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SUMMARY

The objective of the current study was to assess the use of nonlinear mixed model methodology to fit the growth
curves (weight v. time) of two dairy goat genotypes (Alpine, +A and Saanen, +S). The nonlinear functions
evaluated included Brody, Von Bertalanffy, Richards, Logistic and Gompertz. The growth curve adjustment was
performed using two steps. First, random effects u1, u2 and u3 were linked to the asymptotic body weight (β1),
constant of integration (β2) and rate constant of growth (β3) parameters, respectively. In addition to a traditional
fixed-effects model, four combinations of models were evaluated using random variables: all parameters
associated with random effects (u1, u2 and u3), only β1 and β2 (u1 and u2), only β1 and β3 (u1 and u3) and only β1
(u1). Second, the fit of the best adjusted model was refined by using the power variance and modelling the error
structure. Residual variance (σ2e) and the Akaike information criterion were used to evaluate the models. After the
best fitting model was chosen, the genotype curve parameters were compared. The residual variance was reduced
in all scenarios for which random effects were considered. The Richards (u1 and u3) function had the best fit to the
data. This model was reparameterized using two isotropic error structures for unequally spaced data, and the
structure known in the literature as SP(MATERN) proved to be a better fit. The growth curve parameters differed
between the two genotypes, with the exception of the constant that determines the proportion of the final size at
which the inflection point occurs (β4). The nonlinear mixed model methodology is an efficient tool for evaluating
growth curve features, and it is advisable to assign biologically significant parameters with random effects.
Moreover, evaluating error structure modelling is recommended to account for possible correlated errors that may
be present even when using random effects. Different Richard growth curve parameters should be used for the
predominantly Alpine and Saanen genotypes because there are differences in their growth patterns.

INTRODUCTION

Studies on the growth curves for livestock have been
used extensively to examine how body weight and
other characteristics of interest (fat deposition, organ
size, etc.) develop over time and in relation to the
environment, feed, genotype and other factors.
Normally, this relationship (weight v. time) is assessed
using nonlinear functions, such as yi= f (xi,βi)+ei, in
which yi is the average body weight of the animal at
time xi, yi is estimated using a nonlinear function fwith
βi parameters, whose estimates are obtained by using
ordinary least-squares regression, and ei represents the

unexplained error. The errors are assumed to be
normally, identically and independently distributed
with a mean zero and a constant variance, or NIID
(0,σ2). On the basis of these assumptions, the non-
linear regression model is considered a fixed-effects
model (Craig & Schinckel 2001).

However, when multiple observations are recorded
in the same experimental unit, a parameter or
coefficient that varies from one unit to another can
be considered random (Peek et al. 2002). This
proposition is based on the concept of random effects,
in which an effect is considered random if its levels
represent values of a larger population with a
probability distribution (Littell et al. 2006), which is
the case, for example, for the asymptotic body weight
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(a common parameter in most of the models used in
livestock growth studies).

In addition, measurements taken on the same
experimental unit are more closely related than those
on other experimental units; on the same experimental
unit, measures at short intervals are more correlated
than those at longer intervals (both within the same
unit) (Littell et al. 2006). These relationships are
inherent for this type of data, which may disrupt
the basic assumptions of statistical analysis, such as
independence of errors and variance homogeneity
(Craig & Schinckel 2001; Littell et al. 2006; Strathe
et al. 2010). Thus, if random effects are not added
to the model, the estimated standard error of the
parameters may be biased because the assumption
of independence of errors might be violated (Peek
et al. 2002).

Another factor that supports the use of the nonlinear
mixed model methodology is the type of data normally
obtained for use in growth studies. In general, the data
are unbalanced, with different numbers of bodyweight
measurements for different animals and a tendency
for the number of animals in the study to decrease
over time due to death, slaughter, disposal and other
factors. The unbalanced nature of this type of data can
lead to bias in the estimated parameters when using
the conventional method (Craig & Schinckel 2001;
Wang & Zuidhof 2004).

However, there is still controversy about which
growth curve parameters normally used in the
literature should be considered as random. This
decision should be based on the biological interpret-
ation of the parameters, the significance of the
estimated variance components and, above all,
common sense.

Given this context, the objectives of the study
described in the current paper were the following:
(1) to identify the best commonly used nonlinear
function to describe dairy goat growth, (2) to determine
which growth curve parameters should be linked
to random coefficients, (3) to compare the curves
obtained from the nonlinear mixed model method-
ology to curves obtained with traditional methodology

and (4) to compare the curve parameters obtained for
two genotypes of dairy goats.

MATERIALS AND METHODS

Animals and data set descriptions

The data used in the current study were collected from
the goat herd of the Goat Sector at the Federal
University of Viçosa (Universidade Federal de
Viçosa-UFV), Viçosa, MG, Brazil. A total of 14003
weighing records from female goats were collected
between 1992 and 2010. Only those goats with four or
more recorded weight measurements were included.
Data from animals without recorded birth dates were
excluded. Then the data were divided according to the
genotype of the animals: Saanen (+S) and Alpine (+A).
A graphical analysis was conducted to assess the
consistency of the data and to identify the excluded
end points, including data from animals of all other
genotypes. The database is summarized in Table 1.

Animal management consisted of a free-stall milk
production system in which animals had access to
maize silage and concentrate ad libitum. There are
normally two calving seasons per year for goats;
however, each animal was allowed just one calving
per year. During the growth phase, the animals were
weaned, on average, when they were 18 kg (110–140
days old) and the first pregnancy occurred, on average,
at 35 kg body weight (340–370 days old). The goats
lactated for c. 300 days, and their average milk
production was 2·6 kg milk/day. The number of
lactations ranged from zero to seven.

The number of weighings by animal ranged from
4 to 21 (Table 1) and the minimum and maximum
differences between two consecutive weighings were
1 and 1190 days, respectively. These features make
the data set extremely unbalanced, spatially and
numerically. Furthermore, the initial graph analysis
suggested that there was an increase in the variance
of the data over time (the independent parameter).
Thus, a special approach to modelling the growth
curves was required.

Table 1. Summary of the data set assessed

Genetic composition No. of animals No. of weights Max. obs. per goat Min. obs. per goat Max. age (days)

+S 498 4292 21 4 2666
+A 658 5707 18 4 3180

Total 1156 9999 – – –
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Growth curve functions

Five nonlinear models commonly used in the literature
for describing animal growth curves were evaluated.
In these models, shown in Table 2, y is the animal
weight at time ti; β1 the estimated body weight of the
animal when t?1 or asymptotic body weight; β2 the
constant of integration; β3 the rate constant, which
determines the spread of the curve along the time axis;
and β4 is the constant that determines the proportion
of the final size at which the inflection point (IP)
occurs. The IP can be determined using the equa-
tion IP(%β1) = β1/(1−β4)

4 , and the instantaneous absolute
growth rate can be calculated using the equation
IAGR = β3 × Yest[(β1/Yest)1−β4 − 1]/(1− β4) , where
Yest is the body weight estimated at a given time
(Richards 1959).

Nonlinear mixed model

A nonlinear mixed model methodology was used to
obtain the growth curve parameters according to the
following expression:

yi = f (xij,β, ui) + ei (1)
where yi is a vector (ni ×1) of recorded bodyweights for
the subject i=1, 2,. . .,m;m is the number of goats; f is a
nonlinear function of the covariate matrix xij; xij is a
matrix (ni×2) of independent variables, in which the
first column contains the ith age of measurement and
the second column contains the jth subject (goat)
whose body weight was measured; β is a vector (pi×1)
of unknown fixed-effect parameters; ui is a vector
(qi×1) of unknown random-effect parameters unique
to the subject goat i and assumed to follow a
multivariate distribution with a mean of zero and a
conditional unstructured covariance matrix, n×n (G);
and ei is a vector (ni×1) of the error term assumed
to follow a multivariate random normal distribution
with zero mean and conditional covariance matrix
structure (R).

The dependent variable (y) in this case is influenced
by quantitative (time) and qualitative (genotype)
variables. The effects of the quantitative variables are
analysed via nonlinear regression. However, it is also
necessary to assess the effects of the qualitative
variable on the dependent variable and the regression
parameters; thus, dummy variables z1 and z2 were
created, where for the +S genotype, z1=0 and z2=1,
and for the +A genotype, z1=1 and z2=0. With this
approach, it was possible to estimate growth curve
parameters (β1, β2, β3 and β4) independently for each
genotype.

The growth curve modelling consisted of two steps,
as described below. First, a set of candidate nonlinear
mixed models were formulated that were preliminarily
analysed to choose the function with the best fit. This
first step was used to evaluate which curve parameters
should have a random effect component and com-
pared them with the traditional fixed-effect model.
However, despite the high hardiness with which
nonlinear mixed model methodology treats the corre-
lated errors, it is important to note that heterogeneity
and correlated errors can occur even with the
inclusion of random effects (Meng & Huang 2010;
Yang & Huang 2011). Thus, a refinement of the model
chosen in the first step was necessary to accommodate
the violated model assumptions (second step).

First step

A central phase in the model-building of mixed-effects
models is to decide which of the parameters in the
nonlinear model require random effects to account for
their between-subject variations and which can be
treated as purely fixed effects (Pinheiro & Bates 2000).
Thus, the random parameters u1, u2 and u3 were
created to account for between-subject variations for
the β1, β2 and β3 parameters, respectively, enabling
curve parameters to be estimated for each goat (Littell
et al. 2006). No random parameter was created for the
β4 parameter in the Richards function because it was
difficult to achieve the convergence criterion and the
high correlations between the estimated parameters
(overparameterized model). The following four com-
binations of random effects were evaluated: all of the
parameters related to random effects (u1, u2 and u3),
only parameters related to β1 and β2 (u1 and u2), only
parameters related to β1 and β3 (u1 and u3), and only
that related to β1 (u1). To avoid problems with floating-
point errors and overflows, β3 was rescaled (×1000) in

Table 2. Evaluated growth curve functions

Model General function

Brody ŷ = β1(1− β2 e
−β3t)

Von Bertalanffy ŷ = β1(1− β2 e
−β3t)3

Richards ŷ = β1(1− β2 e
−β3t)β4

Logistic ŷ = β1/(1+ β2 e
−β3t)

Gompertz ŷ = β1 e
−β2e

−β3 t
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the models due to the difference in magnitude of this
parameter in relation to the others.

First, the equations were fitted to each model and
previously described combinations of random effects
through PROCNLMIXED (SAS 9.3, see Appendix). The
FIRO method was used to achieve convergence. The
FIRO method uses the First-Order Method described
by Beal & Sheiner (1982) to compute the integral over
the random effects to the marginal maximum likeli-
hood. The fixed-effects model was also estimated
using PROC NLMIXED, except that, in this case,
variance components were not included. The FIRO
method does not support the model without random
effects; thus, the Adaptive Gaussian Quadrature
described by Pinheiro & Bates (1995) was used. The
estimated parameters, standard error and residual
variance for the fixed-effects model were similar to
those of the model obtained using PROC NLIN.

The following criteria were adopted to select the
function that best described the growth curve of the
goats: (1) convergence (the interactive process in
NLMIXED converges at the nth interaction when
(gkH−1

k gk)/(|lk| + 1 e−6) , 1 e−8) (SAS Institute Inc.
2008)); (2) the final Hessian matrix is non-singular
and positive definite; (3) the approach described by
Burnham & Anderson (2002) and Vieira et al. (2012)
using the Akaike information criterion (AIC), the
difference among AIC values (Δr), the Akaike weights
or likelihood probabilities (wr) and the evidence ratio
or relative likelihood (ERr), which can be computed
using the following equations:

AIC = 2f (̂θ) + 2p

Δr = AICr −minAICr

wr = exp(−Δr/2)∑R
r=1 exp(−Δr/2)

ERr = maxwr

wr

where f() is the negative of the marginal log-likelihood

function, θ̂ is the vector of parameter estimate, and p is
the number of parameters (SAS Institute Inc. 2008); and
(4) a graphical analysis of the Pearson residuals against
the predicted values was used to evaluate the model
assumptions. The Pearson residuals were obtained for
the fixed model and random model without a

correlation structure as ri = ei/
���̂
σ2e

√
and for the model

with a correlation structure (second step described

below) as ri = Ĉ
′−1(yi − ŷi) , where Ĉ denotes the

Cholesky root of the estimated R matrix (SAS Institute
Inc. 2008).

Second step

The model with the best goodness-of-fit (combination
between nonlinear equation and random parameters)
was selected for further analysis.

Despite there being no sign of heteroscedasticity in
the residuals of the chosen model, it was easy to
identify high Pearson residuals obtained even when
using random effects in the model. The higher values
found for the Pearson residuals, many of them above
three, were an indication of problems in the model.
The first remedy would be to exclude the data from the
data set and reparameterize the model, which would
solve the problem but cause a loss of information.

Therefore, it was decided to use two tools to address
this problem and the remaining correlated errors. The
residual variance was modelled using the power-
of-the-mean variance (PV) function. Using the notation
described by Littell et al. (2006), the variance matrix R
is assumed to be of the form R = diag(σ2|x′iβ∗|θ), where
θ is the power to be estimated. In order to choose the
value of θ, the power that minimized the approximate
−2log-likelihood was calculated (Littell et al. 2006);
this θ value was estimated to be 2·91.

As previously noted, correlated errors can occur
even when random effects are used in the model.
These errors primarily occur if there are parameters in
the function that do not have a random parameter to
account for their between-subject variability. An error
structure matrix can be modelled to account for this
interrelation. When the model is fitted without
modelling the serial correlation, the independently
and identically distributed error structure is assumed
to be Var[ei]=σe

2 and cov[ei,ej]=0. However, there is
one intrinsic characteristic of the current data set that
must be considered, namely, the unequally spaced
measurement intervals for the animal subjects.

There is a range of structures available in the
literature to address this issue. Structures that accept
unequally spaced data have been described by Littell
et al. (2006) and the SAS Institute Inc. (2008).
Normally, the covariance is assumed to be a function
of the distance between locations. If dij denotes the
distance between the measurements made on the
same animal, the covariance models have the general
form COV[ei,ej]=σe

2[ f (dij)] (Littell et al. 2006).
In the second step, all possible isotropic candidate

structures described in the literature were examined;
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however, only two structures met the convergence
criterion: the spatial power function (SP(POW)) and the
MATERN function (SP(MATERN)).
The spatial power structure provides a direct gen-

eralization of the auto-regressive structure for equally
spaced data and is assumed to be f (dij) = ρdij . The
MATERN isotropic covariance function is given as

f (dij) =
(dij/2V)V2Kv(dij/ρ)

Γ(V) where KV is a modified

Bessel function of the second kind of order V; Γ is the
gamma function; ρ is a scalar parameter controlling the
spatial range of correlation; and V is the ‘smoothness’
parameter, which allows greater flexibility for modell-
ing the local spatial covariance. When V is small
(V?0), the spatial process is assumed to be rough, and
when V is large (V?1), the process is assumed to be
smooth (Littell et al. 2006; Minasny & McBratney
2007; SAS Institute Inc. 2008).
The NLMIXED procedure does not support the

modelling of error structure directly; thus, the SAS
macro %NLINMIX was used to refine the model to
account for the chosen error structure. The restricted
maximum likelihood was used along with the two
expansion methods available in the SAS macro %
NLINMIX (ZERO and EBLUP) to attempt to fit the
model. The model adjusted in this way was compared
with the fixedmodel and the random parameter model
that was estimated using the previously described
approach.
After selecting the model that best described the

growth curves and included the previously estimated
variance and covariance matrices, the hypotheses
regarding one or more growth curve parameters could
be tested. Thus, the difference between the growth
curve parameters of the genotypes were tested, with
the objective of simplifying the model (α=0·05).

Cross-validation

A cross-validation was performed to evaluate the
goodness-of-fit of the chosen function. The original
data set was randomly partitioned into two sub-data
sets (training and test data), each containing 0·50 of the
animals per genotype. The division of the original data
set was conducted using PROC SURVEYSELECT from
the SAS software (version 9.3). The first sub-data set
(training data set) was used to fit the previously chosen
best model (steps 1 and 2), and the second sub-data set
(test data set) was used to evaluate the robustness of the
model. Equation precision was measured with the

coefficient of determination (R2) between the observed
and predicted values and the simultaneous F-test of the
intercept and slope (intercept=0 and slope=1),
whereas the accuracy of the equation was determined
based on the concordance correlation coefficient
(CCC) and the root-mean-square error prediction
(RMSEP) and its decomposition into mean bias,
systematic bias and random errors (Tedeschi 2006).
The model evaluation was implemented using the
Model Evaluation System v. 3.1.13 (http://nutritionmo-
dels.tamu.edu/mes.html; verified 28 May 2013).
Moreover, the parameters of the curve fit from the
training data set were comparedwith the parameters of
the curves fit from the original data set using 95%
confidence intervals (IC95%).

Impact of the number of weights on random
parameters

One of the major advantages of the nonlinear mixed
model methodology is the possibility of having
individual growth parameters adjusted for each animal
and testing to determine how some parameters differ
from the population mean. Using the chosen model
and the individual deviation of asymptotic and
constant rate parameters, it was possible to evaluate
the effect of the number of weights on the parameters
estimated for each goat using descriptive graphic
analysis.

RESULTS

One function did not achieve the convergence
criterion (Richards u1, u2 and u3). The Richards
(u1 and u2) model presented the singular Hessian
matrix, which prevents its unique inversion. The
Hessian matrix rendered by the Brody model was not
positive definite, and the Gompertz (u1, u2 and u3)
model had at least one negative eigenvalue.

Table 3 shows the estimated parameters for all of the
evaluated models and combinations of random vari-
ables. Although represented by the same Greek letters,
except for asymptotic body weight (β1), the estimated
parameters cannot be compared among nonlinear
functions (Forni et al. 2009). The only comparisons
that are possible are between combinations of random
variables or between assessed genotypes within each
function. Among all of the scenarios that were
assessed, the +S animals consistently had higher
asymptotic body weights. Estimates of asymptotic
body weight varied from 43·20 to 58·11 kg for the
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+A genotype and from 48·00 to 67·38 kg for the +S
genotype.

The calculated birth weight (calculated as time=0)
for the Logistic and Gompertz (all combinations of
random effects) models produced unrealistic estimated
birth weight values. Reasonable estimates were made
by the Brody and Richards (all combination of random
effects) models.

High β3 parameter values indicate higher precocity,
i.e. a higher fractional rate at which the animal
approaches asymptotic body weight (Brown et al.
1976). The +A animals presented higher values
(except for the Richards (u1 and u3)) for this parameter
than the +S animals, possibly indicating earlier
development.

Table 4 shows the values of the criteria used to select
the model that best describes goat growth in addition
to the estimated variance and covariance components.
The fixed-effect models were found to always display
higher residual variance than the random-effect
models did. The Richards (u1 and u3) function had
the best fit. The value ofΔr to the nearest model was 86,

which, according to Burnham & Anderson (2002),
indicates essentially no support. The large Δr values
obtained became a calculation of the likelihood
probability and evidence ratio unnecessary, as these
criteria are equal to 1 for the Richards (u1 and u3)
model.

The random effects of the Richards (u1 and u3)
model were significant (P<0·001). The value found
for the component that measures the population
variability of parameter β1 was 209·3, and for β3, this
value was 1·20. However, high Pearson residuals were
observed when the Richards (u1 and u3) model (Figs 1
(b) and (c)) was used. Thus, this model was chosen for
further analysis.

In the second step, the variance power and the
modelled error structure matrix were included. Only
the SP(POW) and SP(MATERN) structure achieved the
convergence criterion. The use of these tools produced
low values of the AIC when compared with the
previous approach. The SP(MATERN) structure yielded
better adjustments, as determined by the fact that
Δr=1126 (Table 5).

Table 3. Estimated parameters for the different models, random variable combinations and genotypes assessed

Model Random variables

+A +S

β1 β2 β3 (x 1000) β4 β1 β2 β3 (x 1000) β4

Brody u1 54·6 0·93 2·7 – 60·3 0·93 2·3 –

u1, u2 54·6 0·93 2·7 – 60·0 0·93 2·3 –

u1, u3 52·6 0·93 2·8 – 54·7 0·94 2·7 –

u1, u2, u3 52·9 0·93 2·7 – 54·3 0·94 2·7 –

Fixed 54·6 0·92 2·6 – 58·6 0·92 2·4 –

Von Bertalanffy u1 51·6 0·51 4·2 – 55·9 0·51 3·7 –

u1, u2 51·6 0·52 4·2 – 56·5 0·52 3·7 –

u1, u3 48·5 0·51 4·4 – 50·7 0·52 4·1 –

u1, u2, u3 49·3 0·84 3·8 – 54·0 0·86 3·5 –

Fixed 52·4 0·50 3·9 – 55·8 0·50 3·6 –

Logistic u1 48·5 4·9 7·5 – 52·1 4·9 6·7 –

u1, u2 48·1 5·7 7·8 – 52·2 5·6 6·8 –

u1, u3 45·8 4·8 7·7 – 48·2 4·9 7·0 –

u1, u2, u3 45·6 4·9 7·6 – 48·0 4·9 6·9 –

Fixed 50·3 4·5 6·5 – 53·3 4·5 6·0 –

Gompertz u1 50·6 2·0 4·9 – 54·6 2·0 4·4 –

u1, u2 50·5 2·1 5·0 – 55·2 2·1 4·4 –

u1, u3 47·5 2·0 5·2 – 49·7 2·0 4·8 –

u1, u2, u3 43·2 4·5 5·6 – 48·1 4·7 5·3 –

Fixed 51·7 1·9 4·5 – 54·9 1·9 4·1 –

Richards u1 57·4 0·98 1·9 0·73 67·4 0·99 1·3 0·67
u1, u2 53·9 0·98 2·2 0·75 55·5 0·99 1·9 0·70
u1, u3 56·4 0·98 2·0 0·77 57·9 0·98 2·0 0·79
u1, u2, u3 Did not converge
Fixed 58·1 1·0 1·6 0·65 64·7 0·99 1·3 0·64
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Table 4. Variance and covariance components, residual variances and information criteria of the fitted growth curves

Model
Random
variables σ2u1 σu1u2 σu1u3 σ2u2 σu2u3 σ2u3 σ2e AIC Δr

Brody u1 74·9 (P<0·001) 12·9 57040 2354
u1, u2 80·0 (P<0·001) 0·08 (P<0·001) −4·0×10−05 NS 13·0 56999 2313
u1, u3 156·5 (P<0·001) −13·3 (P<0·001) 1·8 (P<0·001) 8·7 54992 306
u1, u2, u3 160·5 (P<0·001) 0·12 (P<0·001) −13·2 (P<0·001) −3·6×10−04 (P<0·001) −7·6×10−03 (P<0·001) 1·8 (P<0·001) 8·8 54772 86
Fixed 33·5 63490 8804

Von
Bertalanffy

u1 64·8 (P<0·001) 16·6 59293 4607
u1, u2 78·1 (P<0·001) 0·17 (P<0·001) 2·4×10−03 (P<0·001) 15·1 59083 4397
u1, u3 119·2 (P<0·001) −16·9 (P<0·001) 4·1 (P<0·001) 10·8 57063 2377
u1, u2, u3 167·7 (P<0·001) −6·7 (P<0·001) −19·6 (P<0·001) 0·73 (P<0·001) 1·52 (P<0·001) 3·9 (P<0·001) 7·7 57287 2601
Fixed 37·69 64679 9993

Logistic u1 56·3 (P<0·001) 24·11 62627 7941
u1, u2 69·4 (P<0·001) 8·5 (P<0·001) 5·0 (P<0·001) 19·9 62005 7319
u1, u3 93·1 (P<0·001) −22·0 (P<0·001) 9·7 (P<0·001) 17·0 60983 6297
u1, u2, u3 106·5 (P<0·001) 7·2 (P<0·001) −20·6 (P<0·001) 0·37 (P<0·01) −1·9 (P<0·001) 7·8 (P<0·001) 16·7 60843 6157
Fixed 45·7 66613 11927

Gompertz u1 61·8 (P<0·001) 18·7 60323 5637
u1, u2 76·1 (P<0·001) 1·1 (P<0·001) 0·11 (P<0·001) 16·3 59980 5294
u1, u3 110·1 (P<0·001) −18·5 (P<0·001) 5·4 (P<0·001) 12·3 58207 3521
u1, u2,
u3*

208·5 −99·1 −54·9 70·1 35·4 19·1 8·9 58134 3448

Fixed 39·9 65245 10559

Richards u1 83·6 (P<0·001) 11·9 56287 1601
u1, u2† 30·7 −1·0×10−02 −1·7×10−04 13·5 56900 2214
u1, u3 209·3 (P<0·001) −13·0 (P<0·001) 1·2 (P<0·001) 8·5 54686 0
u1, u2, u3 Did not converge
Fixed 31·7 62960 8274

* At least one eigenvalue was negative.
† Singular Hessian matrix.
NS: Not significant.
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Using the SP(MATERN) error structure, there were
differences between estimated parameters β1
(P<0·001), β2 (P=0·003) and β3 (P=0·003) of the
genotypes evaluated; however, there was no differ-
ence in the β4 parameter (Table 5). Therefore, the
model was reparameterized to account for just one β4
parameter. The final parameters adjusted for each
genotype were as follows: β1=52·8 (S.E.=0·46),
β2=0·94 (S.E.=0·002) and β3=2·83 (S.E.=0·066) for
the +A animals, and β1=56·0 (S.E.=0·59), β2=0·95
(S.E.=0·002) and β3=2·63 (S.E.=0·079) for the +S
animals. The common β4 parameter was 0·96
(S.E.=0·013). The variance components were
σ2u1=47·5, σ2u3=0·46 and σu1u3=−2·0 (P<0·001)
(Table 6). The growth curves are shown in Fig. 2.

The IP was determined as a function of β4 (Richards
1959). This parameter did not differ between the

evaluated genotypes; the IP at the same proportions of
asymptotic body weight for both genotypes (0·36 of β1)
yielded 19·1 and 20·2 kg for genotypes +A and +S,
respectively.

Figure 1 shows the Pearson residuals for the
Richards model plotted against the predicted values
(kg) by genotype for the Fixed model (Figs 1(a) and (b)),
the Random model (u1 and u3) (Figs 1(c) and (d )) and
the Random (u1 and u3)+VP+SP(MATERN) model
(Figs 1(e) and ( f )). When the function was fitted using
the traditional approach, heteroscedasticity and the
correlated errors occurred. In contrast, when random
effects were added to the model, there was an
improvement in the quality of the fitting; however,
there were high Pearson residuals in this case, and
correlated errors are easy to identify by the shape of the
plotted residuals. This increase in residuals occurred
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Fig. 1. Pearson residuals of the Richards functions v. predicted values (kg) using the following approaches: (a, b)
Fixed-effects model; (c, d) random-effects model (u1 and u3); (e, f) random (u1 and u3)+VP+SP(MATERN).
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once therewere two common parameters (β2 and β4) in
the functions, even when the errors were assumed to
be independent. The variance power and error
structure modelling yielded a better fit, and the
Pearson residuals were within an acceptable range.
The Richards (u1 and u3)+VP+SP(MATERN) mod-

elling approach was used to fit the training data set in

the cross-validation analysis. The parameters fitted
(data not shown) did not differ from the parameters
fitted from the original data set, indicating that the
chosen approach was effective even when using a
reduced data set. When using the test data set to
evaluate the model, the simultaneous F-test for the
intercept (1·18±0·14) and slope (0·98±0·0045)

Table 5. Reparameterized Richard model parameters with error structure

Model

+A +S

β1 β2 β3 (x 1000) β4 β1 β2 β3 (x 1000) β4

SP(POW) 52·9 0·95 2·7 0·90 57·3 0·97 2·3 0·86
SP(MATERN) 52·5 0·94 3·0 0·98 56·5 0·95 2·5 0·94

σ2u1 σ2u3 σu1u3 σ2e AIC Δr

SP(POW) 71·8 (P<0·001) 0·66 (P<0·001) −3·9 (P<0·001) 0·072 50740 1126
SP(MATERN) 47·6 (P<0·001) 0·45 (P<0·001) −2·0 (P<0·001) 0·099 49613 0

Hypothesis test SP(MATERN) D.F. T value P-value
β1+S

= β1+A
7683 4·9 <0·001

β2+S
= β2+A

7683 3·0 0·003
β3+S

= β3+A
7683 −3·0 0·003

β4+S
= β4+A

7683 −1·6 0·143

Table 6. Reparameterized Richard model with error structure and just one β4 parameter

Model

+A +S

β1 β2 β3 (x 1000) β1 β2 β3 (x 1000) Β4*

SP(MATERN) 52·8 0·94 2·8 56·0 0·95 2·6 0·96

σ2u1 σ2u3 σu1u3 σ2e AIC

SP(MATERN) 47·8 (P<0·001) 0·46 (P<0·001) −2·0 (P<0·001) 0·099 49609

* Common β4 parameter.
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Fig. 2. Adjusted growth curve for the two genotypes evaluated.
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rejected H0 (R2=0·90). The CCC obtained was 0·95
(ranging from 0 to 1), indicating high accuracy.
The RMSEP was 5·48 kg, and its decomposition
indicated a high contribution from the random errors
(98·37%), whereas the contributions of the mean bias
(1·47%) and systematic bias (0·32%) were negligible.
Figure 3 shows the relationship between the observed
and predicted body weight values from the cross-
validation.

Fig. 4 shows that there was no apparent effect on the
random parameter estimates from the number of
weight measurements.

DISCUSSION

Growth curves and random effects

The nonlinear mixed model has as its main feature the
partitioning of error variation into within- and be-
tween-subject variations. The fixed effects β1, β2, β3
and β4 represent the mean values of the parameters in
the population of individuals. The individual devia-
tions are represented by the random effects u1, u2 and
u3, which are assumed to be distributed normally with
mean 0 and unstructured covariance matrix G.

For models with only the variance component
linked to asymptotic body weight, the error variation
was partitioned into variation within goats (σ2e) and the
variation between goats (σ2u1 ). When two variance
components were added to the variation between
goats, the error variation was partitioned into variation
due to asymptotic body weight, the sigmoidal-shaped
curve of each animal and the covariance between

these terms (σ2u1,σ
2
u2 and σu1u2), or due to the asymptotic

body weight, rate constant and covariance between
these terms (σ2u1,σ

2
u3 and σu1u3), and so on, when three

random effects were added; however, when three
variance components were added in the growth curve
model, there were indications of overparameterization
and more highly correlated parameters, causing
problems with convergence and the Hessian matrix.

In consequence, the estimate of the random effects
(u1, u2 and u3) of each goat represents the deviation of
a determined parameter from its corresponding
parameter for its population average. For example,
the mean asymptotic body weight of the population of
goats with +A genotype is 52·7 kg (Table 6), and the
specific estimate of random effects for a specific goat is
5·9 kg (empirical best linear unbiased prediction –

EBLUP). Therefore, the mean asymptotic body weight
estimated for this specific animal is 58·6 kg, indepen-
dent of short-term fluctuations in weight due to
extraneous environmental effects such as climate and
food supply as well as lactation and pregnancy. Thus,
the mean estimated parameters are not greatly affected
by these types of weight fluctuations. In fact, these
parameters represent the mean value of the growth
pattern of the goats on the production system.

It is possible that including biologically significant
parameters with random variables in the model would
reduce the residual variation, given that this tool
reduces variability due to the parameters that have
probability distributions and that can vary greatly from
animal to animal, such as asymptotic body weight or
rate constant. The random effect estimate measures the
difference between the value assigned to each
individual and the average population value (Aggrey
2009).

The high values observed for σ2u1 in most of the
estimated models indicate the considerable contri-
bution of this parameter in the residual variance
component when this random variable is not added
to the general model. Thus, it is important to
incorporate this effect when using this methodology
to estimate growth curves.

The σ2u3 component was almost always found to be
significant. In addition, adding the random effects
linked to the rate constant improved the estimated
model fit, a fact that was validated by better selection
criteria (residual variance and AIC) when including
this component. Moreover, the significance of this
parameter indicates that the rate constant varies
among the goat population and is thus subject to
breeding programme selection.
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Fig. 3. Linear regression between observed and predicted
body weights (dashed line). The continuous line is the Y=X
line.
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A major advantage of selecting a nonlinear mixed
model methodology to fit livestock growth curves is
the possibility of including population variation
measurements in stochastic models to predict animal
performance. Normally, models predicting animal
performance are deterministic, static and empirical,
and for the same input, there is only one output that is
modelled from the averages, with little or no emphasis
on population variation (Pomar et al. 2003). Therefore,
when small samples are used, such as in the case of
small farms, the errors become greater, especially
when the model parameters vary greatly, as is the case
for asymptotic body weight.
Understanding the variation among animals for the

more widely variable parameters of the livestock
system (dry matter intake, growth parameters, nutrient
use efficiency, etc.) using stochastic components can
be essential for understanding the mechanisms in-
volved in population response to certain conditions
(Pomar et al. 2003). Linking these variations to
dynamic models, for which the phenomena are
understood over time, and to mechanistic models, for
which the biological principles are understood and
explained, can make the predictions of such models
more credible.
The significant differences in the asymptotic body

weight and constant rate parameters of the data are
indicative of differences in the growth pattern between
the genotypes. Alpine goats probably achieve their
mature weight earlier than Saanen goats do, as
indicated by the higher rate constant of growth and
lower asymptotic body weight estimated for this
genotype. This knowledge can be used by farmers to
choose between genotypes depending on their inter-
est. In addition, the different asymptotic body weights
might be useful in mechanistic models, such as the
Small Ruminant Nutrition Systems (SRNS) (Tedeschi

et al. 2010), which makes use of this parameter in its
set of equations to predict the degree of maturity for
goats. This information is already available for cattle
and some sheep genotypes; however, the data set
pertaining to goats needs to be expanded.

The Von Bertalanffy, Logistic and Gompertz models
have a fixed IP relative to asymptotic body weight,
which limits the biological interpretation of these
functions due to the lack of flexibility in the estimation
of the trend in the instantaneous absolute growth rate.
In the case of the Richards model, the IP is variable
and is a function of the β4 parameter. The best
model had common parameter β4=0·9642 [IC95%

0·9394–0·9890], which yields a transitional function
in form between the Brody (β4=0) and the Gompertz
(β4=1) functions (Richards 1959).

The flexibility of the β4 parameter is the most
important advantage of the Richards function. The IP
in goats (0·36 of asymptotic body weight) may differ
from the fixed IP adopted by the other functions. The IP
occurs where the estimated instantaneous absolute
growth rate changes from an increasing to a decreasing
function. This information might be useful for strategic
plans for goat feeding; information regarding the
timing for the greatest capacity of the animal growth
could be critical for plan optimization. Moreover, it is
expected that from this point (c. 20 kg) onward, there is
a decrease in growth rate, indicating a necessity for a
change in feeding strategy.

Despite the fact that the genotypes have the same
origin and are often considered similar in terms of
productivity (only visibly different in their coats),
differences have been found in their lactation curves
(Guimarães et al. 2006) and now, in the present study,
in their growth patterns. This result indicates the need
to use separate models (growth, lactation, etc.) for
these two genotypes to predict animal response.
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Modelling of the error structure

As noted by Littell et al. (2006), the first tool to be
chosen when using the SAS software to fit a nonlinear
mixed model is PROC NLMIXED, as it is more general
because it accepts other distributions for the depen-
dent variable; however, when it is necessary to model
the error structure, the SAS macro %NLIMIX becomes
more useful. Additional differences between the two
approaches with relation to the estimation method can
be found in Littell et al. (2006) and Vonesh (2012).

The SP(MATERN) structure has been historically
used in spatial studies and has two parameters:
ρ=411·02 (S.E.=52·27) and V=0·1471 (S.E.=0·006)
(P<0·001). The lower value found for the V parameter
implies that the correlation decreases abruptly be-
tween measurements. To illustrate this behaviour, the
correlation was plotted between the measurements
made on the animal with the maximum number of
weight values (21 data points, with the first measure
made at birth and the last at 1984 days old) (Fig. 5). The
correlation decreases more rapidly over time, so that
the correlation between two measurements with an
interval of 23 days was 0·59. However, this finding is
an indication that the correlation between two
measurements was relatively well controlled.

The possible reason that the SP(MATERN) structure
adjusted better to this data set is the difference between
the measurements found here. The current data
included 1–1190 days of difference between two
consecutive measurements (Lag). Obviously, two
measurements taken at a close interval are typically
more highly correlated than measurements taken at
more distant time points (Littell et al. 2006). In the
current data set, 0·61 of the measurements were

made before the animals were 1 year old, which
means that the data are temporally close; the IP
calculated in the Richards models occurs at 19·05
and 20·22 kg for the +A and +S genotypes, respect-
ively, which occurs at c. 131 days old. Measurements
taken close to these points will show a lower
correlation than measurements taken far from them,
because the higher instantaneous absolute growth
rate observed around these inflection points. Figure 5
shows this relationship.

Cross-validation

Despite the fact that the simultaneous F-test for the
intercept and slope rejected the null hypothesis,
the high coefficient of determination indicates that
the approach chosen is robust enough to estimate the
body weight of goats. Furthermore, the RMSEP
presented a relatively low value (5·48 kg) with a great
contribution from random errors in the total error
prediction. This finding indicates that effects that
are not controlled are the main factors affecting the
predictions. As shown in Fig. 3, the predictions are
more credible in the early phases of growth, at lower
body weights. Once there is a small variation around
the average prediction, an increase in body weight
leads to an occurrence of factors that are not controlled
and operate to expand the variation around the
estimated body weight; however, the average body
weight estimated remains without bias, as indicated by
the almost total overlap between the dashed line and
the continuous lines.

Historically, the growth curve parameters for goats
have not been evaluated using adequate statistical
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approaches, which may have created biases for
the estimated values. The equations presented in the
current paper are expected to yield more credible
predictions for estimated mean values and population
variations for some parameters.

Effects of number of weight values on the random
effect estimates

Nonlinear mixed models are a strong tool for
modelling and understanding population variability
by incorporating random effects to account for
between-subject variations. Apparently, the lack of
influence of the numbers of weight measurements on
random effects is another advantage of this method.
Thus, this approach can be used to select animals that
are different from the population average with regard
to their rate of growth and those with asymptotic body
weight.

CONCLUSION

The Richards model is adequate for describing the
growth curve of dairy goats. The nonlinear mixed
model methodology is an efficient tool to address
growth curve features such as heteroscedasticity and
correlated errors. Assigning biologically significant
parameters with random effects is suggested, thus
reducing the residual variance and making the
estimates more credible. Moreover, evaluation of the
modelling structure error is recommended to account
for possible errors correlated even using random
effects. Different Richard growth curve parameters
should be used for the predominantly Alpine and
Saanen genotypes because there are differences in
their growth patterns.

J.G.L. Regadas Folho received a scholarship from the
Capes Foundation – Process no.: 1528/12-2.
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APPENDICES

SAS code:
Fixed model
PROC NLMIXED; /*Gaussian quadrature algor-

ithm*/
/* Initial parameter estimates from PROC NLIN to

start iterations;*/
parms b01=56 b11=59
b02= .9 b12= .97
b03=1.2 b13=1.5
b04= .7 b14= .8
s2e=20;
/*coding dummy variables for the goat genotypes*/
b1=b01*z1+b11*z2;
b2=b02*z1+b12*z2;
b3=b03*z1+b13*z2;
b4=b04*z1+b14*z2;
/*nonlinear Richards model*/
pred= b1*(1−b2*exp((−b3/1000)*x))**b4;
model y * normal (pred,s2e);
run;
Random model
PROC NLMIXED method= firo; /*FIRO algorithm*/
parms b01=52 b11=53
b02= .9 b12= .97
b03=1.9 b13=2
b04=.7 b14= .8
s2u1=30 c13= .99 s2u3=1.5 s2e=10;
b1=b01*z1+b11*z2+u1; /*variance components

u1 and u3 added*/
b2=b02*z1+b12*z2;
b3=b03*z1+b13*z2+u3;
b4=b04*z1+b14*z2;
pred= b1*(1−b2*exp((−b3/1000)*x))**b4;
model y * normal (pred,s2e) ;

/*Specifying random parameters with normal
distribution */

random u1 u3 * normal ([0,0],[s2u1,c13,s2u3])
subject=animal ;

run;
Random model+Variance Power+Error Structure

Model
%nlinmix(data=cresc, /*Specifies the SAS data set*/
/*Coding dummy variables for the goat genotypes

and request the nonlinear Richards model*/
model=%str(
b1=b01*z1+b11*z2+u1;
b2=b02*z1+b12*z2;
b3=b03*z1+b13*z2+u3;
predv= b1*(1-b2*exp((-b3/1000)*x))**b4;
),
/*Initial parameters estimated*/
parms=%str(b01=53 b11=57 b02=0.9 b12=0.97

b03=2.7 b13=2.2 b4=0.9),
/*Modelling the variance power statement*/
derivs=%str(
wt = 1/predv**(2.91*0.5);
),
/*Specifies the MIXED procedure to be executed for

each iteration*/
stmts=%str(
class animal;
model pseudo_y = d_b01 d_b11 d_b02 d_b12

d_b03 d_b13 d_b4 / noint notest solution cl residual
outp=pred_matern;

/*Specifies the random parameters and matrix G*/
random d_u1 d_u3 / subject = animal type = un

solution;
/*Specifies the matrix R*/
repeated / subject=animal type=sp(matern)(x);
weight wt;
),
/*Request the expansion method*/
expand = zero,
/*Request the REML method and test the variance

components parameters*/
procopt = %str(method = reml) covtest
)
run;
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