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Abstract
Key Message  We molecularly characterized a new mutation in the GmFAD3A gene associated with low linolenic content 
in the Brazilian soybean cultivar CS303TNKCA and developed a molecular marker to select this mutation.
Abstract  Soybean is one of the most important crops cultivated worldwide. Soybean oil has 13% palmitic acid, 4% stearic 
acid, 20% oleic acid, 55% linoleic acid and 8% linolenic acid. Breeding programs are developing varieties with high oleic 
and low polyunsaturated fatty acids (linoleic and linolenic) to improve the oil oxidative stability and make the varieties more 
attractive for the soy industry. The main goal of this study was to characterize the low linoleic acid trait in CS303TNKCA 
cultivar. We sequenced CS303TNKCA GmFAD3A, GmFAD3B and GmFAD3C genes and identified an adenine point dele-
tion in the GmFAD3A exon 5 (delA). This alteration creates a premature stop codon, leading to a truncated protein with 
just 207 residues that result in a non-functional enzyme. Analysis of enzymatic activity by heterologous expression in yeast 
support delA as the cause of low linolenic acid content in CS303TNKCA. Thus, we developed a TaqMan genotyping assay 
to associate delA with low linolenic acid content in segregating populations. Lines homozygous for delA had a linolenic 
acid content of 3.3 to 4.4%, and the variation at this locus accounted for 50.83 to 73.70% of the phenotypic variation. This 
molecular marker is a new tool to introgress the low linolenic acid trait into elite soybean cultivars and can be used to combine 
with high oleic trait markers to produce soybean with enhanced economic value. The advantage of using CS303TNKCA 
compared to other lines available in the literature is that this cultivar has good agronomic characteristics and is adapted to 
Brazilian conditions.

Introduction

Soybean (Glycine max (L.) Merrill) is the most important 
legume cultivated in the world due to its high productiv-
ity, low production cost and its high protein and oil con-
tent. The 2016/2017 harvest had 120.48 million hectares 
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planted worldwide with a productivity of 351.74 million tons 
(USDA 2017b). Brazil is the second largest producer with 
114.04 million tons of grain, nearly a third of the global 
production (CONAB 2017).

Soybean oil represents 29% of all vegetable oil con-
sumed in the world and is the second in the world ranking 
in terms of production and consumption among vegetable 
oils (USDA 2017a). Almost eight million tons of soybean 
oil was produced in Brazil during 2016, and over 80% was 
intended for domestic consumption (ABIOVE 2017). The 
significant increase in consumption over the past few years 
was mainly due to the amount of biodiesel blended in diesel 
oil, which rose from 5 to 8% and growing to 10% by 2019, 
according to the Brazilian government (Brazil 2017).

The soybean seed accumulates about 20% of oil and con-
tains on average 13% of palmitic acid (16:0), 4% stearic acid 
(18:0), 20% oleic acid (18:1 Δ9), 55% linoleic acid (18:2 
Δ9,12) and 8% linolenic acid (18:3 Δ9,12,15) (Goettel et al. 
2014; Pham et al. 2010). The fatty acid composition deter-
mines the oil quality and influences its physical and chemi-
cal properties, such as melting point and oxidative stability 
(Fehr 2007; Yadav 1996). The high concentration of polyun-
saturated fatty acids in soybean oil is the main cause of low 
oxidative stability, resulting in rancidity, a rapid decline of 
optimal flavor and shortened storage time of manufactured 
food products (Warner and Fehr 2008).

In order to increase the oxidative stability of soybean oil, 
the food industry has used chemical hydrogenation to reduce 
linoleic and linolenic acid and increase oleic acid, but this 
process generates trans isomers of fatty acids. The consump-
tion of partially hydrogenated compounds is directly related 
to the incidence of certain heart disease, high cholesterol 
levels and development of type 2 diabetes (Hu et al. 1997; 
Mozaffarian et al. 2006; Pham et al. 2014; Yadav 1996). This 
fact is so significant that the FDA (US Food & Drug Admin-
istration) made a final ruling that partially hydrogenated oils 
(PHOs) are no longer considered as safe (FDA 2015), and 
established a compliance period of 3 years for food manufac-
turers to comply or make a request to use PHOs (FDA 2016).

Conventional breeding approaches and genetic engineer-
ing have been used to obtain soybean varieties with low 
polyunsaturated fatty acid content, improving the oxidative 
stability without the need for chemical hydrogenation (Fehr 
2007; Pham et al. 2014; Warner and Fehr 2008). The first 
soybean breeding program aimed at changing the fatty acid 
composition to improve quality gains started in the 1950s 
(Dunton et al. 1951). Over the years, it was determined that 
the biosynthesis of polyunsaturated fatty acids in soybeans 
depends mainly on the endoplasmic reticulum desaturase 
enzymes (microsome) (Baud and Lepiniec 2010). The pri-
mary substrates for these enzymes are the fatty acid residues 
linked to phosphatidyl choline (PC) or coenzyme A (CoA). 
The ω-6 desaturase converts oleyl (18:1) into linoleyl (18:2), 

while the ω-3 desaturase is responsible for the conversion 
of linoleyl (18:2) into linolenyl (18:3) (Baud and Lepiniec 
2010).

The gene encoding ω-3 desaturase enzyme in soybean is 
called GmFAD3. The reduction of linolenic acid content in 
soybean genotypes is controlled by mutations in some alleles 
at loci fan1, fan2, fan3 and fanx related to ω-3 desaturase 
microsomal enzyme (Anai et al. 2005; Bilyeu et al. 2005, 
2006; Chapell 2006). Initially, three independent loci con-
trolling linolenic acid production in soybean, designated 
GmFAD3-A, GmFAD3-B and GmFAD3-C, were identified 
(Bilyeu et al. 2003). Currently, GmFAD3 makes up a small 
family of four genes, designated GmFAD3-1a (equivalent 
to GmFAD3B), GmFAD3-1b (equivalent to GmFAD3A), 
GmFAD3-2a (equivalent to GmFAD3C) and GmFAD3-2b 
(Anai et al. 2005). Glyma.14g194300 is the gene encoding 
by GmFAD3A/fan1 locus in linkage group (LG) B2/chro-
mosome 14; Glyma.02g227200 encodes GmFAD3B/fan3 
in LG-D1b/chromosome 2; and Glyma.18g062000 encodes 
GmFAD3C/fan2 in GL-G/chromosome 18 (Bilyeu et al. 
2011; Cardinal et al. 2011; Goodstein et al. 2012).

Recurrent selection using genetic materials with low lev-
els of linolenic acid (White et al. 1961) as a gene donor 
has made it possible to reduce linolenic acid content to 
4.2% (Wilson et al. 1981). More recently, the use of genetic 
changes induced by physical irradiation and chemical 
mutagenesis produced mutants with low linolenic acid con-
tent: A5, C1640, RG10, M5, IL8, A23 and A26 (Bubeck 
et al. 1989; Fehr and Hammond 2000; Hammond and Fehr 
1983; Rahman et al. 1996; Stojsin et al. 1998; Wilcox et al. 
1984). The sequencing of GmFAD3 genes in soybean lines 
A5, A26 and A23, together with the marker–trait associa-
tion analysis identified mutations in three GmFAD3 genes, 
which directly contributes to low linolenic acid content in 
these soybean lines (Bilyeu et al. 2003, 2006; Pham et al. 
2014; Thompson et al. 2002). The combination of alleles 
fan1 (A5), fan2 (A23) and fan3 (A26) produced the line 
A29 with only 1% linolenic acid (Fehr and Hammond 2000; 
Pham et al. 2014; Ross et al. 2000).

Through a breeding program, we developed a variety 
line CS303TNKCA containing low linolenic acid content 
(3.5–4%), the absence of lipoxygenase (lox1, lox2 and lox3) 
and the Kunitz protease inhibitor. In the present study, we 
evaluated the genetic structure of GmFAD3A, GmFAD3B 
and GmFAD3C in CS303TNKCA soybean line to identify 
mutations. The data were used to develop a TaqMan geno-
typing assay, and the observed causative mutation was asso-
ciated with a decreased content of linolenic acid in a segre-
gating population evaluated in field and greenhouse trials. 
The methodology developed in this study will assist in the 
selection of individuals obtained from CS303TNKCA with 
low linolenic acid content. This variety has good agronomic 
characteristics and is adapted to Brazilian conditions, which 
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is a great advantage in comparison with other lines reported 
in the literature because this will accelerate gene introgres-
sion in other cultivars.

Materials and methods

Plant material

The present study used two contrasting soybean lines for 
linolenic acid content. The CS303TNKCA variety is a soy-
bean cultivar developed by Programa de Melhoramento da 
Qualidade da Soja (PMQS/BIOAGRO/UFV), with middle 
oil content in the seed (20–23%), low linolenic acid content 
(about 3.5–4.0%), absence of lipoxygenase (lox1, lox2 and 
lox3) and Kunitz protease inhibitor. This variety is an isoline 
obtained by backcrossing BARC-12 (Leffel 1994a) into the 
recurrent parent variety, Monarca (COOPADAP, Brazil). 
The FA22 line was developed by chemical mutagenesis in 
Iowa State University, with average oleic acid (50%) and 
normal linolenic acid content (about 5.0–6.0%) (Alt et al. 
2005).

Population development

The cultivar CS303TNKCA and FA22 line were used to 
develop the study population. The crossing between the two 
lines was carried out in greenhouses (GH) at the Universi-
dade Federal de Viçosa (Viçosa, Minas Gerais (MG), Brazil; 
20º45′14″S, 42 52′55″W) to obtain the F2 population. F2:3 
families were grown in field trials at Universidade Federal 
de Viçosa (Visconde do Rio Branco (VRB), MG, Brazil; 
21 00′37″S, 42 50′26″W). The experiment was conducted 
in a randomized block design with two replications. Each 
plot was planted with 25 seeds per 1.5-meter row and a row 
spacing of 0.5 meters. Families F2:4 were planted in Viçosa 
(VIC) and twice in São Gotardo (SG) (São Gotardo, MG, 
Brazil; 19 18′39″S, 46 02′ 56″W) under similar conditions 
as the previous experiment.

DNA extraction, sequencing and mutation 
identification

Leaf samples from CS303TNKCA, FA22, F1 and F2 plants 
were collected at V2 stage (Flores et al. 2008), frozen in 
liquid nitrogen and then lyophilized. Genomic DNA was 
extracted using the methodology proposed by Doyle and 
Doyle (1990). The DNA concentration was determined using 
NanoDrop spectrophotometer (NanoDrop Technologies, 
Wilmington, DE) and the quality checked by 0.8% agarose 
gel electrophoresis.

The complete gene sequences of GmFAD3A 
(Glyma.14G194300), GmFAD3B (Glyma.02G227200) and 
GmFAD3C (Glyma.18G062000) were obtained from the 
PHYTOZOME database (Goodstein et al. 2012; Schmutz 
et al. 2010). Using Primer3 Input Program (Rozen and Ska-
letsky 2000), we designed sets of primers for each selected 
gene in order to amplify the entire gene region (Supplemen-
tary Table S1). Each set of primers were tested for produc-
ing a single amplification product, which was purified using 
ExoSAP IT kit (USB Corporation, Cleveland, Ohio, USA) 
and then sequenced by Macrogen company (Gasan-dong, 
Geumchun-gu, Seoul, Korea). The resulting sequences were 
edited using the Sequencer 4.1.4 program (Gene Codes Cor-
poration), aligned using the ClustalW program (Thomp-
son et al. 2002) and the polymorphisms were analyzed in 
ExPASy platforms (Artimo et al. 2012) and NetPlantGene 
Server (Goodstein et al. 2012). We used the reference genes 
from Williams 82 to identify and compare mutations.

Enzymatic activity

The enzymatic activity of the GmFAD3A was investigated 
through its heterologous expression in Saccharomyces cer-
evisiae. RNA samples of CS303TNKCA and the acces-
sion PL04 (wild type for GmFAD3A) were extracted from 
seeds in R5 stage and quantified using Picogreen (Thermo 
Fisher Scientific) in SpectraMax M5 instrument (Molecular 
Devices). The RNA quality was checked on a 1.5% aga-
rose gel. Subsequently, 1 µg of RNA sample was treated 
with DNAse I Amplification Grade (Thermo Scientific) and 
then subjected to reverse transcription using Superscript III 
(Invitrogen). GmFAD3A was cloned using specific sets of 
primers that include sites for BamHI (GmFAD3A/Fw: CCC​
GGA​TCC​ATG​GTT​AAA​GAC​ACA​AAG​CCTT) or XhoI 
(GmFAD3A/Rv: GGGG​CTC​GAG​TCA​GTC​TCG​GTG​
CGA​GTG​A and GmFAD3A-CS303/Rv: GGGG​CTC​GAG​
CTA​TCC​CTT​TCT​CTC​ACT​GG) restriction enzymes. The 
CDS region was amplified in reactions containing 2.0 µL of 
cDNA, 3.0 µL of 10× PCR Rxn Buffer (Invitrogen), 1.5 mM 
of MgSO4, 200 µM of each deoxyribonucleotide, 0.33 µM 
of each primer, and 0.5 U of Platinum Taq DNA Polymerase 
High Fidelity (Invitrogen), with a total volume of 30 µL. 
PCR was performed under the following conditions: 94 °C 
for 2 min; 40 cycles initiated at 94 °C for 15 s, 55 °C for 30 s, 
and 68 °C for 2 min; and a final step at 68 °C for 10 min. 
Amplification products were visualized by 1.2% agarose 
gel electrophoresis and purified using PureLink Quick Gel 
Extraction Kit (Thermo Fisher Scientific). These products 
were digested with BamHI and XhoI restriction enzymes 
(New England Biolabs), as suggested by the manufacturer, 
and cloned into a pYES2 Yeast Expression Vector (Thermo 
Fisher Scientific). The cloning reaction was performed using 
90 fmol of fragment, 30 fmol of pYES2, 1.0 µL of T4 DNA 
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Ligase (New England Biolabs), and 2.0 µL of T4 DNA 
Ligase Reaction Buffer, in a total volume of 20 µL.

The constructed vectors were transformed into Escheri-
chia coli strain DH5α for validation and multiplication, 
and then transformed into S. cerevisiae strain W303, as 
described by Gietz and Schiestl (2007). Recombinant yeasts 
were grown in 7 mL of SD mid containing galactose at 28 °C 
for 12–16 h followed by 26 °C for around 48 h in three to 
five replicates. Fatty acids from recombinant yeasts were 
extracted and analyzed by gas chromatography. ANOVA 
was performed to analyze the variance in each fatty acid 
content, and the Tukey test was used to compare means (5% 
of significance level).

Expression analysis

Real-time PCR was performed on a 7500 Real-Time PCR 
Systems (Applied Biosystems). The sequences of GmFAD3A 
(Glyma.14g194300), GmFAD3B (Glyma.02g227200) and 
GmFAD3C (Glyma.18g062000) transcripts were obtained 
from the PHYTOZOME database (Goodstein et al. 2012). 
The primers were designed using Primer Express software 
(Applied Biosystems, Foster City, CA, USA), and the speci-
ficity confirmed by BLAST in the PHYTOZOME database 
(Supplementary Table S2). The real-time PCR reactions 
were performed using 1 μL of 1:10 diluted cDNA, 5 μL of 
primer Forward and Reverse mixed at 1.5 μM (each primer) 
and 6 μL of SYBR Green PCR Master Mix. The experiment 
was conducted using three biological replicates for each 
genotype and two technical replicates using the following 
conditions: 95 °C for 10 min; 40 cycles at 95 °C for 15 s and 
60 °C for 1 min. We analyzed GmFAD3 gene expression 
in the CS303TNKCA variety, and the soybean lines FA22, 
SUPREMA, BARC8 and BR8014887. We used lines with 
differences in genetic background and in fatty acid content 
to make a better evaluation of GmFAD3 expression levels. 
SUPREMA have high oil content and normal levels of oleic 
and linolenic acids (about 20% oleic, 58% linoleic and 8% 
linolenic). BARC8 (about 19% oleic, 59% linoleic and 8% 
linolenic) and BR8014887 (about 15% oleic, 61% linoleic 
and 11% linolenic) are both high protein content lines with 
normal levels of oleic and linolenic acids. All lines are com-
monly used in our breeding program as allele donors.

A literature review was conducted to find endogenous 
controls already used and validated in soybean (Hu et al. 
2009; Le et al. 2012; Li et al. 2012; Libault et al. 2008; 
Miranda Vde et al. 2013; van de Mortel et al. 2007). We 
tested the stability in our samples and by statistical testing 
using the GeNorm (Vandesompele et al. 2002), BestKeeper 
(Pfaffl et al. 2004) and NormFinder software (Andersen 
et al. 2004) we selected CONS7 and UKN2 (GenBank ID 
AW310136 and BE330043, respectively; data not shown). 
To evaluate desaturase expression, we used the analysis 

described in Hellemans et al. (2007). The results and the 
statistical analysis were plotted using GraphPad Prism.

RT‑PCR

The RT-PCR was performed in 15 µL, containing 2 µL of 
reverse transcription reaction product, 0.33 µM of each 
primer, 0.5 U of Platinum® Taq DNA Polymerase (Invit-
rogen), 200 µM of each deoxyribonucleotide, 1.5 µL PCR 
Buffer (Invitrogen), 1.5 mM of MgCl2, under the following 
conditions: 94 °C for 2 min; 38 cycles initiated at 94 °C 
for 30 s, 55 °C for 30 s, and 72 °C for 2 min; and a final 
step at 72 °C for 7 min. The PCR products were visualized 
in 1.2% agarose gel electrophoresis. The primers used to 
amplify GmFAD3 genes were: GmFAD3A/B-Fw: ATG​GTT​
AAA​GAC​ACA​AAG​CCTT (GmFAD3A and GmFAD3B), 
GmFAD3C-Fw: AAG​GCA​CAA​TGT​TTT​GGG​CAC 
(GmFAD3C), Rv-GmFAD3A: TCA​CTC​GCA​CCG​AGA​CTG​
A (GmFAD3A), Rv-GmFAD3B: CCA​CTC​GCA​ACG​AGA​
CTG​A (GmFAD3B), Rv-GmFAD3C: CTT​GGA​CCC​AGT​
CCA​ACT​AA (GmFAD3C).

Genotyping

The genotyping of an F2 segregating population for low lino-
lenic acid content was performed using the TaqMan geno-
typing system using the following primers and allele-specific 
probes: forward TCT​CAA​GAA​GCC​CCG​GAA​AG; reverse 
CCA​TAG​AGC​TTG​AGC​AAT​AGA​ACT​G; probe1/FAM 
CAG​TGA​GAG​AAA​GGG​AAT​A; probe2/VIC CCA​GTG​
AGA​GAA​AGG​GAT​AG). The experiment was conducted 
on 7500 Real Time PCR Systems (Applied Biosystems) 
using 96-well plates at 10 µL per well containing 50 ng of 
DNA, 5 µL of TaqMan Genotyping MasterMix (Thermo 
Fisher Scientific), 250 nM of each probe, and 300 nM of 
each primer. PCR was started at 95 °C for 10 min, and 60 
cycles at 95 °C for 20 s, and 63 °C for 1 min. The genotypes 
were identified using 7500 Software version 2.3 with the 
Quality Value of 90%.

Phenotyping analysis

Lipids of CS303TNKCA, FA22 and all F2 individuals were 
extracted using the following method: 1 mL of hexane was 
added to 15 mg of powdered soybean seed, mixed with N2 
and stored at 4 °C for 16 h. The hexane solution was col-
lected into another tube and evaporated. Then, 0.4 mL of 
1 M sodium methoxide was added to the tube, shaken and 
incubated at 30 °C for 1 h. Then, 1 mL of milliQ water and 
1 mL of hexane was added, shaken and incubated at room 
temperature for 1 h. Finally, 0.75 mL of the organic phase 
was collected, added to anhydrous sodium sulfate to remove 
the moisture and transferred to a vial tube. The fatty acid 



Theoretical and Applied Genetics	

1 3

composition was performed by gas chromatography using 
the Model GC-2010 Plus (Shimadzu), as described by Bur-
key et al. (2007). The fatty acid content was determined as a 
proportion of total fatty acids represented in g/kg of oil. The 
seed oil content was determined by nuclear magnetic reso-
nance spectrometry (NM—Resonance Instruments, Witney, 
Oxfordshire, UK).

Statistical analysis

To assess the mutation segregation on GmFAD3A gene in 
the F2 population, the Chi square test was performed. We 
calculated averages, standard deviation, and maximum and 
minimum content of palmitic, stearic, oleic, linoleic and 
linolenic acids for each experiment. We performed ANOVA 
to analyze the variance between the genotypes in each fatty 
acid, and the Tukey test was performed to compare means 
(5% significance level). Linear regression was performed to 
verify the association between the mutation and the linolenic 
acid content, as well to check the additive and dominant 
effects. All analyses were performed using GENES software 
(Cruz 2013). Graphs of “linolenic acid content x frequency 
of occurrence” were constructed using Microsoft Office 
Excel and Microsoft Office Power Point, separating indi-
viduals by genotype, and grouping the values in intervals of 
standard deviation.

Results

Identifying mutations in GmFAD3 genes

The sequencing of GmFAD3A gene (Glyma.14G194300) 
covered a total of 3721 bp in CS303TNKCA, including 
approximately 56 bp upstream and 408 bp downstream of the 
ORF. The sequence comparison between CS303TNKCA-
amplified GmFAD3A and from the reference variety Wm82 
revealed the presence of eight mutations in GmFAD3A gene: 
two mutations in exon region, five mutations in introns 
and a single mutation in 3′UTR (Table 1). We observed 
an exchange (A>G) at position 34 in exon 2. The intron 
3 harbored a T insertion at position 94, while exon 5 con-
tained an A deletion at position 79. Analysis of the intron 
6 sequences revealed a C insertion at position 66 and an 
exchange (G>T) at position 383. Furthermore, in intron 7, 

an exchange (T>C) at position 184 and an insertion of an 
A in position 252 were detected. In the 3′UTR region, an 
A>G change was discovered at position 140. None of the 
mutations caused alterations in splicing sites according to 
NetPlantGene Server platform (Goodstein et al. 2012). The 
exchange (A>G) at position 34 of exon 2 does not result in 
amino acid change. However, the deletion of an A at posi-
tion 79 of exon 5 (delA), position 622 counting from the 
first ATG, resulted in a premature stop codon, leading to 
a truncated protein with just 207 residues compared to the 
376 residues of the standard genotype protein in Williams 82 
(Fig. 1). The missing fragment of 169 amino acid residues 
in CS303TNKCA harbors a region rich in histidine, and it is 
considered essential for the catalytic function of the desatu-
rase enzyme (Shanklin et al. 1994).

The  s equenc ing  o f  t he  GmFAD3B  gene 
(Glyma.02G227200) covered a total of 2670  bp in 
CS303TNKCA, in which 62 bp were upstream and 203 bp 
downstream from the ORF. The sequencing of GmFAD3C 
genes (Glyma.18G062000) covered a total of 2803 bp, which 
includes 44 bp upstream and 225 bp downstream of the ORF. 
The sequence comparisons between the corresponding loci 
of CS303TNKCA and Wm82 revealed no polymorphism 
in the sequenced regions of the GmFAD3B and GmFAD3C 
genes. The exons were completely sequenced for all three 
genes, while intronic regions were partially sequenced in 
GmFAD3A and GmFAD3B (Supplementary Fig. S1). As 
GmFAD3 is highly expressed in seed (Bilyeu et al. 2005), 
we performed an RT-PCR to verify if there were any non-
identified intron mutations that could result in different tran-
scripts due to splice variants (Supplementary Fig. S2). The 
results indicate that CS303TNKCA seeds do not hold differ-
ent splice forms of GmFAD3A, GmFAD3B or GmFAD3C.

Enzymatic activity

The complete GmFAD3A CDS sequences of CS303TNKCA 
and PL04 individuals (GmFAD3A wild-type allele) were 
cloned, transformed and expressed in S. cerevisiae strain 
W303. No significant variance was found in palmitic, pal-
mitoleic, stearic and oleic acids. Yeasts transformed with 
delA GmFAD3A allele produced 2.42% of linoleic acid and 
no detectable levels of linolenic acid, values similar to yeasts 
transformed by empty vector (2.30% of linoleic acid and 
no detectable linolenic acid), while yeasts transformed with 

Table 1   Variants in 
DNA sequences between 
CS303TNKCA and Williams 82 
in GmFAD3A gene

Bold characters in Exon 5 indicate the 1-bp deletion that leads to a frameshift

Soybean line Exon 2 Intron 3 Exon 5 Intron 6 Intron 7 3′ UTR​

Position 34 94 79 66 383 184 252 140
Williams 82 A – A – G T – A
CS303 TNKCA G T – C T C A G



	 Theoretical and Applied Genetics

1 3

Fig. 1   A 1-bp deletion in the 
5th exon of GmFAD3A on 
CS303TNKCA soybean cultivar 
leads to a stop codon and the 
loss of a histidine box3

Table 2   Average fatty acid content of empty vector and GmFAD3A—transformed yeasts

Tukey test was performed for linoleic and linolenic acid contents for traits with significant variance (P < 0.05). For the test, ND was considered 
as “zero”
Values obtained from three to five quantifications, each one from three colonies
The means are followed by standard deviation
ND non-detectable

Colonies Allele donor Fatty acid content (%)

Palmitic Palmitoleic Stearic Oleic Linoleic Linolenic

Yeast transformed by 
empty vector

– 14.66 ± 3.55 36.27 ± 8.86 7.73 ± 2.62 39.04 ± 7.37 2.3 ± 2.3b NDb

GmFAD3A wild type PL04 16.92 ± 4.45 22.30 ± 6.45 13.71 ± 2.72 34.04 ± 5.2 8.48 ± 1.28a 4.55 ± .49a

GmFAD3A delA CS303TNKCA 15.53 ± 1.91 36.35 ± 8.09 10.57 ± 4.41 35.14 ± 4.07 2.42 ± 2.84b NDb
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wild-type GmFAD3A allele produced 8.48% of linoleic acid 
and 4.55% linolenic acid, on average (Table 2).

Expression analysis

To evaluate the expression of GmFAD3A, GmFAD3B and 
GmFAD3C desaturases genes, we first selected endogenous 

controls validated in soybean, tested the stability in our 
samples and by statistical test selected CONS7 and UKN2 
(data not shown) to normalize the desaturase expression. 
We found no variation in gene expression between the five 
lines evaluated (Fig. 2). This result indicates that delA muta-
tion has no interference on transcription level of GmFAD3A, 
GmFAD3B and GmFAD3C.

Genotyping analysis

We designed a diagnostic marker flanking the delA mutation 
in order to differentiate contrasting individuals for linolenic 
acid content. A total of 187 F2 plants were genotyped using 
the TaqMan marker (Fig. 3). We observed 44 homozygous 
mutants, 38 wild-type homozygous and 105 heterozygous 
plants, obtaining a Chi square equal to 3.21 (P equal 0.2005), 
indicating that the marker behaves as expected for Mende-
lian segregation.

Phenotyping analysis

The levels of palmitic, stearic, oleic, linoleic and lino-
lenic acids were determined for 187 F2 seeds derived from 
CS303TNKCA × FA22 planted in the greenhouse (GH), 
and for 187 F2 derived families grown in Visconde do Rio 
Branco (VRB) (F2:3), Viçosa (VIC) (F2:4) and São Gotardo 
(SG1 and SG2) (F2:4) (Table 3). In all evaluated experi-
ments, the linolenic acid content ranged between 2.67 and 
9.45%. No significant variance was found in palmitic and 
oleic acid content. For linoleic acid, significant variance was 
found only in GH. For stearic acid, we found significant vari-
ance in VRB, VIC, SG1 and SG2. For linolenic acid content, 
variance was significant in all evaluations.

Means and frequency of linolenic acid content for each 
genotype among the 187 lines are shown in Fig. 4. The 

Fig. 2   GmFAD3A, GmFAD3B and GmFAD3C gene expression 
patterns from CS303TNKCA, FA22, SUPREMA, BARC8 and 
BR8014887 soybean lines using CONS7 and UKN2 genes as endog-
enous controls. A one-way ANOVA with Tukey’s test was per-
formed to compare expression between lines in the same gene. P-val-
ues  <  0.05 were considered significant

Fig. 3   Taqman marker genotyp-
ing graph of 187 individuals 
from a CS303TNKCA × FA22 
F2 population developed based 
on a 1-bp deletion associated 
with low linolenic content. The 
x-axis is the fluorescence data 
from the FAM-allele (Wild-
type), whereas the y-axis is the 
fluorescence data from the VIC-
allele (delA)
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Table 3   Average fatty acid profile in g kg−1 of a segregating popula-
tion derived from crossing between CS303TNKCA and FA22 evalu-
ated in different locations: GH (F2 in the greenhouse, Vicosa, MG, 

Brazil); VRB (F2:3 on Visconde do Rio Branco, Vicosa, MG, Bra-
zil); VIC (F2:4 on Vicosa, MG, Brazil); SG1 (F2:4 on Vicosa, MG, 
Brazil); SG2 (F2:4 on Vicosa, MG, Brazil)

The standard deviation is shown after the mean value for each trait
The letter following values are based on Tukey test (only for traits with significant variance for P < 0.01)

Palmitic Stearic Oleic Linoleic Linolenic
F test ns ns ns ** **

GH
 Mutant 104.62 35.47 214.57 602.66a 42.68a

 Heterozygous 102.92 34.53 214.58 587.37ab 60.59b

 Wild type 101.41 33.12 213.70 573.31b 78.45c

 Mean 103.02 ± 10.05 34.47 ± 4.54 214.4 ± 45.47 588.11 ± 42.69 60.01 ± 14.42
 Minimum 85.29 25.30 157.17 390.39 26.73
 Maximum 190.63 63.62 426.14 651.79 94.52

VRB

F test ns ** ns ns **

 Mutant 102.88 42.64a 284.61 525.87 44.00a

 Heterozygous 102.78 41.18b 281.63 516.93 57.48b

 Wild type 101.98 38.83c 274.80 515.38 69.01c

 Mean 102.64 ± 4.52 41.05 ± 3.14 280.94 ± 35.26 518.72 ± 31.71 56.65 ± 9.68
 Minimum 90.59 33.10 214.71 405.19 38.60
 Maximum 115.92 51.39 411.56 590.74 80.22

VIC

F test ns ** ns ns **

 Mutant 100.76 32.43a 419.89 413.44 33.47a

 Heterozygous 100.33 31.76a 424.12 403.07 40.72b

 Wild type 100.20 30.41b 404.62 416.03 48.74c

 Mean 100.41 ± 5.42 31.64 ± 3 419.16 ± 62.17 408.14 ± 53.66 40.65 ± 6.79
 Minimum 87.90 24.32 256.86 272.46 27.06
 Maximum 116.19 40.10 577.42 540.32 63.46

SG1

F test ns ** ns ns **

 Mutant 104.07 35.40a 318.49 498.47 43.57a

 Heterozygous 103.24 34.12b 316.77 491.85 54.02b

 Wild type 102.28 32.46c 312.61 488.53 64.12c

 Mean 103.24 ± 5.37 34.09 ± 2.75 316.33 ± 61.43 492.73 ± 53.29 53.62 ± 9.26
 Minimum 89.52 26.21 188.86 352.90 37.19
 Maximum 118.23 42.77 475.07 609.85 82.30

SG2

F test ns ** ns ns **

 Mutant 104.43 35.18a 316.39 500.70 43.31a

 Heterozygous 103.20 34.09a 318.85 489.92 53.95b

 Wild-type 102.39 32.40b 309.72 490.59 64.90c

 Mean 103.33 ± 5.91 34 ± 2.97 316.41 ± 66.81 492.59 ± 58.36 53.67 ± 10.01
Minimum 86.71 26.75 192.50 308.31 36.58
Maximum 121.12 43.81 523.70 609.73 84.05
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linolenic acid content values for each genotype presented 
normal distribution (data not shown). Linear regression 
analysis showed that delA effect on linolenic acid content is 
additive, and no significant dominance effect was detected 
(Supplementary Table S3). The delA mutation explained 
50.83–73.70% of the linolenic acid variation (Fig. 4).

Discussion

Soybean varieties with desirable characteristics have a 
higher value because they bring greater benefit for consum-
ers and the soybean industry. Reducing levels of polyun-
saturated fatty acid in soybean oil is one of the main goals in 
breeding programs to increase the oil oxidative stability, pre-
venting changes in the odor and taste, and reducing problems 
created by trans fatty acids in hydrogenation process (Bilyeu 
et al. 2006; Li et al. 2007; Pham et al. 2012; Shanklin et al. 
1994). In the soy industry, this market was discovered by an 
initiative of American producers who recognized the impor-
tance of investing in soybean varieties that have reduced 
polyunsaturated fatty acid content. The goal to use these 
varieties in 25–30% of the American territory by 2023 has 
been established (http://quali​soy.com/); however, to achieve 
this goal, studies need to be conducted to obtain new varie-
ties that meet this criterion. The multinational Monsanto 
recently developed Vistive Gold (MON 87705), a genetically 
modified variety with high oleic and low linolenic content 
by silencing FatB and FAD2 genes using RNAi (http://www.

monsa​nto.com/produ​cts/pages​/visti​ve-gold-soybe​ans.aspx). 
DuPont Pioneer has Plenish, another variety developed from 
genetic modification that has high oleic and low linolenic 
acid content (below 3%) (Waltz 2010). On the other hand, 
Pham et al. (2012) produced soybean with 85% oleic acid 
and 2% linolenic acid content using mutations in genes 
GmFAD2-1A, GmFAD2-1B, GmFAD3A and GmFAD3C.

Our research group has a breeding program that aims 
to develop soybean varieties with reduced linolenic and 
high oleic acid content, which are desirable factors for 
the food and biodiesel industry in Brazil. We developed 
CS303TNKCA, a cultivar with low linolenic acid con-
tent (about 3.5–4%) derived from Monarca (COOPADAP, 
Brazil) and BARC-12 (Leffel 1994b). CS303TNKCA also 
shows the absence of three lipoxygenases genes (lox1, lox2 
and lox3) and the Kunitz protease inhibitor, a middle oil con-
tent (about 20–23%) and yields around 3200 kg per hectare.

The present study successfully identified a 1-bp (delA) 
deletion in omega-3 fatty acid desaturase gene (GmFAD3A) 
in the CS303TNKCA genotype, which causes a premature 
stop codon (Fig. 1). The delA mutation results in a truncated 
protein missing 169 amino acid residues, a fragment that 
comprises the third histidine box present in the enzyme. A 
similar result was detected by Reinprecht et al. (2009) when 
characterizing a G>A substitution at position 798 in the cod-
ing region on RG10 line. This mutation leads to a stop codon 
and a truncated protein missing 111 amino acid residues, 
including the third histidine box, which is responsible for 

Fig. 4   Distribution graphs of 
linolenic acid content for 187 
soybean lines in a segregat-
ing population separated by 
GmFAD3A genotypes in differ-
ent locations. The determination 
coefficient of “linolenic acid 
content × GmFAD3A genotype” 
on each local and the average of 
linolenic acid content of each 
genotype are shown. The geno-
type letters mean: mutant (M), 
heterozygous (H), wild type 
(W). The locations indicate: 
GH (F2 on greenhouse, Vicosa, 
MG, Brazil); VRB (F2:3 on 
Visconde do Rio Branco, MG, 
Brazil); VIC (F2:4 on Vicosa, 
MG, Brazil); SG1 (F2:4 on São 
Gotardo, MG, Brazil) and SG2 
(F2:4 on São Gotardo, MG, 
Brazil)

http://qualisoy.com/
http://www.monsanto.com/products/pages/vistive-gold-soybeans.aspx
http://www.monsanto.com/products/pages/vistive-gold-soybeans.aspx
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reducing linolenic acid content to about 3.3%. The omega-3 
fatty acid desaturase is responsible for the synthesis of 
linolenic acid from linoleic acid and belongs to a family of 
enzymes characterized by the presence of a di-iron cofac-
tor that interacts with three regions of conserved histidine 
motifs (H-Box) in the protein (Shanklin et al. 1994). These 
membrane-bound desaturase histidine boxes are essential 
for coordinating the di-iron cofactor required for catalysis 
(Byrum et al. 1997; Shanklin et al. 1994), and the change of 
even a single residue within these histidine boxes can reduce 
enzymatic activity (Bilyeu et al. 2006; Byrum et al. 1997; 
Gietz and Schiestl 2007; Reinprecht and Pauls 2016).

Heterologous expression is usually performed to char-
acterize new functional isoforms in many species, such as 
soybean (Li et al. 2007), Physaria fendleri (Lozinsky et al. 
2014) and Elaeis guineenses (Sun et al. 2016). This method 
was used to evaluate the effect of an aspartate for aspara-
gine exchange at position 150 of one FAD2 desaturase in 
Arachis hypogaea (Bruner et al. 2001). Using a similar 
approach, we evaluated the enzymatic activity of mutant and 
wild-type GmFAD3A alleles. The results showed that delA 
allele codes for a nonfunctional enzyme expressing poly-
unsaturated fatty acid levels similar to yeasts transformed 
by empty vector (Table 2). Additionally, Real-Time PCR 
analysis showed practically no variation at gene expression 
levels at GmFAD3A, GmFAD3B and GmFAD3C (Fig. 2). 
These results support the hypothesis that the CS303TNKCA 
GmFAD3A allele is not functional and no compensatory 
mechanism at the transcription level occurs to overcome 
the inactive enzyme.

We noted a decrease in palmitoleic acid content in yeasts 
transformed with wild-type GmFAD3A despite no significant 
variance being found using F test (Table 2), which was prob-
ably due to replicate variation. In the fatty acid pathways in 
yeasts, palmitic acid (16:0) can be dehydrogenated to pal-
mitoleic acid (16:1), or converted into stearic acid (18:0), 
which is dehydrogenated into oleic acid (18:1). Inserting a 
new enzyme at the end of the 18-carbon branch, can acti-
vate this pathway, shifting the balance for the production of 
18-carbon fatty acids. As the content of palmitic acid seems 
to remain equal, the activation of 18-carbon branch will 
reduce the activity in the 16-carbon branch, decreasing the 
palmitoleic acid content (Table 2). A similar consideration 
can explain the fatty acid content in evaluated populations 
(Table 3). As expected, we observed a variance in linolenic 
acid content between genotypes in all trials. However, in the 
mutant genotype, we observed an increase in stearic acid in 
all field trials due the inactivation of GmFAD3A, while in the 
greenhouse trial, we observed the increase of linoleic acid, 
instead of stearic acid. The mutation effect in linolenic acid 
content was the same for all evaluations, but the environ-
ment showed differences in the accumulated compounds in 
the pathway when we decreased linolenic acid production.

We developed a diagnostic marker that detects the delA 
mutation observed in the GmFAD3A gene in CS303TNKCA 
using TaqMan (Fig. 3), a technique that has been used in 
other studies to associate SNPs with fatty acid levels 
(Bachleda et al. 2016; Pham et al. 2014; Shi et al. 2015). 
The genotyping of F2 plants derived from the cross between 
CS303TNKCA and FA22 was used to associate delA with 
linolenic acid content across three generations. The muta-
tion reduced the linolenic acid content by 3.3–4.4% in 
segregating populations evaluated at different locations 
(Fig. 4). Precedents in the literature have reported similar 
results. A G>A substitution in the first nucleotide of intron 
6 in CX1512-44 line leads to an alteration in a splice form 
(Bilyeu et al. 2005); the G>A substitution at position 798 
in the coding sequence of RG10 line leads to a premature 
stop codon (Reinprecht et al. 2009); a 6.4-kbp deletion of 
the GmFAD3A gene was observed in the A5 line (Pham 
et al. 2014); a G>A substitution in the second splice site of 
PE1690 line leads to an early stop codon (Li et al. 2007). In 
the present investigation, the delA mutation was responsible 
for reducing 31.33–45.60% of the linolenic acid content in 
the soybean seed, explaining 50.83–73.70% the phenotypic 
variation.

The delA mutation marker for low linolenic acid proved 
efficient for marker-assisted selection in breeding programs. 
Currently, we are developing a backcrossing program to 
develop improved soybean varieties with the combina-
tion of delA mutation from the variety CS303TNKCA and 
mutations identified in GmFAD2-1A and GmFAD2-1B 
genes of a plant with 80% oleic acid developed by crossing 
PI283327 and PI603452 (Pham et al. 2011). Mutant lines 
containing non-functional GmFAD2-1A, GmFAD2-1B and 
GmFAD3A were sufficient to produce plants with 80% oleic 
acid, 1.5–4.0% linoleic acid and 1.8–2.6% linolenic acid 
(Pham et al. 2012). In this particular case, the use of only the 
GmFAD3A gene was enough because this gene has a greater 
effect on the characteristic (Pinto et al. 2013), and we have 
to consider that decreasing metabolic flux in linoleic acid 
production by GmFAD2-1A and GmFAD2-1B mutation will 
affect the amount of available substrate for omega-3 fatty 
acid desaturase (GmFAD3 genes). We expect in the future to 
produce soybean cultivars with high oleic acid and low lev-
els of linoleic and linolenic acids, generating oil with good 
oxidative stability and greater benefits for human health and 
the Brazilian Biodiesel Industry.
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