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1 Introduction

Perturbative field models with symmetry breaking were investigated from the point of view

of the theory of renormalization in the pioneering work of Symanzik [1, 2] and treated in

a way that we can consider as definitive, by Becchi-Rouet-Stora [3–5]. However, several

recent works, dealing in particular with field theories with Lorentz symmetry breaking, do

not consider very carefully how the symmetry is broken, not taking into account the re-

quirements that Symanzik-Becchi-Rouet-Stora have shown to be necessary. In this article,

all our analysis will be based on a general iterative scheme called Algebraic Renormaliza-

tion1 [10–12]. In the algebraic approach, in order to study the renormalizability of models

characterized by a system of Ward identities, without referring to any special regularization

procedure, two steps must be followed. In the first step, for a power-counting renormal-

izable model, at the level of the radiative corrections, one investigates the preservation of

the symmetries, or the determination of all possible anomalies. This amounts to find the

solution of the cohomology of its symmetry group: trivial elements (co-boundaries) cor-

respond to breakings which can be compensated by non-invariant counterterms, whereas

the non-trivial elements are the possible anomalies. These cohomology conditions are a

generalization of the Wess-Zumino consistency condition [13] used in order to compute

the possible anomalies of the Ward identities in Yang-Mills theories. In a second step, we

check the stability of the classical action — which ensures that the quantum corrections do

not produce counterterms corresponding to the renormalization of parameters not already

present in the classical model.

Let us emphasize that the algebraic renormalization scheme is based on a set of general

theorems of renormalization theory, collected under the name of Quantum Action Principle

1It should be emphasized that, based on the method suggested by the Epstein-Glaser construction [6–8],

the algebraic method of renormalization was seeded by Stora in ref. [9].
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(QAP) [14–16]. These theorems deal with the whole of Feynman graphs combinatorics and

integrability, so that explicit graph considerations are unnecessary — unless one looks for

explicit quantitative results for applications to physics, of course. As Stora said: “Use the

theorems! ”.

The quantum electrodynamics (QED) [17–20] with violation of Lorentz and CPT [21–

23] have been studied intensively. Among several issues, the possible generation of a Chern-

Simons-like term induced by radiative corrections arising from a CPT and Lorentz violating

term in the fermionic sector has been a recurrent theme in the literature. We particularly

mention the following works [24–44] (and references cited therein), where many contro-

versies have emerged from the discussion whether this Chern-Simons-like term could be

generated by means of radiative corrections arising from the axial coupling of charged

fermions to a constant vector bµ responsible for the breakdown of Lorentz symmetry.

In this work, we reassess the discussion on the radiative generation of a Chern-Simons-

like term induced from quantum corrections in the extended QED. We show, to all orders

in perturbation theory, that a CPT-odd and Lorentz violating Chern-Simons-like term,

definitively, is not radiatively induced by the axial coupling of the fermions with the con-

stant vector bµ. The proof of this fact is based on general theorems of perturbative quantum

field theory (see [10–12] and references therein), where the Lowenstein-Zimmermann sub-

traction scheme in the framework of Bogoliubov-Parasiuk-Hepp-Zimmermann-Lowenstein

(BPHZL) renormalization method [45] is adopted. The former has to be introduced, owing

to the presence of massless gauge field, so as to subtract infrared (IR) divergences that

should arise from the ultraviolet (UV) subtractions.

This article is structured as follows: in section 2, the quantum electrodynamics (QED)

with a term which violates Lorentz and CPT (extended QED) is introduced, it is established

all continuous and discrete simmetries at the classical level, as well as determined the

ultraviolet and infrared dimensions of all the fields; the behaviour of the extended QED

at the quantum level is analyzed in section 3; section 4 are left to the final comments and

conclusions.

2 The model at the classical level

We start by considering an action for extended QED with a term which violates the Lorentz

and CPT symmetries in the matter sector only. In the tree approximation, the classical

action of extended QED with one Dirac spinor that we are considering here is given by:

Σ(s−1) = ΣS +ΣSB +ΣIR +Σgf +Σext , (2.1)

where

ΣS =

∫
d4x

{
−

1

4
FµνFµν + iψ̄γµDµψ −mψ̄ψ

}
, (2.2)

is the symmetric part of Σ(s−1) under gauge and Lorentz transformations, and Dµψ ≡

(∂µ + ieAµ)ψ. The term

ΣSB = −

∫
d4x bµψ̄γ5γ

µψ , (2.3)
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is the non symmetric part of Σ(s−1). It violates CPT symmetry and breaks the manifest

Lorentz covariance on account of a constant vector bµ, which selects a preferential direction

in Minkowski space-time, breaking its isotropy. In addition to,

ΣIR =

∫
d4x

1

2
µ2(s− 1)AµA

µ, (2.4)

is the Lowenstein-Zimmermann mass term for the (massless) photon field. A Lowenstein-

Zimmermann mass term must be introduced in order to enable subtractions in momenta

space without introducing spurious infrared (IR) singularities. The Lowenstein-Zimmer-

mann parameter s lies in the interval 0 ≤ s ≤ 1 and plays the role of an additional

subtraction variable (as the external momentum) in the BPHZL renormalization program,

such that the theory describing a really massless particle is recovered for s = 1. It should

be comment that the Lowenstein-Zimmermann mass term for the photon field does not

spoil gauge invariance at the quantum level;2 this is a peculiarity of the abelian case [10].

Finally, in order to quantize the model, a gauge-fixing

Σgf =

∫
d4x

{
b∂µA

µ +
ξ

2
b2 + c�c

}
, (2.5)

is added, together with the term, Σext, by coupling the non-linear Becchi-Rouet-Stora

(BRS) transformations to external sources

Σext =

∫
d4x

{
Ωsψ − sψΩ

}
. (2.6)

2.1 Continuous symmetries

The BRS transformations are given by:

sψ = icψ , sψ = −icψ ;

sAµ = −
1

e
∂µc , sc = 0 ; (2.7)

sc =
1

e
b , sb = 0 ;

where c is the ghost field, c is the antighost field and b is the Lautrup-Nakanishi field [48, 49],

respectively. Although not massive, the Faddeev-Popov ghosts, c and c, are free fields, they

decouple, therefore, there is no need to introduce a Lowenstein-Zimmermann mass term

for them.

The BRS invariance of the action is expressed in a functional way by the Slavnov-Taylor

identity

S(Σ(s−1)) = 0 , (2.8)

where the Slavnov-Taylor operator S is defined, acting on an arbitrary functional F , by

S(F) =

∫
d4x

{
−

1

e
∂µc

δF

δAµ
+

1

e
b
δF

δc
+

δF

δΩ

δF

δψ
−

δF

δΩ

δF

δψ

}
. (2.9)

2This was investigated in details for the QED in ref. [46, 47] using the BPHZ scheme.
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The corresponding linearized Slavnov-Taylor operator reads

SF =

∫
d4x

{
−

1

e
∂µc

δ

δAµ
+

1

e
b
δ

δc
+

δF

δΩ

δ

δψ
+

δF

δψ

δ

δΩ
−

δF

δΩ

δ

δψ
−

δF

δψ

δ

δΩ

}
. (2.10)

The following nilpotency identities hold:

SFS(F) = 0 , ∀F , (2.11)

SFSF = 0 if S(F) = 0 . (2.12)

In particular, (S
(s−1)
Σ )2 = 0, since the action Σ(s−1) obeys the Slavnov-Taylor identity (2.8).

The operation of SΣ(s−1) (2.10) upon the fields and the external sources reads

SΣ(s−1)φ = sφ , φ = {ψ, ψ,Aµ, c, c, b} , (2.13)

SΣ(s−1)Ω = −
δΣ(s−1)

δψ
, (2.14)

SΣ(s−1)Ω+ =
δΣ(s−1)

δψ
. (2.15)

In addition to the Slavnov-Taylor identity (2.8), the classical action Σ(s−1) (2.1) is

characterized by the gauge condition, the ghost equation and the antighost equation:

δΣ(s−1)

δb
= ∂µAµ + ξb , (2.16)

δΣ(s−1)

δc
= �c , (2.17)

−i
δΣ(s−1)

δc
= i�c+Ωψ − ψΩ . (2.18)

The action Σ(s−1) (2.1) is invariant also with respect to the rigid symmetry

WrigidΣ
(s−1) = 0 , (2.19)

where the Ward operator, Wrigid, is defined by

Wrigid =

∫
d4x

{
ψ

δ

δψ
− ψ

δ

δψ
+Ω

δ

δΩ
− Ω

δ

δΩ

}
. (2.20)

On the other hand, the Lorentz symmetry is broken by the presence of the constant

vector bµ. The fields Aµ and ψ transform under infinitesimal Lorentz transformations —

δxµ = ǫµνx
ν (ǫµν = −ǫνµ) — in such a way that

δLAµ = −ǫλνx
ν∂λAµ + ǫµ

νAν ≡
1

2
ǫαβδLαβAµ ; (2.21)

δLψ = −ǫλνx
ν∂λψ −

i

4
ǫµνσµνψ ≡

1

2
ǫαβδLαβψ , (2.22)

where σµν =
i

2
[γµ, γν ] . (2.23)

– 4 –



J
H
E
P
1
1
(
2
0
1
7
)
0
1
1

It has to be pointed out that, since the Lorentz breaking ΣSB (2.3) is not linear in

the quantum fields, it shall be submitted to renormalization. Nevertheless, it is a soft

breaking, its ultraviolet (UV) power-counting dimension is less than 4, namely 3. A model

with soft symmetry breakings is renormalizable if the radiative corrections do not induce a

breakdown of the symmetries by terms of UV dimension equal to 4, the hard breakings [1, 2].

Bearing in mind the Weinberg’s theorem [50], it can be concluded that the symmetry of

the theory, in the asymptotic deep euclidean region of momentum space, remains preserved

by radiative corrections. In order to control the Lorentz breaking and, in particular, its

power-counting properties, by following [1, 2], and [51] for the specific case of Lorentz

breaking, we introduce an external field βµ ≡ βµ(x), with UV and IR dimensions equal

to 1, which transforms under Lorentz transformations as

δLβµ = −ǫλνx
ν∂λβµ + ǫµ

ν(βν + bν) ≡
1

2
ǫαβδLαββµ . (2.24)

The Ward operator associated to the Lorentz symmetry reads

WL =
1

2
ǫαβWLαβ , (2.25)

where

WLαβ =

∫
d4x

∑

ϕ=Aµ,ψ,ψ,βµ

δLαβϕ
δ

δϕ
. (2.26)

By adding, to the action Σ(s−1) (2.1), a term depending on βµ, such as:

Σ̃(s−1) = Σ(s−1) −

∫
d4xβµψγ5γ

µψ , (2.27)

it can be verified the following classical Ward identity

WLαβΣ̃
(s−1) = 0 , (2.28)

so that, at βµ = 0, it reduces to the broken Lorentz Ward identity

WLαβΣ
(s−1) = −b[α

∫
d4x ψγ5γβ]ψ . (2.29)

Owing to the fact that the external field βµ is coupled (2.27) to the gauge invariant axial

current (jµ5 = ψγ5γ
µψ), it is assumed to be BRS invariant in order to preserve gauge

invariance,

s

∫
d4xβµψγ5γ

µψ = 0 =⇒ sβµ = 0 . (2.30)

Consequently, the action Σ̃(s−1) (2.27) satisfies the same Slavnov identity (2.8) as the action

Σ(s−1) (2.1):

S(Σ̃(s−1)) = 0 , (2.31)
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together with the following identities:

δΣ̃(s−1)

δb
= ∂µAµ + ξb , (2.32)

δΣ̃(s−1)

δc
= �c , (2.33)

−i
δΣ̃(s−1)

δc
= i�c+Ωψ − ψΩ , (2.34)

WrigidΣ̃
(s−1) = 0 . (2.35)

2.2 Discrete symmetries

Charge conjugation. Assuming the Dirac representation of the γ-matrices [52], the

charge conjugation transformations read:

ψ
C

−→ Cψ
T
= iγ2γ0ψ

T
,

Aµ
C

−→ −Aµ ,

CγµC
−1 = −γTµ , (2.36)

then, it is verified that all terms in the action Σ̃(s−1) (2.27) are invariant under charge

conjugation.

Parity. The parity transformations are given by:

xµ
P

−→ xµ ,

ψ
P

−→ Pψ = γ0ψ ,

Aµ
P

−→ Aµ ,

PγµP
−1 = −(−1)ηµµγµ , (2.37)

where in this case all terms of the action Σ̃(s−1) (2.27), except the Lorentz breaking term

ΣSB (2.3), are invariant under parity.

Time reversal. The time reversal transformations follow:

xµ
T

−→ −xµ ,

ψ
T

−→ Tψ = iγ1γ3ψ ,

Aµ
T

−→ Aµ ,

TγµT−1 = γTµ , (2.38)

where it is verified that the Lorentz breaking term ΣSB (2.3) is not invariant under time

reversal, whereas the other terms in the action Σ̃(s−1) (2.27) remain invariant.

Consequently, the action Σ̃(s−1) (2.27), has CPT symmetry broken by the Lorentz

breaking term, ΣSB (2.3):

ψbµγ5γ
µψ

CPT
−−−→ −ψbµγ5γ

µψ . (2.39)
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Aµ ψ c c b Ω βµ s− 1 s

d 1 3/2 0 2 2 5/2 1 1 1

r 1 2 0 2 2 2 1 1 0

ΦΠ 0 0 1 −1 0 −1 0 0 0

GP 0 1 1 1 0 0 0 0 0

Table 1. UV (d) and IR (r) dimensions, ghost number (ΦΠ) and Grassmann parity (GP ).

UV and IR dimensions. Switching off the coupling constant (e) and taking the free

part of the action (2.1), the tree-level propagators in momenta space, for all the fields,

read:

∆ψψ(k) = i
/k +m

k2 −m2
, (2.40)

∆µν
AA(k, s) = −i

{
1

k2 −M2(s− 1)2

(
ηµν−

kµkν

k2

)
+

ξ

k2 − ξ M2(s− 1)2
kµkν

k2

}
, (2.41)

∆µ
Ab(k) =

kµ

k2
, ∆bb(k) = 0 , (2.42)

∆cc(k) = −i
1

k2
. (2.43)

The ultraviolet (UV) and infrared (IR) dimensions of any fields, X and Y , are given

by the UV and IR asymptotic behaviour of their propagator (∆XY (k, s)), dXY and rXY ,

respectively, defined as follows:

dXY = deg(k,s)∆XY (k, s) , (2.44)

rXY = deg
(k,s−1)

∆XY (k, s) , (2.45)

where the upper degree deg(k,s) gives the asymptotic power for (k, s) → ∞ whereas the

lower degree deg
(k,s−1)

gives the asymptotic power for (k, s− 1) → 0. The UV (d) and IR

(r) dimensions of the fields, X and Y , shall respect the following inequalities:

dX + dY > 4 + dXY and rX + rY 6 4 + rXY . (2.46)

In summary, the UV (d) and IR (r) dimensions — which are those involved in the

Lowenstein-Zimmermann subtraction scheme [45] — as well as the ghost numbers (ΦΠ)

and the Grassmann parity (GP) of all fields are displayed in table 1. It should be stressed

that the statistics among the fields is defined as follows: the integer spin fields with odd

ghost number, as well as, the half integer spin fields with even ghost number anticommute

among themselves. However, the other fields commute with the formers and also among

themselves.

3 The model at the quantum level

Following Symanzik — “whether you like it or not, you have to include in the lagrangian

all counter terms consistent with locality and power-counting, unless otherwise constrained

– 7 –
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by Ward identities” [53] — we present next, the perturbative quantization of the extended

QED model, using the algebraic renormalization method [11, 12]. Our aim is to prove

that the full quantum model has the same properties as the classical model, namely, we

have to demonstrate that, at the quantum level, the Ward identity related to the Lorentz

symmetry (2.28) and the Slavnov-Taylor identity associated to the gauge symmetry (2.31)

are satisfied at all orders in perturbation theory:

WLαβΓ
(s−1)

∣∣
s=1

= 0 , (3.1)

S(Γ(s−1))
∣∣
s=1

= 0 . (3.2)

In order to study the renormalizability of models characterized by a system of Ward iden-

tities, without referring to any special regularization scheme, two procedures must be

followed [11, 12]. First, we search for possible anomalies of the Ward identities through an

analysis of the Wess-Zumino consistency condition. Second, we verify the stability of the

classical action, which guarantees that the quantum corrections do not produce countert-

erms corresponding to the renormalization of parameters which are not already present at

the classical level.

3.1 The Lorentz-Ward and the Slavnov-Taylor identities: in search for anoma-

lies

At the quantum level the vertex functional, Γ(s−1), which coincides with the classical action,

Σ̃(s−1) (2.27), at zeroth order in ~,

Γ(s−1) = Σ̃(s−1) +O(~) , (3.3)

has to satisfy the same constraints as the classical action, namely eq. (2.28) and

eqs. (2.31)–(2.35).

According to the Quantum Action Principle [14–16], due to radiative corrections, the

Lorentz symmetry Ward identity (2.28) and the Slavnov-Taylor identity (2.31) develop

quantum breakings:

WLαβΓ
(s−1)

∣∣
s=1

= ∆Lαβ · Γ
(s−1)

∣∣
s=1

= ∆Lαβ +O(~∆Lαβ) , (3.4)

S(Γ(s−1))
∣∣
s=1

= ∆ · Γ(s−1)
∣∣
s=1

= ∆g +O(~∆g) , (3.5)

where ∆Lαβ ≡ ∆Lαβ |s=1 and ∆g ≡ ∆g|s=1 are integrated local functionals, taken at s = 1,

with ghost number one and, UV and IR dimensions bounded by δ ≤ 4 and ρ ≥ 4, respec-

tively.

The validity of the Lorentz Ward identity has been proved in [51] by using the White-

head’s lemma for semi-simple Lie groups, which states the vanishing of the first cohomol-

ogy of such kind of group [3, 5]. Here,3 this means that the Lorentz symmetry breaking

∆Lαβ (3.4), can be written as

∆Lαβ = WLαβ∆̂L , (3.6)

3See details in [42].
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where ∆̂L is an integrated local insertion of UV and IR dimensions bounded by δ ≤ 4

and ρ ≥ 4, respectively. Therefore, ∆̂L can be reabsorbed in the action as a noninvariant

counterterm, order by order, establishing the Lorentz Ward identity (3.1) at the quantum

level.

The nilpotency identity (2.11) together with

SΓ(s−1) = S
Σ̃(s−1) +O(~) , (3.7)

implies the following consistency condition for the gauge symmetry breaking ∆g (3.5):

S
Σ̃(s−1)∆g = 0 , (3.8)

and beyond that, ∆g also satisfy the constraints:

δ∆g

δb
=

δ∆g

δc
=

∫
d4x

δ∆g

δc
= Wrigid∆g = WLαβ∆g = 0 . (3.9)

The Wess-Zumino consistency condition (3.8) constitutes a cohomology problem in the

sector of ghost number one. Its solution can always be written as a sum of a trivial cocycle

SΣ(s−1)∆̂
(0)
g , where ∆̂

(0)
g has ghost number zero, and of nontrivial elements belonging to the

cohomology of S
Σ̃(s−1) (2.10) in the sector of ghost number one:

∆(1)
g = ∆̂(1)

g + S
Σ̃(s−1)∆̂

(0)
g . (3.10)

However, considering the Slavnov-Taylor operator S
Σ̃(s−1) (2.10) and the quantum break-

ing (3.5), it results that ∆
(1)
g exhibits UV and IR dimensions bounded by δ ≤ 4 and ρ ≥ 4.

From the antighost equation in (3.9):

∫
d4x

δ∆̂
(1)
g

δc
= 0 , (3.11)

it follows that ∆̂
(1)
g can be written as

∆̂(1)
g =

∫
d4x Tµ∂

µc , (3.12)

where Tµ is a rank-1 tensor with ghost number zero, with UV and IR dimensions bounded

by d ≤ 3 and r ≥ 3, respectively. However, the tensor Tµ can be split into two pieces:

Tµ = rvVµ + rpPµ , (3.13)

where Vµ is a vector and Pµ is a pseudo-vector, with rv and rp being coefficients to

be determined. By considering the UV and IR dimensional constraints to be satisfied

by Tµ (3.13) together with the conditions upon the Slavnov-Taylor breaking ∆̂
(1)
g , given

by (3.8) and (3.9), it follows that:

Tµ = rv∂
ρFρµ + rpǫµνρσA

νF ρσ. (3.14)
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Consequently, substituting (3.14) into (3.12), the gauge symmetry breaking ∆̂
(1)
g reads:

∆̂(1)
g = −

rp
2

∫
d4x c ǫµνρσF

µνF ρσ, (3.15)

which is the well-known (Adler-Bardeen-Bell-Jackiw) ABBJ-anomaly [54–56]. Therefore,

up to noninvariant counterterms, which are S
Σ̃(s−1)-variations of the integrated local inser-

tions ∆̂
(0)
g :

∆(1)
g = S

Σ̃(s−1)∆̂
(0)
g −

rp
2

∫
d4x c ǫµνρσF

µνF ρσ. (3.16)

The anomaly coefficient rp does not get renormalizations [11, 57–59], besides that, if it

vanishes at the one loop order, it is in fact identically zero, thus it is enough to check

its vanishing at that order. However, owing to the fact that the potentially dangerous

axial current jµ5 = ψγ5γ
µψ is coupled only to the external (classical) field βµ — and not

to any quantum field of the model — there is no gauge anomaly stemming from [10, 33,

34]. Consequently, it follows that the Slavnov-Taylor identity (3.2) is accomplished at the

quantum level.

Concerning the potential anomalies, it can be concluded that the presence of the

CPT violating interaction term ΣSB (2.3), which couples the axial fermion current jµ5 =

ψγ5γ
µψ to a constant vector field bµ, does not induce at any order in perturbation theory,

independent of any regularization scheme, neither a Lorentz anomaly nor a gauge anomaly.

3.2 The stability condition: in search for counterterms

In order to verify if the action in the tree-approximation (Σ̃(s−1)) is stable under radiative

corrections, we perturb it by an arbitrary integrated local functional (counterterm) Σ̃c(s−1),

such that

Σ̂(s−1) = Σ̃(s−1) + εΣ̃c(s−1), (3.17)

where ε is an infinitesimal parameter. The functional Σ̃c ≡ Σ̃c(s−1)|s=1 has the same

quantum numbers as the action in the tree-approximation at s = 1.

The deformed action Σ̂(s−1) must still obey all the conditions presented above, hence-

forth, Σ̃c(s−1) is subjected to the following set of constraints:

SΣ(s−1)Σ̃c(s−1) = 0 , (3.18)

δΣ̃c(s−1)

δb
=

δΣ̃c(s−1)

δc
=

δΣ̃c(s−1)

δc
= 0 , (3.19)

WrigidΣ̃
c(s−1) = 0 , (3.20)

WLαβΣ̃
c(s−1) = 0 . (3.21)

The most general invariant counterterm Σ̃c(s−1) — the most general field polynomial

— with UV and IR dimensions bounded by δ ≤ 4 and ρ ≥ 4, with ghost number zero and

fulfilling the conditions displayed in eqs. (3.18)–(3.21), reads:

Σ̃c(s−1)
∣∣δ≤4

ρ≥4
=

∫
d4x

{
α1iψγ

µ(∂µ + ieAµ)ψ + α2ψψ + α3F
µνFµν + α4(βµ + bµ)ψγ5γ

µψ
}
.

(3.22)
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The coefficients α1, . . . , α4 are arbitrary, and they are fixed, order by order in perturbation

theory, by the following four normalization conditions:

Γψψ(/p)
∣∣
/p=m

= 0 ,
∂

∂/p
Γψψ(/p)

∣∣∣∣
/p=m

= 1 ,

∂

∂p2
ΓAµAµ

(p2)

∣∣∣∣
s=1

p2=κ2
= 1 ,

−
1

4
Tr[γµγ5Γβµψψ(0, /p)]

∣∣∣∣
/p=m

= 1 . (3.23)

Notwithstanding, it shall be stressed here that, a Chern-Simons-like term of the type

ΣCS

∣∣δ≤4

ρ≥4
=

∫
d4xα5

{
ǫµναββ

µAν∂αAβ
∣∣4
4
+ ǫµναβb

µAν∂αAβ
∣∣3
3

}
, (3.24)

in spite of fulfils the conditions (3.19)–(3.21), its first term breaks gauge invariance by vio-

lating the Slavnov-Taylor identity (3.18), whereas its second term violates the IR dimension

constraint (ρ ≥ 4), it has IR dimension equal to three. Therefore, the Chern-Simons-like

term ΣCS (3.24) can never be generated by radiative corrections if the renormalization pro-

cedure is performed correctly. First, by taking care of the IR divergences — for instance,

through the Lowenstein-Zimmermann method [45] — that show up, thanks to the presence

of the photon, which is massless. Second, by properly treating and controlling the Lorentz

symmetry breaking through the Symanzik method [1, 2]. Anyway, even though the external

field βµ was not introduced in order to control the Lorentz breaking, the Chern-Simons-like

term — which is a soft Lorentz breaking (UV dimension less than four) — would not be

radiatively generated as explained above, nevertheless, any gauge invariant hard Lorentz

breaking (UV dimension equal to four) could be induced by radiative corrections. In sum-

mary, a CPT-odd and Lorentz-violating Chern-Simons-like term is definitely not radiatively

induced at any order in perturbation theory, independent of any regularization scheme, by

coupling the axial fermion current jµ5 = ψγ5γ
µψ to a constant vector field bµ.

4 Conclusions

In this work we reassess the discussion on the radiative generation of a Chern-Simons-like

term induced from quantum corrections in the extended QED. We prove, to all orders in

perturbation theory, that a CPT-odd and Lorentz violating Chern-Simons-like term, defini-

tively, is not radiatively induced by the axial coupling of the fermions with the constant

vector bµ. The proof of this fact is based on general theorems of perturbative quantum

field theory, where the Lowenstein-Zimmermann subtraction scheme in the framework of

Bogoliubov-Parasiuk-Hepp-Zimmermann-Lowenstein (BPHZL) renormalization method is

adopted.

It is true that we need new ideas to go beyond the Standard Model, for instance, which

is the case of the Lorentz symmetry breaking, where if it is manifested or not in our universe

has been the subject of much discussion, however so far, no trace was found up to now.
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Experiments are the final judgement of a theory, which has to be checked experimentally,

but the Lorentz symmetry breaking still remains a theoretical construction, regardless of

how seductive the idea can be. Nevertheless, even as a theoretical construction, the idea

of the Lorentz symmetry breaking should be well grounded and treated properly, although

it seems that is not the case in the recent literature on the subject.

Particularly here, we analyze the issue intensively studied in recent years on the genera-

tion of a Lorentz violating Chern-Simons-like term by radiative corrections in the extended

QED. Unfortunately, several recent works, dealing on the subject, do not consider very

carefully the Lorentz symmetry breaking — neither at the classical level nor at the quan-

tum level — not taking into account the requirements that Symanzik-Becchi-Rouet-Stora

have shown to be necessary. Those authors should read the seminal works by Symanzik-

Becchi-Rouet-Stora [1–5] and devour them.

It shall be stressed that it is urgent and mandatory the reconsideration of the funda-

mental works on renormalization of quantum field models developed mainly in the 1970’s,

especially the articles by Symanzik-Becchi-Rouet-Stora on renormalizable models with bro-

ken symmetry, which provides an appropriate theoretical tool susceptible to avoid some

bad conclusions associated with models with broken Lorentz symmetry. It is important

to emphasize that, the main characteristic of this method is the control of the breaking

and, in particular, its power-counting properties, converting the initial action containing

terms that violate the Lorentz symmetry into one which is invariant under the original

transformation by adding external fields (the Symanzik sources). Without this control, the

study of the stability (here meant additive renormalization) tells us that any term that

breaks the Lorentz symmetry, compatible with the power-counting, must necessarily be

present in the starting (classical) action. On the other hand, if we include in the initial

(classical) action all terms that break the Lorentz symmetry, compatible with the locality

and power-counting, no breaking control is required (see ref. [43]). Therefore, paraphrasing

Symanzik, whether you like it or not, you have to include in the classical action all Lorentz

violating terms consistent with locality and power-counting, unless otherwise constrained

by a breaking control.
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