{0}$. Finally, if $f \geqslant 0$, the function u_{0} can be replaced by $\left|u_{0}\right|$, and we get a positive solution. This concludes the proof.

5. The existence of the second solution

Let the functional $J: \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ be defined by

$$
\begin{equation*}
J(u) \equiv \frac{1}{p} \int_{\mathbb{R}^{N}}|x|^{-a p}|\nabla u|^{p} d x-\frac{1}{q} \int_{\mathbb{R}^{N}}|x|^{-b q}|u|^{-q} d x \tag{22}
\end{equation*}
$$

We also define the Nehari manifold $V=\left\{u \in \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right) \mid\left\langle J^{\prime}(u), u\right\rangle=0\right\}$, which is nonempty.
Indeed, let $v_{0} \in \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ be fixed and $\lambda \in \mathbb{R}^{+}$; we define the function $h(\lambda) \equiv$ $\left\langle J^{\prime}\left(\lambda v_{0}\right), \lambda v_{0}\right\rangle$. Since $p<q$, we have that for λ big enough it holds $h(\lambda)<0$; on the other hand, for λ near zero it holds $h(\lambda)>0$. Then, there exists $\lambda_{0} \in \mathbb{R}^{+}$such that $h\left(\lambda_{0}\right)=0$.

Denoting by J_{∞} the infimum of the functional J in V, that is, $J_{\infty} \equiv \inf \{J(u) \mid u \in V\}$, we have the following result, whose proof follows by using some arguments of Ding and Ni [18].

Lemma 5.1. There exists $\bar{u} \in V$ such that $J_{\infty}=\sup _{t \geqslant 0} J(t \bar{u})=J(\bar{u})=\left(\frac{1}{p}-\frac{1}{q}\right)[S(a, b)]^{q /(q-p)}$.
Proof. Initially we will show that

$$
\begin{equation*}
J_{\infty} \geqslant\left(\frac{1}{p}-\frac{1}{q}\right)[S(a, b)]^{q /(q-p)} . \tag{23}
\end{equation*}
$$

Fixing $\phi \in \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right) \backslash\{0\}$, we define the function

$$
k(t) \equiv J(t \phi)=\frac{t^{p}}{p} \int_{\mathbb{R}^{N}}|x|^{-a p}|\nabla \phi|^{p} d x-\frac{t^{q}}{q} \int_{\mathbb{R}^{N}}|x|^{-b q}|\phi|^{q} d x
$$

which has a global maximum at t_{0}. It follows that

$$
\begin{equation*}
\inf _{0 \neq \phi \in \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)} \sup _{t \geqslant 0} J(t \phi)=\left(\frac{1}{p}-\frac{1}{q}\right)[S(a, b)]^{q /(q-p)} \tag{24}
\end{equation*}
$$

We also note that for every $u \in V$ we have $t_{0}=t_{0}(u)=1$.
So,

$$
J_{\infty}=\inf _{u \in V} \sup _{t \geqslant 0} J(t u) \geqslant \inf _{0 \neq \phi \in \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)} \sup _{t \geqslant 0} J(t \phi)=\left(\frac{1}{p}-\frac{1}{q}\right)[S(a, b)]^{q /(q-p)} .
$$

Using Theorem 1.1, we can guarantee that $S(a, b)$ defined in (1) is attained by a function $U \in \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$. Defining the function $\bar{u}(x) \equiv[S(a, b)]^{1 /(q-p)} U(x)$, we have $\bar{u} \in V$ and

$$
\begin{equation*}
J_{\infty} \leqslant J(\bar{u})=\left(\frac{1}{p}-\frac{1}{q}\right)[S(a, b)]^{q /(q-p)}, \tag{25}
\end{equation*}
$$

which concludes the proof of the lemma.
Next we state an alternative description for Palais-Smale sequences.
Lemma 5.2. Suppose that $\left(u_{n}\right) \subset \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ is a Palais-Smale sequence for the functional I at the level $c \in \mathbb{R}$. If $u_{n} \rightharpoonup u_{0}$ weakly in $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ for some u_{0}, then one of the following alternatives holds:
(1) $u_{n} \rightarrow u_{0}$ in $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$.
(2) $c \geqslant I\left(u_{0}\right)+J_{\infty}$.

Proof. Let $\left(u_{n}\right) \subset \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ be a Palais-Smale sequence for the functional I at the level c. We define $v_{n} \equiv u_{n}-u_{0}$. It follows that $v_{n} \rightharpoonup 0$ weakly in $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$, then

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} f v_{n} d x=0
$$

and

$$
\begin{equation*}
I\left(v_{n}\right)=J\left(v_{n}\right)+o(1) . \tag{26}
\end{equation*}
$$

Using Caffarelli, Kohn and Nirenberg's inequality and Brézis-Lieb lemma, as well as equality (26) and Lemma 4.1, we get

$$
\begin{equation*}
c+o(1)=I\left(u_{n}\right)=I\left(u_{0}\right)+I\left(v_{n}\right)+o(1)=I\left(u_{0}\right)+J\left(v_{n}\right)+o(1) \tag{27}
\end{equation*}
$$

and also

$$
\begin{equation*}
o(1)=\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle=\left\langle I^{\prime}\left(u_{0}\right), u_{0}\right\rangle+\left\langle I^{\prime}\left(v_{n}\right), v_{n}\right\rangle+o(1)=\left\langle J^{\prime}\left(v_{n}\right), v_{n}\right\rangle+o(1) \tag{28}
\end{equation*}
$$

Now we have two possibilities. If $v_{n} \rightarrow 0$ strongly in $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$, then $u_{n} \rightarrow u_{0}$ strongly in $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ and also

$$
c=\lim _{n \rightarrow \infty} I\left(u_{n}\right)=I\left(u_{0}\right) .
$$

In this case, the lemma is proved.
On the other hand, if $v_{n} \nrightarrow 0$ in $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$, then from the weak convergence $v_{n} \rightharpoonup 0$ in $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$, we can suppose that $\left\|v_{n}\right\| \rightarrow \rho>0$ (possibly after passage to a subsequence, still denoted in the same way). So, using the limit (27), we get

$$
\begin{equation*}
c=I\left(u_{0}\right)+J\left(v_{n}\right)+o(1) . \tag{29}
\end{equation*}
$$

It is easy to see that the following claim implies the lemma.
Claim. $J\left(v_{n}\right) \geqslant J_{\infty}+o(1)$.
To prove the claim we define

$$
\alpha_{n} \equiv \int_{\mathbb{R}^{N}}|x|^{-a p}\left|\nabla v_{n}\right|^{p} d x=\left\|v_{n}\right\|^{p} \quad \text { and } \quad \beta_{n} \equiv \int_{\mathbb{R}^{N}}|x|^{-b q}\left|v_{n}\right|^{q} d x \geqslant 0
$$

and we write

$$
\mu_{n} \equiv\left\langle J^{\prime}\left(v_{n}\right), v_{n}\right\rangle=\alpha_{n}-\beta_{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Let $t \in \mathbb{R}^{+}$; then there exists a sequence $\left(t_{n}\right) \subset \mathbb{R}^{+}$such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} t_{n}=1 \quad \text { and } \quad\left\langle J^{\prime}\left(t_{n} v_{n}\right), t_{n} v_{n}\right\rangle=0 \tag{30}
\end{equation*}
$$

Indeed, writing $t=1+\tau$ where $\tau>0$ is small enough and using the definitions of μ_{n}, α_{n}, and β_{n}, we have

$$
\left\langle J^{\prime}\left(t v_{n}\right), t v_{n}\right\rangle=\alpha_{n}(1+\tau)^{p}-\beta_{n}(1+\tau)^{q}=\alpha_{n}(p-q) \tau+\alpha_{n} o(\tau)+\mu_{n}(1+\tau)^{q}
$$

Since by hypothesis $\lim _{n \rightarrow \infty} \alpha_{n}=\rho^{p}>0$, it follows that, for n big enough we can define the sequence

$$
\tau_{n} \equiv \frac{2 \mu_{n}}{\alpha_{n}(q-p)} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

So,

$$
\begin{equation*}
\left\langle J^{\prime}\left(1+\tau_{n}\right) v_{n},\left(1+\tau_{n}\right) v_{n}\right\rangle<0 \quad \text { and } \quad\left\langle J^{\prime}\left(1-\tau_{n}\right) v_{n},\left(1-\tau_{n}\right) v_{n}\right\rangle>0 . \tag{31}
\end{equation*}
$$

In fact, rewriting the Gâteaux derivative of the functional J, we get

$$
\begin{aligned}
\left\langle J^{\prime}\left(1+\tau_{n}\right) v_{n},\left(1+\tau_{n}\right) v_{n}\right\rangle & =-2\left|\mu_{n}\right|+\mu_{n}+\frac{2 q}{\alpha_{n}(q-p)}\left|\mu_{n}\right| \mu_{n}+\alpha_{n} o\left(\tau_{n}\right)+\mu_{n} o\left(\mu_{n}\right) \\
& \equiv K_{n}
\end{aligned}
$$

If $\mu_{n}>0$, then $K_{n}<0$. Similarly, if $\mu_{n}<0$, then $K_{n}>0$.
This proves the first part of inequality (31). The other one is similar.

In this way, we can choose $t_{n} \in\left(1-\tau_{n}, 1+\tau_{n}\right)$ and we get a sequence $\left(t_{n}\right) \subset \mathbb{R}$ verifying (30). Using this sequence, it follows that

$$
J\left(v_{n}\right)=J\left(t_{n} v_{n}\right)+\left(\frac{1-t_{n}^{p}}{p}\right) \alpha_{n}-\left(\frac{1-t_{n}^{q}}{q}\right) \beta_{n}=J\left(t_{n} v_{n}\right)+o(1) \geqslant J_{\infty}+o(1)
$$

and this proves the claim.

Our next lemma compares the minimum obtained previously with a minimax type level.
Fix $\bar{u} \in \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ such that the conclusion of Lemma 5.1 holds.
Since $p<q$, there exists $\tau_{0} \in \mathbb{R}^{+}$such that

$$
J(t \bar{u})<0 \quad \text { and } \quad I(t \bar{u})<0 \quad \text { if } t \geqslant \tau_{0} .
$$

We define

$$
\begin{equation*}
c_{1} \equiv \inf _{\gamma \in \mathcal{P}} \sup _{u \in \mathcal{\gamma}} I(u), \tag{32}
\end{equation*}
$$

where

$$
\mathcal{P}=\left\{\gamma \in C\left([0,1] ; \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)\right) \mid \gamma(0)=0 \text { and } \gamma(1)=\tau_{0} \bar{u}\right\} .
$$

Lemma 5.3. Let c_{0} and c_{1} be defined by (20) and (32), respectively. Given a function $g \geqslant 0$ such that $\|g\|_{\left(L_{b}^{q}\left(\mathbb{R}^{N}\right)\right)^{*}}=1$, there exist real numbers $R>0$ and $\varepsilon_{2}=\varepsilon_{2}(R)$ such that $c_{1}<c_{0}+J_{\infty}$ for every function $f=\varepsilon g$ such that $\varepsilon \leqslant \varepsilon_{2}$.

Proof. First of all we claim that

$$
\begin{equation*}
J_{\infty}+c_{0}>0 \tag{33}
\end{equation*}
$$

if the real numbers $\varepsilon_{1}>0$ and $R>0$ given at the proof of Lemma 4.2 are small enough.
Indeed, let u_{0} be a solution of problem (P) with $\lambda=0$ obtained from Lemma 4.2. Applying Hölder's and Young's inequalities to the expression of c_{0} in terms of u_{0}, we have

$$
\begin{align*}
c_{0} & \geqslant\left(\frac{1}{p}-\frac{1}{q}\right) \int_{\mathbb{R}^{N}}|x|^{-a p}\left|\nabla u_{0}\right|^{p} d x-\left(1-\frac{1}{q}\right)\|f\|_{\left(L_{b}^{q}\left(\mathbb{R}^{N}\right)\right)^{*}}\left\|u_{0}\right\| \tag{34}\\
& \geqslant \frac{\lambda^{p}}{p}\left\|u_{0}\right\|^{p}+\frac{\left(1-\frac{1}{q}\right)^{p^{\prime}}}{p^{\prime} \lambda^{p^{\prime}}}\|f\|_{\left(L_{b}^{q}\left(\mathbb{R}^{N}\right)\right)^{*}}^{p^{\prime}}, \tag{35}
\end{align*}
$$

where $\lambda=(1-p / q)^{1 / p}$. Then we get

$$
\begin{equation*}
c_{0} \geqslant\left[\frac{N(p-1)+p-p(b-a)}{p N}\right]^{p /(p-1)} \frac{(p-1)}{p}\left[1-\frac{p}{q}\right]^{1 /(1-p)}\|f\|_{\left(L_{b}^{q}\left(\mathbb{R}^{N}\right)\right)^{*}}^{p^{\prime}} . \tag{36}
\end{equation*}
$$

So, inequality (33) holds for $\|f\|_{\left(L_{b}^{q}\left(\mathbb{R}^{N}\right)\right)^{*}}<\varepsilon_{1}$, where $\varepsilon_{1}>0$ is small enough.
To conclude the proof of the lemma it is enough to use the definition of c_{1} and the following result.

Claim. $\sup _{t \geqslant 0} I(t \bar{u})<J_{\infty}+c_{0}$ for $\|f\|_{\left(L_{b}^{q}\left(\mathbb{R}^{N}\right)\right)^{*}}>0$ small enough.

Indeed, using the continuity of the functional I and $I(0)=0$, as well as inequality (33), we get $\varepsilon^{\prime}>0$ and $M \in \mathbb{R}$ such that

$$
J_{\infty}+c_{0}>\sup _{t \in[0, M]} I(t \bar{u}) \quad \text { if }\|f\|_{\left(L_{b}^{q}\left(\mathbb{R}^{N}\right)\right)^{*}}<\varepsilon^{\prime}<\varepsilon_{1}
$$

Note that

$$
\sup _{t \geqslant M} I(t \bar{u}) \leqslant \sup _{t \geqslant 0} J(t \bar{u})-M \int_{\mathbb{R}^{N}} f \bar{u} d x=J_{\infty}-M \int_{\mathbb{R}^{N}} f \bar{u} d x .
$$

Since $\int_{\mathbb{R}^{N}} f u d x$ is linear in ε and c_{0} has a term of degree p^{\prime} in ε, we have

$$
\sup _{t \geqslant M} I(t \bar{u})<J_{\infty}+c_{0}
$$

and this concludes the proof of the lemma.
Conclusion of the proof of Theorem 1.2. Let $\varepsilon_{0} \equiv \min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$. By Lemma 4.2 we get a positive solution $u_{0} \in \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ for the problem (P) with $\lambda=0$ such that $c_{0}=I\left(u_{0}\right)$.

On the other hand, since $I(|u|) \leqslant I(u)$ for every function $f \geqslant 0$, the mountain-pass theorem without Palais-Smale condition guarantees the existence of a positive Palais-Smale sequence $\left(u_{n}\right) \subset \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ for the functional I at the level c_{1}.

This implies that

$$
\begin{aligned}
c_{1}+\frac{1}{q}\left\|I^{\prime}\left(u_{n}\right)\right\|_{\left(\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)\right) *}\left\|u_{n}\right\|+o(1) & \geqslant I\left(u_{n}\right)-\frac{1}{q}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
& \geqslant\left(\frac{1}{p}-\frac{1}{q}\right)\left\|u_{n}\right\|^{p}-\left(1-\frac{1}{q}\right)\|f\|_{\left(L_{b}^{q}\left(\mathbb{R}^{N}\right)\right)^{*}}\left\|u_{n}\right\| .
\end{aligned}
$$

Hence, $\left(u_{n}\right) \subset \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ is a bounded sequence. This way, passing to a subsequence (still denoted in the same way), we can suppose that there exists a positive function $u_{1} \in \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ such that

$$
u_{n} \rightharpoonup u_{1} \quad \text { weakly in } \mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right), \text { as } n \rightarrow \infty
$$

Lemma 4.1 implies that u_{1} is a solution of problem (P) with $\lambda=0$.
We will show now that $u_{0} \neq u_{1}$; to do this, we will prove that $I\left(u_{0}\right) \neq I\left(u_{1}\right)$.
In fact, by Lemma 5.2 there exist two possibilities: if $u_{n} \rightarrow u_{1}$ strongly in $\mathcal{D}_{a}^{1, p}\left(\mathbb{R}^{N}\right)$, then

$$
I\left(u_{1}\right)=\lim _{n \rightarrow \infty} I\left(u_{n}\right)=c_{1}>0>c_{0}=I\left(u_{0}\right),
$$

that is, $u_{1} \neq u_{0}$. On the other hand, if $I\left(u_{1}\right)=I\left(u_{0}\right)=c_{0}$ and

$$
c_{1}=\lim _{n \rightarrow \infty} I\left(u_{n}\right) \geqslant I\left(u_{1}\right)+J_{\infty}
$$

then

$$
c_{1}=\lim _{n \rightarrow \infty} I\left(u_{n}\right) \geqslant I\left(u_{1}\right)+J_{\infty}=I\left(u_{0}\right)+J_{\infty}=c_{0}+J_{\infty},
$$

which is a contradiction to Lemma 5.3. The theorem is proved.

References

[1] C.O. Alves, Multiple positive solutions for equations involving critical Sobolev exponent in \mathbb{R}^{N}, Electron. J. Differential Equations 13 (1997) 1-10.
[2] M. Badiale, G. Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Ration. Mech. Anal. 163 (2002) 259-293.
[3] A.K. Ben-Naoum, C. Troestler, M. Willem, Extrema problems with critical Sobolev exponents on unbounded domains, Nonlinear Anal. 26 (1996) 823-833.
[4] H. Berestycki, P.L. Lions, Nonlinear scalar field equations I: Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983) 313-345.
[5] G. Bianchi, J. Chabrowski, A. Szulkin, On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent, Nonlinear Anal. 25 (1995) 41-59.
[6] L. Boccardo, F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992) 581-597.
[7] H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983) 437-477.
[8] H. Brézis, L. Nirenberg, A minimization problem with critical exponent and nonzero data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16 (1989) 129-140.
[9] L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequalities with weights, Compos. Math. 53 (1984) 259-275.
[10] P. Caldiroli, R. Musina, On the existence of extremal functions for a weighted Sobolev embedding with critical exponent, Calc. Var. Partial Differential Equations 8 (1999) 365-387.
[11] D.M. Cao, G.B. Li, H.S. Zhou, Multiple solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 1177-1191.
[12] F. Catrina, Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence and nonexistence and symmetry of extremal functions, Comm. Pure Appl. Math. 54 (2001) 229-258.
[13] K.S. Chou, W.S. Chu, On the best constant for a weighted Sobolev-Hardy inequality, J. London Math. Soc. (2) 48 (1993) 137-151.
[14] F. Cîrstea, D. Motreanu, V. Rădulescu, Weak solutions of quasilinear problems with nonlinear boundary condition, Nonlinear Anal. 43 (2001) 623-636.
[15] P. Clément, D.G. de Figueiredo, E. Mitidieri, Quasilinear elliptic equations with critical exponents, Topol. Methods Nonlinear Anal. 7 (1996) 133-170.
[16] P. Clément, R. Manasevich, E. Mitidieri, Some existence and non-existence results for a homogeneous quasilinear problem, Asymptot. Analysis 17 (1998) 13-29.
[17] E. diBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983) 827-850.
[18] W.Y. Ding, W.M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Ration. Mech. Anal. 91 (1986) 283-308.
[19] J. Garcia Azorero, I. Peral Alonso, Multiplicity of solutions for elliptic problems with critical exponent or a nonsymmetric term, Trans. Amer. Math. Soc. 323 (1991) 877-895.
[20] N. Ghoussoub, C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc. 352 (2000) 5703-5743.
[21] E.H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. 118 (1983) 349-374.
[22] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case I, Rev. Mat. Iberoamericana 1 (1985) 145-201.
[23] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case II, Rev. Mat. Iberoamericana 1 (1985) 45-121.
[24] E.S. Noussair, C.A. Swanson, J.F. Yang, Quasilinear elliptic problems with critical exponents, Nonlinear Anal. 20 (1993) 285-301.
[25] A.M. Piccirillo, R. Toscano, Multiple solutions of some nonlinear elliptic problems containing the p-Laplacian, Differential Equations 37 (2001) 1121-1132.
[26] V. Rădulescu, D. Smets, Critical singular problems on infinite cones, Nonlinear Anal. 54 (2003) 1153-1164.
[27] D. Smets, A concentration compactness lemma with applications to singular eigenvalue problems, J. Funct. Anal. 167 (1999) 463-480.
[28] G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976) 353-372.
[29] J. Tan, J. Yang, On the singular variational problems, Acta Math. Sci. Ser. B 24 (2004) 672-690.
[30] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992) 281-304.
[31] Z.-Q. Wang, M. Willem, Singular minimization problems, J. Differential Equations 161 (2000) 307-320.

[^0]: * Corresponding author.

 E-mail addresses: ronaldo@mat.ufmg.br (R.B. Assunção), carrion@mat.ufmg.br (P.C. Carrião), olimpio@ufv.br (O.H. Miyagaki).
 ${ }^{1}$ Supported in part by CNPq-Brazil.
 ${ }^{2}$ Supported in part by CNPq-Brazil and AGIMB-Millennium Institute-MCT/Brazil.

