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in the usual Sobolev space and satisfy the geometric conditions of
the mountain pass theorem. Using this fact, we obtain a Cerami
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v is nontrivial, the main tool is the concentration–compactness
principle due to P.L. Lions together with some classical arguments
used by H. Brezis and L. Nirenberg (1983) in [9].
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1. Introduction

Many recent studies have focused on quasilinear equations of the form

−�u + V (x)u − κ
[
�

(
u2)]u = h(u) in R

N . (1.1)

Such equations arise in various branches of mathematical physics and they have been the subject
of extensive study in recent years. Part of the interest is due to the fact that solutions of (1.1) are

* Corresponding author.
E-mail addresses: jmbo@mat.ufpb.br (J.M.B. do Ó), olimpio@ufv.br (O.H. Miyagaki), monari@icmc.usp.br (S.H.M. Soares).

1 Partially supported by CNPq/Brazil and INCTmat/Brazil.
0022-0396/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2009.11.030

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jde
mailto:jmbo@mat.ufpb.br
mailto:olimpio@ufv.br
mailto:monari@icmc.usp.br
http://dx.doi.org/10.1016/j.jde.2009.11.030


J.M.B. do Ó et al. / J. Differential Equations 248 (2010) 722–744 723
related to the existence of solitary wave solutions for quasilinear Schrödinger equations of the form

i
∂ψ

∂t
= −�ψ + W (x)ψ − h

(|ψ |2)ψ − κ
[
�ρ

(|ψ |2)]ρ ′(|ψ |2)ψ, (1.2)

where ψ : R × R
N → C, W : R

N → R is a given potential, κ is a positive constant and ρ,h : R
+ → R

are suitable functions.
Quasilinear Schrödinger equations of form (1.2) appear naturally in mathematical physics and have

been derived as models of several physical phenomena corresponding to various types of nonlinear
term ρ . The case ρ(s) = s was used for the superfluid film equation in plasma physics by Kurihura
in [22] (see also [23]). In the case ρ(s) = (1 + s)1/2, Eq. (1.2) models the self-channeling of a high-
power ultra short laser in matter, see [7,8,11,36] and references in [13]. Eq. (1.2) also appears in
plasma physics and fluid mechanics [3,21,34,40], in mechanics [18] and in condensed matter the-
ory [28].

Recent mathematical studies have focused on the existence of solutions for (1.1) with h(u) =
|u|p−1u, with 4 � p + 1 < 4N/(N − 2), N � 3, for example, in [25,27,32]. The existence of a posi-
tive ground state solution has been proved by Poppenberg, Schmitt and Wang [32] and Liu and Wang
[25] by using a constrained minimization argument, which gives a solution of (1.1) with an unknown
Lagrange multiplier λ in front of the nonlinear term. In [27], by a change of variables the quasilinear
problem was reduced to a semilinear one and an Orlicz space framework was used to prove the ex-
istence of a positive solution of (1.1) for every positive λ via mountain pass theorem. In [12], Colin
and Jeanjean also made use of change of variables in order to reduce Eq. (1.1) to semilinear one. By
using the Sobolev space H1(RN ), they proved the existence of solutions from classical results given by
Berestycki and Lions [6] when N = 1 or N � 3, and Berestycki, Gallouët and Kavian [5] when N = 2.
For N = 1 and N = 2 we also cite [1,2,10,32,14], respectively.

It is worth pointing out that the related semilinear equations for κ = 0 have been extensively
studied as in the subcritical case p < 2∗ − 1, as in the critical case p = 2∗ − 1. For the subcritical case
see for example [6,15,35,38], and the references therein. For the critical case, after the pioneering
paper by Brezis and Nirenberg [9] many authors have been worked in this subject improving or
extending Brezis–Nirenberg work. We would like to cite papers by Noussair, Swanson and Yang [31],
Miyagaki [29], García and Peral [16], Benci and Cerami [4] and the book of Willem [41].

Here we consider the case where ρ(s) = s, κ = 1 and our special interest is in the existence of
standing wave solutions, that is, solutions of type ψ(t, x) = exp(−iEt)u(x), where E ∈ R and u > 0 is a
real function. It is well known that ψ satisfies (1.2) if and only if the function u(x) solves the equation
of elliptic type (1.1), where V (x)

.= W (x) − E is the new potential.
As observed in [26], the number 2(2∗) behaves like a critical exponent for Eq. (1.1). In fact, by using

a variational identity given by Pucci and Serrin [33], we can prove that (1.1) has no positive solution
in H1(RN ) with u2|∇u|2 ∈ L1(RN ) if p + 1 � 2(2∗) and if V satisfies ∇V (x) · x � 0 for all x ∈ R

N .
Thus, similar in spirit to [9], a natural question is whether adding a lower order term to h(u) =

|u|2(2∗)−1u the solvability of (1.1) is regained.
The main purpose of the present paper is give affirmative answer for the following class of quasi-

linear equations

−�u + V (x)u − [
�

(
u2)]u = |u|q−1u + |u|p−1u in R

N , (P )

where λ is a positive parameter, 3 < q < p � 2(2∗) − 1 and 2∗ = 2N/(N − 2) is the critical Sobolev
exponent (in dimension N � 3).

Next, for easy reference we state our assumptions in a more precise way. In order to deal with the
convex term, we make the following assumptions on the potential V :

(V 1) The function V : R
N → R is continuous and uniformly positive, that is, there exists a constant

V 0 > 0 such that

0 < V 0 � V (x) for all x ∈ R
N .
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(V 2) There exists a constant V∞ such that

lim|x|→∞ V (x) = V∞ and V (x) � V∞ for all x ∈ R
N ,

where the last inequality is strict on a subset of positive measure in R
N .

(V ′
2) The function V is periodic in each variable of x1, . . . , xN .

The following theorem contains our main result:

Theorem 1.1. Suppose p = 2(2∗) − 1 and 3 < q < 2(2∗) − 1. In addition to (V 1), assume that either assump-
tion (V 2) or (V ′

2) holds. Then (P ) has a positive classic solution.

Existence results for problem (1.1) involving critical exponent have been obtained by Moameni
in [30] by assuming potential function V (x) radial and satisfying some geometry conditions. However
these conditions imply that the problem does not involve critical Sobolev exponent any more, because,
in some sense, the Sobolev space considered is compactly embedded in Ls space for all s > 2. We
observe that our proof does not require any geometric condition on the potential.

The underline idea for proving our main result: motivated by the argument used in [27] (see also [12]),
we change of variable to reformulate the problem obtaining a semilinear problem involving a critical
Sobolev exponent of the form:

−�u + v(x)u = φ(x, u) + |u|2∗−2u, u > 0 in R
N . (1.3)

Even the study of this class of problem is new because in our case the nonlinear term φ satisfies

lim
u→+∞

φ(x, u)

u2∗−1
= 0

instead of the usual subcritical condition φ(x, u) = o(|u|r), 2 < r < 2∗ − 1 as |u| → ∞. The associ-
ated functional is now well defined in the usual Sobolev space H1(RN ) and it satisfies the geometric
conditions of the mountain pass theorem. Then a bounded Cerami sequence (vn) is obtained, which
converges weakly to a weak solution v of problem (1.3). In order to prove that v is nontrivial, main
tool is the concentration–compactness principle due to Lions [24] together with some classical argu-
ments used by Brezis and Nirenberg in [9]. After changing variable v is a weak solution of the original
problem (P ).

The outline of the paper is as follows. In the forthcoming section is given the reformulation of the
problem and some preliminary results. In Section 3, by using the mountain pass theorem we prove
Theorems 1.1.

Notation. In this paper we make use of the following notation:

• C, C0, C1, C2, . . . denote positive (possibly different) constants.
• B R denotes the open ball centered at origin and radius R > 0.
• C∞

0 (RN ) denotes the functions infinitely differentiable with compact support in R
N .

• For 1 � p � ∞, L p(RN ) denotes the usual Lebesgue space with norms

‖u‖p
.=

[ ∫

RN

|u|p dx

]1/p

, 1 � p < ∞;

‖u‖∞
.= inf

{
C > 0:

∣∣u(x)
∣∣ � C almost everywhere on R

N}
.
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• H1(RN ) denotes the Sobolev spaces modeled in L2(RN ) with norm

‖u‖H1 =
[ ∫

RN

(|∇u|2 + |u|2) dx

]1/2

.

• By 〈·,·〉 we denote the duality pairing between X and its dual X∗ .
• We denote the weak convergence in X and X ′ by “⇀” and the strong convergence by “→”.

2. Reformulation of the problem and preliminaries

Notice that u ≡ 0 is a (trivial) solution of (P ), our objective in this article is to apply minimax
methods to study the existence of a positive solution for (P ). We observe that formally (P ) is the
Euler–Lagrange equation associated of the natural energy functional

J (u) = 1

2

∫

RN

(
1 + 2|u|2)|∇u|2 dx + 1

2

∫

RN

V (x)|u|2 dx −
∫

RN

H(u)dx,

where

H(u) = λ

q + 1
|u|q+1 + 1

p + 1
|u|p+1.

From the variational point of view, the first difficulty we have to deal with (P ) is to find an appropri-
ate function space where the above functional is well defined. In the spirit of the argument developed
by Liu, Wang and Wang in [27] (see also [12]), we make the change of variables v = f −1(u), where
f is defined by

f ′(t) = 1

(1 + 2 f 2(t))1/2
on [0,+∞),

f (−t) = − f (t) on (−∞,0].
Therefore, after the change of variables, from J (u) we obtain the following functional

I(v) = 1

2

∫

RN

[|∇v|2 + V (x) f 2(v)
]

dx −
∫

RN

H
(

f (v)
)

dx,

which is well defined on the usual Sobolev space H1(RN ) under suitable assumptions on the potential
V (x) and the nonlinearity H(s). Moreover, the positive critical points of the functional I correspond
precisely to the positive weak solutions of the following equation

−�v = 1√
1 + 2 f 2(v)

[
h
(

f (v)
) − V (x) f (v)

]
in R

N . (M)

For completeness we collect here some properties of the change of variable.

Lemma 2.1. The function f (t) enjoys the following properties:

(1) f is uniquely defined C∞ function and invertible.
(2) | f ′(t)| � 1 for all t ∈ R.
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(3) | f (t)| � |t| for all t ∈ R.
(4) f (t)/t → 1 as t → 0.
(5) f (t)/

√
t → 21/4 as t → +∞.

(6) f (t)/2 � t f ′(t) � f (t) for all t � 0.
(7) | f (t)| � 21/4|t|1/2 for all t ∈ R.
(8) The function f 2(t) is strictly convex.
(9) There exists a positive constant C such that

∣∣ f (t)
∣∣ �

{
C |t|, |t| � 1,

C |t|1/2, |t| � 1.

(10) There exist positive constants C1 and C2 such that

|t| � C1
∣∣ f (t)

∣∣ + C2
∣∣ f (t)

∣∣2
for all t ∈ R.

(11) | f (t) f ′(t)| � 1/
√

2 for all t ∈ R.

Proof. Properties (1), (2), (4), (5) and (6) were proved in [12] (see also [27]). Inequality (3) is a
consequence of (2) and the fact that f (t) is an odd and concave function for t > 0. To prove (7), we
use (4), (5) and (6). Indeed, according to (4), we have

lim
t→0+

f (t)√
t

= 0,

and (6) implies that

d

dt

(
f (t)√

t

)
= 2 f ′(t)t − f (t)

2t
√

t
� 0 for all t > 0.

Consequently, the function f (t)/
√

t is nondecreasing for t > 0 and from (5) we conclude that

f (t)/
√

t � 21/4 for all t > 0.

This together with the fact that f is odd proves (7).
In order to prove (8) we notice that

d2

dt2

[
f 2(t)

] = 1

(1 + 2 f 2(t))2
> 0.

Points (9) and (10) are immediate consequences of (4) and (5). Finally, estimate (11) follows directly
from the definition of f and the lemma is proved. �
3. Existence results via mountain pass

We will achieve the existence result by using the well-known version of the mountain pass theo-
rem which is a consequence of the Ekeland variational principle (see [20] and [39]).
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3.1. Mountain pass geometry

Here we prove that the functional I exhibits the mountain pass geometry. For that matter, we first
consider the set

S(ρ)
.= {

v ∈ H1(
R

N)
: ‖v‖ = ρ

}
.

Lemma 3.1. There exist ρ,α > 0, such that

I(v) � α for all v ∈ S(ρ).

Proof. Since |∇( f (v)2)|2 � 2|∇(v)|2, using Sobolev–Gagliardo–Nirenberg inequality we have

∥∥ f 2(v)
∥∥

2∗ � C
∥∥∇(

f (v)2)∥∥
2 � C‖∇v‖2 � C‖v‖

for some positive constant C . Thus, for v ∈ S(ρ) we have

∫

RN

∣∣ f (v)
∣∣2(2∗)

dx � Cρ2∗
. (3.1)

Setting α = (2(2∗) − (q + 1))/((q + 1)(2∗ − 1)) we obtain

∫

RN

∣∣ f (v)
∣∣q+1

dx =
∫

RN

∣∣ f 2(v)
∣∣(q+1)/2

dx

�
[ ∫

RN

f 2(v)dx

]α(q+1)/2[ ∫

RN

(
f 2(v)

)2∗
dx

]1−α(q+1)/2

� C
(
ρ2)α(q+1)/2

[ ∫

RN

∣∣∇(
f 2(v)

)∣∣2
dz

](1−α(q+1)/2)2∗/2

= Cρ(2N+2(q+1))/(N+2),

where (2N + 2(q + 1))/(N + 2) > 2 because q + 1 > 4. Therefore, for v ∈ S(ρ) we have

I(v) � C1ρ
2 − C2ρ

(2N+2(q+1))/(N+2) − C3ρ
2∗

,

which implies the conclusion as required. �
Lemma 3.2. There exists v ∈ E such that ‖v‖ > ρ and I(v) < 0.

Proof. We are going to prove that there exists ϕ ∈ H1(RN ) such that I(tϕ) → −∞ as t → +∞,
which proves our thesis if we take v = tϕ with t large enough. Consider ϕ ∈ C∞

0 (RN , [0,1]) such that
supp(ϕ) = B1. Using property (6) in Lemma 2.1, it follows that f (s)/s is decreasing for s > 0. Since
0 < tϕ(x) � t for x ∈ B1 and t > 0, we obtain f (tϕ(x)) � f (t)ϕ(x), which implies that
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I(tϕ) � t2

2

[∫
B1

(|∇ϕ|2 + V (x)ϕ2)dx − C1
f (t)q+1

t2

∫
B1

ϕq+1 dx − C2
f (t)2(2∗)

t2

∫
B1

ϕ2(2∗) dx

]

→ −∞, as t → +∞,

where we have used that for s > 2 we have limt→+∞ f (t)s/t2 = +∞, which is a consequence of
property (5) in Lemma 2.1. �
3.2. Cerami sequences

As a consequence of Lemmas 3.1 and 3.2 and of a version of Ambrosetti–Rabinowitz mountain
pass theorem [37], for the constant

c0 = inf
γ ∈Γ

sup
t∈[0,1]

I
(
γ (t)

)
> 0, (3.2)

where

Γ = {
γ ∈ C

([0,1], H1(
R

N)); γ (0) = 0, γ (1) = 0, I
(
γ (1)

)
< 0

}
,

there exists a Cerami sequence (vn) in H1(RN ) at the level c0, that is,

I(vn) → c0 and
(
1 + ‖vn‖

)∥∥I ′(vn)
∥∥ → 0, as n → ∞.

Lemma 3.3. The sequence (vn) is bounded in H1(RN ).

Proof. Since (vn) satisfies

I(vn) = 1

2

∫

RN

|∇vn|2 dx + 1

2

∫

RN

V (x) f 2(vn)dx −
∫

RN

H
(

f (vn)
)

dx → c0, as n → ∞, (3.3)

and, for every w ∈ H1(RN ),

(
1 + ‖vn‖

)
I ′(vn)w

= (
1 + ‖vn‖

){ ∫

RN

∇vn · ∇w dx +
∫

RN

[
f ′(vn)

(
V (x) f (vn)w − h

(
f (vn)

)
w

)]
dx

}

= εn‖w‖,

where εn → 0 as n → ∞, by choosing w = wn ≡ f (vn)/ f ′(vn) and inserting in (3.4) we obtain

(
1 + ‖vn‖

)
I ′(vn)wn

= (
1 + ‖vn‖

){ ∫

RN

[
1 + 2 f 2(vn)

1 + 2 f 2(vn)

]
|∇vn|2 dx +

∫

RN

[
V (x) f 2(vn) − h

(
f (vn)

)
f (vn)

]
dx

}

= εn‖wn‖. (3.4)
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Notice that wn verifies

|wn|2 � C |vn|2, |∇wn| � 2|∇vn| and ‖wn‖ � C‖vn‖.

Consequently,

I ′(vn)wn

=
∫

RN

[
1 + 2 f 2(vn)

1 + 2 f 2(vn)

]
|∇vn|2 dx +

∫

RN

[
V (x) f 2(vn) − h

(
f (vn)

)
f (vn)

]
dx

= εn. (3.5)

Notice that

(q + 1)H(s) − h(s)s =
[

q + 1

2(2∗)
− 1

]
|s|2(2∗) < 0 for all s ∈ R. (3.6)

Then, combining (3.3), (3.4) and (3.6), we infer that

∫

RN

{
1

2
− 1

q + 1

[
1 + 2 f 2(vn)

1 + 2 f 2(vn)

]}
|∇vn|2 dx +

(
1

2
− 1

q + 1

) ∫

RN

V (x) f 2(x)dx � c0 + δn + εn,

where δn is given in (3.3). Since q + 1 > 4 we can conclude that the term

∫

RN

[|∇vn|2 + V (x) f 2(vn)
]

dx

is bounded. Then, to conclude that (vn) is bounded in H1(RN ), it remains to show that (vn) is
bounded in L2(RN ). To verify this we start splitting

∫

RN

v2
n dx =

∫
{x: |vn(x)|�1}

v2
n dx +

∫
{x: |vn(x)|>1}

v2
n dx.

Notice that there exists C > 0 such that H(s) � C sq+1, for every s � 1. Then, from ( f2) we have
H( f (s)) � C s(q+1)/2, for every s � 1. Therefore

∫
{x: |vn(x)|>1}

v2
n dx � 1

C

∫
{x: |vn(x)|>1}

H
(

f (vn)
)

dx � 1

C

∫

RN

H
(

f (vn)
)

dx,

where we have used that q > 3. By using that f (s) � C s, for some C > 0, we have

∫
{x: |vn(x)|�1}

v2
n dx � 1

C

∫
{x: |vn(x)|�1}

f 2(vn)dx � 1

C

∫

RN

f 2(vn)dx.

Hence vn is bounded in L2(RN ). This proves Lemma 3.3. �
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We rewrite the functional I by

I(v) = 1

2

∫

RN

[|∇v|2 + V (x)v2] dx − 41/(N−4)

2∗

∫

RN

|v|2∗
dx −

∫

RN

G(v)dx,

where

G(v) = λ

q + 1

∣∣ f (v)
∣∣q+1 + 1

22∗
∣∣ f (v)

∣∣2(2∗) + 1

2
V (x)v2 − 1

2
V (x) f (v)2 − 41/(N−2)

2∗ |v|2∗

is the primitive of

g(v) = f ′(v)
[
λ
∣∣ f (v)

∣∣q−1
f (v) + ∣∣ f (v)

∣∣2(2∗)−2
f (v) − V (x) f (v)

] + V (x)v − 41/(N−2)|v|2∗−2 v.

Notice that the functions G and g satisfy the following properties:

(G1) lims→0
G(s)

s2 = 0;

(G2) lims→+∞ G(s)
s2∗ = 0;

(G3) lims→0
g(s)

s = 0;

(G4) lims→+∞ g(s)
s2∗−1 = 0.

In fact, we must analyze the terms

f (v)q+1

v2
=

(
f (v)

v

)2

f (v)q−1 and
f (v)2(2∗)

v2
=

(
f (v)

v

)2

f (v)2(2∗)−2.

Since q > 1, from Lemma 2.1(4), these two terms converge to zero, as v → 0. Thus property (G1)

holds. Similarly we can prove property (G3). Now, since q + 1 < 2(2∗), the term

f (v)q+1

v2∗ =
(

f (v)√
v

)q+1

v(q+1)/2−2∗ → 0, as v → 0.

Also, from Lemma 2.1(3), we have

0 � 1

2
V (x)

v2

2∗ − 1

2
V (x)

f (v)2

v2∗ � 1

2
V (x)

v2

v2∗ .

So that

1

2
V (x)

v2

2∗ − 1

2
V (x)

f (v)2

v2∗ → 0, as v → +∞.

Now, from Lemma 2.1(5), the term

f (v)2(2∗)

v2∗ =
(

f (v)√
v

)22∗

→ (
21/4)2(2∗) = 2N/(N−2), as v → +∞.

Therefore property (G2) is verified.
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Since

f ′(v)
| f (v)|2(2∗)−2 f (v)

|v|2∗−1
= f ′(v) f (v)

[ | f (v)|√
v

]2(2∗)−2

= f (v)√
1 + 2 f (v)

[ | f (v)|√
v

]2(2∗)−2

→ 41/(N−2), as v → +∞,

we have

lim
v→+∞

g(v)

v2∗−1
= 0.

This proves (G4). From (G1) and (G2) for all ε > 0 there exists a positive constant Cε such that

0 � G(v) � ε
(

v2 + v2∗) + Cε v(q+1)/2. (3.7)

Similarly, for 1 < (q + 1)/2 < 2∗ , using properties (G3) and (G4) we have

g(v)v � ε
(

v2 + v2∗) + Cε v(q+1)/2. (3.8)

Lemma 3.4. The minimax level c0 given in (3.2) satisfies

c0 <
S N/2

2N
.

Proof. From the minimax characterization of c0 we see that it is sufficient to show that there exists
v0 ∈ H1(RN ) \ {0} such that

sup
t�0

I(tv0) <
S N/2

2N
.

Let R > 0 to be suitably chosen in the sequel, ε > 0 and ψε(x)
.= ϕ(x)wε(x), where ϕ ∈

C∞
0 (RN , [0,1]) is a standard cut-off function, such that ϕ ≡ 1 on B Rε (0) and ϕ ≡ 0 on R

N \ B2Rε (0)

with Rε = εα , α ∈ ( 1
4 , 1

2 ), and

wε(x) = (
N(N − 2)ε

)(N−2)/4 1

(ε + |x|2)(N−2)/2
.

By definition, wε satisfies

∫

RN

|∇wε|2 dx =
∫

RN

|wε|2∗
dx = S N/2,

∫
B Rε (0)

|∇wε|2 dx �
∫

B Rε (0)

|wε|2∗
dx,

∫

RN \B R (0)

|∇wε|2 dx = O
(
ε(N−2)/2), as ε → 0.
ε



732 J.M.B. do Ó et al. / J. Differential Equations 248 (2010) 722–744
Thus, for

Xε =
∫

RN

|∇vε|2 dx and vε(x) = ψε(x)

(
∫

B2Rε (0)
|ψε|2∗ dx)1/2∗

we have

Xε = S + O
(
εδ

)
, where δ = N − 2

2
. (3.9)

Assertion 1. There exist ε0 > 0 and positive constants C1 and C2 , independent of ε, such that

C1 � f (vε)

v1/2
ε

� C2 for all ε ∈ (0, ε0) and x ∈ B Rε (0).

Proof. From Lemma 2.1(5), for η ∈ (0,21/4) given, there exists s0 > 0 such that

21/4 − η <
f (s)

s1/2
< 21/4 + η for all s � s0. (3.10)

For all x ∈ B Rε (0), since Rε = εα we obtain

vε(x) � 1

S(N−2)/4
ωε(x) = 1

S(N−2)/4

(
N(N − 2)ε

)(N−2)/4 1

(ε + |x|2)(N−2)/2

� 1

S N

(N(N − 2)ε)(N−2)/4

(ε + R2
ε)

(N−2)/2
= 1

S N

(N(N − 2)ε)(N−2)/4

(ε + ε2α)(N−2)/2

= (N(N − 2))(N−2)/4

S N

ε(N−2)/4−α(N−2)

(1 + ε2α)(N−2)/2
→ ∞, as ε → 0,

we have used that (N − 2)/4 −α(N − 2) < 0 and 1/4 < α < 1/2. So that, there exists ε0 (independent
of x) such that

vε(x) � s0 for all ε ∈ (0, ε0).

This inequality combined with (3.10) complete the proof of our assertion. �
Since limt→∞ I(tvε) = −∞, there exists tε > 0 such that I(tε vε) = maxt>0 I(tvε). Thus, I ′(tε vε) = 0

and

tε

(
Xε +

∫

RN

V (x)v2
ε dx

)
=

∫

RN

g(tε vε)vε dx + 41/(N−2)t2∗−1
ε � 41/(N−2)t2∗−1

ε

which implies that

0 < tε � t0(ε)
.= 1

41/(N−2)

(
Xε +

∫
N

V (x)v2
ε dx

)1/(2∗−2)

.

R
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Now

I(tε vε) � t2
ε

2

∫

RN

|∇vε|2 + V (x)v2
ε dx − 41/(N−2)t2∗

2∗

∫

RN

|vε|2∗ −
∫

RN

G(tε vε)dx

� 41/(N−2)t0(ε)2∗

2
− 41/(N−2)t2∗

2∗ −
∫

RN

G(tε vε)dx.

Since the function t �→ (t2/2)t2
0(ε) − t2∗

/2∗ is nondecreasing in (0, t0(ε)) we get

I(tε vε) � 41/(N−2)t0(ε)2∗

N
−

∫

RN

G(tε vε)dx

= 41/(N−2)

N

[
1

41/(N−2)

(
Xε +

∫

RN

V (x)v2
ε dx

)]2∗/(2∗−2)

−
∫

RN

G(tε vε)dx.

From (3.9), we obtain

I(tε vε) � 41/(N−2)

N

[
1

41/(N−2)

(
S + O

(
εδ

) +
∫

RN

V (x)v2
ε dx

)]N/2

−
∫

RN

G(tε vε)dx.

Noticing that (b + c)α � bα + α(b + c)α−1 for all b, c > 0, we have

I(tε vε) � (41/(N−2))1−N/2

N
S N/2 + O

(
εδ

) + C

∫

RN

V (x)v2
ε dx −

∫

RN

G(tε vε)dx

� S N/2

2N
+ O

(
εδ

) + C1

∫

RN

V (x)v2
ε dx − C2

∫

RN

G(vε)dx,

in the last estimate we have used the fact that tε � K > 0 and G(tε vε) � G(K vε). Without loss of
generality we choose K = 1.

Assertion 2. The following limit holds:

lim
ε→0+

1

ε(N−2)/2

∫
B2Rε

[
C1 V (x)v2

ε − C2G(vε)
]

dx = −∞.

Proof. Split the integral

1

εδ

∫
B2Rε (0)

[
C1 V (x)v2

ε − C2G(vε)
]

dx = I1 + I2, with δ = N − 2

2
,

where
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I1 =
∫

B Rε (0)

[
C1 V (x)v2

ε − C2G(vε)
]

dx

and

I2 =
∫

B2Rε (0)\B Rε (0)

[
C1 V (x)v2

ε − C2G(vε)
]

dx.

Let us estimate I1. From Lemma 2.1(3), we have

I1 =
∫

B Rε (0)

{
C1 V (x)v2

ε − C2

[
λ

q + 1
f (vε)

q+1 + 1

2(2∗)
f (vε)

2(2∗) + Z(x) − 41/(N−2)

2∗ |vε|2∗
]}

dx,

where

Z(x)
.= V (x)

2
v2
ε − V (x)

2
f (vε)

2 � 0.

Thus,

I1 � 1

εδ

∫
B Rε (0)

{
C1 V (x)v2

ε − C2
λ

q + 1
f (vε)

q+1 − C2
1

2(2∗)
f (vε)

2(2∗) + C2
41/(N−2)

2∗ |vε|2∗
}

dx

= 1

εδ

∫
B Rε (0)

{
C1 V (x)v2

ε − C2
λ

q + 1

[
f (vε)

v1/2
ε

]q+1

v(q+1)/2
ε

− C2
1

2(2∗)

[
f (vε)

v1/2
ε

]2(2∗)
v2∗ + C2

41/(N−2)

2∗ |vε|2∗
}

dx.

Now, by assumption (V 1) and using Lemma 2.1 we get

I1 � 1

εδ

∫
B Rε (0)

[
C1 V∞v2

ε − λCq+1
3

q + 1
v(q+1)/2
ε + C2

2∗

[
41/(N−2) − 22∗/2

2

]]
v2∗
ε dx

= 1

εδ

∫
B Rε (0)

[
C1 V∞v2

ε − λCq+1
3

q + 1
v(q+1)/2
ε

]
dx.

Thus, arguing as [29, Claim 2, p. 718], we can see that the last integral goes to −∞ as ε converges to
zero.

Similarly the estimate of integral I2 is also delicate:

I2 � 1

εδ

∫
B2Rε (0)\B Rε (0)

[
C1 V (x)v2

ε − λC2λ

q + 1
f (vε)

(q+1)

− C2

2(2∗)
f (vε)

2(2)∗ − Z(x) + 41/(N−2)

2∗ |vε|2∗
]

dx.
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First of all, notice that

− C2

2(2∗)
f (vε)

2(2)α − Z(x) � 0,

then, by (V 1) we get

I2 � 1

εδ

∫
B2Rε (0)\B Rε (0)

[(
C1 V∞ + 41/(N−2)

2∗

)
v2∗
ε − C2λ

q + 1
f (vε)

q+1
]

dx.

Without loss of generality, I2 can be estimated by

I2 � C

εδ

∫
B2Rε (0)\B Rε (0)

[
ω2

ε − f (ωε)
q+1]dx for some C > 0. (3.11)

Notice, since Rε = εα � ε, we get

ωε(x) = Cε(N−2)/4

(ε + |x|2)(N−2)/2
� Cε(N−2)/4

(ε + 4ε2α)(N−2)/2
� Cε(N−2)/4

(ε2α)(N−2)/2
= C1ε

(N−2)/4−α(N−2).

Then

f
(
ωε(x)

)
� f

(
C1ε

(N−2)/4−α(N−2)
)
.

Since (N − 2)/4 − α(N − 2) < 0, and by Lemma 2.1(5), we obtain from (3.11),

I2 � εαN C

ε2α(N−2)
− CεαN+[(N−2)/4−α(N−2)](q+1)/2−(N−2)/2

= C

εα(N−4)
− Cε[(N−2)/4−α(N−2)](q+1)/2−(N−2)/2+αN

= C

εα(N−4)

[
1 − ε[(N−2)/4−α(N−2)](q+1)/2−(N−2)/2+4α

]
.= g(N,q,α).

Next, we analyze three cases:

Case: N = 3. In this case we have

g(3,q,α) = C

ε−α

{
1 − ε(1/4−α)(q+1)/2−1/2+4α

} = C
{
εα − ε(1/4−α)(q+1)/2−1/2+5α

}
.

Notice that if (1/4 − α)(q + 1)/2 − 1/2 + 5α � 0, then g(N,q,α) is bounded. Thus g(N,q,α) → 0, as
ε → 0. Otherwise, if (1/4 − α)(q + 1)/2 − 1/2 + 5α < 0, then g(N,q,α) → −∞, as ε → 0. Any way
g(N,q,α) is bounded from above.

Case: N = 4. In this case we obtain

g(4,q,α) = 1 − ε(1/2−2α)(q+1)/2−1+4α.

As above either g(4,q,α) → 0 or g(4,q,α) → −∞, as ε → 0.
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Case: N � 5. Arguing as in the case N = 3, we get either

g(N,q,α) → 0 or g(N,q,α) → −∞, as ε → 0.

Therefore, for all N � 3, we obtain either I2 → −∞, as ε → 0, or I2 is bounded from above. Hence
I1 + I2 → −∞, as ε → 0. This proves Assertion 2. �
3.3. Proof of Theorem 1.1

From Lemma 3.3, there exists v ∈ H1(RN ) such that vn ⇀ v weakly in H1(RN ) and vn → v in
L p

loc(R
N ) for all p ∈ [2,2∗). Then, I ′(v)φ = 0 for every φ ∈ C∞

0 (RN ), that is, v is a weak solution of
problem (P ). Notice that by L p-regularity theory, see e.g. [17], we have v ∈ H1(RN )∩C2(RN ). In order
to complete the proof of Theorem 1.1, we must show v is nontrivial. The proof of this fact is delicate
and it will be carried out in a series of steps. First, we suppose, by contradiction, that v ≡ 0.

The following result is a concentration of compactness result (see [41]).

Lemma 3.5. There exist a sequence (yn) ⊂ R
N , and ρ,η > 0 such that

lim sup
n→+∞

∫
Bρ(yn)

|vn|2 dx � η. (3.12)

Proof. Suppose that (3.12) does not hold. Using [24, Lemma 1.1], it follows that

vn → 0 in Lr(
R

N)
for all 2 < r < 2∗,

from which together with the estimates (3.7) and (3.8) we obtain that

lim
n→+∞

∫

RN

g(vn)vn dx = 0

and

lim
n→+∞

∫

RN

G(vn)dx = 0.

Therefore,

c0 + o(1) = I(vn)

= 1

2

∫

RN

[|∇vn|2 + V v2
n

]
dx − 41/(N−2)

2∗

∫

RN

v2∗
n dx −

∫

RN

G(vn)dx.

Setting

L
.= lim

n→∞

∫

RN

[|∇vn|2 + V v2
n

]
dx and

�
.= lim

n→∞

∫
N

|vn|2∗
dx,
R
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we can write

c0 = L

2
− 41/(N−2)�

2∗ . (3.13)

From

S

( ∫

RN

|vn|2∗
dx

)2/2∗

�
∫

RN

|∇vn|2 dx �
∫

RN

[|∇vn|2 + V v2
n

]
dx

we get

S(�)2/2∗ � L. (3.14)

Now, passing to the limit in

o(1) = I ′(vn)vn =
∫

RN

[|∇vn|2 + V (x)v2
n

]
dx − 41/(N−2)

∫

RN

|vn|2∗
dx −

∫

RN

g(vn)vn dx (3.15)

we have

L = 41/(N−2)�. (3.16)

Using (3.14) and (3.17) we get

L �
(

S

41/N

)N/2

= S N/2

2
,

which together with (3.13) and (3.17) implies that

c0 � 1

2N
S N/2. (3.17)

From Lemma 3.4, we obtain

I(tvε) � I(tε vε) <
S N/2

2N
for all ε ∈ (0, ε0),

and for ε0 sufficiently small. Hence,

S N/2

2N
� c0 = inf

γ ∈Γ
max

t∈[0,1] I
(
γ (t)

)
� max

t�0
I(tvε) <

S N/2

2N
,

which is a contradiction. This proves Lemma 3.5. �
Case: (V ′

2). The function V is periodic in each variable of x1, . . . , xN . We recall that vn ⇀ v weakly
in H1(RN ), and v is a weak solution that we are supposing v ≡ 0. We can assume that the sequence
(yn) given in (3.12) is bounded. Setting ωn(x) = vn(x − yn), we can assume that (ωn) is also bounded
Cerami sequence, then ωn ⇀ ω weakly in H1(RN ), and ω is a weak solution. From Lemma 3.5 follows
that ω is nontrivial.
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Case: (V 2). There exists a constant V∞ such that lim|x|→∞ V (x) = V∞ and V (x) � V∞ for all
x ∈ R

N .
In this case the sequence (vn) is also a bounded Cerami sequence for the functional I∞ , where

I∞(v) = 1

2

∫

RN

[|∇v|2 + V∞v2] dx − 41/(N−2)

2∗

∫

RN

|vn|2∗
dx −

∫

RN

G∞(v)dx

and

G∞(v)
.= 1

q + 1

(
f (v)

)q+1 + 1

2(2∗)
(

f (v)
)2(2∗) + 1

2
V (x)v2 − 1

2
V∞

(
f (v)

)2 − 41/(N−2)

2∗ |v|2∗
.

Indeed, from assumption (V 2), given ε > 0, there exists R > 0 such that

∣∣V (x) − V∞
∣∣ < ε for all |x| � R.

Then

∣∣I∞(vn) − I(vn)
∣∣ = 1

2

∫

RN

∣∣V∞ − V (x)
∣∣ f (vn)

2 dx

=
∫

B R (0)

∣∣V∞ − V (x)
∣∣ f (vn)

2 dx +
∫

RN \B R (0)

∣∣V∞ − V (x)
∣∣ f (vn)

2 dx.

Thus,

∣∣I∞(vn) − I(v)
∣∣ → 0, as n → ∞.

Similarly, we obtain

(
1 + ‖vn‖

)[
I ′∞(vn) − I ′(vn)

] → 0, as n → ∞,

that is,

∥∥I ′∞(vn) − I ′(vn)
∥∥ = sup

‖φ‖�1

∫

RN

(
V∞ − V (x)

)
f (vn) f ′(vn)φ dx

goes to zero, as n → ∞.
Define ṽn(x) = vn(x − yn), where (yn) is the sequence given in Lemma 3.5. Then, (ṽn) is bounded

in H1(RN ) and

I∞(ṽn) → c0 and I ′∞(ṽn)
(
1 + ‖ṽn‖

) → 0.

Therefore ṽn → ṽ weakly in H1(R) and ṽ is a critical point of I∞ . From Lemma 3.5 follows that ṽ is
nontrivial. Hence

∫
N

(∇ ṽ∇w + V∞ f (ṽ) f ′(ṽ)w
)

dx =
∫

N

h
(
x, f (ṽ)

)
f ′(ṽ)w dx (3.18)
R R
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for all w ∈ H1(RN ). Taking w = −ṽ− , where v− = max{−v,0}, we get

∫

RN

∣∣∇ ṽ−∣∣2
dx +

∫

RN

V∞ f ′(ṽ) f (ṽ)
(−ṽ−)

dx = 0.

Since f (ṽ)(−ṽ−) � 0 we obtain

∫

RN

∣∣∇ ṽ−∣∣2
dx = 0 and

∫

RN

V∞ f (ṽ)(−ṽ−)√
1 + 2 f 2(ṽ)

dx = 0.

Thus, ṽ− = 0 almost everywhere in R
N and therefore ṽ � 0. By elliptic regularity theory we can

assume that ṽ ∈ C2(RN ) (see [39, p. 245]). In order to prove that ṽ > 0 in R
N , we suppose, otherwise,

that there exists x0 ∈ R
N such that ṽ(x0) = 0. We observe that (P ) can be written in the form

−�ṽ + cṽ = [
h
(

f (ṽ)
) − V∞ f (ṽ)

]
f ′(ṽ) + cṽ

where c � 0 is such that the right term is nonnegative for all x ∈ R
N . Applying the strong maximum

principle for an arbitrary ball centered in x0 we can conclude that ṽ ≡ 0, which is impossible. There-
fore ṽ has to be strictly positive and consequently u = f (ṽ) is a positive classical solution of (P ).

We also remark that

ṽ(x) → 0, as |x| → ∞. (3.19)

Effectively, ṽ is a weak solution of

−�v = g(v) in R
N ,

where h(s)
.= (g( f (v)) − V∞ f (v)) f ′(v). Since ṽ ∈ Lq

loc(R
N ), 1 < q < ∞, by the Sobolev embedding

theorem, g(ṽ) ∈ L2∗
(RN ). Thus, we infer by interior elliptic estimates that ṽ ∈ W 2,2∗

loc and moreover

‖ṽ‖W 2,2∗
(Ω ′) � C

(∣∣g(ṽ)
∣∣

L2∗
(Ω)

+ |ṽ|L2∗
(Ω)

)
,

where Ω ′ � Ω , Ω is an open bounded set of R
N and C depends only on the diameter of Ω and the

measure of Ω \ Ω ′ .
Let x0 ∈ R

N and denote by Br ⊂ R
N the open ball of radius r > 0 centered at x0. Then,

‖ṽ‖W 2,2∗
(B1) � C

(∣∣g(ṽ)
∣∣

L2∗
(B2)

+ |ṽ|L2∗
(B2)

)
,

where C depends only on the diameter of B2 and the measure of B2 \ B1. By bootstrap argument
W 2,2∗

(B2) ⊂ C(B1) we obtain

‖ṽ‖L∞(B1) � C
(∣∣h(ṽ)

∣∣
L2∗

(B2)
+ |ṽ|L2∗

(B2)

)
.

In particular,

∣∣ṽ(x0)
∣∣ � C

(∣∣h(ṽ)
∣∣

2∗ + |ṽ|L2∗
(B )

)

L (B2) 2



740 J.M.B. do Ó et al. / J. Differential Equations 248 (2010) 722–744
and since h(ṽ) and ṽ belong to L2∗
(R2), we have

∣∣h(ṽ)
∣∣

L2∗
(B2)

+ |ṽ|L2∗
(B2) → 0, as |x0| → ∞,

so that |ṽ(x)| → 0 as |x| → ∞ and the verification of (3.19) is complete.

We assert now that

c∞ � I∞(ṽ) � c0, (3.20)

where c∞ is the mountain pass level given by

c∞ = inf
γ ∈Γ∞

sup
t∈[0,1]

I∞
(
γ (t)

)
,

and

Γ∞ = {
γ ∈ C

([0,1], H1(
R

N)); γ (0) = 0, γ (1) = 0, I∞
(
γ (1)

)
< 0

}
.

We start the verification of (3.20) showing that I∞(ṽ) � c0. Indeed, by Lemma 2.1(6) and Fatou
lemma, we have

c0 = lim sup
n→∞

{
I∞(ṽn) − 1

2
I ′∞(ṽn)ṽn

}

= lim sup
n→∞

∫

RN

{
1

2

[(
f 2(ṽn) − f (ṽn) f ′(ṽn)ṽn

)
V∞

] + 1

2
g
(

f (ṽn)
)

f ′(ṽn)ṽn − G
(

f (ṽn)
)}

dx

�
∫

RN

1

2

(
f 2(ṽ) − f (ṽ) f ′(ṽ)ṽ

)
V∞ dx +

∫

RN

1

2
g
(

f (ṽ)
)

f ′(ṽ)ṽ − G
(

f (ṽ)
)

dx

= I∞(ṽ) − 1

2
I ′∞(ṽ)ṽ = I∞(ṽ).

Thus I∞(ṽ) � c0. Now, in order to show c∞ � I∞(ṽ), we slightly modify an argument used in [19] to
get a path γ : [0,1] → H1(RN ) such that

⎧⎪⎪⎨
⎪⎪⎩

γ (0) = 0, I∞
(
γ (1)

)
< 0, ṽ ∈ γ

([0,1]),
γ (t)(x) > 0 ∀x ∈ R

N , t ∈ (0,1],
max

t∈[0,1] I∞
(
γ (t)

) = I∞(ṽ).

(3.21)

Indeed, define

ṽt(x) =
{

ṽ(x/t) if t > 0,

0 if t = 0.

Choose three points to ∈ (0,1), t1 ∈ (1,∞) and θ1 > t1 such that the path γ defined by three pieces,
namely,
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γ1 : [0,1] → H1(
R

N)
, γ1(θ) = θ ṽto ,

γ2 : [to, t1] → H1(
R

N)
, γ2(t) = ṽt,

γ3 : [1, θ1] → H1(
R

N)
, γ3(θ) = θ ṽt1 ,

it is desired path. Effectively, because of ṽ is a critical point of I∞ , the function ṽ is a weak positive
solution of

−�ṽ = ψ(ṽ) in R
N .

Then

∫

RN

ψ(ṽ)ṽ dx = ‖∇ ṽ‖2 > 0,

where ψ(s) = (g( f (s)) − V∞ f (s)) f ′(s). Thus, there exists θ1 > 0 such that

∫

RN

ψ(θ ṽ)ṽ dx > 0, ∀θ ∈ [1, θ1]. (3.22)

Let Φ(s) = ψ(s)
s for s > 0. By (3.22) we infer that

∫

RN

Φ(θ ṽ)ṽ2 dx > 0, ∀θ ∈ [1, θ1]. (3.23)

On the other hand, from

d

dθ
I∞(θ ṽt) = θ

(
‖∇ ṽ‖2

2 − t2
∫

RN

Φ(θ vt)v2 dx

)

there exists to ∈ (0,1) such that

‖∇ ṽ‖2
2 − t2

o

∫

RN

Φ(θ ṽt)ṽ2 dx > 0, ∀θ ∈ [0,1]. (3.24)

From (3.23) there exists t1 > 1 such that

‖∇ ṽ‖2
2 − t2

1

∫

RN

Φ(θ ṽt)ṽ2 dx <
−2

θ2
1 − 1

‖∇ ṽ‖2
2, ∀θ ∈ [1, θ1]. (3.25)

From (3.24), by along of the path γ1, I∞(θ ṽto ) decreases and it takes its maximum value at θ = 1.
Since

∫
RN Ψ (ṽ)dx = 0, where Ψ (s̃) = ∫ s

0 ψ(t)dt , by Pohozaev identity we obtain

I∞(ṽt) = I∞(ṽ) = 1‖∇ ṽ‖2
2
2
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along the path γ2. From (3.25), I∞(θ ṽt1 ) decreases along the path γ3. Thus,

I∞
(
γ1(t)

)
� I∞(ṽt) = I∞(ṽ),

on the other hand

I∞(ṽ) = I∞(ṽt) � I∞(θ ṽt1), ∀θ ∈ [0, θ1].
Therefore

max
t∈[0,θ1] I∞

(
γ (t)

) = I∞(ṽ).

Moreover, from (3.25) and the fact I∞(θ ṽt1 ) decreases along γ3 we have

I∞(θ1 ṽt1) = I∞(ṽt1) +
θ1∫

1

d

dθ
I∞(θ ṽt1)dθ

� 1

2
‖∇ ṽ‖2

2 −
θ1∫

1

2θ

θ2
1 − 1

‖∇ ṽ‖2
2 dθ

= −1

2
‖∇ ṽ‖2

2 < 0.

Hence we obtain the desired path (3.21).
The path (3.21) together with the definition of c∞ imply that

c∞ � max
t∈[0,1] I∞

(
γ (t)

) = I∞(ṽ).

Thus, c∞ � I∞(ṽ) and the verification of (3.20) is complete.

Finally, we may conclude the proof of Theorem 1.1. Take again the path γ given by (3.21). Since
γ ∈ Γ∞ ⊂ Γ , γ (t)(x) > 0, and V (x) � V∞ , with V = V∞ , from (3.20) we obtain

c0 � sup
t∈[0,1]

I
(
γ (t)

) = I
(
γ (t)

)

< I∞
(
γ (t)

)
� max

t∈[0,1] I∞
(
γ (t)

)

= I∞(ṽ) � c0,

which is a contradiction. Therefore, v is nontrivial. Theorem 1.1 is proved.

Remark 3.1. By a similar argument we can prove a version of Theorem 1.1 in the asymptotic case to
a periodic function V p , that is, when V satisfies

V p(x)
.= lim|x|→∞ V (x), V p(x + 1) = V p(x), ∀x ∈ R

N , and

V (x) � V p(x), ∀x ∈ R
N ,

where the last inequality is strict on a positive Lebesgue measure set of R
N .
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We can establish Theorem 1.1, in the compact-coercive case, that is, when lim|x|→∞ V (x) = +∞,
and its proof follows easily because the map v → f (v) from H1(RN ) into Lq(RN ) is compact for
2 � q < ∞. (See [35] also [27].)

Theorem 1.1 still holds in the radially symmetric case, namely V (x) = V (|x|), ∀x ∈ R
N . The proof

can be handled as above by using that the map v → f (v) from H1(RN ) into Lq(RN ) is compact for
2 < q < ∞. (See [38] also [27].)
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