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Summary

We studied the effect of including GWAS results on the accuracy of single-

and multipopulation genomic predictions. Phenotypes (backfat thickness)

and genotypes of animals from two sire lines (SL1, n = 1146 and SL3,

n = 1264) were used in the analyses. First, GWAS were conducted for

each line and for a combined data set (both lines together) to estimate the

genetic variance explained by each SNP. These estimates were used to

build matrices of weights (D), which was incorporated into a GBLUP

method. Single population evaluated with traditional GBLUP had accura-

cies of 0.30 for SL1 and 0.31 for SL3. When weights were employed in

GBLUP, the accuracies for both lines increased (0.32 for SL1 and 0.34 for

SL3). When a multipopulation reference set was used in GBLUP, the accu-

racies were higher (0.36 for SL1 and 0.32 for SL3) than in single-popula-

tion prediction. In addition, putting together the multipopulation

reference set and the weights from the combined GWAS provided even

higher accuracies (0.37 for SL1, and 0.34 for SL3). The use of multipopu-

lation predictions and weights estimated from a combined GWAS

increased the accuracy of genomic predictions.

Introduction

Genomewide association studies (GWAS) have been

conducted to disclose the genetic architecture of com-

plex traits. These studies have generated a consider-

able amount of information for many traits in

livestock species, but this information has not been

extensively exploited in genomic prediction.

The traditional GBLUP assumes that quantitative

traits are controlled by a large number of genes that

contribute equally to the trait (infinitesimal model);

thus, the same variance is, a priori, attributed to

all markers (Goddard 2009). Nevertheless, it has

been shown that a finite number of genes control

quantitative traits (Hayes & Goddard 2001); therefore,

models that represent the true underlying genetic

architecture of the trait may have higher accuracy

than the GBLUP.

For single-population genomic prediction, Zhang

et al. (2010) proposed a trait-specific, marker-derived

relationship matrix (TA-matrix), which had a greater

predictive ability than the traditional genomic best

linear unbiased prediction (GBLUP) method. Those

authors attributed the greater predictive ability to the

fact that the TA-matrix emphasized markers that con-

tributed to the genetic variance of the trait.

Multipopulation genomic prediction emerged as an

alternative for implementing genomic selection in
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small populations. Combining populations from dif-

ferent breeds or lines increases the number of animals

available, which might contribute to a more accurate

prediction of genomic breeding values (GEBVs) than

a single-population prediction.

Multipopulation genomic predictions have been

studied in cattle (Olson et al. 2012), pigs (Hidalgo et al.

2015), chickens (Simeone et al. 2012) and sheep

(Legarra et al. 2014). However, the results showed that

multiple populations sometimes increased and other

times decreased the accuracy of genomic predictions.

The variability in these previous results reflected the

fact that predictions in multipopulation analyses were

more complex than single-population predictions.

First, increasing the reference population by adding

unrelated animals will decrease the average relation-

ship between animals in the reference and validation

sets. Second, differences in the population history,

such as demography, inbreeding, genetic background,

and selection, could lead to divergences in linkage

disequilibrium (LD), allele frequencies and genetic

architecture. Genetic differences between populations

depend on the number of generations since their

last common ancestor, the size of the populations,

and the degree of exchange of genetic material

between populations.

According to Harris & Johnson (2010), differences

in allele frequency between populations should be

considered in a multipopulation prediction. In a

study on beef cattle, Chen et al. (2013) proposed a

two-population genomic relationship matrix, which

considered differences in allele frequencies between

populations. However, they did not find increased

accuracy in the multipopulation prediction com-

pared to the single-population prediction. Based on

the same approach with experimental data from

several different pig populations, Veroneze et al.

(2015) found similar or lower accuracies for the

multipopulation prediction compared to single-popu-

lation prediction. Those studies suggested that

considering differences in allele frequency was not

sufficient to improve the accuracy of multipopula-

tion predictions.

Another potential improvement that addressed dif-

ferences between populations was the incorporation

of GWAS results from these populations. This

approach could benefit multipopulation genomic pre-

dictions, because including GWAS results could

emphasize markers that explain genetic variance in

the target population. In addition, differences in allele

frequency between populations could be accounted

for simultaneously in the two-population genomic

relationship matrix. However, the value of using

GWAS results in multipopulation predictions has not

been studied.

The objective of this study was to develop weighted

genomic relationships incorporating GWAS results

and to investigate their effect on the accuracy of sin-

gle- and multipopulation genomic predictions.

Material and methods

Data recording and sample collection were conducted

strictly in line with the Dutch law on the protection of

animals.

Data

Data used in this study consisted of phenotypes (back-

fat thickness measured on live animals using ultra-

sound) and genotypes of animals from two purebred

pig populations (SL1, n = 1146; SL3, n = 1264). SL1

is a synthetic sire line, and it is a combination of

Duroc and Belgian Landrace created in about 1980,

and SL3 is a Pietrain sire line. Animals were geno-

typed using the Illumina Porcine SNP60 Beadchip.

The GenABEL package, implemented in R software

(Aulchenko et al. 2007), was used to perform individ-

ual sample and single nucleotide polymorphisms

(SNP) quality control. Animals with call rates <95%
and SNPs with call rates <95%, with minor allele fre-

quencies <0.01, or with deviations from Hardy–Wein-

berg equilibrium (p < 10�7) were excluded. All SNPs

located on sex chromosomes were also excluded.

After quality control, missing genotypes of SNPs were

imputed with BEAGLE 3.3.2 software (Browning &

Browning 2013), using the default parameters.

Estimates of the fixed effects used for precorrecting

the phenotypes were obtained by fitting a single trait,

pedigree-based linear model ASReml v3.0 (Gilmour

et al. 2009) across lines as described by Veroneze et al.

(2015). In this analysis, a larger data set (706 023 ani-

mals) that included all contemporaneous animals of

the genotyped animals were used to more accurately

account for the contemporary group effects. The

model included fixed effects of sex, herd-year-month,

and the covariate body weight at the time of measur-

ing backfat. The animal additive genetic, litter and

residual were included as random effects.

Model and genomic relationship matrices

The genomic best linear unbiased prediction (GBLUP)

method was used for genomic prediction. The general

model was: y = 1l + Zg + Wc + e, where y is the

phenotype corrected for fixed effects; l is the overall
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mean; g is the vector of breeding values,

g�Nð0; r2gGÞ; c is the vector of random litter effect,

c�Nð0; r2c IÞ; e is the vector of residuals, e�Nð0; r2e IÞ.
Z and W are the incidence matrices for g and c,

respectively. In the multipopulation scenarios, a fixed

effect of population was added to the model.

In the genomic relationship matrix, differences in

allele frequencies between populations were accounted

for with the method described by Chen et al. (2013).

Summarizing, X was a matrix with genotype values

coded as �1, 0 and 1 for the three SNP genotypes

(A1A1, A1A2 and A2A2, respectively); the matrix had

dimensions, n 9 m, where n was the number of

animals and m was the number of SNPs. Matrix X

included all animals, from both the reference and val-

idation sets. Matrix X was organized into two blocks:

X ¼ X1 X2½ � 0 where X1 represents the genotypes of

line 1, and X2 represents the genotypes of line 2. P

was a matrix of allele frequencies P ¼ P1 P2½ � 0 that
corresponded to X; each row in P1 (or P2) was a repli-

cate row vector, p1 (or p2), with the frequency of

allele A2 for SNP k in line 1 (or line 2). The matrix M

was computed to set the mean values of the allele

effects to 0: M ¼ M1 M2½ � 0 ¼ X� 2Pþ 1, where 1

represents a matrix of ones. The matrix, G, was com-

puted as follows:

Here, D is a diagonal matrix of weights for the

SNPs, which will be described in detail in the next sec-

tion. In the traditional GBLUP, D is an identity

matrix.

Diagonal matrices

First, a single-population and multipopulation GBLUP

analysis was carried out with a G matrix, computed as

described by VanRaden (2008), which included all

animals: G = MM´/2 ∑ piqi.

This G matrix was entered as a user defined matrix

(grm option) in the software ASREML (Gilmour et al.

2009) to predict the GEBVs. The predicted GEBVs ðĝÞ
were used to compute the diagonal elements of D,

according to the method proposed by Wang et al.

(2012). In that method, SNP effects ðûÞ were esti-

mated with the equation: û ¼ kM0G�1 ĝ, where

k ¼ 1
�ðPm

i¼1 2pið1� piÞÞ; in the latter equation, m is

the number of SNPs, and pi is the allele frequency of

the second allele of the ith SNP. Then, the variance of

each SNP effect was estimated as described by Fal-

coner & Mackay (1996): r̂2ui ¼ û2i 2pið1� piÞ. These

variances were used to build the diagonal elements of

the D0 matrix. The D0 matrix was normalized with

D ¼ ðtrðIÞ=trðD0ÞÞ�D0, where I is an identity matrix.

Four different D matrices were used in this study:

one was an identity matrix (traditional GBLUP), and

three were D matrices obtained with the three data

sets used to estimate the weights (Fig. 1). These diago-

nal D matrices contained weights for the SNPs. These

weights were included in the genomic relationship

matrix, which resulted in four different G matrices

(Gidentity, GD_comb, GD1 and GD3). Each G matrix

was used to predict GEBVs for animals from SL1 and

SL3, with both single- and multipopulation reference

sets.

The predictions were conducted according to four

strategies: first, the traditional GBLUP, where all

markers had the same weight (scenarios 1, 5 and 9 in

Table 1); second, markers were weighted, and the

weights were from the same population that will be

predicted (scenarios 2, 6 and 10); third, the markers

were weighted, but the weights were from an unre-

lated population (scenarios 3, 7 and 11); and fourth,

the markers were weighted, and the weights were

from a combined GWAS, which used both pig lines

together (scenarios 4, 8 and 12). In scenarios 1–4, the

Figure 1 Schematic representation of the scenarios evaluated. Com-

bined refers to a data set composed by the combination of SL1 and SL3.
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predictions were performed with a single-population

reference set. In scenarios 5–8, half of the animals

were substituted with individuals from another popu-

lation to calculate multipopulation predictions. In sce-

narios 9–12, two unrelated populations were

combined, which doubled the number of animals, to

calculate multipopulation predictions.

The validation sets consisted of the 300 youngest

animals of each population. The reference sets con-

sisted of 800 animals for single-population predictions

and 800 (400 animals of each line) or 1600 (800

animals of each line) animals for multipopulation

predictions.

The accuracy of the GEBVs was computed as the

Pearson correlation between the predicted GEBV and

the corrected phenotype. To measure the bias of the

GEBV, the regression coefficient (slope) was calcu-

lated for each scenario regressing the corrected

phenotypes on the GEBVs.

Results

SNP effects

Our aim was to improve genomic predictions, based

on single- and multipopulation reference sets. The

first step of our methodology was to estimate the

effects of each SNP on backfat thickness that were

used to compute the weights for each SNP in building

the genomic relationship matrices. Manhattan plots

(Fig. 2) show these SNP effects for the SL1 and SL3

lines, separately, and for the combined SL1 + SL3

data set. The estimated SNP effects in the SL3 data set

were, on average, lower and less variable than the

SNP effects in the SL1 data set. When the two pig lines

were combined (SL1 + SL3), the average effects

became larger than those observed for a single-popu-

lation analysis. In addition to the Manhattan plots,

the dispersion plots (Fig. 3) clearly showed differences

in the genetic architecture between these two pig

lines. The correlation between the SNP effects in the

two lines was only 0.02. The dispersion plots of SNP

effects estimated for the combined data set and the

SNP effects for the single populations showed higher

correlations between the effects (0.36 for SL1 and

0.38 for SL3).

Genomic relationships

The effects of the different weights for the SNPs in the

G matrix were visualized in multidimensional scaling

plots of the populations (Fig. 4). In both lines, the use

Table 1 Accuracy, genomic heritability (h²) and slope for backfat thickness in the scenarios evaluated

Validation population Scenarios Reference population

Genomic relationship

matrix

Number of animals

in the reference population Accuracy h² Slope

SL1 1 SL1 GIdentity 800 0.30 0.49 0.89

2 SL1 GD1 800 0.32 0.76 0.47

3 SL1 GD3 800 0.29 0.45 0.87

4 SL1 GD_comb 800 0.32 0.40 0.88

5 SL1 + SL3 GIdentity 800 0.20 0.43 0.78

6 SL1 + SL3 GD1 800 0.29 0.57 0.62

7 SL1 + SL3 GD3 800 0.25 0.52 0.73

8 SL1 + SL3 GD_comb 800 0.32 0.36 1.07

9 SL1 + SL3 GIdentity 1600 0.36 0.38 1.16

10 SL1 + SL3 GD1 1600 0.33 0.53 0.58

11 SL1 + SL3 GD3 1600 0.36 0.42 0.98

12 SL1 + SL3 GD_comb 1600 0.37 0.30 1.09

SL3 1 SL3 GIdentity 800 0.31 0.40 1.22

2 SL3 GD3 800 0.24 0.65 0.47

3 SL3 GD1 800 0.33 0.42 1.27

4 SL3 GD_comb 800 0.34 0.37 1.12

5 SL1 + SL3 GIdentity 800 0.08ns 0.43 0.30

6 SL1 + SL3 GD3 800 0.15 0.52 0.32

7 SL1 + SL3 GD1 800 0.04ns 0.57 0.11

8 SL1 + SL3 GD_comb 800 0.24 0.36 0.69

9 SL1 + SL3 GIdentity 1600 0.32 0.38 1.12

10 SL1 + SL3 GD3 1600 0.29 0.42 0.64

11 SL1 + SL3 GD1 1600 0.23 0.53 0.63

12 SL1 + SL3 GD_comb 1600 0.34 0.30 1.10
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Figure 2 Manhattan plots of the SNPs effects for backfat thickness for SL1, SL3 and the combined data set (SL1 + SL3).
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of weights that were estimated from the data set of

the other line (scenario 3) only slightly modified the

projection of reference and validation populations.

With weights that were estimated from the data set

of the same line (scenario 2) or weights estimated

from the combined data set (scenario 4), the projec-

tion of the animals became more dispersed.

GEBVs accuracy

In the first 4 scenarios, the reference and validation

populations were from the same pig line. For these

within-population scenarios, in a traditional GBLUP

(GIdentity), where all markers had the same weight,

the accuracies (Table 1) were 0.30 for SL1 and 0.31

for SL3. When weighted markers were used in the

genomic relationship matrix, the accuracy for SL1

increased (0.32) when the weights were obtained

from the data set of the same line (GD1) or from the

combined data set (GD_comb), but the accuracy

decreased when the weights were obtained from

the data set of the other line (GD3). For SL3, a differ-

ent pattern was observed. The accuracy increased

when the weights were obtained from the data set of

the other line (GD1) or from the combined data set

(GD_comb), but the accuracy decreased when the

Figure 3 Dispersion plot for backfat thickness for SL1, SL3 and a combined data set (SL1 + SL3).

Figure 4 Multidimensional scaling plot showing a two dimensional projection of the populations using different weighted relationships. Scenario 1

corresponds to traditional GBLUP; in scenario 2, the weights were obtained using the same population that was predicted; in scenario 3, the weights

were computed using a unrelated population; and in scenario 4, the weights were computed combining the two populations.
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weights were obtained from the data set of the same

line (GD3).

In scenarios 5–8, half the animals in the reference

set were replaced with animals from the other pig

line. Thus, this multi-population prediction was con-

ducted with 400 animals from each line. In scenarios

5–8, the reference population was always the same,

and only the genomic relationship matrix was chan-

ged (Table 1). For SL1, adding weights to the markers

increased the accuracy, and the highest accuracy was

obtained with GD_comb (0.32). This accuracy was

equal to that obtained in scenario 4, where 800 ani-

mals from the same population were included, and

the GD_comb weighted matrix was used. For SL3, sce-

narios 6 (GD3) and 8 (GD_comb) showed increased

accuracy compared to scenario 5 (GIdentity), but the

accuracy was lower than the single-population predic-

tions obtained in scenarios 1–4.
Scenarios 9–12 were also multi-population predic-

tions, but the reference sets included an extra 800 ani-

mals from a different line, which doubled the

reference set to 1600 animals (Table 1). For SL1, this

increase in the reference population resulted in

greater accuracies with all the G matrices compared to

all the single-population predictions (scenarios 1–4).
The use of GD_comb (scenario 12) resulted in the

highest accuracy (0.37); the second highest accuracy

was achieved with Gidentity (scenario 9; 0.36). For

SL3, the increase in the reference population only

increased the accuracy compared to the single-popu-

lation predictions with Gidentity (0.32 versus 0.31)

and GD3 (0.29 versus 0.24), but the accuracy was

reduced with GD1 (0.23 versus 0.33) and it remained

the same with GD_comb (0.34 versus 0.34).

Weighted genomic relationship matrices affected

the estimates of genomic heritability (h²). The size of

this effect was found to depend on which population

was used to obtain the weights. For both lines, the

h² was largest in scenario 2, where a single population

was used, and the weights were obtained from the

data set of the reference population. The lowest h²
was observed when GD_comb was used (Table 1). The

slope coefficient of the regression of the corrected

phenotypes on GEBVs was in most of the cases away

from 1, indicating bias in the GEBVs, mainly when

using GD1 and GD3. The use of GD_comb resulted in

less biased predictions, in most scenarios, compared to

predictions calculated with the other Gmatrices.

Discussion

The Manhattan plots revealed differences in the

SNP effects on backfat between the two populations

evaluated. Differences observed in both the peak sizes

and in the distributions indicated that the two lines

had different genetic architectures. We explored

whether these different genetic architectures affected

genomic predictions. Extending on the methodology

proposed by Wang et al. (2012), we computed weights

for the SNPs, based on GWAS analyses. These weights

were subsequently used to build different G matrices

for the GBLUP analyses. GBLUP was then applied

with either single- or multipopulation reference sets.

We found that, when the G matrix was built with

weights based on GWAS information of the two popu-

lations combined (GD_comb), the prediction accuracy

was increased with both single and multiple reference

populations. Moreover, in addition to using GD_comb,

doubling the multipopulation data sets resulted in

even higher prediction accuracies than when a single

population was used.

SNP effects

The plots of the SNP effects on backfat thickness for

SL1 and SL3 pigs showed that, despite the fact that

the same trait was evaluated, the populations differed

in the distribution and size of the effects. These diver-

gences can be explained by differences between the

two lines in LD, population history (initial variants,

bottlenecks and allele frequencies) and gene interac-

tions. Previously, Veroneze et al. (2014) showed dif-

ferences in the LD patterns of SL1 and SL3.

In the present study, when SL1 and SL3 data were

combined into one data set, the SNP effects were, on

average, greater than the effects observed in the sin-

gle-population estimation. In a study on dairy cattle,

Raven et al. (2014) suggested that a multibreed GWAS

resulted in more precise mapping of the QTL, due to

the lower level of LD between markers, in comparison

with single-breed LD. In a study on German Holstein

cattle, Liu et al. (2011) showed that, when the num-

ber of reference bulls increased from 735 to 5025, the

SNP with the largest effect showed a 4.13-fold

increase in effect size. In addition to increasing the

precision of finding the QTL peaks, the use of a larger

number of animals in the multipopulation GWAS

might increase the statistical power of the analysis

(Stranger et al. 2011).

Accuracy

Two populations can exhibit distinct genetic architec-

tures (QTL number, distribution and effects), due to

divergences in breeding goals or in the initial allele

frequency. For example, allele substitution in the
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DGAT1 locus caused different effects in Jersey and

Holstein–Friesian populations in New Zealand (Spel-

man et al. 2002) and between Fleckvieh and Hol-

stein–Friesian populations in Germany (Thaller et al.

2004). Hence, differences in genetic architecture

between populations could be exploited by emphasiz-

ing the markers that explain more genetic variance in

the target population. This notion introduces the

possibility of using prior knowledge of genetic archi-

tecture for making single- and multipopulation

predictions.

In the present study, we evaluated three strategies

for computing weights of markers to be used in the

GBLUP: (i) the weights were obtained using the same

population that was predicted, (ii) the weights were

obtained in an unrelated population and (iii) the

weights were obtained in the two populations

combined.

When the weights were obtained using the same

population as the reference set (scenario 2), the pre-

diction accuracy increased for SL1, but decreased for

SL3. It has been shown that the accuracy of genomic

prediction can be improved by reducing distances

between the reference and validation animals and by

increasing distances between animals within the ref-

erence population (Pszczola et al. 2012). In the pre-

sent study, for both pig lines, including the marker

weights resulted in increasing the distances between

animals within the reference population (Fig. 4). This

effect was more pronounced for SL1 than for SL3 pigs.

However, before the inclusion of weights, compared

to SL1, the SL3 pigs showed greater distances between

individuals within the reference set and smaller dis-

tance between the validation and reference animals.

These initial differences in the distances between the

SL1 and SL3 groups may be one cause for the different

changes in prediction accuracies when marker

weights were included in the matrix. The use of

weights obtained in an unrelated population (scenario

3) increased the accuracy of predicted GEBVs for SL3.

This might be due to SNP effects for alleles with a

rather low frequency in one line that might be esti-

mated more precisely in the other line. This finding is

important, because it suggests that, if a large number

of genotyped animals is available in the other line,

conducting a GWAS in that line will have greater

power and result in better SNP effect estimates

which leads to better marker weights for the smaller

population.

Indeed, we found that using the GD_comb resulted

in higher prediction accuracy than the traditional

GBLUP (GIdentity) for both pig lines, in single- and

multipopulation scenarios. This improvement could

be attributed to a better estimation of the marker

effects, due to the large number of animals. Moreover,

when two lines are pooled, the LD is reduced, and this

increases the QTL mapping resolution. Thus, in the

combined data set, the SNPs closest to the QTL would

be identified, and consequently, they would be better

able to track the effects of interest, both within and

across populations.

Previous studies (Zhang et al. 2010, 2014; Tiezzi &

Maltecca 2015) have indicated that the accuracy

gained using weighted relationships matrices

depended on how the trait was controlled; they

showed that more efficiency was likely to be gained

for traits controlled by small number of QTLs. The

trait we evaluated was backfat thickness, which is

apparently controlled by a large number of QTLs.

Therefore, our results may not have been favoured by

the trait analysed.

Evaluating dairy cattle and rice data, Zhang et al.

(2014) also incorporated GWAS results in genomic

predictions by adding weights for the markers. This

strategy increased the prediction accuracy for two of

three traits in dairy cattle and for nine of 11 traits in

rice. In a study on Holstein cattle, Tiezzi & Maltecca

(2015) concluded that weighted relationship matrices

yielded higher accuracy and less bias in predictions for

traits regulated by a few QTLs.

In scenarios 9–12, we added extra animals from an

unrelated population to the reference set. With this

approach, even when all markers were equally

weighted (scenario 9), the accuracy was increased

compared to that of the single-population prediction;

the highest accuracies were obtained with GD_comb

(scenario 12) for both populations. Chen et al. (2014)

found that, with pooled data, the accuracy of genomic

prediction may be reduced when the analysis used

weakly correlated QTL effects or a relatively low-den-

sity SNP panel. In our study, the SNP effects of both

lines were very weakly correlated; therefore, for a dif-

ferent trait with highly correlated SNP effects across

lines, a large increase in prediction accuracy might be

found with this approach. Alternatively, the predic-

tion accuracy might be further improved for the same

trait using a higher density SNP panel. The SNP panel

used in the present study did not show a consistent

LD phase across the evaluated lines (Veroneze et al.

2014).

This was the first study to compute weights based

on GWAS results from combined cohorts, and then,

to use them in multipopulation predictions. The

methodology presented here should be evaluated

with additional traits and populations. Weights

have been used in single-step GBLUP to predict
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within-population GEBVs (Wang et al. 2012). Sin-

gle-step GBLUP has the advantage of including all

information on genotyped as well as non-genotyped

individuals. This is important because the use of

only the genotyped animals may introduce bias in

the GEBV prediction (Vitezica et al. 2011). An evalu-

ation of applying single-step GBLUP to multipopula-

tion prediction while also including the weighted

relationship matrix may lead to further improve-

ment of accuracies and should be evaluated. An

even further extension to multitrait prediction using

both the single step and GWAS weights methodol-

ogy would also be of interest. However, for combin-

ing multiple traits new strategies on how to

combine the weights from the different traits will

need to be developed.

Differences in SNP effects can be accommodated in

genomic selection by applying the widely described

Bayesian methods. GBLUP has the advantage of being

a more straightforward methodology (in terms of sta-

tistical complexity and computational demand) in

comparison with Bayesian methods. In addition, the

GBLUP methodology has the advantage to fit directly

in the existing routines for estimating breeding values

and their accuracies that are applied in current

breeding programmes. Our approach made it possible

to include genotyped and phenotyped individuals

from multiple populations, and it emphasized the

similarities between the populations. In addition, the

method for computing weights in the multipopula-

tion approach addressed two important differences

between groups that can affect the accuracy of geno-

mic predictions: (i) allele frequency and (ii) genetic

architecture.
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