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Abstract

In this work we consider existence and multiplicity results of nontrivial solutions for a class of quasilinear
degenerate elliptic equations in R

N of the form

−div
[|x|−ap|∇u|p−2∇u

] + λ|x|−(a+1)p |u|p−2u = |x|−bq |u|q−2u + f, (P)

where x ∈ R
N , 1 < p < N , q = q(a, b) ≡ Np/[N − p(a + 1 − b)], λ is a parameter, 0 � a < (N − p)/p,

a � b � a + 1, and f ∈ (L
q
b
(RN))∗. We look for solutions of problem (P) in the Sobolev space D1,p

a (RN)

and we prove a version of a concentration-compactness lemma due to Lions. Combining this result with the
Ekeland’s variational principle and the mountain-pass theorem, we obtain existence and multiplicity results.
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1. Introduction and main results

In this work we consider existence and multiplicity results of nontrivial solutions for a class
of quasilinear degenerate elliptic equations in R

N of the form

−div
[|x|−ap|∇u|p−2∇u

] + λ|x|−(a+1)p|u|p−2u = |x|−bq |u|q−2u + f, (P)

where x ∈ R
N , 1 < p < N , q = q(a, b) ≡ Np/[N − p(a + 1 − b)], λ is a parameter, 0 � a <

(N − p)/p, a � b � a + 1, and f ∈ (L
q
b(RN))∗, dual space of

L
q
b(RN) ≡

{
u : RN → R: 5

∣∣|x|−bu
∣∣q
q

=
∫

RN

|x|−bq |u|q dx < ∞
}

.

Equations of this form arise in several models (see, e.g., [2,4,14,17,31]). For another version of
problem (P), we cite Clément et al. [15], who proved, for example, the Brézis and Nirenberg’s
result [7] for the operator in the radial form. (See also Clément et al. [16].)

We look for solutions of problem (P) in the Sobolev space D1,p
a (RN) defined as the comple-

tion of the space C∞
0 (RN) endowed with the norm ‖u‖ ≡ [∫

RN |x|−ap|∇u|p dx]1/p .
The starting point for the variational approach to these problems is the well known Caffarelli,

Kohn and Nirenberg’s inequality [9]. (See also Catrina and Wang [12].)
We begin by treating existence results of positive solutions for problem (P) with f ≡ 0, which

has a variational formulation for the parameters in the specified intervals; specifically, we can
formulate the following minimization problem with constraints:

S(a, b,λ) ≡ inf
0	=u∈D1,p

a (RN)

{
E(a,b,λ,u) ≡ ∣∣|x|−a∇u

∣∣p
p

+ λ
∣∣|x|−(a+1)u

∣∣p
p

:
∣∣|x|−bu

∣∣q
q

= 1
}
.

(1)

Using [9] we can guarantee that S(a, b,λ) is a positive constant.
The first result is presented in the following theorem. In its statement, we use the notations:

S(a, b) ≡ S(a, b,0), and given a function v(x), we define the dilation by vt (x) ≡ tkv(tx), where
k ≡ [N − (a + 1)p]/p.

Theorem 1.1. Let 1 < p < N , 0 � a < (N − p)/p and q = q(a, b) ≡ Np/[N − p(a + 1 − b)].
Then there exists a minimum u ∈ D1,p

a (RN) for S(a, b,λ) provided that one of the conditions
below holds:

(i) a � b < a + 1 and −S(a, a + 1) < λ � 0,
(ii) a < b < a + 1 and 0 < λ,

(iii) 0 < a = b and 0 < λ small.

After the pioneering work of Brézis and Nirenberg [7], several researchers have dedicated to
study variants of problem (P) with f ≡ 0 among which we cite [3,5,19,22,24]. For the singular
problems in bounded domains we would like to mention [20]. In R

N , Lions [23] and Lieb [21]
proved the existence of a minimum to S(a, b) in the case p = 2, a = 0, and 0 < b < 1. Chou and
Chu [13] studied the existence of a minimum for S(a, b) in the case p = 2, a � b < a + 1, and
λ = 0. On the other hand, both proved that the minimum is not attained in the case p = 2, and
b = a + 1. Lions [22] treated the existence of a minimum in the case p = 2, a = 0, b = 0 and
−S(0,1) < λ < 0, while Wang and Willem [31] considered the singular problem (P) with f ≡ 0
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and p = 2. They solved completely the problem of compactness of the minimizing sequences for
S(a, b) and they obtained a precise estimate to the noncompactness of the minimizing sequences.
We remark that our result does not follow directly from the case p = 2, because we obtained only
an inequality (Lemma 2.2) for the estimate of the noncompactness of the minimizing sequences
for S(a, b,λ), and by a result of Smets [27, Example 2.3] there is no equality. However, even
with a weaker estimate it is still possible to prove the relative compactness of the minimizing
sequences. Our result generalizes the approach of Wang and Willem [31].

Remark 1.1. For S(a, b) as well as for S(a, b,λ) the ground state solutions are positive in R
N

and are differentiable everywhere except the origin. These facts follow from the classical regu-
larity theory of elliptic equations.

For our next result, given a function f ∈ (L
q
b(RN))∗, we prove the existence of two nontriv-

ial solutions for problem (P) with λ = 0. We recall a result of Pohozaev that, for a = 0, b = 0,
q = 2N/(N − 2) and f ≡ 0, in general this problem does not have solution in star-shaped do-
mains. However, for a = 0, b = 0, and f 	≡ 0 problem (P) with λ = 0 always has a solution in
bounded domains by a result of Brézis and Nirenberg [8]. Tarantello [30] extended the results
in [8], obtaining existence of two positive solutions for problem (P) with λ = 0, still in bounded
domains. For unbounded domains see, e.g., [1,11] and references therein. For the singular op-
erators, Rădulescu and Smets [26] treated the case 0 < a < 2, b = 0, and p = 2 in unbounded
conic domains, presenting a different type of noncompactness, as mentioned by Caldiroli and
Musina [10]. Finally we mention the paper [25] for some multiplicity results for the subcritical
singular problem in bounded domains.

Theorem 1.2. Suppose that 1 < p < N , 0 � a < (N − p)/p and a � b < a + 1. Then, for
every function g ∈ (L

q
b(RN))∗ and g � 0, there exists a real number ε0 > 0 such that, for every

0 < ε � ε0, problem (P) with λ = 0 and f = εg has at least two positive solutions.

In our case we treat problems involving exponent p, not necessarily p = 2, and we consider
problem (P) with λ = 0 and singularities in the operator as well as in the nonlinearity. Technically,
there are several difficulties to prove existence and multiplicity of solutions of problem (P) with
f ≡ 0 or λ = 0, because the usual methods of the calculus of variations do not apply directly. The
first difficulty is associated to the space D1,p

a (RN), which is not a Hilbert space in the case p 	= 2.
Moreover, the differential equation involves the critical Hardy–Sobolev exponent, bringing the
question of the lack of compactness in the immersion D1,p

a (RN) ↪→ L
q
b(RN).

Addendum. After completing this paper we learned that related results with Theorem 1.1 have
been independently obtained by Tan and Yang [29].

2. Minimizing sequences for S(a,b,λ)

To prove the existence of solution to the problems stated in Theorem 1.1, we have to show
the existence of a minimum for the Lagrange multipliers S(a, b) and S(a, b,λ). However, since
S(a, b) ≡ S(a, b,0), it suffices to treat the existence of a minimum for S(a, b,λ).

In order to prove that S(a, b,λ) is attained, we consider an arbitrary minimizing se-
quence (un) ⊂ D1,p

a (RN) for (1). Since (un) ⊂ D1,p
a (RN) is bounded, we can suppose that
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un ⇀ u weakly in D1,p
a (RN) and un → u a.e. R

N for some u ∈ D1,p
a (RN). Moreover, we have

E(a,b,λ,u) � lim infn→∞ E(a,b,λ,un) → S(a, b,λ).
Clearly, the problem of finding minimizers to S(a, b,λ) is invariant by dilation. The next

step consists in proving that the sequence (un) ⊂ D1,p
a (RN) is relatively compact up to dilation.

Before we do this, however, we need some preliminary results.
The proof of the following lemma can be adapted from the similar result presented in [31].

Lemma 2.1. Let a ∈ R be such that 0 � a < (N − p)/p. We define the function g : [0, (N −
p)/p)) → R by g(a) ≡ E(a,a,0, ū), where ū ≡ u/||x|−au|q , u(x) ≡ [1 + |x|p/(p−1)]−(N−p)/p

and q = q(a, a) = Np/(N − p) ≡ p∗ (the critical Sobolev exponent). Then g′(a) < 0 for a ∈
(0, (N − p)/p) and g′(0+) = 0.

The following lemma is crucial for our work. To state it, we denote by M(RN) the space of
positive, bounded measures in R

N

Lemma 2.2. Let 1 < p < N , 0 � a < (N − p)/p, a � b � a + 1, −S(a, a + 1) < λ and q =
q(a, b) ≡ Np/[N − p(a + 1 − b)]. Let a sequence (un) ⊂ D1,p

a (RN) be such that are valid the
following convergences:

(1) un ⇀ u weakly in D1,p
a (RN),

(2) ||x|−a∇(un − u)|p + λ||x|−(a+1)(un − u)|p ⇀ γ weakly in M(RN),
(3) ||x|−b(un − u)|q ⇀ ν weakly in M(RN),
(4) un → u a.e. in R

N .

We also define the measures of concentration at infinity

ν∞ ≡ lim
R→∞ lim sup

n→∞

∫
|x|�R

|x|−bq |un|q dx,

γ∞ ≡ lim
R→∞ lim sup

n→∞

[ ∫
|x|�R

|x|−ap|∇un|p dx + λ

∫
|x|�R

|x|−(a+1)p|un|p dx

]
.

Then

‖ν‖p/q �
[
S(a, b,λ)

]−1‖γ ‖, (2)

ν
p/q∞ �

[
S(a, b,λ)

]−1
γ∞, (3)

lim sup
n→∞

∣∣|x|−a∇un

∣∣p
p

+ λ
∣∣|x|−(a+1)un

∣∣p
p

�
∣∣|x|−a∇u

∣∣p
p

+ λ
∣∣|x|−(a+1)u

∣∣p
p

+ ‖γ ‖ + γ∞, (4)

lim sup
n→∞

∣∣|x|−bun

∣∣q
q

= ∣∣|x|−bu
∣∣q
q

+ ‖ν‖ + ν∞. (5)

Moreover, for u(x) ≡ 0, if b < a +1 and ‖ν‖p/q = [S(a, b,λ)]−1‖γ ‖, then the measures ν and γ

are concentrated at a single point.

Proof. Suppose initially that u ≡ 0. Choosing h ∈ C∞
0 (RN) we have (hun) ⊂ D1,p

a (RN).
Arguing as in [31], and using inequality

|x + y|p � (1 + ε)|x|p + C(ε,p)|y|p, (6)
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valid for x, y ∈ R
+ and 1 < p < ∞ with ε > 0 fixed, we obtain[ ∫

RN

|x|−bq |hun|q dx

]p/q

� 1

S(a, b,λ)

[ ∫
RN

|x|−ap|h∇un|p dx + λ

∫
RN

|x|−(a+1)p|hun|p dx

]

+ C(ε,p)

S(a, b,λ)

∫
RN

|x|−ap|un∇h|p dx + ε

S(a, b,λ)

∫
RN

|x|−ap|h∇un|p dx. (7)

Since ε > 0 is arbitrary, passing to the limit we obtain inequality (2).
To prove inequality (3) and that the last claim of the lemma, we follow the arguments in [31]

and use the same cutoff function used there.
Now we consider the general case, in which possibly u 	≡ 0; in this case we define vn ≡ un −u

and so vn ⇀ 0 weakly in D1,p
a (RN). Here our result differs from that in [31], because for p 	= 2,

in general we do not have equality. Also, we follow some ideas of Smets [27].
From Brézis–Lieb lemma applied to a nonnegative function h ∈ C∞

0 (RN), we have

|x|−bq |un|q ⇀ ν + |x|−bq |u|q weakly in M(RN). (8)

Using these weak convergences in the space M(RN), the inequality (2) in the general case
follows from the correspondent inequality for the sequence (vn) ⊂ D1,p

a (RN).
Following up, we have∣∣∣∣∣

∫
|x|>R

|x|−ap|∇vn|p dx + λ

∫
|x|>R

|x|−(a+1)p|vn|p dx

−
∫

|x|>R

|x|−ap|∇un|p dx − λ

∫
|x|>R

|x|−(a+1)p|un|p dx

∣∣∣∣∣
� ε

[ ∫
|x|>R

|x|−ap|∇un|p dx + λ

∫
|x|>R

|x|−(a+1)p|un|p dx

]

+ C(ε,p)

[ ∫
|x|>R

|x|−ap|∇u|p dx + λ

∫
|x|>R

|x|−(a+1)p|u|p dx

]

where we used inequality (6). Taking the limit at the expression above, we have

lim
R→∞ lim sup

n→∞

[ ∫
|x|>R

|x|−ap|∇vn|p dx + λ

∫
|x|>R

|x|−(a+1)p|vn|p dx

]
= γ∞.

Using Brézis–Lieb lemma, we have

lim
R→∞ lim sup

n→∞

∫
|x|−bq |vn|q dx = ν∞.
|x|>R
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This way, inequality (3) follows from the correspondent inequality verified for the sequence
(vn) ⊂ D1,p

a (RN).
Now we prove inequality (4). Since ν is a finite measure, the set

D ≡ {
x ∈ R

N
∣∣ ν

({x}) > 0
}

is at most denumerable. Let ψj ∈ C∞
0 (B(rj , x)) be a positive function such that ψj (x) = 1 =

supRN ψj , where rj → 0 as j → ∞.
Given x ∈ D and using once more inequality (6), we obtain

γ
({x}) = lim

j→∞γ (ψj ) = lim
j→∞ lim sup

n→∞

[ ∫
RN

|x|−ap
∣∣∇ψj(un − u)

∣∣p dx

+ λ

∫
RN

|x|−(a+1)p
∣∣ψj (un − u)

∣∣p dx

]

� S(a, b,λ)

[
lim

j→∞ lim sup
n→∞

∫
RN

|x|−bq
∣∣ψj(un − u)

∣∣q dx

]p/q

= S(a, b,λ)ν
({x})p/q

.

Define some positive, finite measure γ̃ ∈ M(RN) such that∣∣|x|−a∇un

∣∣p + λ
∣∣|x|−(a+1)un

∣∣p ⇀ γ̃ weakly in M(RN).

For the function ψj ∈ C∞
0 (B(rj , x)), we have∣∣∣∣∣

∫
RN

|x|−ap
∣∣ψj∇(un − u)

∣∣p dx + λ

∫
RN

|x|−(a+1)p
∣∣ψj(un − u)

∣∣p dx

−
∫

RN

|x|−ap|ψj∇un|p dx − λ

∫
RN

|x|−(a+1)p|ψjun|p dx

∣∣∣∣∣
� ε

[ ∫
RN

|x|−apψj |∇un|p dx + λ

∫
RN

|x|−(a+1)pψj |un|p dx

]

+C(ε,p)

[ ∫
RN

|x|−apψj |∇u|p dx + λ

∫
RN

|x|−(a+1)pψj |u|p dx

]
.

Letting rj → 0, we obtain

γ
({x}) = γ̃

({x}), x ∈ D.

Since the application v �→ ∫
RN h|x|−ap|v|p dx is convex in Lp(RN) for a positive h ∈

C∞
0 (RN), it follows that it is also weakly sequentially lower semicontinuous. Hence, γ̃ �

|x|−ap|∇u|p +λ||x|−(a+1)u|p . Using the orthogonality of |x|−ap|∇u|p with respect to the Dirac
measures, we obtain

γ̃ � |x|−ap|∇u|p + λ
∣∣|x|−(a+1)u

∣∣p + ‖γ ‖.
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This way,

lim sup
n→∞

∫
RN

[|x|−ap|∇un|p
]
(1 − ψR)dx + λ

∫
RN

[|x|−(a+1)p|un|p
]
(1 − ψR)dx

�
∫

RN

[|x|−ap|∇u|p]
(1 − ψR)dx + λ

∫
RN

|x|−(a+1)p|u|p(1 − ψR)dx + ‖γ ‖, (9)

where, for R > 1, we define the cutoff function ψR ∈ C∞(RN) such that ψR(x) ≡ 1 for |x| >

R + 1, ψR(x) ≡ 0 for |x| < R, and furthermore, 0 � ψR(x) � 1 for x ∈ R
N .

Hence, we get

lim sup
n→∞

[ ∫
RN

|x|−ap|∇un|p dx + λ

∫
RN

|x|−(a+1)p|un|p dx

]

� lim sup
n→∞

[ ∫
RN

|x|−ap|∇un|pψR dx + λ

∫
RN

|x|−(a+1)p|un|pψR dx

]

+ lim
n→∞

[ ∫
RN

|x|−ap|∇un|p[1 − ψR]dx + λ

∫
RN

|x|−(a+1)p|un|p[1 − ψR]dx

]

= lim sup
n→∞

[ ∫
RN

|x|−ap|∇un|pψR dx + λ

∫
RN

|x|−(a+1)p|un|pψR dx

]
+ γ̃ [1 − ψR].

Passing to the limit as R → ∞, we have

lim sup
n→∞

[ ∫
RN

|x|−ap|∇un|p dx + λ

∫
RN

|x|−(a+1)p|un|p dx

]

= lim
R→∞ lim sup

n→∞

[ ∫
RN

|x|−ap|∇u|pψR dx + λ

∫
RN

|x|−(a+1)p|u|pψR dx

]

+ lim
R→∞ γ̃ (1 − ψR)

= γ∞ + ‖γ̃ ‖ � γ∞ + |x|−ap|∇u|p + λ|x|−(a+1)p|u|p + ‖γ ‖.
From this, it follows that

lim sup
n→∞

∣∣|x|−a∇un

∣∣p
p

+ λ
∣∣|x|−(a+1)un

∣∣p
p

�
∣∣|x|−a∇u

∣∣p
p

+ λ
∣∣|x|−(a+1)u

∣∣p
p

+ ‖γ ‖ + γ∞

and the inequality (4) is proved.
Finally, we prove equality (5). For every real number R > 1, using Brézis–Lieb lemma we

have

lim sup
n→∞

∫
RN

|x|−bq |un|q dx = lim sup
n→∞

[ ∫
RN

ψR|x|−bq |un|q dx +
∫

RN

(1 − ψR)|x|−bq |un|q dx

]

+ lim
n→∞

∫
N

(1 − ψR)|x|−bq |u|q dx.
R
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Letting R → ∞ in the expression above, and using Lebesgue theorem, we obtain

lim
R→∞ lim sup

n→∞

∫
RN

|x|−bq |un|q dx = ν∞ + ‖ν‖ + ∣∣|x|−b|u|∣∣q
q
,

which implies equality (5). This concludes the proof of the lemma. �
3. Conclusion of the proof of Theorem 1.1

Proof of Theorem 1.1(i). Let (un) ⊂ D1,p
a (RN) be a minimizing sequence for S(a, b,λ). Let

B(x, r) denote the open ball with radius r centered at x ∈ R
N . For every number n ∈ N, there

exists a number tn ∈ R
+ such that∫

B(0,tn)

|x|−bq |un|q dx =
∫

B(0,1)

|x|−bq |vn|q dx = 1

2
, (10)

where we used the dilation vn(x) ≡ u
tn
n (x).

By hypotheses and using the invariance of the problem by dilation, we have∣∣|x|−bvn

∣∣
q

= ∣∣|x|−bun

∣∣
q

= 1

and ∣∣|x|−a∇vn

∣∣p
p

+ λ
∣∣|x|−(a+1)vn

∣∣p
p

= ∣∣|x|−a∇un

∣∣p
p

+ λ
∣∣|x|−(a+1)un

∣∣p
p

→ S(a, b,λ) as n → ∞.

Since the sequence (vn) ⊂ D1,p
a (RN) is bounded, passing to a subsequence, still denoted in

the same way, we can suppose that there exists a function v ∈ D1,p
a (RN) such that are valid the

hypotheses of Lemma 2.2.
By Lemma 2.2, we have

S(a, b,λ) �
∣∣|x|−a∇v

∣∣p
p

+ λ
∣∣|x|−(a+1)v

∣∣p
p

+ ‖γ ‖ + γ∞, (11)

1 = ∣∣|x|−bv
∣∣q
q

+ ‖ν‖ + ν∞. (12)

From inequalities (2), (3), (11) and from the definition of S(a, b,λ) we deduce that

S(a, b,λ) � S(a, b,λ)

{[ ∫
RN

|x|−bq |v|q dx

]p/q

+ ‖ν‖p/q + ν
p/q∞

}
.

Using equality (12) we obtain three mutually excluding situations.
By equality (10), it follows that ν∞ = 0.
Suppose now that v = 0; we will get a contradiction. In fact, equality (12) implies that

‖ν‖ = 1.
From inequality (11), we have

1 = ‖ν‖ = ‖ν‖p/q � 1

S(a, b,λ)
‖γ ‖ � 1

‖γ ‖ + γ∞
‖γ ‖ � 1

and this means that γ∞ = 0 and S(a, b,λ) = ‖γ ‖.



R.B. Assunção et al. / J. Math. Anal. Appl. 326 (2007) 137–154 145
Supposing that b < a + 1 and applying Lemma 2.2 once more, we deduce that the measures
ν and γ are concentrated at a single point x0 ∈ R

N . Such point is not the origin, because of
equality (10).

From this point on, we divide our argument in two cases.

Case a < b. In this case we have q < p∗. By the Rellich theorem we conclude that ‖ν‖ = 0.
But we have already established that ‖ν‖ = 1. The contradiction leads to the situation in which
‖ν‖ = 0 and ||x|−bv|qq = 1.

Case a = b > 0. In this case we have q = p∗. Given r ∈ R
+, we define the expression

A ≡ lim
n→∞

∫
B(x0,r)

|x|−ap|∇vn|p dx + λ
∫
B(x0,r)

|x|−(a+1)p|vn|p dx

[∫
B(x0,r)

|x|−ap∗ |vn|p∗
dx]p/p∗ .

Then A = ‖γ ‖ = S(a, a,λ). Let η ∈ C∞
0 (B(x0, r)) be a function such that η ≡ 1 in B(x0, r/2)

for r ∈ R
+ sufficiently small. Then

A = lim
n→∞

∫
B(x0,r)

|∇ηvn|p dx + λ
∫
B(x0,r)

|ηvn|p dx

[∫
B(x0,r)

|ηvn|p∗
dx]p/p∗ � S ≡ S(0,0),

because

lim
n→∞

∫
B(x0,r)

|x|−(a+1)|vn|p dx = 0.

It follows that S(a, a,λ) = A � S. We recall that S is the best constant in Sobolev inequality [28].
On the other hand, by Lemma 2.1 we know that S = g(0) > g(a) = S(a, a) � S(a, a,λ) if

−S(a, a + 1) < λ � 0. The contradiction leads again to the situation ‖ν‖ = 0 and ||x|−bv|qq = 1.
In any case there exists a minimum to S(a, b,λ). This proves item (i) of Theorem 1.1. The

proof of item (ii) is similar. �
Proof of Theorem 1.1(iii). Following the same ideas of the previous proof, also for 0 < a = b

and λ > 0 we obtain three mutually excluding situations. In this case we proceed as we did in
item (i) of Theorem 1.1 and we obtain

S � ‖γ ‖ = S(a, a,λ).

On the other hand, since S(a, a,0) < S, there exists 0 < ε < 1 such that, for 0 < λ < ε, we still
have S(a, a,λ) < S.

The only possibility left is ν∞ = 0, ν = 0 and ||x|−bv|q = 1. Hence, v ∈ D1,p
a (RN) is a mini-

mum to S(a, b,λ) and vn → v in D1,p
a (RN). �

4. Nonautonomous perturbation problems: the first solution

In this section, we are going to use variational techniques. This way, associated to the prob-
lem (P) with λ = 0 we have the Euler–Lagrange functional I :D1,p

a (RN) → R given by

I (u) ≡ 1

p

∫
N

|x|−ap|∇u|p dx − 1

q

∫
N

|x|−bq |u|q dx −
∫
N

f udx, (13)
R R R
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which is well defined for the parameters in the previously specified intervals.
Using the duality product, we define a weak solution of problem (P) with λ = 0 as a critical

point for the functional I , that is, as a function u ∈ D1,p
a (RN) such that

0 = 〈
I ′(u),φ

〉 = ∫
RN

|x|−ap|∇u|p−2∇u∇φ dx −
∫

RN

|x|−bq |u|q−2uφ dx −
∫

RN

f φ dx,

∀φ ∈ C∞
0 (RN).

Lemma 4.1. Let (un) ⊂ D1,p
a (RN) be a Palais–Smale sequence for the functional I at the level

c ∈ R ((PS)c , in short), that is, a sequence such that

lim
n→∞ I (un) = c and lim

n→∞
∥∥I ′(un)

∥∥
D1,p

a (RN)∗ = 0. (14)

If un ⇀ u0 weakly in D1,p
a (RN) for some u0, then u0 is a weak solution for problem (P) with

λ = 0.

Proof. We consider an arbitrary function ζ ∈ C∞
0 (RN) and denote its support by ω. Then〈

I ′(un), ζ
〉 → 0 as n → ∞. (15)

Claim 1. |x|−a∇un → |x|−a∇u a.e. in R
N .

We are going to postpone the verification of this claim.
Since the sequence (|x|−ap|∇u|p∇un) ⊂ Lp′

(RN) is bounded (1/p + 1/p′ = 1), by Claim 1
we have

lim
n→∞

∫
ω

|x|−ap|∇un|p−2∇un · ∇ζ dx =
∫
ω

|x|−ap|∇u0|p−2∇u0 · ∇ζ dx, (16)

because |x|−a∇ζ ∈ Lp(RN).
On the other hand, the boundedness of the sequence (un) ⊂ D1,p

a (RN) and the Caffarelli,
Kohn and Nirenberg’s inequality imply that |x|−b(q−1)|un|q−2un is bounded in Lq ′

(RN), where
1/q + 1/q ′ = 1. Passing to a subsequence (still denoted in the same way), we have

lim
n→∞

∫
ω

|x|−bq |un|q−2unζ dx =
∫
ω

|x|−bq |u0|q−2u0ζ dx, (17)

because |x|−bζ ∈ Lq(RN) and un → u0 a.e. in R
N .

Combining Eqs. (15), (16) and (17), it follows that 〈I ′(u0), ζ 〉 = 0 for every function ζ ∈
C∞

0 (RN). By using a density argument the lemma is proved. �
Proof of Claim 1. The proof was partially inspired in the works of Boccardo and Murat [6], and
Ghoussoub and Yuan [20]. We begin by defining the family of functions

τk(s) ≡
{

s if |s| � k,

ks/|s| if |s| > k.
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Affirmative 1. There exists a constant C ∈ R
+ such that the following inequality holds:∫

RN

|x|−bq
[|un|q−2un − |u|q−2u

]
τk(un − u)dx � Ckq. (18)

The proof of this affirmative follows from the Hölder’s inequality and by combining the bound-
edness of the sequence (un) ⊂ D1,p

a (RN) and the continuity of the inclusion D1,p
a (RN) ↪→

L
q
b(RN).

Passing to a subsequence, if necessary, still denoted in the same way, we get un ⇀ u weakly
in L

q
b(RN). Since f ∈ (L

q
b(RN))∗, it follows that

o(1) = 〈
I ′(un) − I (u), τk(un − u)

〉
=

∫
RN

〈|x|−ap|∇un|p−2∇un − |x|−ap|∇u|p−2∇u,∇τk(un − u)
〉
e

−
∫

RN

|x|−bq
(|un|q−2un − |u|q−2u

)
τk(un − u)dx −

∫
RN

f τk(un − u)dx,

where 〈·,·〉e denotes the usual inner product in R
N . Passing to the limit and using inequality (18),

we have

lim sup
n→∞

∫
RN

〈|x|−ap|∇un|p−2∇un − |x|−ap|∇u|p−2∇u,∇τk(un − u)
〉
e
dx � Ckq.

Now we define the sequence of functions

en ≡ 〈|x|−ap|∇un|p−2∇un − |x|−ap|∇u|p−2∇u,∇τk(un − u)
〉
e
.

It follows that en(x) � 0 by a well-known inequality. (See Ghoussoub and Yuan [20, Lemma 4.1].)

Affirmative 2. For every n ∈ N we have
∫
RN en(x) dx < ∞.

The proof of this affirmative follows by applying the Hölder’s inequality in∫
RN

〈|x|−ap|∇un|p−2∇un − |x|−ap|∇u|p−2∇u,∇τk(un − u)
〉
e
dx.

Given m ∈ N, we denote Ωm ≡ B(0,m) and we write R
N = ⋃∞

m=1 Ωm. For 0 < θ < 1 and
k ∈ R fixed, we split Ωm in

Ak
n ≡ {

x ∈ Ωm | |un − u| � k
}

and Bk
n ≡ {

x ∈ Ωm | |un − u| > k
}
.

For k ∈ R fixed, from the convergence in measure we have

lim
n→∞

∣∣Bk
n

∣∣ = 0. (19)

By the uniform boundedness of the sequence (en) ⊂ L1(RN), we have

lim sup
n→∞

∫
eθ
n dx � (Ck)θ |Ωm|1−θ .
Ωm
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Fixing m ∈ N and letting k → 0, it follows that eθ
n → 0 in L1(Ωm). Finally, from the well-known

inequality [20, Lemma 4.1], passing to the diagonal sequence it follows that

|x|−a∇un → |x|a∇u a.e. in R
N.

This concludes the proof of the claim. �
Now we prove the existence of the first solution.

Lemma 4.2. There exists a real number ε1 > 0 such that problem (P) with λ = 0 has at least one
solution u0 if f 	≡ 0 is such that ‖f ‖(L

q
b (RN))∗ < ε1 with I (u0) < 0. Furthermore, if f � 0, then

u0 is a positive solution.

Proof. Fixing ε ∈ (0,1), from Young’s as well as Caffarelli, Kohn and Nirenberg’s inequalities,
we write

I (u) �
(

1

p
− εp

p

)
‖u‖p − C‖u‖q − Cε‖f ‖(L

q
b (RN))∗ .

Hence there exist real numbers R > 0, ε1 > 0 and δ > 0 such that if ‖u‖ = R and ‖f ‖(L
q
b(RN))∗

< ε1, then I (u) � δ.
Defining

c0 ≡ inf
{
I (u) | u ∈ D1,p

a (RN) and ‖u‖ � R
}
, (20)

and using f 	≡ 0, it follows that c0 < I (0) = 0.
Applying Ekeland’s Variational Principle there exists a bounded (PS)c0 sequence (un) ⊂

D1,p
a (RN) such that ‖un‖ � R, and for some u0 ∈ D1,p

a (RN),

un ⇀ u0 weakly in D1,p
a (RN) and un → u0 a.e. in R

N. (21)

Furthermore, from Lemma 4.1 it follows that u0 is a weak solution for problem (P) with λ = 0.
Using I ′(u0) = 0 and Fatou lemma, we obtain

c0 = lim inf
n→∞ I (un) �

(
1

p
− 1

q

) ∫
RN

|x|−ap|∇u0|p dx −
(

1 − 1

q

) ∫
RN

f u0 dx = I (u0).

Since ‖u0‖ � R, it follows that I (u0) = c0. Finally, if f � 0, the function u0 can be replaced by
|u0|, and we get a positive solution. This concludes the proof. �
5. The existence of the second solution

Let the functional J :D1,p
a (RN) → R be defined by

J (u) ≡ 1

p

∫
RN

|x|−ap|∇u|p dx − 1

q

∫
RN

|x|−bq |u|−q dx. (22)

We also define the Nehari manifold V = {u ∈ D1,p
a (RN) | 〈J ′(u),u〉 = 0}, which is nonempty.

Indeed, let v0 ∈ D1,p
a (RN) \ {0} be fixed and λ ∈ R

+; we define the function h(λ) ≡
〈J ′(λv0), λv0〉. Since p < q , we have that for λ big enough it holds h(λ) < 0; on the other
hand, for λ near zero it holds h(λ) > 0. Then, there exists λ0 ∈ R

+ such that h(λ0) = 0.
Denoting by J∞ the infimum of the functional J in V , that is, J∞ ≡ inf{J (u) | u ∈ V }, we

have the following result, whose proof follows by using some arguments of Ding and Ni [18].
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Lemma 5.1. There exists ū ∈ V such that J∞ = supt�0 J (tū) = J (ū) = ( 1
p

− 1
q

)[S(a, b)]q/(q−p).

Proof. Initially we will show that

J∞ �
(

1

p
− 1

q

)[
S(a, b)

]q/(q−p)
. (23)

Fixing φ ∈D1,p
a (RN) \ {0}, we define the function

k(t) ≡ J (tφ) = tp

p

∫
RN

|x|−ap|∇φ|p dx − tq

q

∫
RN

|x|−bq |φ|q dx

which has a global maximum at t0. It follows that

inf
0	=φ∈D1,p

a (RN)

sup
t�0

J (tφ) =
(

1

p
− 1

q

)[
S(a, b)

]q/(q−p)
. (24)

We also note that for every u ∈ V we have t0 = t0(u) = 1.
So,

J∞ = inf
u∈V

sup
t�0

J (tu) � inf
0	=φ∈D1,p

a (RN)

sup
t�0

J (tφ) =
(

1

p
− 1

q

)[
S(a, b)

]q/(q−p)
.

Using Theorem 1.1, we can guarantee that S(a, b) defined in (1) is attained by a function
U ∈D1,p

a (RN). Defining the function ū(x) ≡ [S(a, b)]1/(q−p)U(x), we have ū ∈ V and

J∞ � J (ū) =
(

1

p
− 1

q

)[
S(a, b)

]q/(q−p)
, (25)

which concludes the proof of the lemma. �
Next we state an alternative description for Palais–Smale sequences.

Lemma 5.2. Suppose that (un) ⊂ D1,p
a (RN) is a Palais–Smale sequence for the functional I at

the level c ∈ R. If un ⇀ u0 weakly in D1,p
a (RN) for some u0, then one of the following alterna-

tives holds:

(1) un → u0 in D1,p
a (RN).

(2) c � I (u0) + J∞.

Proof. Let (un) ⊂ D1,p
a (RN) be a Palais–Smale sequence for the functional I at the level c. We

define vn ≡ un − u0. It follows that vn ⇀ 0 weakly in D1,p
a (RN), then

lim
n→∞

∫
RN

f vn dx = 0

and

I (vn) = J (vn) + o(1). (26)

Using Caffarelli, Kohn and Nirenberg’s inequality and Brézis–Lieb lemma, as well as equal-
ity (26) and Lemma 4.1, we get

c + o(1) = I (un) = I (u0) + I (vn) + o(1) = I (u0) + J (vn) + o(1) (27)
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and also

o(1) = 〈
I ′(un), un

〉 = 〈
I ′(u0), u0

〉 + 〈
I ′(vn), vn

〉 + o(1) = 〈
J ′(vn), vn

〉 + o(1). (28)

Now we have two possibilities. If vn → 0 strongly in D1,p
a (RN), then un → u0 strongly in

D1,p
a (RN) and also

c = lim
n→∞ I (un) = I (u0).

In this case, the lemma is proved.
On the other hand, if vn 	→ 0 in D1,p

a (RN), then from the weak convergence vn ⇀ 0 in
D1,p

a (RN), we can suppose that ‖vn‖ → ρ > 0 (possibly after passage to a subsequence, still
denoted in the same way). So, using the limit (27), we get

c = I (u0) + J (vn) + o(1). (29)

It is easy to see that the following claim implies the lemma.

Claim. J (vn) � J∞ + o(1).

To prove the claim we define

αn ≡
∫

RN

|x|−ap|∇vn|p dx = ‖vn‖p and βn ≡
∫

RN

|x|−bq |vn|q dx � 0,

and we write

μn ≡ 〈
J ′(vn), vn

〉 = αn − βn → 0 as n → ∞.

Let t ∈ R
+; then there exists a sequence (tn) ⊂ R

+ such that

lim
n→∞ tn = 1 and

〈
J ′(tnvn), tnvn

〉 = 0. (30)

Indeed, writing t = 1 + τ where τ > 0 is small enough and using the definitions of μn, αn,
and βn, we have〈

J ′(tvn), tvn

〉 = αn(1 + τ)p − βn(1 + τ)q = αn(p − q)τ + αno(τ) + μn(1 + τ)q .

Since by hypothesis limn→∞ αn = ρp > 0, it follows that, for n big enough we can define the
sequence

τn ≡ 2μn

αn(q − p)
→ 0 as n → ∞.

So, 〈
J ′(1 + τn)vn, (1 + τn)vn

〉
< 0 and

〈
J ′(1 − τn)vn, (1 − τn)vn

〉
> 0. (31)

In fact, rewriting the Gâteaux derivative of the functional J , we get

〈
J ′(1 + τn)vn, (1 + τn)vn

〉 = −2|μn| + μn + 2q

αn(q − p)
|μn|μn + αno(τn) + μno(μn)

≡ Kn.

If μn > 0, then Kn < 0. Similarly, if μn < 0, then Kn > 0.
This proves the first part of inequality (31). The other one is similar.
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In this way, we can choose tn ∈ (1−τn,1+τn) and we get a sequence (tn) ⊂ R verifying (30).
Using this sequence, it follows that

J (vn) = J (tnvn) +
(

1 − t
p
n

p

)
αn −

(
1 − t

q
n

q

)
βn = J (tnvn) + o(1) � J∞ + o(1)

and this proves the claim. �
Our next lemma compares the minimum obtained previously with a minimax type level.
Fix ū ∈ D1,p

a (RN) such that the conclusion of Lemma 5.1 holds.
Since p < q , there exists τ0 ∈ R

+ such that

J (tū) < 0 and I (tū) < 0 if t � τ0.

We define

c1 ≡ inf
γ∈P

sup
u∈γ

I (u), (32)

where

P = {
γ ∈ C

([0,1]; D1,p
a (RN)

) ∣∣ γ (0) = 0 and γ (1) = τ0ū
}
.

Lemma 5.3. Let c0 and c1 be defined by (20) and (32), respectively. Given a function g � 0 such
that ‖g‖(L

q
b(RN))∗ = 1, there exist real numbers R > 0 and ε2 = ε2(R) such that c1 < c0 + J∞

for every function f = εg such that ε � ε2.

Proof. First of all we claim that

J∞ + c0 > 0 (33)

if the real numbers ε1 > 0 and R > 0 given at the proof of Lemma 4.2 are small enough.
Indeed, let u0 be a solution of problem (P) with λ = 0 obtained from Lemma 4.2. Applying

Hölder’s and Young’s inequalities to the expression of c0 in terms of u0, we have

c0 �
(

1

p
− 1

q

) ∫
RN

|x|−ap|∇u0|p dx −
(

1 − 1

q

)
‖f ‖(L

q
b (RN))∗‖u0‖ (34)

� λp

p
‖u0‖p +

(
1 − 1

q

)p′

p′λp′ ‖f ‖p′
(L

q
b (RN))∗ , (35)

where λ = (1 − p/q)1/p . Then we get

c0 �
[
N(p − 1) + p − p(b − a)

pN

]p/(p−1)
(p − 1)

p

[
1 − p

q

]1/(1−p)

‖f ‖p′
(L

q
b (RN))∗ . (36)

So, inequality (33) holds for ‖f ‖(L
q
b (RN))∗ < ε1, where ε1 > 0 is small enough.

To conclude the proof of the lemma it is enough to use the definition of c1 and the following
result.

Claim. supt�0 I (tū) < J∞ + c0 for ‖f ‖(L
q
(RN))∗ > 0 small enough.
b
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Indeed, using the continuity of the functional I and I (0) = 0, as well as inequality (33), we get
ε′ > 0 and M ∈ R such that

J∞ + c0 > sup
t∈[0,M]

I (tū) if ‖f ‖(L
q
b (RN))∗ < ε′ < ε1.

Note that

sup
t�M

I (tū) � sup
t�0

J (tū) − M

∫
RN

f ū dx = J∞ − M

∫
RN

f ū dx.

Since
∫

RN f udx is linear in ε and c0 has a term of degree p′ in ε, we have

sup
t�M

I (tū) < J∞ + c0

and this concludes the proof of the lemma. �
Conclusion of the proof of Theorem 1.2. Let ε0 ≡ min{ε1, ε2}. By Lemma 4.2 we get a positive
solution u0 ∈ D1,p

a (RN) for the problem (P) with λ = 0 such that c0 = I (u0).
On the other hand, since I (|u|) � I (u) for every function f � 0, the mountain-pass theorem

without Palais–Smale condition guarantees the existence of a positive Palais–Smale sequence
(un) ⊂ D1,p

a (RN) for the functional I at the level c1.
This implies that

c1 + 1

q

∥∥I ′(un)
∥∥

(D1,p
a (RN))∗‖un‖ + o(1) � I (un) − 1

q

〈
I ′(un), un

〉
�

(
1

p
− 1

q

)
‖un‖p −

(
1 − 1

q

)
‖f ‖(L

q
b (RN))∗‖un‖.

Hence, (un) ⊂ D1,p
a (RN) is a bounded sequence. This way, passing to a subsequence (still de-

noted in the same way), we can suppose that there exists a positive function u1 ∈ D1,p
a (RN) such

that

un ⇀ u1 weakly in D1,p
a (RN), as n → ∞.

Lemma 4.1 implies that u1 is a solution of problem (P) with λ = 0.
We will show now that u0 	= u1; to do this, we will prove that I (u0) 	= I (u1).
In fact, by Lemma 5.2 there exist two possibilities: if un → u1 strongly in D1,p

a (RN), then

I (u1) = lim
n→∞ I (un) = c1 > 0 > c0 = I (u0),

that is, u1 	= u0. On the other hand, if I (u1) = I (u0) = c0 and

c1 = lim
n→∞ I (un) � I (u1) + J∞,

then

c1 = lim
n→∞ I (un) � I (u1) + J∞ = I (u0) + J∞ = c0 + J∞,

which is a contradiction to Lemma 5.3. The theorem is proved. �
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