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In this paper we deal with the Boyland forcing of horseshoe orbits. We prove that 
there exists a set R of renormalizable horseshoe orbits containing only quasi-one-
dimensional orbits, that is, for these orbits the Boyland order coincides with the 
unimodal order.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In [2], Boyland introduced the forcing relation between periodic orbits of the disk D2. Given two periodic 
orbits P and R, we say that P forces R, denoted by P �2 R, if every homeomorphism of D2 containing the 
braid type of P must contain the braid type of R. The set of periodic orbits forced by P is denoted by ΣP . 
In this paper we are concerned with the forcing of Smale horseshoe periodic orbits. A horseshoe orbit P
is called quasi-one-dimensional if P forces all orbit R such that P �1 R, where �1 is the unimodal order. 
In [4], Hall gave a set of quasi-one-dimensional horseshoe orbits, called NBT orbits (Non-Bogus Transition 
orbits) which are in bijection with Q ∩ (0, 12 ) and have the property that their thick interval map induced 
has minimal periodic orbit structure, that is, if P is an NBT orbit then every braid type of a periodic orbit 
of its thick interval map θP is forced by the braid type of P .

In this paper we obtain a type of orbits which are quasi-one-dimensional too although their associated 
thick interval maps are reducible in the sense of Thurston [6], that is, they are isotopic to reducible homeo-
morphisms which have an invariant set of non-homotopically trivial disjoint curves {C1, · · · , Cn}. Restricted 
to the components of D2 \ {C1, · · · , Cn}, these reducible maps or one of its power have minimal periodic 
orbit structure.
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Fig. 1. Dynamics of F .

Theorem 1. There exists a set R ⊃ NBT of quasi-one-dimensional horseshoe orbits, that is, if P ∈ R then 
ΣP = {R : P �1 R}.

These orbits are defined using the renormalization operator which was introduced in [3] as the ∗-product.

2. Preliminaries

2.1. Boyland partial order

Let Dn be the punctured disk. Let MCG(Dn) be the group of isotopy classes of homeomorphisms of Dn, 
which is called the mapping class group of Dn. Given a homeomorphism f : D2 → D2 of the disk D2

with a periodic orbit P , the braid type of P , denoted by bt(P, f) is defined as follows: Take an orientation 
preserving homeomorphism h : D2 \ P → Dn then bt(P, f) is the conjugacy class [h ◦ f ◦ h−1] ∈ MCG(Dn)
of h ◦ f ◦ h−1 : Dn → Dn.

Let BT be the union of all the periodic braid types and let bt(f) be the set formed by the braid types of 
the periodic orbits of f . We will say that f : D2 → D2 exhibits a braid type β if there exists an n-periodic 
orbit P for f with β = bt(P, f). Now we can define the relation �2 on BT. We say that β1 forces β2, denoted 
by β1 �2 β2, if every homeomorphism exhibiting β1, exhibits β2 too. Then we will say that a periodic orbit 
P forces another periodic orbit R, denoted by P �2 R, if bt(P ) �2 bt(R).

In [2], P. Boyland proved the following theorem.

Theorem 2. ([2, Theorem 9.1]) The relation �2 is a partial order.

2.2. Smale horseshoe

The Smale horseshoe is a map F : D2 → D2 of the disk which acts as in Fig. 1. The set Ω =
⋂

j∈Z
F j(V0∪

V1) is F -invariant and F |Ω is conjugated to the shift σ on the sequence space of two symbols 0 and 1, 
Σ2 = {0, 1}Z, where

σ
(
(si)i∈Z

)
= (si+1)i∈Z. (1)

The conjugacy h : Ω → Σ2 is defined by

(
h(x)

)
i
=

{
0 if F i(x) ∈ V0

1 if F i(x) ∈ V1
(2)

To compare horseshoe orbits it is necessary to define the unimodal order. It is a total order in Σ+ = {0, 1}N
given by the following rule: Let s = s0s1... and t = t0t1... be sequences in Σ+ such that si = ti for i ≤ k

and sk+1 
= tk+1, then s < t if
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(O1)
∑k

i=0 si is even and sk+1 < tk+1, or
(O2)

∑k
i=0 si is odd and sk+1 > tk+1.

We say that s �1 t if either s = t or s > t.
Every n-periodic orbit P ∈ Ω of F has a code denoted by cP ∈ Σ2. It is obtained from h(p) = c∞P where 

p is a point of P and cP satisfies σi(cP ) �1 cP , that is, cP is maximal in the unimodal order �1. We say 
P �1 R if σn(R) �1 cP , ∀n ≥ 1. For every orbit P , there exists a homeomorphism θP that realizes the 
combinatorics of P . This is obtained fatting the line diagram of P and it is called the tick map induced 
by P . See [4].

2.3. Renormalized horseshoe orbits

Let P and Q be two horseshoe periodic orbits with codes cP = Aan−1, where A = a0a1 · · · an−2, and 
cQ = b0b1 · · · bm−2bm−1 and periods n and m, respectively.

Definition 3 (Renormalization operator). We will write P ∗Q for the nm-periodic orbit with code

cP∗Q =
{

Ab1Ab2 · · ·Abm−2Abm−1 if ε(A) is even

Ab1Ab2 · · ·Abm−2Abm−1 if ε(A) is odd
(3)

where ε(A) =
∑n−2

i=0 ai and bi = 1 − bi.

The orbit P ∗ Q is called the renormalization of P and Q. If an orbit S satisfies S = P ∗ Q for some 
P, Q ∈ Σ2, it is said that S is renormalizable. Also we will denote

P1 ∗ P2 ∗ · · · ∗ Pk =
(
· · ·

(
(P1 ∗ P2) ∗ P3

)
· · ·

)
.

Example 4. If P and Q have codes cP = 101 and cQ = 1001 then P ∗Q has code cP∗Q = 100101101100.

2.4. NBT orbits

There are a type of horseshoe orbits for which the Boyland partial order is well-understood. They are 
constructed in the following way. Given a rational number q = m

n ∈ Q̂ := Q ∩ (0, 12 ), let Lq be the straight 
line segment joining (0, 0) and (n, m) in R2. Then construct a finite word cq = s0s1 · · · sn as follows:

si =
{

1 if Lq intersects some line y = k, k ∈ Z, for x ∈ (i− 1, i + 1)

0 otherwise
(4)

It follows that cq is palindromic and has the form:

cq = 10μ1120μ212 · · · 120μm−1120μm1. (5)

We will denote Pq to the periodic orbits of period n + 2 which have the codes cq1
0, when the distinction is 

not important and let NBT = {Pq : q ∈ Q̂}. In [4], Hall proved the following result.

Theorem 5. Let q, q′ ∈ Q̂. Then

(i) Pq is quasi-one-dimensional, that is, Pq �1 R =⇒ Pq �2 R.
(ii) q � q′ ⇐⇒ (cq0

1)∞ �1 (cq′01)∞ ⇐⇒ (cq0
1)∞ �2 (cq′01)∞
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Fig. 2. The image θP∗Q(Ci) when P = 1001.

So theorem above says that the Boyland order restricted to the NBT orbits is equal to the unimodal 
order.

3. Forcing of renormalizable orbits

For proving Theorem 1 we shall need the following result:

Theorem 6. Let P = A0
1 and Q be periodic orbits. Then

ΣP∗Q = {R : P �2 R} ∪ {P ∗R : Q �2 R}. (6)

To prove the result above it will be needed two lemmas whose proofs are left to the reader.

Lemma 7. Let i, j ∈ {1, · · · , n − 1} be positive integers with i 
= j and TM = P ∗Q and Tm = σn(TM ). Then

(a) If ε(A) is even then A0∞ �1 Tm �1 TM �1 A1∞,
(b) If ε(A) is odd then A1∞ �1 Tm �1 TM �1 A0∞,
(c) σi(P ) �1 σj(P ) ⇐⇒ [σi(TM ) �1 σj(TM ) and σi(Tm) �1 σj(Tm)].

Lemma 8. Let P = A0
1 and Q be two periodic orbits. If i, j ∈ {0, · · · , m − 1}, with i 
= j, then

σi(Q) >1 σj(Q) ⇐⇒ σin(P ∗Q) >1 σjn(P ∗Q).

Proof of Theorem 6. Let θP∗Q be the thick map induced by P ∗ Q. First we see that the only iterates of 
P ∗Q satisfying Tm �1 σi(P ∗Q) �1 TM are the iterates σin(P ∗Q), with 0 ≤ i ≤ m − 1; so there exists a 
curve Cn−1 containing these orbits disjoint from the others and bounding a region Dn−1. By Lemma 7(c) 
and noting that σi(Tm) and σi(TM ) have the same initial symbol for i ∈ {1, · · · , n − 1}, it follows that 
{θiP∗Q(Cn−1)}n−1

i=1 has the same combinatorics as P . For i = 0, · · · , n − 2, let Ci = θi+1
P∗Q(Cn−1) be a curve 

which bounds a domain Di. It is possible to define θP∗Q such that θnP∗Q(Cn−1) = Cn−1. Then the line 
diagram of {D0, · · · , Dn−1} is as the line diagram of P and then θP∗Q has the same behaviour than θP
in the exterior of ∪Di. Since θP∗Q can be reduced by a family of curves, we will need study the Thurston 
representative of θP∗Q restricted to D2 \ ∪Ci. As θP and θP∗Q have the same combinatorics in the exterior 
of ∪Di, they have the same Thurston representative in the exterior of ∪Di. So P and P ∗Q force the same 
periodic orbits in the exterior of ∪Di. Then {R : P �2 R} ⊂ ΣP∗Q. See Fig. 2.

It is clear that to find what orbits are forced by P ∗Q in ∪Di, it is enough to study θnP∗Q restricted to 
Dn−1. By Lemma 8, the line diagram of θnP∗Q inside Dn−1 is the same as the line diagram of Q when ε(A)
is even, and it is flipped when ε(A) is odd. See Fig. 3. So θnP∗Q has the same combinatorics than θQ.

As in Lemma 8, we can prove that Q �2 R ⇐⇒ P ∗ Q �2 P ∗ R. So ΣP∗Q = {R : P �2 R} ∪ {P ∗ R :
Q �2 R}. �
Remark 9. Theorem 6 says us that to look for the orbits that are forced by P ∗Q it is enough to look for the 
orbits that are forced by P and the orbits that are forced by Q. So we can study the thick maps induced 
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Fig. 3. The image θn
P∗Q(Cn−1).

by P and Q separately. Every of these thick maps can be reduced using methods to determine its minimal 
representative, e.g. [1,5].

Corollary 10. Let P1, P2, · · · , Pk be NBT orbits. Then

(a) ΣP1∗···∗Pk
=

⋃k
j=1{P1 ∗ · · · ∗ Pj−1 ∗R : Pj �1 R}, and

(b) ΣP1∗···∗Pk
= {R : P1 ∗ · · · ∗ Pk �1 R}.

Proof. Item (a) follows directly from Theorem 6. For item (b) it is enough to prove that if P and Q are 
quasi-one-dimensional horseshoe orbits then P ∗Q is a quasi-one-dimensional orbit too. Suppose that ε(A)
is even. From Theorem 6,

ΣP∗Q = {R : P �1 R} ∪ {P ∗R : Q �1 R}. (7)

Hence it follows that ΣP∗Q ⊂ {S : P ∗Q �1 S}. We have to prove the inclusion {S : P ∗Q �1 S} ⊂ ΣP∗Q. 
If P �1 S then S ∈ ΣP∗Q. Let S with cS = s0s1 · · · sk−1 be a periodic orbit with P �1 S �1 P ∗ Q. By 
Lemma 7(a), (A0)∞ �1 c∞S �1 (A1)∞. This implies that cS = Asn−1sn · · · and

(0A)∞ �1 σn−1(c∞S )
= sn−1sn · · · �1 (1A)∞,

and σn(cS∞) �1 (A0)∞. In the other hand σn(cS∞) �1 cP∗Q
∞. Then σn(cS∞) = As2n−1 · · · and then 

cS = AsnAs2n−1 · · ·. Continuing this process, it follows that S = P ∗ R where cR = sn−1s2n−1 · · ·. So 
P ∗R �1 P ∗Q which implies that R �1 Q. So S ∈ {P ∗R : Q �1 R} and the proof is finished. �

Now we proceed to prove Theorem 1.

Proof of Theorem 1. Let {Pj}j∈N be the set of NBT orbits and consider the space NN of sequences of 
positive integers. Take a sequence J = (j1, j2, · · · , jn, · · ·) ∈ NN and define
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RJ =
∞⋃
k=1

{Pj1 ∗ · · · ∗ Pjk} (8)

and R =
⋃

J∈NN RJ . By Corollary 10(b), every orbit of R is quasi-one-dimensional. �
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