
DESIGN REPORT: RMAX

 Wireless Communications

Author:

Adam Mazzella

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/32413426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table of Contents

 1 Introduction 1 - 5

 1.1 Project Overview 3
 1.2 Client 3
 1.3 Stakeholders 3
 1.4 Goals and Objectives 4
 1.5 Deliverables 4-5
 1.6 Duration 5

 2 Related Works 6 - 7

 3 Requirements 8

 4 Design and Justification 9 - 19

 4.1 Hardware
 4.1.1 Structure 9
 4.1.2 Alfa AWUS 036H 9
 4.1.3 Digi XBee Pro XSC (S3B) 10

 4.2 Frequency 11
 4.3 Antenna 11-13
 4.4 Software 13-18

 4.4.1 Overview 13
 4.4.2 UDP 13-14
 4.4.3 TCP 14-15
 4.4.4 Modular Design 15-16
 4.4.5 Code 16-17

 4.5 Failure Matrix and Risk Assessment 17-19

 5 System Integration and Testing 20 - 21

 5.1 Test Plan 20
 5.1.1 Overview 20
 5.1.2 Tests 20 - 21
 5.1.3 Gantt Chart: 21

 6 Conclusion 22

1

 7 Works Cited 23

 8 Appendices 24 - 58
 8.1 Materials Used 24
 8.2 Charts and diagram

 8.2.1 Figures 24-26
 8.2.2 Tables 26-30

 8.3 Code
 8.3.1 server.cpp 30-38
 8.3.2 client.cpp 39-44
 8.3.3 tcp_server.cpp 45-51
 8.3.4 tcp_client.cpp 51-54
 8.3.5 messagetypes.h 55-58

2

 1 Introduction

 1.1 Project Overview:

 The goal of the RMAX wireless communications team is to establish an in flight

communications link between the Yamaha RMAX helicopter and ground station to send and

receive recorded flight data. Data including GPS coordinates for the RMAX will be

distributed by the ground station, and used by other subsystems to track a specified on

ground target. Once the target is located a UGV will be deployed for rendezvous as well as

a UAV supply drop in simulation of common search and rescue scenarios. The following

document outlines our teams collaborative design effort to establish communications.

 1.2 Client:

 Our client Northrop Grumman had a goal in mind of providing a diverse group of students

with a large, system-level, and multidisciplinary design experience. They had the desire

that teams of students and faculty from Cal Poly San Luis Obispo and Cal Poly Pomona will

work to develop a system that involves coordination between two unmanned aerial vehicles

(UAVs) and one unmanned ground vehicle (UGV). To

 1.3 Stakeholders:

 1.3.1 Future Generations:

 Future generations of the RMAX project will inherit and rely on our success and

documentation. So that the project can continue and grow in efforts to improve UAV and

UGV search and rescue.

 1.3.2 Search and Rescue:

 It may be possible that through our project we are able to develop a system that can

improve current search and rescue techniques and save lives in the process.

3

 1.4 Goals and Objectives:

 1.4.1 Project Goals:

 The project was envisioned to locate a simulated target from a UAV and have its

location communicated a UGV as well as to a second UAV. The first UAV, a fixed-wing

airplane, will determine the target location using computer vision systems and other

geo-location techniques while flying autonomously. The relevant information pertaining

to the expected location of the target will then be used by the second UAV, such as the

Yamaha RMAX helicopter, to autonomously fly to the target location and drop a

package. Once it arrives at the target location, the UGV will then use the expected

target location to independently identify the location of the simulated target and

autonomously navigate to the target for close-up inspection and possibly supply an

emergency package.

 1.4.2 Wireless-Communications Goals:

 The goal of the wireless communications team is to design and implement a wireless

system architecture that would allow communication between our unmanned vehicles

and ground station. This would be done using directional wireless antennas, XBee RF

modules, and a TCP Server-Client software architecture.

 1.4.3 Personal Goals:

 My personal goals as lead programmer were in collaboration with other members of

the Wireless-Communications team to design and code the TCP-Server client software

architecture using C++ and Visual Studio. Upon completion of this goal it was my

responsibility to test and integrate our directional wireless antennas, and XBee RF

modules to allow communication between subsystems.

 1.5 Deliverables:

 1.5.1 Project Deliverables:

 It was the responsibility of the project to deliver a successful collaborative live

implementation and demonstration of a search and rescue scenario meeting the

specifications requested by our client Northrop Grumman.

4

 1.5.2 Wireless-Communications Deliverables:

 It was the responsibility of the wireless communications team to deliver a modular

subsystem that would allow quick integration and wireless communication between

current and future subsystems for the project.

 1.5.3 Personal Deliverables:

 It was my responsibility to deliver a modular software architecture written in C++using

Visual Studio that could be used successfully to allow the integration and

communication between subsystems.

 1.6 Duration

 1.6.1 Project Duration:

 This years iteration of the RMAX project was given 8 months to design and implement

the requested project. Starting in Fall quarter September 2012 and continuing until

Spring quarter April 2013 students worked in collaboration to complete the project.

 1.6.2 Personal Duration:

 I joined the project as lead programmer during Winter quarter January 2013 and

worked until our deadline of April 2013. During this time I collaborated and designed a

modular software architecture for the project.

5

 2 Related Works

 2.1 United States. National Coordination Office for Space-Based Positioning,

Navigation, and Timing. GPS.gov:. National Coordination Office for Space-Based

Positioning, Navigation, and Timing, 17 Feb. 2012. Web. 15 Feb. 2013.

<http://www.gps.gov/systems/gps/performance/accuracy/>.

 According to the National Coordination Office for Space-Based Positioning,

Navigation, and Timing most GPS signals without outside post processing have an

accuracy of between three and seven meters. Although originally civilian GPS was

limited in accuracy by design this is no longer the case and accuracy now depends on

factors such as disruption by the ionosphere, clock differences in the GPS receiver, and

signals bouncing off surfaces before they get to the receiver

 2.2 "GPS Accuracy and Limitations." GPS Accuracy and Limitations. Earth

Measurement Consulting, n.d. Web. 15 Feb. 2013.

<http://earthmeasurement.com/GPS_accuracy.html>.

 Earth measurement gives an in depth analysis of the different forms of GPS and their

accuracy. Included in this assessment are normal GPS without any enhancements

which has the worst accuracy, wide area differential GPS which uses extra information

and calculation to improve accuracy to around three meters, and real time kinematic

which uses a base station radio link to geometrically correct for errors. Finally, post

processing GPS is discussed but this is less important for us because it is not in

realtime. After analyzing this report I can see that with just unmodified GPS we will be

able to acquire the necessary to find our target without the addition of extra calculation.

 2.3 "Making an IR Object Tracking System." Let's Make Robots! N.p., 15 Jan. 2009.

Web. 16 Oct. 2012. <http://letsmakerobots.com/node/4428>.

 This talks about a persons project to track using IR. It goes into detail about the

advantages and disadvantages of using IR, and includes circuit diagrams and pictures

6

http://www.gps.gov/systems/gps/performance/accuracy/
http://letsmakerobots.com/node/4428
http://earthmeasurement.com/GPS_accuracy.html

for reference. This could be used to consider what we would need and encounter if we

were to use IR to make our GPS system more accurate. The downside is this project

seems to be oriented more for robots and indoors so it doesn't really consider the

outdoor environment that we would be working in.

 2.4 "Comparative Analysis-TCP-UDP." Laynetworks. N.p., n.d. Web. 14 Feb. 2013.

 <http://www.laynetworks.com/Comparative%20analysis_TCP%20Vs%20UDP.htm>.

 The User Datagram Protocol (UDP) is a connectionless networking protocol that

sends data at any moment without prior notice. UDP is used in large part for error

checking in network connections. It is also used for voice over IP (VoIP) because its

packet-based and connectionless rules inherit all relevant IP properties, which is

acceptable for real-time services such as VoIP. However, UDP is also colloquially called

Unreliable DP for a number of reasons. One point is that there is no guarantee that a

packet will be delivered and no way of knowing so unless the receiving end

communicates in some response. Also, implementation is up to programs that use it and

thus there is no flow control. These factors really support that we could only really use

UDP for transmission of unimportant data and that we must do TCP to ensure that

found packets are received.

 2.5 “Satellite coverage in urban areas using Unmanned Airborne Vehicles (UAVs)”

Computer Science Department, University of California Los Angeles Web. 14 Feb.

2013 <http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.74.633&rep=rep1&type=pdf>

 This is an implementation of TCP data transfer between a UAV and stationary unit.

While this implementation is much more advanced and deals with a different situation

than our mission it does provide information about interference and connection methods

used between various subsystem parts similar to what will occur during our mission. It

also provides methods of calculating data transfer rates while experiencing interference.

7

http://www.laynetworks.com/Comparative%20analysis_TCP%20Vs%20UDP.htm

 3 Requirements:

 3.1 Range: System must function within about a mile and a half line of sight between

transmitter and receiver for safety. Due to the fact that the human eye can only distinguish

objects within three miles, it was determined that this was the maximum range that our UAV

would be away from our pilot.

 3.2 Frequency: Within a legal band. According to FAA regulations.

 3.3 Modular: System can easily allow integration of subsystems. To allow for current and

future use in RMAX projects.

 3.4 GPS:

1. Receive coordinates indicating UAV location

2. Receive coordinates indicating target location when found

 3.5 Data: Package and send secure data between ground stations in according to Stanag

4586 protocol, as requested by Cal Poly Pomona

8

 4 Design and Justification:

 4.1 Hardware:

 4.1.1 Structure:

Figure 1: This figure shows the basic hardware structure used for wireless
communications between subsystems

 4.1.2 Alfa AWUS 036H:

 A pair of these directional wireless antennas were used to communicate between

the Cal Poly SLO UAV and Ground Station. By creating an Ad-hoc network and

using the TCP Server-Client communication architecture we transmitted GPS

coordinates, and found packets to the rest of the system. Technical specifications of

these antennas are included later in this document.

9

 4.1.3 Digi XBee Pro XSC (S3B)

 This newest XBee, allows for legal transmission of RF data at extremely high rates

with calculated accuracy. It supports everything we would need for the mission

except for an optional video stream because of its limited bandwidth. However, for

sending strictly GPS coordinates of the UAV and of the target, XBee was the

simplest, cheapest, and most reliable form of close range wireless transmission.

Specs of the current model and of its legacy model are shown later in the document.

Table 1: XBee specifications courtesy of http://www.digi.com/products/wireless-wired-
embedded-solutions/zigbee-rf-modules/point-multipoint-rfmodules/xbee-pro-xsc#specs

10

 4.2 Frequency: The frequency ranges in the legal ISM (Industrial Scientific Medical) band

are listed below, both our wifi router and XBee conform to the legal limits.

Frequency range Bandwidth Center frequency Availability
6.765 MHz 6.795 MHz30 KHz 6.780 MHzSubject to local acceptance

13.553 MHz 13.567 MHz14 KHz 13.560 MHz
26.957 MHz 27.283 MHz326 KHz 27.120 MHz
40.660 MHz 40.700 MHz40 KHz 40.680 MHz

433.050 MHz 434.790 MHz1.84 MHz 433.920 MHz
Region 1 only and subject

to local acceptance
902.000 MHz 928.000 MHz26 MHz 915.000 MHzRegion 2 only

2.400 GHz 2.500 GHz100 MHz 2.450 GHz
5.725 GHz 5.875 GHz150 MHz 5.800 GHz

24.000 GHz 24.250 GHz250 MHz 24.125 GHz
61.000 GHz 61.500 GHz500 MHz 61.250 GHzSubject to local acceptance

122.000 GHz 123.000 GHz1 GHz 122.500 GHzSubject to local acceptance
244.000 GHz 246.000 GHz2 GHz 245.000 GHzSubject to local acceptance

Table 2: ISM frequency band courtesy of en.wikipedia.org/wiki/ISM_band

 4.3 Antenna:

 4.3.1 Overview:

 Once the TX and RX hardware is established, the correct antenna must be used for

stable communication. In order to create an air-link, the radiation patterns of the

antennas must encapsulate each other. To figure out the best way of accomplishing this

we considered 2 different types of antennas Omni-directional and Directional

 4.3.2 Onboard UAV:

 4.3.2.1 Considerations:

 Being onboard, the transmitter must be able to make a wireless link no matter

what state or condition the RMAX finds itself in; this includes traveling upside down,

completely sideways, or even completely vertical. We must consider all orientations,

11

http://en.wikipedia.org/wiki/GHz
http://en.wikipedia.org/wiki/ITU_region
http://en.wikipedia.org/wiki/ITU_region
http://en.wikipedia.org/wiki/MHz

scenarios and possible circumstances that could affect the RMAX before deciding

what antenna is going to work best.

 4.3.2.2 Comparison

Powered Omni-directional

 Although omni-directional antennas provide for the largest range of signal

coverage utilizing a spherical radiation pattern, they provide the worst data rates as

data is sent away in all directions and only the small portion heading straight towards

the receiver is gathered. This will most likely work but make a slow connection.

Figure 2: Omni directional Antenna Radiation Pattern courtesy of som.csudh.edu

12

Directional

 The upside of using a directional antenna is that it focuses all its radiation

towards a particular direction. What this means is a sort of best case scenario for

air-link. What this also means for a moving wireless link is that the direction of

optimal antenna placement is not going to be stationary; as the RMAX moves, so

must the directional antenna follow the moving perspective of the ground station.

To accomplish something of this nature, a Gimbal tracking system set to follow

the ground station could be used onboard to move the antenna according to flight

patterns.

Figure 3: Flat panel antenna
radiation pattern courtesy of
Digital-Transmissions.co.uk

 4.4 Software:

 4.4.1 Overview:

 After deciding on hardware, a decision had to be made about the software method

that would be used to transfer data. As well as how we could make the software

modular

 4.4.2 UDP:

Acronym for: User Datagram Protocol or Universal Datagram Protocol

Connection: UDP is a connectionless protocol.

13

Function: UDP is also a protocol used in message transport or transfer. This is not

connection based which means that one program can send a load of packets to

another and that would be the end of the relationship.

Usage: UDP is used for games or applications that require fast transmission of data.

UDP's stateless nature is also useful for servers that answer small queries from

huge numbers of clients.

Examples: DNS, DHCP, TFTP, SNMP, RIP, VOIP etc...

Ordering of data packets: UDP has no inherent order as all packets are independent

of each other. If ordering is required, it has to be managed by the application layer.

Speed of transfer: UDP is faster because there is no error-checking for packets.

Reliability: There is no guarantee that the messages or packets sent would reach at

all. Header Size: UDP Header size is 8 bytes.

Common Header Fields: Source port, Destination port, Check Sum

Streaming of data: Packets are sent individually and are checked for integrity only if

they arrive. Packets have definite boundaries which are honored upon receipt,

meaning a read operation at the receiver socket will yield an entire message as it

was originally sent.

Weight: UDP is lightweight. There is no ordering of messages, no tracking

connections, etc. It is a small transport layer designed on top of IP.

Data Flow Control: UDP does not have an option for flow control

Error Checking: UDP does error checking, but no recovery options.

Fields: 1. Length, 2. Source port, 3. Destination port, 4. Check Sum

Final Thoughts: While lightweight UDP does not offer the reliability needed to

ensure that we will have accurate data and constant signal during flight. We will

consider adding a UDP stream to transfer pictures, and videos of flight due to that

they are not mission critical and can function with missing packets.

 4.4.3 TCP:

Acronym for: Transmission Control Protocol

Connection: TCP is a connection-oriented protocol.

Function: As a message makes its way across the internet from one computer to

another. This is connection based.

Usage: TCP is used in case of non-time critical applications.

14

Examples: HTTP, HTTPs, FTP, SMTP Telnet etc...

Ordering of data packets: TCP rearranges data packets in the order specified.

Speed of transfer: The speed for TCP is slower than UDP.

Reliability: There is absolute guarantee that the data transferred remains intact and

arrives in the same order in which it was sent.

Header Size: TCP header size is 20 bytes

Common Header Fields: Source port, Destination port, Check Sum

Streaming of data: Data is read as a byte stream, no distinguishing indications are

transmitted to signal message (segment) boundaries.

Weight: TCP is heavy-weight. TCP requires three packets to set up a socket

connection, before any user data can be sent. TCP handles reliability and

congestion control.

Data Flow Control: TCP does Flow Control. TCP requires three packets to set up a

socket connection, before any user data can be sent. TCP handles reliability and

congestion control.

Error Checking: TCP does error checking

Fields: 1. Sequence Number, 2. AcK number, 3. Data offset, 4. Reserved, 5. Control

bit, 6. Window, 7. Urgent Pointer 8. Options, 9. Padding, 10. Check Sum, 11. Source

port, 12. Destination port

Final Conclusion: It was decided that due to the guaranteed reception of packets

that TCP was the method to be used. It would guarantee that we would eventually

receive the found target packet as long as a connection existed.

 4.4.4 Modular Design:

 4.4.4.1 Overview:

 Once decided upon structure of communication we needed In order to make the

design modular we broke the code into four separate parts with the concept that

once the main connection was established between teams we could distribute two

sections of code to every group one for on board the plane to capture data and one

for on ground to receive the data and use as appropriate for each subsystem. This

would allow for independent testing and integration for each subsystem and upon

success we could easily integrate each group into the entire network by simply

adding a few customized send and receive functions. This modular design can also

15

serve as a failure mechanism if one group malfunctioned the system could still

function.

Figure 4: of communications and packet structure used in Final Design Demo

 4.4.5 Code – See appendices for code reference

 4.4.5.1 server.cpp

 This code would be run aboard the RMAX or UAC. It takes recorded data from

client.cpp by use of threads and packages it into the correct message header

formant and sends it to the tcp_server by use of pipes for transmission to the ground

station. This code can be edited by subsystems to receive data.

 4.4.5.2 client.cpp

 This is the code that should be modified for collection of data aboard the RMAX or

UAV. Modify the while loop in main to read data and send an appropriate

IPC_Message template. It communicates with server.cpp by use of pipes

16

 4.4.5.3 tcp_server.cpp

 It takes no startup arguments and will print out the name of the server which will be

used for tcp_client to connect to during startup. It should never be modified as it

distributes data to the ground station. It reads packaged data from server.cpp by

checking a pipe and outputting it to connected clients by use of sockets.

 4.4.5.4 tcp_client.cpp

 This is the client that receives data from the air the code should be modified in a

specific function to distribute the data to various parts of the mission that are on the

ground. It connects through tcp sockets by port and host name and will receive data

and transfer it to various subsystems depending on system implementation.

 4.4.5.5 messageTypes.h

 The universal header file that defines the packet structure sent throughout the

network. Modify IPC_Message_Template as needed for added datatypes and use.

 4.5 Failure Matrix and Risk Assessment

 4.5.1 Possible Errors During System Operation

 4.5.1.1 Periods of time with lower data transfer rates

Possible Damage:

1. Bad resolution

2. Slow GPS coordinate refresh rate

How to avoid:

1. Keep directional antennas in correct orientations.

2. Keep UAV within required range

2. Compress packets to allow optimal data transfer

System Response:

System has a running counter of packet ids and will request

packet id until it is received meaning that no packet will be lost

when data rate is lower.

17

 4.5.1.2 Full but temporary loss of communication between UAV and Ground

Station

Possible Damage:

Loss of updating data stream until reconnection

How to avoid:

1. Keep directional antennas in correct orientations

2. Keep UAV within required range

System Response:

1. Attempt to re-establish connection until successful

2. Upon success receive missed packets while receiving current

data

 4.5.2 Hardware Failure Run

 4.5.2.1 Possible Damage:

Failure of current system run

 4.5.2.2 How to Avoid:

1. Thorough check of hardware before use

2. Constant maintenance of hardware

3. Proper use of hardware

 4.5.2.3 System Response:

Repair or replace hardware with backup unit and retry system run

18

 Frequency Of

Occurrence

Damage

Caused

Seldom → Regularly

Minor

Slow Connection Missed Packets

↓

Catastrophic Hardware Failure

Table 3: Risk Assessment Matrix for Wireless Communications

19

 5 System Integration and Testing:

 5.1 Test Plan:

 5.1.1 Overview:

 Due to the modular nature and multiple parts we were able to do multiple separate

tests throughout our process and build upon major events without dependencies. We

only had dependencies toward the end of the project where integration and

communication with subsystems needed to be tested

 5.1.2 Tests:

 5.1.2.1 Hardware Range and Accuracy Tests:

 Tested by finding limits and accuracy of our wifi antennas and RF transmitters.

Done by transmitting data from included tools at various ranges, heights and

levels of interference.

20

Table 4: Elevation and Distance Packet Test Results

Elevation Difference (Feet) Distance (feet) Sent Received % Loss Size

0 1430 50 50 0 65000
335 2072 50 50 0 4000
335 2072 50 42 16 40000
507 1678 50 50 0 40000
507 1678 50 49 2 65000
507 1678 50 50 0 6500

10 1460 50 28 44 6500
10 1460 50 12 76 65000
0 1683 50 32 36 4000

343 2100 50 16 68 4000

Table 5: Stream Quality Test Results

distance 5dB (mi) strength (%) quality (%) distance 9dB (mi) strength (%) quality (%)
0 100 86 0.5 86 85

0.2 82 76 0.8 82 84
0.5 80 80 1 82 76

1 76 71 1.2 74 69
1.5 70 40 1.5 72 65

 5.1.2.2 Test of TCP transfer between software.

Test transfer of packets in a lab situation between networked machines to ensure

software functionality.

 5.1.2.3 Integration of Wireless antennas

Create a wireless network using long range wireless antennas and test in lab

setting packet transfer between networked machines.

 5.1.2.4 Field test of System

Repeat range and accuracy tests with current system to ensure they meet

standards

 5.1.2.5 Integration of collection receive software provided by Daniel Park

Acquire code from Daniel and integrate with existing code

Repeat related above steps with the collection and reception of data.

 5.1.2.5.1 Distribute code integrate subsystems.

Distribute code to other groups and work on individual testing of subsystem

with system

 5.1.2.5.2 Full Scale Test

Simulate entire rmax system that will be demonstrated on demo day

 5.1.3 Gantt Chart:

21

Figure 5: Testing and Development Gantt Chart

 6 Conclusion

 The Project was a success we were able to do several demonstrations of our fully

functioning system during our demonstration for our client Northrop Grumman that met

there requests. Our client reported that they were impressed with the results, and has

decided to sponsor another year of the RMAX project for the 2013 – 2014 school year.

 The goals of the Wireless Communications team were met. We delivered and

implemented modular system architecture that can be configured for future versions of the

RMAX project to integrate any new subsystem requiring communication within a network.

Without the success of our team the success of the project would not have been possible.

Following our demonstration a user manual was written for the wireless architecture and

transmission hardware that will be passed to the next Wireless-Communications group so

that they will be able to quickly continue our work with minimal effort.

 While our system was delivered successful there is room for improvement. A UDP stream

can be added for the transfer of pictures and video or other non-vital information. There is

already groundwork present to easily add this feature if it is ever needed. The wireless

antennas and XBee RF transmitters can be upgraded to give faster data transfer rates and

better connection quality. This would lower the risk of failed packets during a mission and

allow for a quicker recovery in the event of a temporary transmission failure.

22

 7 Works Cited

 7.1 "Alfa AWUS036H 1000mW USB Wireless WiFi Adapter Antenna. Long-Range." Data-

alliance.net. N.p., n.d. Web. 01 Dec. 2013.

 7.2 "Beej's Guide to Network Programming." Beej's Guide to Network Programming. N.p.,

n.d. Web. 01 Dec. 2013.

 7.3 "CiteSeerX." CiteSeerX. N.p., n.d. Web. 01 Dec. 2013.

 7.4 "EUROPEAN ANTENNAS Directional Flat Panel Andlow Profile Antennas Technical

Information 43221709." EUROPEAN ANTENNAS Directional Flat Panel Andlow Profile

Antennas Technical Information 43221709. N.p., n.d. Web. 01 Dec. 2013.

 7.5 "Five Lessons for a Successful STEM Career." Lockheed Martin · STANAG 4586. N.p.,

n.d. Web. 01 Dec. 2013.

 7.6 "GPS Accuracy and Limitations." GPS Accuracy and Limitations. N.p., n.d. Web. 01

Dec. 2013.

 7.7 "GPS Accuracy." GPS.gov:. N.p., n.d. Web. 01 Dec. 2013.

 7.8 "Information." - C. N.p., n.d. Web. 01 Dec. 2013.

 7.9 "ISM Band." Wikipedia. Wikimedia Foundation, 17 Nov. 2013. Web. 01 Dec. 2013.

 7.10 Kurose, James F., and Keith W. Ross. Computer Networking: A Top-down Approach.

Boston: Pearson, 2013. Print.

 7.11 "Making an IR Object Tracking System." Let's Make Robots! N.p., n.d. Web. 01 Dec.

2013.

 7.12 "Omni-directional Antenna." Omni-directional Antenna. N.p., n.d. Web. 01 Dec. 2013.

 7.13 " RF, Wireless RF Receivers, Transceivers, Transmitters Transceivers XBee-

PRO® XSC RF Modules." XBee-PRO® XSC RF Modules. N.p., n.d. Web. 01 Dec. 2013.

 7.14 "TCP - UDP Comparative Analysis - Data Communications and Networks - Free

Computer Science Tutorials - Provided by Laynetworks.com." TCP - UDP Comparative

Analysis - Data Communications and Networks - Free Computer Science Tutorials -

Provided by Laynetworks.com. N.p., n.d. Web. 01 Dec. 2013.

 7.15 "XBee-PRO® XSC." - Digi International. N.p., n.d. Web. 01 Dec. 2013.

23

 8 Appendices

 8.1 Materials Used

Visual Studio 2010 C++ edition

2 Alfa AWUS 036H wireless antennas

2 Digi XBee Pro XSC (S3B) RF transmitters

Alfa Networking software

Microsoft Windows XP

Microsoft Windows 7

 8.2 Charts and diagrams:

 8.2.1 Figures

Figure 1: This figure shows the basic hardware structure used for wireless
communications between subsystems

24

Figure 2: Omni directional Antenna Radiation Pattern courtesy of som.csudh.edu

Figure 3: Flat panel antenna
radiation pattern courtesy of
Digital-Transmissions.co.uk

25

Figure 4: of communications and packet structure used in Final Design Demo

26

 8.2.2 Tables

Table 1: XBee specifications courtesy of http://www.digi.com/products/wireless-wired-
embedded-solutions/zigbee-rf-modules/point-multipoint-rfmodules/xbee-pro-xsc#specs

27

Frequency range Bandwidth Center frequency Availability
6.765 MHz 6.795 MHz30 KHz 6.780 MHzSubject to local acceptance

13.553 MHz 13.567 MHz14 KHz 13.560 MHz
26.957 MHz 27.283 MHz326 KHz 27.120 MHz
40.660 MHz 40.700 MHz40 KHz 40.680 MHz

433.050 MHz 434.790 MHz1.84 MHz 433.920 MHz
Region 1 only and subject

to local acceptance
902.000 MHz 928.000 MHz26 MHz 915.000 MHzRegion 2 only

2.400 GHz 2.500 GHz100 MHz 2.450 GHz
5.725 GHz 5.875 GHz150 MHz 5.800 GHz

24.000 GHz 24.250 GHz250 MHz 24.125 GHz
61.000 GHz 61.500 GHz500 MHz 61.250 GHzSubject to local acceptance

122.000 GHz 123.000 GHz1 GHz 122.500 GHzSubject to local acceptance
244.000 GHz 246.000 GHz2 GHz 245.000 GHzSubject to local acceptance

Table 2: ISM frequency band courtesy of en.wikipedia.org/wiki/ISM_band

28

http://en.wikipedia.org/wiki/GHz
http://en.wikipedia.org/wiki/ITU_region
http://en.wikipedia.org/wiki/ITU_region
http://en.wikipedia.org/wiki/MHz

 Frequency Of

Occurrence

Damage

Caused

Seldom → Regularly

Minor

Slow Connection Missed Packets

↓

Catastrophic Hardware Failure

Table 3: Risk Assessment Matrix for Wireless Communications

29

Table 4: Elevation and Distance Packet Test Results

Elevation Difference (Feet) Distance (feet) Sent Received % Loss Size

0 1430 50 50 0 65000
335 2072 50 50 0 4000
335 2072 50 42 16 40000
507 1678 50 50 0 40000
507 1678 50 49 2 65000
507 1678 50 50 0 6500

10 1460 50 28 44 6500
10 1460 50 12 76 65000
0 1683 50 32 36 4000

343 2100 50 16 68 4000

 8.3 Code

server.cpp

Description: This is the first program that should be run. It should be run onboard
the RMAX or UAV. It takes recorded data from client.cpp and sends it to the
tcp_server for transmission to the ground station. See the commented code for
information on editing the code for addition of new data. No command args are
needed for the running of this code it simply waits for the start of a client to collect
data from.

Code:
 /* Main RMAX Server
 *
 * Rewritten to be more "C" friendly
 *
 * @author: Daniel Park <dpark03@calpoly.edu>
 *
 *
 * Notes:
 * dpark - 1. This MUST be the FIRST to START
 * 2. This will kick off the TCP & UDP servers?
 */

#include <Windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <vector>
#include "messageTypes.h"

30

Table 5: Stream Quality Test Results

distance 5dB (mi) strength (%) quality (%) distance 9dB (mi) strength (%) quality (%)
0 100 86 0.5 86 85

0.2 82 76 0.8 82 84
0.5 80 80 1 82 76

1 76 71 1.2 74 69
1.5 70 40 1.5 72 65

#define SEVER_MAX_RETRY 10
#define BUFFER_SIZE 1500
#define DEFAULT_PIPE_NAME "\\\\.\\pipe\\RMAXPipe"
#define GOOD_REPLY "OK"

#define MILISEC_TO_WAIT 1

HANDLE updateMutex;
HANDLE TCP_ServerPipe = INVALID_HANDLE_VALUE;
HANDLE spamHandle;
DWORD spamID;
IPC_Message message;

/*
 * We shouldn't need to write anything to the client
 * But here is how you would do it for testing purposes
 */

void print_IPC_Message_Template(IPC_Message_Template out)
{
 switch(out.messageType)
 {
 case GPS:
 printf("Message Type: GPS\n");
 break;
 case VIDEO:
 printf("Message Type: VIDEO\n");
 break;
 case ENGINE_DATA:
 printf("Message Type: ENGINE_DATA\n");
 break;
 case TEMP:
 printf("Message Type: TEMP\n");
 break;
 default:
 printf("Message Type: UNKNOWN\n");
 break;
 }
 printf("Message Length: %d\n", out.messageLen);
 printf("Message:\n");
 for(int i = 0; i < out.messageLen; i++)
 {
 putchar(out.message[i]);
 }
 putchar('\n');
}
void print_IPC_Message(IPC_Message *msg)
{

31

 print_IPC_Message_Template(msg -> gps);
 print_IPC_Message_Template(msg -> temp);
}
int sendToClient(HANDLE hPipe, IPC_Message_Template * msg)
{
 BOOL success;
 DWORD bytesWritten;
 success = WriteFile(
 hPipe,
 msg,
 sizeof(IPC_Message_Template),
 &bytesWritten,
 NULL);

 if(!success){
 fprintf(stderr, "InstanceThread[%d]: WriteFile Failed: %d\n", GetCurrentThreadId(),
GetLastError());
 return EXIT_FAILURE;
 }
 fprintf(stdout, "InstanceThread[%d]: Sent Client Response: %s\n", GetCurrentThreadId(), msg-
>message);
 fflush(stdout);
 FlushFileBuffers(hPipe);

 return EXIT_SUCCESS;
}

/*
 * Send to Server
 */
int sendToServer(HANDLE hPipe, IPC_Message * msg)
{
 BOOL success;
 DWORD bytesWritten;
 success = WriteFile(
 hPipe,
 msg,
 sizeof(IPC_Message),
 &bytesWritten,
 NULL);

 if(!success){
 fprintf(stderr, "InstanceThread[%d]: WriteToServer Failed: %d\n", GetCurrentThreadId(),
GetLastError());
 fprintf(stderr, "Server died...\n");
 return EXIT_FAILURE;
 }
 fprintf(stdout, "InstanceThread[%d]: Sent msg to TCP Server\n", GetCurrentThreadId());
 fflush(stdout);
 FlushFileBuffers(hPipe);

32

 return EXIT_SUCCESS;
}

/*
 * Thread to spam out to TCP Server to send to base station
 */
DWORD WINAPI SpamThread(LPVOID){
 DWORD waitResult;
 int count = 0;

 //Keep taking the mutex and spam the BaseStation.
 while(1){
 waitResult = WaitForSingleObject(updateMutex, INFINITE);
 switch(waitResult){
 case WAIT_ABANDONED:
 //Okay... who crashed?
 fprintf(stderr, "Spam Mutex: Someone crashed.... \n");
 break;

 case WAIT_OBJECT_0:
 //SPAM BASETATION HERE!!!

 if(TCP_ServerPipe != INVALID_HANDLE_VALUE){
 //printf("sending\n");
 //print_IPC_Message(&message);
 if(sendToServer(TCP_ServerPipe, &message) == EXIT_FAILURE){
 TCP_ServerPipe = INVALID_HANDLE_VALUE;
 fprintf(stderr, "TCP SERVER died...\nQuiting Thread....\n");
 return EXIT_FAILURE;
 }
 } else {
 fprintf(stderr, "TCP SERVER IS NOT UP!!!!\nQuiting Thread....\n");
 return EXIT_FAILURE;
 }

 /*
 if (count == 100000) {
 fprintf(stdout, "SPAM!: %s\n", message.temp.message);
 count = 0;
 }
 count++;
 break;
 */

 case WAIT_TIMEOUT:
 //This shound't happen
 break;

 case WAIT_FAILED:

33

 //This shound't happen
 return FALSE;
 break;
 }
 if (!ReleaseMutex(updateMutex)){
 fprintf(stderr, "MUTEX RELEASE Error!!!: %d\n", GetLastError());
 return FALSE;
 }
 }
 return true;
}

/*
 * Thread to handle each message coming in and updating the "Master"
 * message data
 */
DWORD WINAPI ClientThread(LPVOID lpvParam)
{
 HANDLE hPipe;
 BOOL success;
 DWORD bytesRead;
 DWORD waitResult;
 IPC_Message_Template msg;

 if(lpvParam == NULL){
 fprintf(stderr, "ERROR - Pipe Server Failure:\n");
 fprintf(stderr, " InstanceThread got an unexpected NULL value in lpvParam.\n");
 fprintf(stderr, " InstanceThread exitting.\n");
 return EXIT_FAILURE;
 }

 hPipe = (HANDLE) lpvParam;

 while(true){
 memset(&msg, 0, sizeof(msg));
 success = ReadFile(
 hPipe,
 &msg,
 sizeof(IPC_Message_Template),
 &bytesRead,
 NULL);

 if(msg.messageType == TCP_SERVER){
 fprintf(stdout,"I HAS TCP SERVER!!!\n");
 //Password for TCP_Server Handle to register with IPC_Server
 if(((std::string)(msg.message)).compare("RMAX PA$$CODE") == 0){
 TCP_ServerPipe = hPipe;
 fprintf(stdout,"TCP SERVER HAS CORRECT PASSWORD!!!!!\n");

34

 } else {
 fprintf(stdout,"TCP_SERVER sent wrong password: %s\n", msg.message);
 }
 spamHandle = CreateThread(
 NULL,
 0,
 SpamThread,
 (LPVOID) hPipe,
 0,
 &spamID);
 if (spamHandle == NULL){
 fprintf(stderr, "ActionThread Failed: %d\n", GetLastError());
 }
 fprintf(stdout, "Created TCP_Server Thread!\n");
 return EXIT_SUCCESS;
 }

 if(!success || bytesRead == 0) {
 if(GetLastError() == ERROR_BROKEN_PIPE) {
 fprintf(stderr, "InstanceThread[%d]: Client Disconnected.\n", GetCurrentThreadId(),
GetLastError());
 }
 else
 fprintf(stderr, "InstanceThread[%d]: ReadFile Failed: %d\n", GetCurrentThreadId(),
GetLastError());
 break;
 }

 waitResult = WaitForSingleObject(updateMutex, INFINITE);
 switch(waitResult){
 case WAIT_ABANDONED:
 //Okay... who crashed?
 fprintf(stderr, "Update Mutex: Someone crashed....\n");
 break;

 case WAIT_OBJECT_0:
 //UPDATE HERE!!!
 //ADD IN THE UPDATE FOR EACH DIFFERENT TYPE OF DATA
 switch (msg.messageType){
 case TCP_SERVER:
 break;
 case GPS:
 memset(message.gps.message, '\0', BUFFER_SIZE);
 memcpy(message.gps.message, msg.message, msg.messageLen);
 message.gps.messageLen = msg.messageLen;
 break;
 case TEMP:
 memset(message.temp.message, '\0', BUFFER_SIZE);
 memcpy(message.temp.message, msg.message, msg.messageLen);
 message.temp.messageLen = msg.messageLen;

35

 break;
 default:
 fprintf(stderr, "Got strange message!!!: %s\n", msg.message);
 break;
 }
 //printf("updated\n");
 //print_IPC_Message(&message);
 break;

 case WAIT_TIMEOUT:
 //This shound't happen
 fprintf(stderr, "Update Mutex: Wait Timeout?!?!....\n");
 break;

 case WAIT_FAILED:
 //This shound't happen
 fprintf(stderr, "Update Mutex: Wait Failed?!?!....\n");
 break;
 }
 if (!ReleaseMutex(updateMutex)){
 fprintf(stderr, "MUTEX RELEASE Error!!!: %d\n", GetLastError());
 return FALSE;
 }

 fprintf(stdout,"UPDATE DONE\n");
 /*
 memcpy(msg.message, GOOD_REPLY, sizeof(GOOD_REPLY));
 msg.messageLen = sizeof(GOOD_REPLY)+1;
 sendToClient(hPipe, &msg); //OPTIONAL!
 */

 } //Will need some type of flag management

 FlushFileBuffers(hPipe);//Force flush data into File
 DisconnectNamedPipe(hPipe);
 CloseHandle(hPipe);

 return EXIT_SUCCESS;
}

int main(int argc, TCHAR *argv[])
{
 int err = 0;
 static HANDLE nPipe, cThread;
 DWORD connected, threadID;
 HANDLE actionHandle = INVALID_HANDLE_VALUE;

 std::vector<HANDLE> vThreadHandles;

 //Init global struct

36

 message.gps.messageType = GPS;
 memcpy(message.gps.message, "TEMP MESSAGE FOR FURTURE EXPANSION",
strlen("TEMP MESSAGE FOR FURTURE EXPANSION")+1);
 message.gps.messageLen = strlen("TEMP MESSAGE FOR FURTURE EXPANSION")+1;

 message.temp.messageType = TEMP;
 memcpy(message.temp.message, "TEMP MESSAGE FOR FURTURE EXPANSION",
strlen("TEMP MESSAGE FOR FURTURE EXPANSION")+1);
 message.temp.messageLen = strlen("TEMP MESSAGE FOR FURTURE EXPANSION")+1;

 //Create updating mutex
 updateMutex = CreateMutex(NULL, //Defualt Permissions
 FALSE, //Not owned
 TEXT("updateMutex")); //Name
 if (updateMutex == NULL){
 fprintf(stderr, "CreateMutex failed: %d\n", GetLastError());
 }

 while(true){
 nPipe = CreateNamedPipe(
 TEXT(DEFAULT_PIPE_NAME),
 PIPE_ACCESS_DUPLEX,
 PIPE_TYPE_MESSAGE |
 PIPE_READMODE_MESSAGE |
 PIPE_WAIT,
 PIPE_UNLIMITED_INSTANCES,
 sizeof(IPC_Message),
 sizeof(IPC_Message),
 NMPWAIT_USE_DEFAULT_WAIT,
 NULL);

 if(nPipe == INVALID_HANDLE_VALUE){
 err++;
 perror("CreateNamedpiped Failed");
 fprintf(stderr, "CreateNamedpiped failed: %d\n", GetLastError());
 if(err < SEVER_MAX_RETRY){
 fprintf(stderr, "Trying again...\n");
 continue;
 } else {
 fprintf(stderr, "Terminating...\n");
 return EXIT_FAILURE;
 }
 }

 fprintf(stdout, "Waiting for Clients....\n");
 connected = ConnectNamedPipe(nPipe, NULL) ? true : GetLastError();

 if(connected){
 fprintf(stdout, "Client connected... Creating thread....\n");

37

 cThread = CreateThread(
 NULL,
 0,
 ClientThread,
 (LPVOID) nPipe,
 0,
 &threadID);

 if(cThread == NULL) {
 perror("Create_Child_Thread failed");
 fprintf(stderr, "CreateThread failed: %d\n", GetLastError());
 } else {
 //Store handle to the thread for future use?
 vThreadHandles.push_back(cThread);
 }
 fprintf(stdout, "InstanceThread[%d]: Created\n", threadID);
 } else {
 // Client couldn't connect
 // Close Handle
 CloseHandle(nPipe);
 fprintf(stderr, "Client tried to connect... But couldn't\n");
 }

 //Check THREADS handles!
 for (std::vector<HANDLE>::iterator itr = vThreadHandles.begin(); itr != vThreadHandles.end();
itr++){
 (HANDLE)*itr;
 //naaaaaaaaaa :P
 }
 }
 return EXIT_SUCCESS;
}

38

client.cpp

Description: This is the code that should be modified for collection of data aboard the
RMAX or UAV. Modify the while loop in main to read data and send an appropriate
IPC_Message template. This code should be ran last. For multiple data types I suggest
making multiple functions to create specific messages and write to server.cpp. This code
should be ran last.

Code:

 / * Main RMAX Client & TEST program
 *
 * Rewritten to be more "C" friendly
 *
 * @author: Daniel Park <dpark03@calpoly.edu>
 *
 */

#include <Windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "messageTypes.h"

HANDLE pipeMutex;

/*
 * This funciton will create the pipe and return a handle to the pipe.
 * Or else it will return a NULL.
 */
HANDLE nPipeInit(IPC_Message_Type type)
{
 HANDLE nPipe = CreateFile(
 TEXT(DEFAULT_PIPE_NAME),
 GENERIC_READ |
 GENERIC_WRITE,
 0,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL |
 FILE_FLAG_DELETE_ON_CLOSE,
 NULL);

 if(ERROR_PIPE_BUSY == GetLastError()) {
 fprintf(stderr, "Busy Pipe: %d\n", GetLastError());
 return NULL;

39

 }

 if(INVALID_HANDLE_VALUE == nPipe){
 fprintf(stderr, "Error connecting to server: %d\n", GetLastError());
 return NULL;
 }

 //Change Read mode to message mode
 DWORD dwMode = PIPE_READMODE_MESSAGE | PIPE_WAIT;
 bool fSuccess = FALSE;
 fSuccess = SetNamedPipeHandleState(
 nPipe, // pipe handle
 &dwMode, // new pipe mode
 NULL, // don't set maximum bytes since it is on the same machine
 NULL); // don't set maximum time since it is on the same machine
 if (!fSuccess)
 {
 fprintf(stderr,"SetNamedPipeHandleState failed: %d\n", GetLastError());
 return NULL;
 }

 return nPipe;
}

/*
 * This function will send data down a passed in namedPIPE Handle.
 * Returns success or fail.
 */
int sendToPipe(HANDLE nPipe, IPC_Message_Template * msg)
{
 DWORD written = 0;
 bool success;
 DWORD waitResult;

 waitResult = WaitForSingleObject(pipeMutex, INFINITE);
 switch(waitResult){
 case WAIT_ABANDONED:
 //IPC_Server Crashed
 fprintf(stderr,"IPC_SERVER Crashed\n");
 break;
 case WAIT_TIMEOUT:
 //This shound't happen
 fprintf(stderr, "Update Mutex: Wait Timeout?!?!....\n");
 break;
 case WAIT_FAILED:
 //This shound't happen
 fprintf(stderr, "Update Mutex: Wait Failed?!?!....\n");
 break;
 case WAIT_OBJECT_0:
 fprintf(stdout, "Sending %d byte(s) message: %s\n", msg->messageLen, msg->message);

40

 fflush(stdout);
 success = WriteFile(
 nPipe,
 msg,
 sizeof(IPC_Message_Template),
 &written,
 NULL);

 if(!success){
 fprintf(stderr, "Write to Pipe Failed %d\n", GetLastError());
 return EXIT_FAILURE;
 }
 break;
 }
 if (!ReleaseMutex(pipeMutex)){
 fprintf(stderr, "MUTEX RELEASE Error!!!: %d\n", GetLastError());
 return FALSE;
 }
 return EXIT_SUCCESS;
}

/*
 * This function reads from a namedPipe.
 * Returns the string or NULL for fail.
 */
IPC_Message_Template * readFromPipe(HANDLE nPipe)
{
 bool success;
 DWORD read = 0;
 IPC_Message_Template * msg = (IPC_Message_Template
*)malloc(sizeof(IPC_Message_Template));

 if(msg == NULL){
 perror("readFromPipe: MALLOC Failed");
 return NULL;
 }

 success = ReadFile(
 nPipe,
 msg,
 sizeof(IPC_Message_Template),
 &read,
 NULL);

 if(!success){
 perror("Reading from NAMED PIPED Errored");
 return NULL;
 }

 return msg;

41

}

DWORD WINAPI listenThread(LPVOID lpvParam)
{
 IPC_Message_Template * ret;
 DWORD waitResult;

 waitResult = WaitForSingleObject(pipeMutex, INFINITE);
 switch(waitResult){
 case WAIT_ABANDONED:
 //IPC_Server Crashed
 fprintf(stderr,"IPC_SERVER Crashed\n");
 break;
 case WAIT_TIMEOUT:
 //This shound't happen
 fprintf(stderr, "Update Mutex: Wait Timeout?!?!....\n");
 break;
 case WAIT_FAILED:
 //This shound't happen
 fprintf(stderr, "Update Mutex: Wait Failed?!?!....\n");
 break;
 case WAIT_OBJECT_0:
 //Read from response.. but who cares!
 fprintf(stdout, "\nListening from Handle\n");
 if((ret = readFromPipe((HANDLE)lpvParam)) == NULL){
 fprintf(stderr, "READ_FROM_PIPE Failed!!\n");
 return EXIT_FAILURE;
 }
 fprintf(stdout, "%s\n", ret->message);
 fflush(stdout);
 break;
 }

 if (!ReleaseMutex(pipeMutex)){
 fprintf(stderr, "MUTEX RELEASE Error!!!: %d\n", GetLastError());
 return FALSE;
 }
}

/**
 * A small test main to test the client code
 */
int main(int argc, char *argv[])
{
 HANDLE nPipe;
 HANDLE listenThreadHandle;
 DWORD listenThreadID;

 fprintf(stdout,"This is a test program for Windows IPC\n");

42

 fprintf(stdout,"Max READ Buffer is: %d\n", MAX_MSG_SIZE);
 int count = 0;
 int i = 0;
 IPC_Message_Template msg;
 msg.messageType = TEMP;

 //Create Pipe mutex
 pipeMutex = CreateMutex(NULL, //Defualt Permissions
 FALSE, //Not owned
 TEXT("updateMutex")); //Name
 if (pipeMutex == NULL){
 fprintf(stderr, "CreateMutex failed: %d\n", GetLastError());
 }

 if((nPipe = nPipeInit(TEMP)) == NULL){
 fprintf(stderr, "NAMED PIPE Init FAILED!\n");
 return EXIT_FAILURE;
 }

 /*
 listenThreadHandle = CreateThread(
 NULL,
 0,
 listenThread,
 (LPVOID) nPipe,
 0,
 &listenThreadID);
 if (listenThreadHandle == NULL){
 fprintf(stderr, "ActionThread Failed: %d\n", GetLastError());
 }
 */

 while(true){
 i = 0;
 if(count % 2 == 1)
 msg.messageType = TEMP;
 else
 msg.messageType = GPS;
 count++;
 memset(msg.message, 0, sizeof(msg.message));
 fprintf(stdout,">");
 fflush(stdin);
 while(i < MAX_MSG_SIZE){
 msg.message[i++] = getchar();
 if(msg.message[i-1] == '\n'){
 break;
 }
 }
 msg.message[i]='\0';
 msg.messageLen = i-1;

43

 if(sendToPipe(nPipe, &msg) == EXIT_FAILURE){
 fprintf(stderr, "SEND_TO_PIPE Failed!\n");
 return EXIT_FAILURE;
 }

 fprintf(stdout, "Sent data.\n");
 }
 return EXIT_SUCCESS;

44

tcp_server.cpp

Description: This code is ran second and should never be modified. It takes no startup
arguments and will print out the name of the server which will be used for tcp_client to connect to
during startup.

Code:

/* RMAX TCP Server
*
*
* @original author: Adam Mazzella <amazzell@calpoly.edu>
*
* Notes:
* 1. This one gets ran second followed by the TCP Client
* 2. No changes should be made to this code without consulting team in charge
*/

// Need to link with Ws2_32.lib
#pragma comment(lib, "ws2_32.lib")

#include <stdio.h>
#include <stdlib.h>
#include <winsock2.h>
#include <ws2tcpip.h>
#include <iphlpapi.h>
#include "messageTypes.h"

#define TCP_SERVER_SOCKET "80085"
#define UDP_SERVER_SOCKET "80086"
#define TCP_SERVER_BACKLOG SOMAXCONN
#define MAX_CLIENTS 15
#define HOST_LEN 1500

//struct for client info
typedef struct CLIENTS
{
 int num_clients;
 SOCKET client_socket[MAX_CLIENTS];
 HANDLE nPipe;
} CLIENTS;

//prototypes
int handleClients(CLIENTS *clients);
DWORD WINAPI ClientThread(LPVOID lpvParam);
SOCKET tcp_server_setup();
void print_IPC_Message(IPC_Message *msg);
void print_IPC_Message_Template(IPC_Message_Template out);

45

int main(int argc, char * argv[])
{
 WSADATA wsaData;
 SOCKET tcp_serverSocket = INVALID_SOCKET;
 int iResult;
 struct addrinfo *addrInfo = NULL, hints;
 HANDLE tcp_cThread;
 DWORD threadID;
 DWORD flag = 1;
 DWORD bytesWritten;
 bool success;

 IPC_Message_Template *verify = (IPC_Message_Template
*)malloc(sizeof(IPC_Message_Template));
 verify->messageType = TCP_SERVER;
 verify->messageLen = strlen("RMAX PA$$CODE");

 memset(verify->message, '\0',MAX_MSG_SIZE); //Need to null out the memory first

 memcpy(verify->message, "RMAX PA$$CODE", verify->messageLen);
 //opens pipe for communication with IPC Server
 CLIENTS * clients = (CLIENTS *) malloc(sizeof(CLIENTS));
 clients -> num_clients = 0;
 clients -> nPipe = CreateFile(
 TEXT(DEFAULT_PIPE_NAME),
 GENERIC_READ |
 GENERIC_WRITE,
 0,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL |
 FILE_FLAG_DELETE_ON_CLOSE,
 NULL);

 if(INVALID_HANDLE_VALUE == clients -> nPipe){
 fprintf(stderr, "Error connecting to server: %d\n", GetLastError());
 return EXIT_FAILURE;
 }

 if(ERROR_PIPE_BUSY == GetLastError()) {
 fprintf(stderr, "Busy Pipe: %d\n", GetLastError());
 return EXIT_FAILURE;
 }

 fprintf(stdout,"CREATION PIPE: %d\n",clients->nPipe);

 //Send Passcode to IPC_Server
 success = WriteFile(
 clients -> nPipe,

46

 verify,
 sizeof(IPC_Message_Template),
 &bytesWritten,
 NULL);

 if(!success){
 fprintf(stderr, "Verification Failed: %d\n",GetLastError());
 return EXIT_FAILURE;
 }

 // Starting TCP Initialization
 // Initialize Winsock
 if (WSAStartup(MAKEWORD(2,2), &wsaData) != 0) {
 printf("WSAStartup failed with error: %d\n", WSAGetLastError());
 return EXIT_FAILURE;
 }

 //sets up tcp server socket
 tcp_serverSocket = tcp_server_setup();
 if(tcp_serverSocket == EXIT_FAILURE)
 return EXIT_FAILURE;

 //threads off client handler
 tcp_cThread = CreateThread(
 NULL,
 0,
 ClientThread,
 (LPVOID)clients,
 0,
 &threadID);

 //listens for any added clients
 while(true)
 {
 if (listen(tcp_serverSocket, TCP_SERVER_BACKLOG) == SOCKET_ERROR) {
 printf("Listen failed with error: %ld\n", WSAGetLastError());
 closesocket(tcp_serverSocket);
 WSACleanup();
 return EXIT_FAILURE;
 }

 clients -> client_socket[clients -> num_clients] = accept(tcp_serverSocket, NULL, NULL);
 if (clients -> client_socket[clients -> num_clients] == INVALID_SOCKET) {
 printf("accept failed: %d\n", WSAGetLastError());
 closesocket(tcp_serverSocket);
 WSACleanup();
 return EXIT_FAILURE;
 }

47

 clients -> num_clients++;
 printf("Client added with socket number %d number of clients is now %d\n",
 clients -> client_socket[(clients -> num_clients) - 1], clients -> num_clients);
 }
 WSACleanup();
 free(verify);
 return 0;
}

DWORD WINAPI ClientThread(LPVOID lpvParam){
 CLIENTS *clients = (CLIENTS *)lpvParam;
 return handleClients(clients);
}

//sets up tcp socket for server
SOCKET tcp_server_setup()
{
 SOCKET tcp_serverSocket = INVALID_SOCKET;
 int iResult;
 struct addrinfo *addrInfo = NULL, hints;
 char hostname[HOST_LEN];
 ZeroMemory(&hints, sizeof (hints));
 hints.ai_family = AF_INET; //IPV4 only
 hints.ai_socktype = SOCK_STREAM; //TCP Stream Type
 hints.ai_protocol = IPPROTO_TCP; //TCP Protocal Type
 hints.ai_flags = AI_PASSIVE; //Socket will be used to bind

 // Resolve the local address and port to be used by the server
 iResult = getaddrinfo(NULL, TCP_SERVER_SOCKET, &hints, &addrInfo);
 if (iResult != 0) {
 printf("getaddrinfo failed: %d\n", iResult);
 WSACleanup();
 return EXIT_FAILURE;
 }

 // Create the TCP Socket
 tcp_serverSocket = socket(addrInfo->ai_family, addrInfo->ai_socktype, addrInfo->ai_protocol);
 if (tcp_serverSocket == INVALID_SOCKET) {
 printf("Error at socket(): %ld\n", WSAGetLastError());
 freeaddrinfo(addrInfo);
 WSACleanup();
 return EXIT_FAILURE;
 }

 // Bind the Socket
 iResult = bind(tcp_serverSocket, addrInfo->ai_addr, (int)addrInfo->ai_addrlen);
 if (iResult == SOCKET_ERROR) {
 printf("bind failed with error: %d\n", WSAGetLastError());
 freeaddrinfo(addrInfo);

48

 closesocket(tcp_serverSocket);
 WSACleanup();
 return EXIT_FAILURE;
 }
 if(gethostname(hostname, sizeof(hostname)) < 0)
 {
 perror("gethostname call");
 exit(-1);
 }
 printf("Server Name: %s\n", hostname);
 return tcp_serverSocket;

}

//sends IPC_Message to TCP Client(s)
int handleClients(CLIENTS *clients)
{
 DWORD read = 0;
 int num_clients;
 int send_len;
 bool success;
 WSADATA wsaData;

 IPC_Message * msg = (IPC_Message *)malloc(sizeof(IPC_Message));
 if(msg == NULL){
 perror("readFromPipe: MALLOC Failed");
 return EXIT_FAILURE;
 }

 while(true){

 success = ReadFile(
 clients -> nPipe,
 msg,
 sizeof(IPC_Message),
 &read,
 NULL);
 if(!success){
 printf("Reading from NAMED PIPED Errored %d\n", GetLastError());
 return EXIT_FAILURE;
 }
 //print_IPC_Message(msg);
 num_clients = clients -> num_clients;
 for(int i = 0; i < num_clients; i++)
 {
 //printf("Sending to client %d socket number %d status: ", i, clients -> client_socket[i]);
 send_len = send(clients -> client_socket[i],(char *) msg, sizeof(IPC_Message), 0);
 if(send_len == SOCKET_ERROR)
 {

49

 printf("FAILED\n");
 printf("Client with socket number %d removed number of clients is now %d\n", clients ->
client_socket[i], num_clients - 1);
 closesocket(clients -> client_socket[i]);
 for(int j = i; j < num_clients; j++)
 clients -> client_socket[j] = clients -> client_socket[j+1];
 clients -> num_clients--;
 num_clients--;
 i--;
 //add error fixing
 }
 //else
 //printf("SUCCESSFUL\n");
 }
 }
 free(msg);
}

//printing functions for debugging will need to be modified as IPC structs are modified
void print_IPC_Message(IPC_Message *msg)
{
 print_IPC_Message_Template(msg -> gps);
 print_IPC_Message_Template(msg -> temp);
}

void print_IPC_Message_Template(IPC_Message_Template out)
{
 switch(out.messageType)
 {
 case GPS:
 printf("Message Type: GPS\n");
 break;
 case VIDEO:
 printf("Message Type: VIDEO\n");
 break;
 case ENGINE_DATA:
 printf("Message Type: ENGINE_DATA\n");
 break;
 case TEMP:
 printf("Message Type: TEMP\n");
 break;
 default:
 printf("Message Type: UNKNOWN\n");
 break;
 }
 printf("Message Length: %d\n", out.messageLen);
 printf("Message:\n");
 for(int i = 0; i < out.messageLen; i++)
 {
 putchar(out.message[i]);

50

 }
 putchar('\n');

tcp_client.cpp

Description: This code should be run third after tcp_server.cpp. This code needs the
name of the server printed out by tcp_server to run correctly. This code should be modified to
distribute the data to various parts of the mission that are on the ground. See the code for instructions
on editing.

Code:

/* RMAX TCP Client
*
*
* @original author: Adam Mazzella <amazzell@calpoly.edu>
*
* Notes:
* 1. This is the last program to be run of the three
* 2. Your code to send to your station will go into the commented section of main
* 3. All data station code should be in separate file and header in theory there should just be
* send to functions written by various groups
*/

#define WIN32_LEAN_AND_MEAN

#include <windows.h>
#include <winsock2.h>
#include <ws2tcpip.h>
#include <stdlib.h>
#include <stdio.h>
#include "messageTypes.h"

// Need to link with Ws2_32.lib, Mswsock.lib, and Advapi32.lib
#pragma comment (lib, "Ws2_32.lib")
#pragma comment (lib, "Mswsock.lib")
#pragma comment (lib, "AdvApi32.lib")

#define DEFAULT_BUFLEN 512
#define DEFAULT_PORT "80085"

//function prototypes
void print_IPC_Message(IPC_Message *msg);
void print_IPC_Message_Template(IPC_Message_Template out);

int __cdecl main(int argc, char **argv)
{
 WSADATA wsaData;

51

 SOCKET ConnectSocket = INVALID_SOCKET;
 struct addrinfo *result = NULL,
 *ptr = NULL,
 hints;
 IPC_Message * msg = (IPC_Message *)malloc(sizeof(IPC_Message));
 int iResult;

 // Validate the parameters
 if (argc != 2) {
 printf("usage: %s server-name\n", argv[0]);
 return 1;
 }

 // Initialize Winsock
 iResult = WSAStartup(MAKEWORD(2,2), &wsaData);
 if (iResult != 0) {
 printf("WSAStartup failed with error: %d\n", iResult);
 return 1;
 }

 ZeroMemory(&hints, sizeof(hints));
 hints.ai_family = AF_UNSPEC;
 hints.ai_socktype = SOCK_STREAM;
 hints.ai_protocol = IPPROTO_TCP;

 // Resolve the server address and port
 iResult = getaddrinfo(argv[1], DEFAULT_PORT, &hints, &result);
 if (iResult != 0) {
 printf("getaddrinfo failed with error: %d\n", iResult);
 WSACleanup();
 return 1;
 }

 // Attempt to connect to an address until one succeeds
 for(ptr=result; ptr != NULL ;ptr=ptr->ai_next) {

 // Create a SOCKET for connecting to server
 ConnectSocket = socket(ptr->ai_family, ptr->ai_socktype,
 ptr->ai_protocol);
 if (ConnectSocket == INVALID_SOCKET) {
 printf("socket failed with error: %ld\n", WSAGetLastError());
 WSACleanup();
 return 1;
 }

 // Connect to server.
 iResult = connect(ConnectSocket, ptr->ai_addr, (int)ptr->ai_addrlen);
 if (iResult == SOCKET_ERROR) {
 closesocket(ConnectSocket);
 ConnectSocket = INVALID_SOCKET;

52

 continue;
 }
 break;
 }

 freeaddrinfo(result);
 if (ConnectSocket == INVALID_SOCKET) {
 printf("Unable to connect to server!\n");
 WSACleanup();
 return 1;
 }
 printf("Connected to server\n");
 // shutdown the connection since no data will be sent only recieved
 iResult = shutdown(ConnectSocket, SD_SEND);
 if (iResult == SOCKET_ERROR) {
 printf("shutdown failed with error: %d\n", WSAGetLastError());
 closesocket(ConnectSocket);
 WSACleanup();
 return 1;
 }

 // Receive until Connection Ends
 do {

 iResult = recv(ConnectSocket, (char *)msg, sizeof(IPC_Message), 0);
 if (iResult > 0)
 {
 //THIS IS WHERE YOU ADD YOUR CODE TO DO WHAT YOU WANT WITH THE DATA
 //CURRENTLY IT ONLY PRINTS OUT THE CONTENT of the IPC_Message recieved
 printf("Bytes received: %d\n", iResult);
 print_IPC_Message(msg);

 }
 else
 printf("Connection Ended");

 } while(iResult > 0);

 // cleanup
 closesocket(ConnectSocket);
 WSACleanup();

 return 0;
}

//printing functions for IPC_Message will need to be modified when IPC_Message is modified
void print_IPC_Message(IPC_Message *msg)
{
 print_IPC_Message_Template(msg -> gps);
 print_IPC_Message_Template(msg -> temp);

53

}

void print_IPC_Message_Template(IPC_Message_Template out)
{
 switch(out.messageType)
 {
 case GPS:
 printf("Message Type: GPS\n");
 break;
 case VIDEO:
 printf("Message Type: VIDEO\n");
 break;
 case ENGINE_DATA:
 printf("Message Type: ENGINE_DATA\n");
 break;
 case TEMP:
 printf("Message Type: TEMP\n");
 break;
 default:
 printf("Message Type: UNKNOWN\n");
 break;
 }
 printf("Message Length: %d\n", out.messageLen);
 printf("Message:\n");
 for(int i = 0; i < out.messageLen; i++)
 {
 putchar(out.message[i]);
 }
 putchar('\n');
}

54

messageTypes.h

Description: the header file that defines the packets sent throughout the network. Modify
IPC_Message_Template as needed for added datatypes and use. Please note that the same
messageTypes must be used for each build of an executable and if different ones are used the
network will not function correctly.

Code:

/* RMAX TCP Client
*
*
* @original author: Adam Mazzella <amazzell@calpoly.edu>
*
* Notes:
* 1. This is the last program to be run of the three
* 2. Your code to send to your station will go into the commented section of main
* 3. All data station code should be in separate file and header in theory there should just be
* send to functions written by various groups
*/

#define WIN32_LEAN_AND_MEAN

#include <windows.h>
#include <winsock2.h>
#include <ws2tcpip.h>
#include <stdlib.h>
#include <stdio.h>
#include "messageTypes.h"

// Need to link with Ws2_32.lib, Mswsock.lib, and Advapi32.lib
#pragma comment (lib, "Ws2_32.lib")
#pragma comment (lib, "Mswsock.lib")
#pragma comment (lib, "AdvApi32.lib")

#define DEFAULT_BUFLEN 512
#define DEFAULT_PORT "80085"

//function prototypes
void print_IPC_Message(IPC_Message *msg);
void print_IPC_Message_Template(IPC_Message_Template out);

int __cdecl main(int argc, char **argv)
{
 WSADATA wsaData;
 SOCKET ConnectSocket = INVALID_SOCKET;
 struct addrinfo *result = NULL,
 *ptr = NULL,

55

 hints;
 IPC_Message * msg = (IPC_Message *)malloc(sizeof(IPC_Message));
 int iResult;

 // Validate the parameters
 if (argc != 2) {
 printf("usage: %s server-name\n", argv[0]);
 return 1;
 }

 // Initialize Winsock
 iResult = WSAStartup(MAKEWORD(2,2), &wsaData);
 if (iResult != 0) {
 printf("WSAStartup failed with error: %d\n", iResult);
 return 1;
 }

 ZeroMemory(&hints, sizeof(hints));
 hints.ai_family = AF_UNSPEC;
 hints.ai_socktype = SOCK_STREAM;
 hints.ai_protocol = IPPROTO_TCP;

 // Resolve the server address and port
 iResult = getaddrinfo(argv[1], DEFAULT_PORT, &hints, &result);
 if (iResult != 0) {
 printf("getaddrinfo failed with error: %d\n", iResult);
 WSACleanup();
 return 1;
 }

 // Attempt to connect to an address until one succeeds
 for(ptr=result; ptr != NULL ;ptr=ptr->ai_next) {

 // Create a SOCKET for connecting to server
 ConnectSocket = socket(ptr->ai_family, ptr->ai_socktype,
 ptr->ai_protocol);
 if (ConnectSocket == INVALID_SOCKET) {
 printf("socket failed with error: %ld\n", WSAGetLastError());
 WSACleanup();
 return 1;
 }

 // Connect to server.
 iResult = connect(ConnectSocket, ptr->ai_addr, (int)ptr->ai_addrlen);
 if (iResult == SOCKET_ERROR) {
 closesocket(ConnectSocket);
 ConnectSocket = INVALID_SOCKET;
 continue;
 }
 break;

56

 }

 freeaddrinfo(result);
 if (ConnectSocket == INVALID_SOCKET) {
 printf("Unable to connect to server!\n");
 WSACleanup();
 return 1;
 }
 printf("Connected to server\n");
 // shutdown the connection since no data will be sent only recieved
 iResult = shutdown(ConnectSocket, SD_SEND);
 if (iResult == SOCKET_ERROR) {
 printf("shutdown failed with error: %d\n", WSAGetLastError());
 closesocket(ConnectSocket);
 WSACleanup();
 return 1;
 }

 // Receive until Connection Ends
 do {

 iResult = recv(ConnectSocket, (char *)msg, sizeof(IPC_Message), 0);
 if (iResult > 0)
 {
 //THIS IS WHERE YOU ADD YOUR CODE TO DO WHAT YOU WANT WITH THE DATA
 //CURRENTLY IT ONLY PRINTS OUT THE CONTENT of the IPC_Message recieved
 printf("Bytes received: %d\n", iResult);
 print_IPC_Message(msg);

 }
 else
 printf("Connection Ended");

 } while(iResult > 0);

 // cleanup
 closesocket(ConnectSocket);
 WSACleanup();

 return 0;
}

//printing functions for IPC_Message will need to be modified when IPC_Message is modified
void print_IPC_Message(IPC_Message *msg)
{
 print_IPC_Message_Template(msg -> gps);
 print_IPC_Message_Template(msg -> temp);
}

void print_IPC_Message_Template(IPC_Message_Template out)

57

{
 switch(out.messageType)
 {
 case GPS:
 printf("Message Type: GPS\n");
 break;
 case VIDEO:
 printf("Message Type: VIDEO\n");
 break;
 case ENGINE_DATA:
 printf("Message Type: ENGINE_DATA\n");
 break;
 case TEMP:
 printf("Message Type: TEMP\n");
 break;
 default:
 printf("Message Type: UNKNOWN\n");
 break;
 }
 printf("Message Length: %d\n", out.messageLen);
 printf("Message:\n");
 for(int i = 0; i < out.messageLen; i++)
 {
 putchar(out.message[i]);
 }
 putchar('\n');
}

58

