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Abstract

In this work we consider existence and multiplicity results of nontrivial solutions for a class of quasilinear
degenerate elliptic equations in RN of the form

—div[|x| 7% |Vu|P2Vu] 4 alx | TCTDP 1 P2y = 7P 0972 4 (P)

where x e RV, 1 < p <N, g =q(a,b)=Np/[N — p(a+1—b)], A is a parameter, 0 < a < (N — p)/p,
a<b<a+1l,and f € (LZ (RN))*. We look for solutions of problem (P) in the Sobolev space D;’p(RN)
and we prove a version of a concentration-compactness lemma due to Lions. Combining this result with the
Ekeland’s variational principle and the mountain-pass theorem, we obtain existence and multiplicity results.
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1. Introduction and main results

In this work we consider existence and multiplicity results of nontrivial solutions for a class
of quasilinear degenerate elliptic equations in RY of the form

— div[|x |7 |Vu|P~2Vu] + Alx| TP PRy = (x| TP )+ f, (P)

where x e RV, 1 < p<N,q=gq(a,b)=Np/[N — p(a+1—>)], A is a parameter, 0 < a <
(N—=p)/p,a<b<a+1,and f e (L] (R"))*, dual space of

LZ(RN) ={u:RY > R: 5||x|_bu|z = / x| 789 u|? dx < oo}
RN

Equations of this form arise in several models (see, e.g., [2,4,14,17,31]). For another version of
problem (P), we cite Clément et al. [15], who proved, for example, the Brézis and Nirenberg’s
result [7] for the operator in the radial form. (See also Clément et al. [16].)

We look for solutions of problem (P) in the Sobolev space D}l"" (RV) defined as the comple-
tion of the space Cgo(RN) endowed with the norm ||u|| = [f]RN |x| =% |Vu|P dx]V/P.

The starting point for the variational approach to these problems is the well known Caffarelli,
Kohn and Nirenberg’s inequality [9]. (See also Catrina and Wang [12].)

We begin by treating existence results of positive solutions for problem (P) with f = 0, which
has a variational formulation for the parameters in the specified intervals; specifically, we can
formulate the following minimization problem with constraints:

S(a,b,\) = inf  {E(a,b,x,u) = |Ix17Vul? + 2 lx|7@Du|P: | x| 7Pul? =1},
0£ueDY? (RV) P P 1

ey

Using [9] we can guarantee that S(a, b, 1) is a positive constant.

The first result is presented in the following theorem. In its statement, we use the notations:
S(a,b) = S(a, b,0), and given a function v(x), we define the dilation by v’ (x) = t*v(tx), where
k=[N —(a+1)pl/p.

Theorem 1.1. Let 1 <p < N,0<a< (N —p)/pandq=q(a,b)=Np/[N — p(a+1—-D>D)].
Then there exists a minimum u € D;’p (RN) for S(a, b, L) provided that one of the conditions
below holds:

() as<b<a+1land —-S(a,a+1) <r <0,
(i) a<b<a+1and0 < A,
(iii)) O <a=>b and 0 < X small.

After the pioneering work of Brézis and Nirenberg [7], several researchers have dedicated to
study variants of problem (P) with f = 0 among which we cite [3,5,19,22,24]. For the singular
problems in bounded domains we would like to mention [20]. In R¥, Lions [23] and Lieb [21]
proved the existence of a minimum to S(a, b) in the case p =2,a =0, and 0 < b < 1. Chou and
Chu [13] studied the existence of a minimum for S(a, b) in the case p =2,a <b <a + 1, and
A = 0. On the other hand, both proved that the minimum is not attained in the case p = 2, and
b =a + 1. Lions [22] treated the existence of a minimum in the case p =2, a =0, b =0 and
—S(0, 1) < X < 0, while Wang and Willem [31] considered the singular problem (P) with f =0
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and p = 2. They solved completely the problem of compactness of the minimizing sequences for
S(a, b) and they obtained a precise estimate to the noncompactness of the minimizing sequences.
We remark that our result does not follow directly from the case p = 2, because we obtained only
an inequality (Lemma 2.2) for the estimate of the noncompactness of the minimizing sequences
for S(a, b, ), and by a result of Smets [27, Example 2.3] there is no equality. However, even
with a weaker estimate it is still possible to prove the relative compactness of the minimizing
sequences. Our result generalizes the approach of Wang and Willem [31].

Remark 1.1. For S(a, b) as well as for S(a, b, A) the ground state solutions are positive in RN
and are differentiable everywhere except the origin. These facts follow from the classical regu-
larity theory of elliptic equations.

For our next result, given a function f € (LZ (RM))*, we prove the existence of two nontriv-
ial solutions for problem (P) with A = 0. We recall a result of Pohozaev that, for a =0, b =0,
g =2N/(N —2) and f =0, in general this problem does not have solution in star-shaped do-
mains. However, for a =0, b =0, and f £ 0 problem (P) with A = 0 always has a solution in
bounded domains by a result of Brézis and Nirenberg [8]. Tarantello [30] extended the results
in [8], obtaining existence of two positive solutions for problem (P) with A = 0, still in bounded
domains. For unbounded domains see, e.g., [1,11] and references therein. For the singular op-
erators, Radulescu and Smets [26] treated the case 0 < a <2, b =0, and p = 2 in unbounded
conic domains, presenting a different type of noncompactness, as mentioned by Caldiroli and
Musina [10]. Finally we mention the paper [25] for some multiplicity results for the subcritical
singular problem in bounded domains.

Theorem 1.2. Suppose that 1 < p <N, 0<a < (N — p)/p and a < b <a + 1. Then, for
every function g € (LZ (RM)Y* and g > 0, there exists a real number ey > 0 such that, for every
0 < & < &g, problem (P) with . =0 and f = eg has at least two positive solutions.

In our case we treat problems involving exponent p, not necessarily p = 2, and we consider
problem (P) with A = 0 and singularities in the operator as well as in the nonlinearity. Technically,
there are several difficulties to prove existence and multiplicity of solutions of problem (P) with
f =0or i =0, because the usual methods of the calculus of variations do not apply directly. The
first difficulty is associated to the space D},’P (R™), which is not a Hilbert space in the case p # 2.
Moreover, the differential equation involves the critical Hardy—Sobolev exponent, bringing the
question of the lack of compactness in the immersion DIP RNy s LI®RN).

Addendum. After completing this paper we learned that related results with Theorem 1.1 have
been independently obtained by Tan and Yang [29].

2. Minimizing sequences for S(a, b, 1)

To prove the existence of solution to the problems stated in Theorem 1.1, we have to show
the existence of a minimum for the Lagrange multipliers S(a, ) and S(a, b, 1). However, since
S(a, b) = S(a, b, 0), it suffices to treat the existence of a minimum for S(a, b, 1).

In order to prove that S(a,b, ) is attained, we consider an arbitrary minimizing se-

quence (un) C DaP ®N) for (1). Since (u,) C DaP (RY) is bounded, we can suppose that
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u, — u weakly in D;’p(RN) and u, — u a.e. R for some u € D;’p(RN). Moreover, we have
E(a,b, ), u) <liminf, . E(a,b, ., u,) — S(a,b,r).

Clearly, the problem of finding minimizers to S(a, b, A) is invariant by dilation. The next
step consists in proving that the sequence (u,) C D};p (RV) is relatively compact up to dilation.
Before we do this, however, we need some preliminary results.

The proof of the following lemma can be adapted from the similar result presented in [31].

Lemma 2.1. Let a € R be such that 0 < a < (N — p)/p. We define the function g:[0, (N —
p)/p)) — Rby g(a) = E(a,a,0,), where it =u/||x|“ulg, u(x) = [1 + |x|P/(P=D]=N=p)/p
and g = q(a,a) = Np/(N — p) = p* (the critical Sobolev exponent). Then g'(a) < 0 for a €
(0, (N = p)/p) and g'(0*) = 0.

The following lemma is crucial for our work. To state it, we denote by M (R") the space of
positive, bounded measures in RN

Lemma 2.2. Let 1 <p <N, 0<a<(N—-p)/pa<b<a+]l —S@a+1)<iandq=
q(a,b)=Np/[N — p(a+1—Db)]. Let a sequence (u,) C D,ll’p(RN) be such that are valid the
following convergences:

(1) up — u weakly in D;’p(RN),

@) |1xXI7*V up —w)|? + Alx| =D, — w)|P — y weakly in M(RV),
3) 1xI7P @, — u)|9 — v weakly in M(@RN),

4) up, —> uae inRY,

We also define the measures of concentration at infinity

Voo = hm lim sup / %] 70 |u, |7 dix,
R—00 p—oo
x| =R

Voo = hm hmsup|: / x|~ | Vu,|P dx + 1 / |x|_(“+1)p|un|pdx:|.

R—00 p—oo

xi>R xI>R
Then
||v||1’/‘1g[s(a,b,x)]_luy”, (2)
V29 < (S, b, )] Yoo )

timsup| x|~V |7 4 [ be| =Dy [P > 1617 Vu|) 4+ 2= Vu ) lly I+ yoo, 4)
n—od
tim sup| be|~un | = [1x17"u]! + v + veo. Q)
n—oo

Moreover, for u(x) =0, ifb < a~+1and |[v||P/1 = [S(a, b, )]~ |y |, then the measures v and y
are concentrated at a single point.

Proof. Suppose initially that u = 0. Choosing h € C§°(RY) we have (hu,) C DLP®RM).
Arguing as in [31], and using inequality

lx +yI? <A +9o)x|P + C(e, p)lyl”, ©)
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valid for x, y € Rfand 1 < p < oo with ¢ > 0 fixed, we obtain

r/q
[ / |x|—bq|hun|"dx}
RN

1 _ _
gm[/m “p|hVun|pdx+A/|x| (”+1)p|hun|pdx:|
RN RN

Cep) / x|~ |u, VA|? dx + L/ur“mhvunv’dx. %
S(a,b, ) S(a,b, 1)
RN RN

Since ¢ > 0 is arbitrary, passing to the limit we obtain inequality (2).

To prove inequality (3) and that the last claim of the lemma, we follow the arguments in [31]
and use the same cutoff function used there.

Now we consider the general case, in which possibly u # 0; in this case we define v, = u, —u
and so v, — 0 weakly in D;’p (RN). Here our result differs from that in [31], because for p # 2,
in general we do not have equality. Also, we follow some ideas of Smets [27].

From Brézis-Lieb lemma applied to a nonnegative function h € C§® (RM), we have

7 |7 = v x| Jul? - weakly in M(R™). ®

Using these weak convergences in the space M(RY), the inequality (2) in the general case

follows from the correspondent inequality for the sequence (v,) C D(i’p (RM).
Following up, we have

/|x|*“P|an|"dx+x / x|~ @FDP |, |P dx

|x|>R |x|>R
- x| 79 |V, |P dx — A x|~ @TDP |, | P dx
|x|>R |x|>R
<{ / P Vit | dx + A f |x|—(“+“1’|un|"dx]
|x|>R |x|>R

+C(8,p)|: f x| |Vul|P dx + A / |x|_(a+1)p|u|pdxi|

|x|>R [x|>R

where we used inequality (6). Taking the limit at the expression above, we have

R—00 p—soo

lim limsup|: / x| |Vv,|P dx + A / |x|_(”+l)”|v,,|pdx:| = Yro.
[x[>R |x|>R
Using Brézis-Lieb lemma, we have
lim lim sup / 1] 729 v, |7 dx = Vo

—>00 p—00
|x|>R
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This way, inequality (3) follows from the correspondent inequality verified for the sequence
L,
() C Dg’” (RY).
Now we prove inequality (4). Since v is a finite measure, the set

D= {x eRV | v({x}) >O}

is at most denumerable. Let ¥; € C;°(B(r;, x)) be a positive function such that ¥ (x) = 1 =
supgn V¥, where r; — 0 as j — oo.
Given x € D and using once more inequality (6), we obtain

y({x}) = lim y(¥;) = lim limsup|:/|x|_“p|V1pj(un—u)|pdx
J—00 J—>0 n—soo "
R

+x/ |x|<“+”P|w,~<un—u>|’]dx}

RN

rlq
> S(a,b,k)|:.lim limsup/ x| 72y (u — u)‘qui|
J7X0 n—oo
RN
= S(a, b, v (ix})".
Define some positive, finite measure 7 € M(R") such that
||x|_“Vun|p + k||x|_(“+1)un|p —~ 7 weakly in M(RV).

For the function y; € C°(B(rj, x)), we have

/le_ap|1/ij(un—u)|pdx+k/|x|_(a+1)p|1//j(un—u)|pdx
RN RN

—f|x|—“”|w,-wn|”dx—xf|x|—<“+1>f’|wjun|"dx

RN RN
<e“|x|“Pw,;|Vun|de+A/|x|(“““’wjmnwdx}
RN RN
+c<e,p>[/|x|“%|Vu|ﬁdx+x/|x|‘“*”Pvfﬂmﬁdx}.
RN RN

Letting r; — 0, we obtain

y({x}) =7({x}), xeD.

Since the application v +— fRN h|x|~%P|v|P dx is convex in LP(RM) for a positive h €
Cgo(RN ), it follows that it is also weakly sequentially lower semicontinuous. Hence, y >
x| 7P |Vu|P + A||x|~@*+Dy|?. Using the orthogonality of |x|~”|Vu|? with respect to the Dirac
measures, we obtain

7 = 1x 1P \Vul? 4+ a|1x 17T Du]” 4yl
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This way,
1imsup/[|x|‘“f’|wn|f’]<1 —wR>dx+A/[|x|‘<”+”1’|un|"](1 — Yr)dx
n—oo RN RN
>/[lxr“"wm"](l—wR>dx+Af x| 7@TDP P (1 — yrr)dx + |yl 9)
RN RN

where, for R > 1, we define the cutoff function ¥z € C*®°(R") such that ¥z (x) = 1 for |x| >
R+ 1, Yr(x) =0 for |x| < R, and furthermore, 0 < Y¥z(x) < 1 for x € RV.
Hence, we get

limsup|:/lxl_ap|Vun|pdx+)»/|x|_(a+l)p|un|pdx:|

n—00
RN RN

n—oo

>1imsup[/|x|“P|wn|f’wdx+x/|x|<““>P|un|f’wdx}
RN RN

+ lim [f|x|‘”f’|wn|f’[1—x/fR]dfo|x|‘<“+””|un|"[1—w1e]dx}
n—o

RN RN

n—o00

- limsup[ / X1 Vit | P dx + x/ x|~ DP g Py dx] + 70—yl
RN RN
Passing to the limit as R — oo, we have

limsup|:/|x|_ap|Vun|pdx+)»/|x|_(a+l)p|u,,|pdx:|
n—oo
RN RN

R—00 p—soo

= lim limsup|: / x|~ |Vu|P g dx +,\[ [x|~@FDP Py dx:|
RN RN
+ lim 7(1 =)
=Yoo + 171 2 Yoo + Ix[77|Vaul? + Ax |~ PPl + 1y .
From this, it follows that
1igs;p\|x|—“an|§ +x||x|—<“+1>unyi > ||x|_“Vu|£ +/\||x|—<“+‘)u|§ + 11yl + Voo
and the inequality (4) is proved.

Finally, we prove equality (5). For every real number R > 1, using Brézis-Lieb lemma we
have

n—o00 n—o00
RN

limsup/ |x|_bq|un|qu=1imsup|:/WR|x|_bq|un|qu+/(1—WR)le_bqlun|quj|
RN RN

+ lim /(1—1//R)|x|_bq|u|qu.
n—oo
]RN
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Letting R — oo in the expression above, and using Lebesgue theorem, we obtain

lim limsup/ %1709 |1 |7 dx = voo + IV + | 1X] 70 ul Z

R—00 pn—oo
RN

which implies equality (5). This concludes the proof of the lemma. O
3. Conclusion of the proof of Theorem 1.1

Proof of Theorem 1.1(i). Let (,) C D7 (RV) be a minimizing sequence for S(a, b, 1). Let
B(x,r) denote the open ball with radius r centered at x € R For every number n € N, there
exists a number £, € RT such that

1
/ e 9 dx = / el = (10)
B(0,1,) B(0,1)

where we used the dilation v, (x) = ui{’ (x).
By hypotheses and using the invariance of the problem by dilation, we have

[l vn, = [1¥17Pun], =1

and

R L I R L [ M LY [N A P

— S(a,b,)) asn— oo.

Since the sequence (v,) C D;’p (RV) is bounded, passing to a subsequence, still denoted in

the same way, we can suppose that there exists a function v € Dé’p (RN) such that are valid the
hypotheses of Lemma 2.2.
By Lemma 2.2, we have

Sa,b,2) = [lx1 Vol P+ &[T V[P 4 [y I+ e, (1n
1= ||x|_bv|g+||v||+voo. (12)

From inequalities (2), (3), (11) and from the definition of S(a, b, 1) we deduce that

r/q
S(a,b,k)}S(a,b,A)I[/|x|_bq|v|qui| +||v||”/q+v§o/q}.
RN

Using equality (12) we obtain three mutually excluding situations.

By equality (10), it follows that vs, = 0.

Suppose now that v = 0; we will get a contradiction. In fact, equality (12) implies that
[vil = 1.

From inequality (11), we have

L=l = P € — € ———— Iy <1

and this means that Yoo =0 and S(a, b, 1) = ||y |l.
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Supposing that b < a 4+ 1 and applying Lemma 2.2 once more, we deduce that the measures
v and y are concentrated at a single point xo € R". Such point is not the origin, because of
equality (10).

From this point on, we divide our argument in two cases.

Case a < b. In this case we have g < p*. By the Rellich theorem we conclude that ||v| = 0.
But we have already established that ||v|| = 1. The contradiction leads to the situation in which
vl =0and [|x|Pv|d = 1.

Case a = b > 0. In this case we have ¢ = p*. Given r € RT, we define the expression

A= lim fB(xo,r) X7V on|? dx + )‘fB(xo,r) x| 0P, |P dx

n— 00 [fB(xo’r) |x|~9P" v, |P" dx]P/P*

Then A = ||y || = S(a,a,)r). Letn € Cgo(B(xo, r)) be a function such that n = 1 in B(xg,r/2)
for r € R sufficiently small. Then

fB(xO,r) |V77v”|p dx + )“fB(xo,r) |nv”|pdx

A= lim k . > S=5(0,0),
n—00 U‘B(XM) [nu,|P* dx]P/P
because
lim Ix| =@t Dy, 1P dx = 0.
n—>oo
B(xo,r)

It follows that S(a, a, X)) = A > §. We recall that § is the best constant in Sobolev inequality [28].
On the other hand, by Lemma 2.1 we know that S = g(0) > g(a) = S(a,a) > S(a, a, A) if
—S(a,a+ 1) < A <0. The contradiction leads again to the situation ||v|| =0 and ||x|’bv|g =1.
In any case there exists a minimum to S(a, b, A). This proves item (i) of Theorem 1.1. The
proof of item (ii) is similar. O

Proof of Theorem 1.1(iii). Following the same ideas of the previous proof, also for 0 <a =b
and A > 0 we obtain three mutually excluding situations. In this case we proceed as we did in
item (i) of Theorem 1.1 and we obtain

S<llyll=S(a,a,n).

On the other hand, since S(a, a, 0) < §, there exists 0 < & < 1 such that, for 0 < A < &, we still
have S(a,a, ) <S.

The only possibility left is voo =0, v =0 and ||x|_bv|q = 1. Hence, v € Dcl,’p(RN) is a mini-
mum to S(a, b, 1) and v, — v in DEYPRY). O

4. Nonautonomous perturbation problems: the first solution

In this section, we are going to use variational techniques. This way, associated to the prob-
lem (P) with A = 0 we have the Euler—Lagrange functional / :Dcl,’p (RY) — R given by

1 1
I(u)z—/|x|_ap|Vu|pdx——/|x|_bq|u|qu—/fudx, (13)
P, aJ)

RN
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which is well defined for the parameters in the previously specified intervals.
Using the duality product, we define a weak solution of problem (P) with A =0 as a critical

point for the functional 7, that is, as a function « € Da” (RV) such that
0=(I'w), ¢)= [ x|~ |VulP2VuVe dx — f el ul 1 ug dx — f f$dx,
RV RN RV
Vo € CO(RY).
Lemma 4.1. Let (u,) C Dé’p (RN) be a Palais—Smale sequence for the functional I at the level

c € R ((PS),, in short), that is, a sequence such that

lim I(up)=c and  lim ||1/(u,,)||D;,p(RN)* =0. (14)

n—>oo
If u, — ug weakly in D;’p (RN) for some ug, then ug is a weak solution for problem (P) with
A=0.
Proof. We consider an arbitrary function ¢ € Cg° (R™) and denote its support by w. Then

(I'up), ¢)— 0 asn— oo, (15)
Claim 1. |x|™%Vu, — |x|™*Vu a.e. in RY.

We are going to postpone the verification of this claim.
Since the sequence (|x|~%?|Vu|?Vu,) C L? (RV) is bounded (1/p 4+ 1/p’ = 1), by Claim 1
we have

lim /|x|_‘”’|Vun|p_2Vun~V§dx:/|x|_”p|Vu0|p_2Vu0-V§ dx, (16)
n—0oo
w w

because |x|7¢V¢ € LP(RV).

On the other hand, the boundedness of the sequence (u,) C D,i’p (R™) and the Caffarelli,
Kohn and Nirenberg’s inequality imply that lx|~2@=Dy, |92y, is bounded in L‘/(RN ), where
1/q + 1/q’ = 1. Passing to a subsequence (still denoted in the same way), we have

lim / 1170 1 |92 U dx = / x| 70 uo | uoc dx, (17)
n—oo
w w

because |x|~?¢ € L4(RN) and u, — ug a.e. in RV.
Combining Egs. (15), (16) and (17), it follows that (I’(u¢), ¢) = O for every function ¢ €
Co° (RY). By using a density argument the lemma is proved. [

Proof of Claim 1. The proof was partially inspired in the works of Boccardo and Murat [6], and
Ghoussoub and Yuan [20]. We begin by defining the family of functions

l(s) = K if |s] <k,
K=V ks/ls| if Is| > k.
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Affirmative 1. There exists a constant C € R™ such that the following inequality holds:

/ el =2 [lun 19 2u — )92 u ] vt — ) dx < C7. (18)
RN

The proof of this affirmative follows from the Holder’s inequality and by combining the bound-
edness of the sequence (u,) C D;’p (RN) and the continuity of the inclusion D},’p RY) —
LI @®RM).
Passing to a subsequence, if necessary, still denoted in the same way, we get u,, — u weakly
in LY (RM). Since f € (L] (R"))*, it follows that
o(1) = (I"(up) — 1 (W), T (un — u))

= / (1= [Vt [P~ Vit — x|~ |V ul P2V, Ve — ),

RN
- / 11789 (Jut 197200 — |l ™% 0) T (1t — ) dx — / fe(up —u)dx,
RN RN
where (-,-), denotes the usual inner product in R . Passing to the limit and using inequality (18),

we have

lim sup /(|x|*”P|Vun|P*2wn — x| 7P| VulP VU, Vi (uy — ), dx < CK9.
n—o0
RN
Now we define the sequence of functions

en = {1X17 |Vitn |2 Vaty = x| 77 |Vul P2V, Ve, — w))

e*

It follows that e, (x) > 0 by a well-known inequality. (See Ghoussoub and Yuan [20, Lemma 4.1].)
Affirmative 2. For every n € N we have fRN e, (x)dx < o0.

The proof of this affirmative follows by applying the Holder’s inequality in

/<|x|_“p|Vun|”_2Vun — |x|7P|\Vu|P "2V u, Vi (u, — u))e dx.
RN

Given m € N, we denote £2,, = B(0, m) and we write RY = U;'le 2. For0 <0 <1 and
k € R fixed, we split £2,, in

A ={xeQullup—ul <k} and BE={xeQul|lu,—ul>k}
For k € R fixed, from the convergence in measure we have

lim |BY| =o0. (19)

n—oo
By the uniform boundedness of the sequence (e,) C LY(RY), we have
lim sup / eg dx < (Ck)el.s?mll*e.

n—oo
m
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Fixing m € N and letting k — 0, it follows that eZ — 0in L' (£2,,). Finally, from the well-known
inequality [20, Lemma 4.1], passing to the diagonal sequence it follows that

|x|7“Vu, — |x|°Vu ae.inRV.

This concludes the proof of the claim. O
Now we prove the existence of the first solution.

Lemma 4.2. There exists a real number &1 > 0 such that problem (P) with A = 0 has at least one
solution ug if f %0 is such that ”f”(LZ(RN))* < &1 with I (ug) < 0. Furthermore, if f >0, then
ug is a positive solution.

Proof. Fixing ¢ € (0, 1), from Young’s as well as Caffarelli, Kohn and Nirenberg’s inequalities,
we write

1> (L= Y e = clue - ¢
() = ;_? flull¥ — Cllull? — €||f||(Lz(RN))*'

Hence there exist real numbers R > 0, &1 > 0 and § > 0 such that if ||u|| = R and ||f||(LZ(RN))*
< &1, then I(u) >6.
Defining
co=inf{I(u)|ue DIP®RN) and |Ju| < R}, (20)
and using f 0, it follows that cg < 1(0) =0.
Applying Ekeland’s Variational Principle there exists a bounded (PS)., sequence (u,) C
DLP (RN such that [|uy, || < R, and for some ug € Dy” (RV),
up —ug  weaklyin DoP®RY) and w, — up ae. in RV, (21)

Furthermore, from Lemma 4.1 it follows that u( is a weak solution for problem (P) with A = 0.
Using I’ (up) = 0 and Fatou lemma, we obtain

1 1 1
co=liminf I (u,) > — — — [x|7P|VuolPdx — 1 — — fuodx = I (ugp).
n—o0 p q q
RN RN

Since |lug|| < R, it follows that I (ug) = co. Finally, if f > 0, the function u( can be replaced by
lup|, and we get a positive solution. This concludes the proof. O

5. The existence of the second solution
Let the functional J : D},’P (RV) — R be defined by

1 1
J(u)z—f|x|_ap|Vu|pdx——/|x|_bq|u|_qu. (22)
pRN qRN

We also define the Nehari manifold V = {u € D;’p (RN) | (J'(u), u) = 0}, which is nonempty.
Indeed, let vy € Dy’ (RN) \ {0} be fixed and A € R*; we define the function h(A) =
(J'(Avg), Avg). Since p < g, we have that for A big enough it holds 2(1) < 0; on the other
hand, for A near zero it holds /4 (A) > 0. Then, there exists Ag € R such that 4(Xg) = 0.
Denoting by Js the infimum of the functional J in V, that is, Joo = inf{J(u) |u € V}, we
have the following result, whose proof follows by using some arguments of Ding and Ni [18].
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Lemma 5.1. There exists it € V such that Joo = sup; 5 J (ti) = J (i) = (5 — ) [S(a, b)]4/@~P).

Proof. Initially we will show that
1 1

Joo > (; _ ;)[S(a, b)) (23)

Fixing ¢ € Dy’ (RV) \ {0}, we define the function

tP 14
k(t)EJ(t¢)=—/IXI*“”IvcbI”dx——/lefb"|¢|qu
pRN q]RN

which has a global maximum at (. It follows that
1 1 -
inf  supJ(ip) = (— - —)[S(a, b7/ 1P) (24)
0£peDy? RN) 120 P q

We also note that for every u € V we have top =to(u) = 1.
So,

1 1 _
Jo=infsupJ(u)>  inf  supJ(ig) = (— - —)[S(a, )],
ueV >0 0£peDEP RN) 120 P 4q
Using Theorem 1.1, we can guarantee that S(a, b) defined in (1) is attained by a function
U e DLP(RY). Defining the function ii(x) = [S(a, b)]/@~P U (x), we have it € V and
1 1 _
oo <J (@) = (— ~ —)[S<a, b)), (25)
JZE)

which concludes the proof of the lemma. O

Next we state an alternative description for Palais—Smale sequences.

Lemma 5.2. Suppose that (u,) C Dcl,’p (RN is a Palais—Smale sequence for the functional I at

the level c € R. If u,, — ug weakly in D,i’p(RN) for some uq, then one of the following alterna-
tives holds:

(1) up, — ug in DyP @®RN).
() ¢ > I(ug) + Joo.

Proof. Let (u,) C D}z’p (R™) be a Palais—Smale sequence for the functional /I at the level c. We
define vy, = un — uo. It follows that v, — 0 weakly in D'” (RV), then
lim | fv,dx=0
n—oo
RN

and

I(vp) = J(vn) +o(1). (26)
Using Caffarelli, Kohn and Nirenberg’s inequality and Brézis-Lieb lemma, as well as equal-
ity (26) and Lemma 4.1, we get

c+o(l) =1(up) =1(uo) +1(vy) +o0(1) =1(uo) + J(vy) +o0(1) 27)
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and also
o(1) =(I'(un), un) = (I'(uo), uo) + (I'(n), va) + 0(1) = (J' (vn), va) + 0(1). (28)
Now we have two possibilities. If v, — 0 strongly in Dy” (RV), then u, — ug strongly in
Di’p(RN) and also
c= lim I(u,) =1 (up).
n— oo
In this case, the lemma is proved.

On the other hand, if v, 4 0 in D;’p (RN ), then from the weak convergence v, — 0 in

D;’P (RV), we can suppose that |v,|| — p > 0 (possibly after passage to a subsequence, still
denoted in the same way). So, using the limit (27), we get

¢ =1(uo) + J(v) +o(1). (29)

It is easy to see that the following claim implies the lemma.
Claim. J (v,) > Joo + 0(1).
To prove the claim we define

= [ Ve dx = o, and = [ L7 dx >0
RN RN
and we write
Un E(J/(vn), v,,):an —Bp—>0 asn— o0.
Let t € RT; then there exists a sequence (,,) C R™ such that
lim t,=1 and (J'(t,v), tyva) =0. (30)

n—o0

Indeed, writing # = 1 4+ t where t > 0 is small enough and using the definitions of w,, oy,
and B, we have

(J/(tvn)s tvn)zan(l +0)P = B(1+ 1) =an(p — @) T + y0(t) + pn (1 + 7).

Since by hypothesis lim,_, » o, = p? > 0, it follows that, for n big enough we can define the
sequence

_ 2
o, =———>0 asn— oo.
an(q — p)
So,
(/A4 m)vn, A+ 1)va) <0 and  (J'(1 = 7)va, (1 = Ty)va) > 0. 31)

In fact, rewriting the Gateaux derivative of the functional J, we get

2q
(J/(l + ) vn, (1 + Tn)vn) = =2lpunl + pun + ——— [nlpn + €no(tn) + pno(pan)
an(qg — p)
= K,.

If u, > 0, then K,, < 0. Similarly, if i, < 0, then K,, > 0.
This proves the first part of inequality (31). The other one is similar.
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In this way, we can choose 1, € (1 — 1,,, 1 4+ 1,,) and we get a sequence (,;) C R verifying (30).
Using this sequence, it follows that

11—t 11—z
J () = J (tavn) + ( p s )an - < . s )ﬂn = J (tava) + 0(1) > Joo + 0(1)
and this proves the claim. O

Our next lemma compares the minimum obtained previously with a minimax type level.
Fix it € DL'? (RV) such that the conclusion of Lemma 5.1 holds.
Since p < g, there exists 9 € R* such that

J(u) <0 and I(tu) <0 ift>1

We define
c1 = inf sup I (u), 32)
yePuey
where

P ={y ec(0,11; D" ®R")) | y(©) =0and y(1) = roi}.

Lemma 5.3. Let ¢g and ¢ be defined by (20) and (32), respectively. Given a function g > 0 such
that ”g”(LZ(RN))* = 1, there exist real numbers R > 0 and &y = &,(R) such that c¢; < co + Joo

for every function f = eg such that € < &>.
Proof. First of all we claim that

Joo+co>0 (33)

if the real numbers ¢; > 0 and R > 0 given at the proof of Lemma 4.2 are small enough.
Indeed, let up be a solution of problem (P) with A =0 obtained from Lemma 4.2. Applying
Holder’s and Young’s inequalities to the expression of ¢g in terms of ug, we have

1 1 _ 1
co > <; - 5) / x| 7P| Vug|? dx — (1 - ;)||f||(LZ(RN))*||u0|| (34)
RN
> e p (1 l)p 35

where L = (1 — p/q)l/l’. Then we get

o> [Ne=Dtp—pb -Vl P (36)
02> PN D q (L @Yy

So, inequality (33) holds for ”f”(L;’(]RN))* < &1, where &1 > 0 is small enough.

To conclude the proof of the lemma it is enough to use the definition of ¢; and the following
result.

Claim. sup, > I (tu) < Joo + co for ||f||(L;I(RN))* > (0 small enough.
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Indeed, using the continuity of the functional I and 7 (0) = 0, as well as inequality (33), we get
¢’ > 0and M € R such that

Joo+co> sup I(tir) if | fllpomny: <€ <er.
1€[0,M] b

Note that

supI(Iﬁ)gsupJ(tﬁ)—M/fﬁdxzjoo—M/fﬁdx.
=M 120
RN RN

Since fRN fudx is linear in ¢ and c¢p has a term of degree p’ in &, we have

sup I(tu) < Joo + co
1>M

and this concludes the proof of the lemma. O
Conclusion of the proof of Theorem 1.2. Let &g = min{eq, g7}. By Lemma 4.2 we get a positive
solution ug € D;’p (RY) for the problem (P) with A = 0 such that co = I (ug).

On the other hand, since I (Ju|) < I (u) for every function f > 0, the mountain-pass theorem
without Palais—Smale condition guarantees the existence of a positive Palais—Smale sequence

(1n) C DY (RN) for the functional 7 at the level c;.
This implies that

L D=1 L
Cl + ;” (un)” (D;'p(RN))* ”un” + 0( ) = (Mn) - ;( (Mn)v un)

(11 p (11
> (5 g Jenll” = (1= 2 J Mgyl

Hence, (u,) C D;’p (RV) is a bounded sequence. This way, passing to a subsequence (still de-

noted in the same way), we can suppose that there exists a positive function u; € D},’p (RY) such
that

S
u, —u; weaklyinD, P(RN)Y, asn — oo.

Lemma 4.1 implies that u; is a solution of problem (P) with A =0.
We will show now that ug # u1; to do this, we will prove that I (ug) # I (u1).

In fact, by Lemma 5.2 there exist two possibilities: if u,, — u strongly in DLP(RN), then
I(u)) = lim I(u,)=c1>0>co=1(up),
n—0oo
that is, u1 # uo. On the other hand, if 7 (u1) = I (ug) = c¢ and
c1= lim I(uy) 2 1(u1) + Jo,
n—>0oo
then
cr= lim I'(up) = 1(u1) + Joo =1 (o) + Joo = c0 + Jo,
n—>0oo

which is a contradiction to Lemma 5.3. The theorem is proved. O
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