Renormalization and forcing of horseshoe orbits

Valentín Mendoza
Departamento de Matemática, Universidade Federal de Viçosa, MG, Brazil

A R T I C L E I N F O

Article history:
Received 15 February 2014
Accepted 3 June 2014
Available online 12 June 2014

$M S C$:

37B10
37E30

Keywords:

Horseshoe orbits
Boyland order
Renormalization

Abstract

In this paper we deal with the Boyland forcing of horseshoe orbits. We prove that there exists a set \mathcal{R} of renormalizable horseshoe orbits containing only quasi-onedimensional orbits, that is, for these orbits the Boyland order coincides with the unimodal order.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In [2], Boyland introduced the forcing relation between periodic orbits of the disk D^{2}. Given two periodic orbits P and R, we say that P forces R, denoted by $P \geqslant_{2} R$, if every homeomorphism of D^{2} containing the braid type of P must contain the braid type of R. The set of periodic orbits forced by P is denoted by Σ_{P}. In this paper we are concerned with the forcing of Smale horseshoe periodic orbits. A horseshoe orbit P is called quasi-one-dimensional if P forces all orbit R such that $P \geqslant_{1} R$, where \geqslant_{1} is the unimodal order. In [4], Hall gave a set of quasi-one-dimensional horseshoe orbits, called NBT orbits (Non-Bogus Transition orbits) which are in bijection with $\mathbb{Q} \cap\left(0, \frac{1}{2}\right)$ and have the property that their thick interval map induced has minimal periodic orbit structure, that is, if P is an NBT orbit then every braid type of a periodic orbit of its thick interval map θ_{P} is forced by the braid type of P.

In this paper we obtain a type of orbits which are quasi-one-dimensional too although their associated thick interval maps are reducible in the sense of Thurston [6], that is, they are isotopic to reducible homeomorphisms which have an invariant set of non-homotopically trivial disjoint curves $\left\{C_{1}, \cdots, C_{n}\right\}$. Restricted to the components of $D^{2} \backslash\left\{C_{1}, \cdots, C_{n}\right\}$, these reducible maps or one of its power have minimal periodic orbit structure.

[^0]

Fig. 1. Dynamics of F.

Theorem 1. There exists a set $\mathcal{R} \supset$ NBT of quasi-one-dimensional horseshoe orbits, that is, if $P \in \mathcal{R}$ then $\Sigma_{P}=\left\{R: P \geqslant_{1} R\right\}$.

These orbits are defined using the renormalization operator which was introduced in [3] as the *-product.

2. Preliminaries

2.1. Boyland partial order

Let D_{n} be the punctured disk. Let $\operatorname{MCG}\left(D_{n}\right)$ be the group of isotopy classes of homeomorphisms of D_{n}, which is called the mapping class group of D_{n}. Given a homeomorphism $f: D^{2} \rightarrow D^{2}$ of the disk D^{2} with a periodic orbit P, the braid type of P, denoted by bt (P, f) is defined as follows: Take an orientation preserving homeomorphism $h: D^{2} \backslash P \rightarrow D_{n}$ then $\operatorname{bt}(P, f)$ is the conjugacy class $\left[h \circ f \circ h^{-1}\right] \in \operatorname{MCG}\left(D_{n}\right)$ of $h \circ f \circ h^{-1}: D_{n} \rightarrow D_{n}$.

Let BT be the union of all the periodic braid types and let $\operatorname{bt}(f)$ be the set formed by the braid types of the periodic orbits of f. We will say that $f: D^{2} \rightarrow D^{2}$ exhibits a braid type β if there exists an n-periodic orbit P for f with $\beta=\operatorname{bt}(P, f)$. Now we can define the relation \geqslant_{2} on BT. We say that β_{1} forces β_{2}, denoted by $\beta_{1} \geqslant_{2} \beta_{2}$, if every homeomorphism exhibiting β_{1}, exhibits β_{2} too. Then we will say that a periodic orbit P forces another periodic orbit R, denoted by $P \geqslant{ }_{2} R$, if $\operatorname{bt}(P) \geqslant_{2} \operatorname{bt}(R)$.

In [2], P. Boyland proved the following theorem.
Theorem 2. ([2, Theorem 9.1]) The relation \geqslant_{2} is a partial order.

2.2. Smale horseshoe

The Smale horseshoe is a map $F: D^{2} \rightarrow D^{2}$ of the disk which acts as in Fig. 1. The set $\Omega=\bigcap_{j \in \mathbb{Z}} F^{j}\left(V_{0} \cup\right.$ V_{1}) is F-invariant and $\left.F\right|_{\Omega}$ is conjugated to the shift σ on the sequence space of two symbols 0 and 1 , $\Sigma_{2}=\{0,1\}^{\mathbb{Z}}$, where

$$
\begin{equation*}
\sigma\left(\left(s_{i}\right)_{i \in \mathbb{Z}}\right)=\left(s_{i+1}\right)_{i \in \mathbb{Z}} \tag{1}
\end{equation*}
$$

The conjugacy $h: \Omega \rightarrow \Sigma_{2}$ is defined by

$$
(h(x))_{i}= \begin{cases}0 & \text { if } F^{i}(x) \in V_{0} \tag{2}\\ 1 & \text { if } F^{i}(x) \in V_{1}\end{cases}
$$

To compare horseshoe orbits it is necessary to define the unimodal order. It is a total order in $\Sigma^{+}=\{0,1\}^{\mathbb{N}}$ given by the following rule: Let $s=s_{0} s_{1} \ldots$ and $t=t_{0} t_{1} \ldots$ be sequences in Σ^{+}such that $s_{i}=t_{i}$ for $i \leq k$ and $s_{k+1} \neq t_{k+1}$, then $s<t$ if
(O1) $\sum_{i=0}^{k} s_{i}$ is even and $s_{k+1}<t_{k+1}$, or
(O2) $\sum_{i=0}^{k} s_{i}$ is odd and $s_{k+1}>t_{k+1}$.
We say that $s \geqslant_{1} t$ if either $s=t$ or $s>t$.
Every n-periodic orbit $P \in \Omega$ of F has a code denoted by $c_{P} \in \Sigma_{2}$. It is obtained from $h(p)=c_{P}^{\infty}$ where p is a point of P and c_{P} satisfies $\sigma^{i}\left(c_{P}\right) \leqslant_{1} c_{P}$, that is, c_{P} is maximal in the unimodal order \geqslant_{1}. We say $P \geqslant_{1} R$ if $\sigma^{n}(R) \leqslant 1 c_{P}, \forall n \geq 1$. For every orbit P, there exists a homeomorphism θ_{P} that realizes the combinatorics of P. This is obtained fatting the line diagram of P and it is called the tick map induced by P. See [4].

2.3. Renormalized horseshoe orbits

Let P and Q be two horseshoe periodic orbits with codes $c_{P}=A a_{n-1}$, where $A=a_{0} a_{1} \cdots a_{n-2}$, and $c_{Q}=b_{0} b_{1} \cdots b_{m-2} b_{m-1}$ and periods n and m, respectively.

Definition 3 (Renormalization operator). We will write $P * Q$ for the $n m$-periodic orbit with code

$$
c_{P * Q}= \begin{cases}A b_{1} A b_{2} \cdots A b_{m-2} A b_{m-1} & \text { if } \epsilon(A) \text { is even } \tag{3}\\ A \overline{b_{1}} A \overline{b_{2}} \cdots A \overline{b_{m-2}} A \overline{b_{m-1}} & \text { if } \epsilon(A) \text { is odd }\end{cases}
$$

where $\epsilon(A)=\sum_{i=0}^{n-2} a_{i}$ and $\overline{b_{i}}=1-b_{i}$.
The orbit $P * Q$ is called the renormalization of P and Q. If an orbit S satisfies $S=P * Q$ for some $P, Q \in \Sigma_{2}$, it is said that S is renormalizable. Also we will denote

$$
P_{1} * P_{2} * \cdots * P_{k}=\left(\cdots\left(\left(P_{1} * P_{2}\right) * P_{3}\right) \cdots\right) .
$$

Example 4. If P and Q have codes $c_{P}=101$ and $c_{Q}=1001$ then $P * Q$ has code $c_{P * Q}=100101101100$.

2.4. NBT orbits

There are a type of horseshoe orbits for which the Boyland partial order is well-understood. They are constructed in the following way. Given a rational number $q=\frac{m}{n} \in \widehat{\mathbb{Q}}:=\mathbb{Q} \cap\left(0, \frac{1}{2}\right)$, let L_{q} be the straight line segment joining $(0,0)$ and (n, m) in \mathbb{R}^{2}. Then construct a finite word $c_{q}=s_{0} s_{1} \cdots s_{n}$ as follows:

$$
s_{i}= \begin{cases}1 & \text { if } L_{q} \text { intersects some line } y=k, k \in \mathbb{Z}, \text { for } x \in(i-1, i+1) \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

It follows that c_{q} is palindromic and has the form:

$$
\begin{equation*}
c_{q}=10^{\mu_{1}} 1^{2} 0^{\mu_{2}} 1^{2} \cdots 1^{2} 0^{\mu_{m-1}} 1^{2} 0^{\mu_{m}} 1 . \tag{5}
\end{equation*}
$$

We will denote P_{q} to the periodic orbits of period $n+2$ which have the codes $c_{q}{ }_{0}^{1}$, when the distinction is not important and let NBT $=\left\{P_{q}: q \in \widehat{\mathbb{Q}}\right\}$. In [4], Hall proved the following result.

Theorem 5. Let $q, q^{\prime} \in \widehat{\mathbb{Q}}$. Then
(i) P_{q} is quasi-one-dimensional, that is, $P_{q} \geqslant_{1} R \Longrightarrow P_{q} \geqslant_{2} R$.
(ii) $q \leqslant q^{\prime} \Longleftrightarrow\left(c_{q 1}^{0}\right)^{\infty} \geqslant_{1}\left(c_{q^{\prime}}{ }^{0}{ }_{1}\right)^{\infty} \Longleftrightarrow\left(c_{q 1}^{0}\right)^{\infty} \geqslant_{2}\left(c_{q^{\prime}}{ }_{1}^{0}\right)^{\infty}$

Fig. 2. The image $\theta_{P * Q}\left(C_{i}\right)$ when $P=1001$.

So theorem above says that the Boyland order restricted to the NBT orbits is equal to the unimodal order.

3. Forcing of renormalizable orbits

For proving Theorem 1 we shall need the following result:
Theorem 6. Let $P=A_{1}^{0}$ and Q be periodic orbits. Then

$$
\begin{equation*}
\Sigma_{P * Q}=\left\{R: P \geqslant_{2} R\right\} \cup\left\{P * R: Q \geqslant_{2} R\right\} . \tag{6}
\end{equation*}
$$

To prove the result above it will be needed two lemmas whose proofs are left to the reader.
Lemma 7. Let $i, j \in\{1, \cdots, n-1\}$ be positive integers with $i \neq j$ and $T_{M}=P * Q$ and $T_{m}=\sigma^{n}\left(T_{M}\right)$. Then
(a) If $\epsilon(A)$ is even then $A 0^{\infty} \leqslant_{1} T_{m} \leqslant_{1} T_{M} \leqslant_{1} A 1^{\infty}$,
(b) If $\epsilon(A)$ is odd then $A 1^{\infty} \leqslant_{1} T_{m} \leqslant 1 T_{M} \leqslant 1 A 0^{\infty}$,
(c) $\sigma^{i}(P) \leqslant_{1} \sigma^{j}(P) \Longleftrightarrow\left[\sigma^{i}\left(T_{M}\right) \leqslant_{1} \sigma^{j}\left(T_{M}\right)\right.$ and $\left.\sigma^{i}\left(T_{m}\right) \leqslant_{1} \sigma^{j}\left(T_{m}\right)\right]$.

Lemma 8. Let $P=A_{1}^{0}$ and Q be two periodic orbits. If $i, j \in\{0, \cdots, m-1\}$, with $i \neq j$, then

$$
\sigma^{i}(Q)>_{1} \sigma^{j}(Q) \Longleftrightarrow \sigma^{i n}(P * Q)>_{1} \sigma^{j n}(P * Q)
$$

Proof of Theorem 6. Let $\theta_{P * Q}$ be the thick map induced by $P * Q$. First we see that the only iterates of $P * Q$ satisfying $T_{m} \leqslant_{1} \sigma^{i}(P * Q) \leqslant_{1} T_{M}$ are the iterates $\sigma^{i n}(P * Q)$, with $0 \leq i \leq m-1$; so there exists a curve C_{n-1} containing these orbits disjoint from the others and bounding a region D_{n-1}. By Lemma 7(c) and noting that $\sigma^{i}\left(T_{m}\right)$ and $\sigma^{i}\left(T_{M}\right)$ have the same initial symbol for $i \in\{1, \cdots, n-1\}$, it follows that $\left\{\theta_{P * Q}^{i}\left(C_{n-1}\right)\right\}_{i=1}^{n-1}$ has the same combinatorics as P. For $i=0, \cdots, n-2$, let $C_{i}=\theta_{P * Q}^{i+1}\left(C_{n-1}\right)$ be a curve which bounds a domain D_{i}. It is possible to define $\theta_{P * Q}$ such that $\theta_{P * Q}^{n}\left(C_{n-1}\right)=C_{n-1}$. Then the line diagram of $\left\{D_{0}, \cdots, D_{n-1}\right\}$ is as the line diagram of P and then $\theta_{P * Q}$ has the same behaviour than θ_{P} in the exterior of $\cup D_{i}$. Since $\theta_{P * Q}$ can be reduced by a family of curves, we will need study the Thurston representative of $\theta_{P * Q}$ restricted to $D^{2} \backslash \cup C_{i}$. As θ_{P} and $\theta_{P * Q}$ have the same combinatorics in the exterior of $\cup D_{i}$, they have the same Thurston representative in the exterior of $\cup D_{i}$. So P and $P * Q$ force the same periodic orbits in the exterior of $\cup D_{i}$. Then $\left\{R: P \geqslant_{2} R\right\} \subset \Sigma_{P * Q}$. See Fig. 2.

It is clear that to find what orbits are forced by $P * Q$ in $\cup D_{i}$, it is enough to study $\theta_{P * Q}^{n}$ restricted to D_{n-1}. By Lemma 8, the line diagram of $\theta_{P * Q}^{n}$ inside D_{n-1} is the same as the line diagram of Q when $\epsilon(A)$ is even, and it is flipped when $\epsilon(A)$ is odd. See Fig. 3. So $\theta_{P * Q}^{n}$ has the same combinatorics than θ_{Q}.

As in Lemma 8, we can prove that $Q \geqslant_{2} R \Longleftrightarrow P * Q \geqslant_{2} P * R$. So $\Sigma_{P * Q}=\left\{R: P \geqslant_{2} R\right\} \cup\{P * R$: $\left.Q \geqslant_{2} R\right\}$.

Remark 9. Theorem 6 says us that to look for the orbits that are forced by $P * Q$ it is enough to look for the orbits that are forced by P and the orbits that are forced by Q. So we can study the thick maps induced

Fig. 3. The image $\theta_{P * Q}^{n}\left(C_{n-1}\right)$.
by P and Q separately. Every of these thick maps can be reduced using methods to determine its minimal representative, e.g. [1,5].

Corollary 10. Let $P_{1}, P_{2}, \cdots, P_{k}$ be NBT orbits. Then
(a) $\Sigma_{P_{1} * \cdots * P_{k}}=\bigcup_{j=1}^{k}\left\{P_{1} * \cdots * P_{j-1} * R: P_{j} \geqslant{ }_{1} R\right\}$, and
(b) $\Sigma_{P_{1} * \cdots * P_{k}}=\left\{R: P_{1} * \cdots * P_{k} \geqslant_{1} R\right\}$.

Proof. Item (a) follows directly from Theorem 6. For item (b) it is enough to prove that if P and Q are quasi-one-dimensional horseshoe orbits then $P * Q$ is a quasi-one-dimensional orbit too. Suppose that $\epsilon(A)$ is even. From Theorem 6,

$$
\begin{equation*}
\Sigma_{P * Q}=\left\{R: P \geqslant_{1} R\right\} \cup\left\{P * R: Q \geqslant_{1} R\right\} . \tag{7}
\end{equation*}
$$

Hence it follows that $\Sigma_{P * Q} \subset\left\{S: P * Q \geqslant_{1} S\right\}$. We have to prove the inclusion $\left\{S: P * Q \geqslant_{1} S\right\} \subset \Sigma_{P * Q}$. If $P \geqslant_{1} S$ then $S \in \Sigma_{P * Q}$. Let S with $c_{S}=s_{0} s_{1} \cdots s_{k-1}$ be a periodic orbit with $P \leqslant_{1} S \leqslant_{1} P * Q$. By Lemma 7(a), $(A 0)^{\infty} \leqslant 1 c_{S}^{\infty} \leqslant 1(A 1)^{\infty}$. This implies that $c_{S}=A s_{n-1} s_{n} \cdots$ and

$$
(0 A)^{\infty} \leqslant_{1} \sigma^{n-1}\left(c_{S}^{\infty}\right)=s_{n-1} s_{n} \cdots \leqslant_{1}(1 A)^{\infty}
$$

and $\sigma^{n}\left(c_{S}{ }^{\infty}\right) \geqslant_{1}(A 0)^{\infty}$. In the other hand $\sigma^{n}\left(c_{S}{ }^{\infty}\right) \leqslant 1 c_{P * Q}$. Then $\sigma^{n}\left(c_{S}{ }^{\infty}\right)=A s_{2 n-1} \cdots$ and then $c_{S}=A s_{n} A s_{2 n-1} \cdots$. Continuing this process, it follows that $S=P * R$ where $c_{R}=s_{n-1} s_{2 n-1} \cdots$. So $P * R \leqslant_{1} P * Q$ which implies that $R \leqslant_{1} Q$. So $S \in\left\{P * R: Q \geqslant_{1} R\right\}$ and the proof is finished.

Now we proceed to prove Theorem 1.
Proof of Theorem 1. Let $\left\{P_{j}\right\}_{j \in \mathbb{N}}$ be the set of NBT orbits and consider the space $\mathbb{N}^{\mathbb{N}}$ of sequences of positive integers. Take a sequence $\mathcal{J}=\left(j_{1}, j_{2}, \cdots, j_{n}, \cdots\right) \in \mathbb{N}^{\mathbb{N}}$ and define

$$
\begin{equation*}
\mathcal{R}_{\mathcal{J}}=\bigcup_{k=1}^{\infty}\left\{P_{j_{1}} * \cdots * P_{j_{k}}\right\} \tag{8}
\end{equation*}
$$

and $\mathcal{R}=\bigcup_{\mathcal{J} \in \mathbb{N}^{\mathbb{N}}} \mathcal{R}_{\mathcal{J}}$. By Corollary 10 (b), every orbit of \mathcal{R} is quasi-one-dimensional.

Acknowledgements

I would like to thanks to Toby Hall and Dylene de Barros for their comments which contributed to improve this paper.

References

[1] M. Bestvina, M. Handel, Train-tracks for surface homeomorphisms, Topology 34 (1995) 109-140.
[2] P. Boyland, Topological methods in surface dynamics, Topol. Appl. 54 (1994) 223-298.
[3] P. Collet, J.-P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Birkhauser, Boston, 1980.
[4] T. Hall, The creation of horseshoes, Nonlinearity 7 (1994) 861-924.
[5] H. Solari, M. Natiello, Minimal periodic orbits structure of 2-dimensional homeomorphisms, J. Nonlinear Sci. 15 (3) (2005) 183-222.
[6] W. Thurston, On the geometry and dynamics of diffeomorphisms of surface, Bull., New Ser., Am. Math. Soc. 19 (1988) 417-431.

[^0]: E-mail address: valentin@ufv.br.
 http://dx.doi.org/10.1016/j.topol.2014.06.002
 0166-8641/© 2014 Elsevier B.V. All rights reserved.

