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Bees are key pollinators whose population numbers are
declining, in part, owing to the effects of different stressors
such as insecticides and fungicides. We have analysed the
susceptibility of the Africanized honeybee, Apis mellifera, and
the stingless bee, Partamona helleri, to commercial formulations
of the insecticides deltamethrin and imidacloprid. The toxicity
of fungicides based on thiophanate-methyl and chlorothalonil
were investigated individually and in combination, and
with the insecticides. Results showed that stingless bees
were more susceptible to insecticides than honeybees. The
commercial fungicides thiophanate-methyl or chlorothalonil
caused low mortality, regardless of concentration; however,
their combination was as toxic as imidacloprid to both
species, and over 400-fold more toxic than deltamethrin for
A. mellifera. There were highly synergistic effects on mortality
caused by interactions in the mixture of imidacloprid and
the fungicides thiophanate-methyl, chlorothalonil and the
combined fungicide formulation in A. mellifera, and also to
a lesser extent in P. helleri. By contrast, mixtures of the
deltamethrin and the combined fungicide formulation induced
high synergy in P. helleri, but had little effect on the mortality
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Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.


http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.160866&domain=pdf&date_stamp=2017-01-18
mailto:hventura@eag.com
mailto:eugenio@ufv.br
https://dx.doi.org/10.6084/m9.figshare.c.3647732
https://dx.doi.org/10.6084/m9.figshare.c.3647732
http://orcid.org/0000-0003-1174-6564

of A. mellifera. Differences in physiology and modes of action of agrochemicals are discussed as key n
factors underlying the differences in susceptibility to agrochemicals.

1. Introduction

Bees are key pollinators that provide ecosystem services to wild and economically cultivated plants
in temperate and tropical regions around the planet [1,2]. Their population numbers, however, are
threatened owing to multiple stressors that include habitat fragmentation, pathogens, parasites, poor
nutrition and pesticides [3-6]. Recent studies have shown that pesticides alone, or in combination with
other stressors, contribute to colony losses [7-9], and it is the impact of simultaneous multiple stressors
that is thought to have the greatest impact on bees. Insecticides, such as pyrethroids and systemic
neonicotinoids, have been widely studied in bumblebees and European honeybees [7,9-11], yet the
impact of multiple agrochemicals (i.e. insecticides, herbicides, fungicides and even leaf fertilizers) on
other pollinators, or other species of bees that occupy Neotropical regions, such as Africanized honeybees
and stingless bees [12-18], has yet to be determined.

Agrochemicals sprayed on many managed crops are an important threat to survival of bees, and a
wide range of compounds and their metabolites have been identified inside colonies [19,20]. Although
there is no evidence that one chemical alone is solely responsible for colony losses, the combination of
pesticide residues may be dangerous for bees. Insecticides and fungicides that are used in agricultural
environments, mainly during the blooming season, can affect directly forager bees and contaminate
pollen and nectar brought to the colonies [19,21]. Although fungicides are considered safe for bees,
synergistic interactions between active ingredients or adjuvants integrated into their formulations
may increase risks to pollinators [11,22,23], especially when farmers routinely use tank mixtures of
insecticides and fungicides on crops to reduce spraying costs associated with pest management. In
synergistic interactions, the biological activity of a mixture is greater than the sum of expected individual
responses to each chemical [24]. Despite the scarcity of studies focusing on the synergy between
agrochemicals, and pesticides in particular, on pollinators in general, mixtures of insecticides and
ergosterol biosynthesis inhibitor (EBI) fungicides have been shown to lead to higher toxicity in bees
[11,25,26].

Here, we have evaluated the susceptibility of Africanized honeybees, Apis mellifera, and the stingless
bee species Partamona helleri. Both species are common pollinators of melon and watermelon in the
Neotropics and thus frequently exposed to commercial formulations of insecticides (e.g. deltamethrin
and imidacloprid) and non-EBI fungicides (e.g. thiophanate-methyl and chlorothalonil) [6,15,18]. We
demonstrate that the synergistic effects of agrochemicals pose a higher risk to P. helleri compared with
A. mellifera.
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2. Material and methods

2.1. Insects and pesticides

Colonies of the stingless bee P. helleri and the Africanized honeybee A. mellifera established in an
experimental apiary at the Federal University of Vicosa (UFV, Vigosa, MG, Brazil, 20°45'S, 42°52' W)
were used in all experiments. Four to six bee colonies of each species were used in these experiments.
Forager bees collected from each colony were transferred to the laboratory and fasted for 1 h under
controlled temperatures, as found in their respective colonies (P. helleri: 28 £1°C. A. mellifera: 34 +1°C)
and with relative humidity of 70 =10% in complete darkness prior to the bioassays. The fasting period
before pesticide exposure was necessary to standardize diet consumption for the tested bees. We used
commercial pesticide formulations at their respective label rates to allow realistic estimates aimed
at risk assessment. The pesticides used included the pyrethroid deltamethrin (Decis; 25 g of active
ingredients (a.i.) -1, Bayer CropScience, Sao Paulo, SP, Brazil) and the neonicotinoid imidacloprid
(Evidence; 700 g a.i. 1-!; Bayer CropScience). We also used commercial formulations of fungicides that
do not inhibit the synthesis of ergosterol (non-EBI fungicides), namely chlorothalonil (Dacobin; 750 g
a.i. kgfl, Tharabras, Sao Paulo, SP, Brazil) and thiophanate-methyl (Cercobin; 700 g a.i. kgfl, Tharabras).
These non-EBI fungicides were used alone or mixed in a commercial formulation containing 200 g
of thiophanate-methyl kg_1 and 500 g of chlorothalonil kg_1 (Cerconil, Tharabras). Furthermore, as
mixtures of deltamethrin or imidacloprid with these fungicides are frequently used in melon production



Table 1. Oral relative toxicity (in g a.i. ml™") of pesticides to A. mellifera and P. helleri.

LCsq (95%FL) SRP LCso
insecticides species slopes.e.  pgai ml™ (95% FL)
deltamethrin A.mellifera 652 03401  71x10°(61x10° 27 060 —
1083 x 10°)
g Ry 911(7393—9982) ........ 5 2680)(102(29)(102
1022 x 10°)¢
....... |m|dac|opr|dAmel//fera108050:|:042401(1842—2923)66018—
Phelleri 52 3305  SB3(4024-8071) 28 041 4201-84F
....... (ercomlAme/llfera60136:l:0314981(1208326045—
(thiophanate-methyl + —1894.5)
chlorothalonil) g e 902(8103—11823) ..... RYTIET (10_55) ................
"""" Cerconil + imidacloprid A melifra 840 33£03  1507-28) 15 06 —
thiophanate-methyl + A. mellifera 500 3.010.6 19.1(9.4-36.2) 27 043 —
imidacloprid g e 19104293(123—914) .............. R 06(01—35) .................

P helleri 480 29404  6.8(33-128) 15 046 14.6(4.1-55.1)
Cerconil + deltamethrin A.mellifera 840 1240.1 21x10(1.8x 106 74 019 —
t0 2.4 x 106)
P helleri 478 464+04  49(3.4-6.9) 58 021 43x10*(24 x 10*
t07.8 x 104)¢
thiophanate-methyl + A.mellifera 480 1.7+0.2 23x10°(1.8x10° 29 023 —
deltamethrin 1027 x 10°)
P helleri 480 69408  1591.9(1208.3 13 072 14 x102(8.6 x 10'
-2106.1) 1024 x 10%)¢
chlorothalonil + A.mellifera 596 1740.1 31x 10028 x10° 09 081 —
deltamethrin t03.4 x 10%)
P helleri 480 58407  16(12-22) 46 020 2.0 x 102 (13 x 10?

t03.1 x 109

3Probability values.
bSusceptibility ratio (LCsg to A. mellifera/LCsg to P, helleri).
Cindicate when the SRs are significantly different. (i.e. the 95% CL of SR did not include the value 1).

fields pollinated by both A. mellifera and P. helleri in Neotropical regions, we also mixed the insecticides
(i.e. deltamethrin or imidacloprid) with these fungicides, where the fungicides had a fixed concentration
of 10g1~1.

2.2. (oncentration—mortality bioassays

Concentration—mortality bioassays were performed by orally exposing forager bees of each species to
different concentrations of insecticides alone or mixed with fungicides. Five to seven concentrations
of each pesticide were used to estimate concentration—mortality curves. The pesticides were diluted in
honey-based syrup solution (50%, v/v) and offered to bees in 2 ml Eppendorf tubes inserted into low-
density plastic containers (250 ml). Each plastic container was used as an experimental unit containing 20
forager bees fed on 1 ml of pesticide-contaminated honey solution (except for untreated bees, i.e. control).
The bees were fasted for 1 h prior to allowing access to the pesticide-contaminated diet. After 5 h of oral
pesticide exposure, the bees were provided with an insecticide-free diet ad libitum, and mortality was
recorded 24 h after diet replacement. Bees were considered dead if unable to move when prodded with
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Figure 1. Impact of insecticides on bee mortality. Concentration—mortality curves of the forager bees of Apis mellifera and Partamona
helleri exposed to imidacloprid (a) and deltamethrin (b). LCsy values are given and dotted lines represent the 95% fiducial limits of each
curve. Symbols represent concentrations tested (on axis x) and observed mortality (on axis y). Vertical bars represent standard error (s.e.)
of the mean.

a fine hair brush. Each replicate consisted of a plastic container containing forager bees from the same
colony, and three to six different colonies were used in the bioassays to account for intercolony variation
in response.

2.3. Body mass and respirometry bioassays

The body mass and respiration rates of A. mellifera and P. helleri foragers were measured to determine
whether differences could be related to the susceptibility of the two species to pesticides. Bees were
maintained for 1h of fasting before weighing to avoid variations in weight owing to prior feeding.
Twenty unexposed bees of each species (i.e. four per colony) were weighed on an electronic analytical
balance (model XS3DU, Mettler Toledo, Columbus, OH), and another 20 bees were used for respirometry
bioassays. CO, production was recorded using a TR3C respirometer equipped with a CO, analyser
(Sable Systems International, Las Vegas, NV). Each forager bee was maintained individually in 25 ml
glass chambers in a completely closed system. CO, production (ul CO, h~! bee™!) was determined after
a 2h period by injecting CO,-free air into the chamber for 2 min at a flow rate of 600 ml min~!. An
air current directed the CO, produced by the bees to an infrared reader connected to the system. CO,
production was also determined in a control chamber without an insect. Twenty bees of each species (i.e.
four per colony) unexposed to insecticide or fungicide were analysed.

2.4. Statistical analysis

Concentration—mortality curves were estimated by probit analyses, using the PROC PROBIT procedure
(SAS Institute 2008). The differential insecticide susceptibility between A. mellifera and P. helleri was
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Table 2. Lethal doses of pesticides (in ng a.i. bee ™) to A. mellifera and P helleri under oral exposure.

insecticides species LDse? (95% FL) (ng a.i. bee™")
deltamethrin A. mellifera 18.4 (15.7-21.0)
e i (0011—0016) ...................................
o dopn [ s e (00 o .) ...................................
Phelleri 00910064-00)
cercoml(th | ophanatem ethyl + o haloml) ........................... L e 9(00 o 050) ...................................
e e (0012_0019) ...............................

3Estimated LDsy considering the average consumption of 0.026 pl to A. mellifera and 0.016 pl to P, helleri.

calculated for each pesticide based on the estimated LCsp (i.e. the lethal concentration capable of
killing 50% of tested bees) for each insecticide and bee species, and the susceptibility ratios (SR5p) were
estimated by dividing the LCsg value obtained for A. mellifera by the LCs value obtained for P. helleri [27].
The 95% confidence limits of these toxicity rate estimates were considered to be significantly different
(p < 0.05) if they did not include the value 1 [27]. The suitability of the probit model to estimate the
pesticide toxicity was based on the low x2-values (less than 6.6) and high p-values (greater than 0.05).
Results obtained for body mass and respiration rates were analysed using non-parametric analyses of
variance (ANOVA) on ranks (Kruskal-Wallis test), because normality and homoscedasticity assumptions
of analysis of variance were not satisfied (SSIGMAPLOT v. 12.5; Systat, San Jose, CA).

3. Results

3.1. Susceptibility to isolated insecticides and fungicides

The effects of insecticide concentration on mortality were determined for both P. helleri and A. mellifera
for imidacloprid and deltamethrin (table 1 and figure 1). Although basing our estimates in concentration
rather than in dose, we also estimated the respective doses (in ng of active ingredient bee ') and provide
them in table 2 as a general reference for extrapolation. These estimations were based on the food
consumption by each bee species, achieved by weighing the feeders prior to and after 5 h of exposure to
diet. The average of the consumption was 0.026 ul to A. mellifera and 0.016 ul to P. helleri.

With increasing concentrations of imidacloprid (in the range of 0.4 to 8.0 x 10° ug a.i. ml~!) mortality
increased in both P. helleri and A. mellifera, from less than 10% to 100%. The LCsq for P. helleri was 573.3
pg ai. ml~!, whereas for A. mellifera it was 240.1 ug a.i. ml~!. Based on the LCsp measures obtained from
these concentration—mortality bioassays, P. helleri was more susceptible to imidacloprid than A. mellifera
(SR50 =4.2 [2.1-8.4]-fold). Increasing concentrations of deltamethrin (in the range of 25 uga.i. ml~!
to 2.5 x 10° pg a.i. ml~!) again increased mortality for both P. helleri and A. mellifera. The LCsq for
P. helleri was 891.1 ug a.i. ml~!, whereas for A. mellifera it was 7.1 x 10° pg a.i. ml~!. Based on these LCs
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Figure 2. Impact of fungicides on bee mortality. Concentration—mortality curves of the forager bees of Apis mellifera (a) and
Partamona helleri (b) exposed to the fungicides chlorothalonil (ch), thiophanate-methyl (tm) and Cerconil (mixture of chlorothalonil
and thiophanate-methyl). LCsq values are indicated, and dotted lines represent the 95% fiducial limits of each curve. Symbols represent
concentrations tested (on x- axis) and observed mortality (on y-axis). Vertical bars represent standard error (s.e.) of the mean.

measures, P. helleri was more susceptible to deltamethrin than A. mellifera (SR59 =800 [290-2200]-fold;
table 1 and figure 1).

The effects of the fungicide formulation Cerconil and its two active ingredients chlorothalonil and
thiophanate-methyl were also analysed. There was no concentration-dependent effect on mortality to the
two active components applied alone for either bee species with mortality less than 25% for thiophanate-
methyl in both A. mellifera (figure 2a) and P. helleri (figure 2b). Mortality was also independent of
concentration for chlorothalonil for both species and again less than 25% (figure 2a,b).

By contrast, when bees were fed on food contaminated with a mixture of both fungicide active
ingredients (i.e. Cerconil formulation), mortality in both A. mellifera (figure 2a) and P. helleri (figure 2b)
increased markedly with increased fungicide concentration (table 1), allowing the estimation of the
concentration—mortality curves for both bee species (table 1 and figure 2). For A. mellifera, the LCsy was
1498.1 g of Cerconil ml~!, whereas for P. helleri the LCsy was 990.2 ug of Cerconil ml~?.

The synergistic actions of these non-EBI fungicides led to greater mortality levels of both bee
species compared with the mortality caused by imidacloprid or by deltamethrin (compare figures 1
and 2). Based on susceptibility ratios both A. mellifera (SRso=1.5 [0.9-1.9]-fold) and P. helleri
(SR50 = 0.6 [0.3-1.1]-fold) were as susceptible to the combined fungicides (Cerconil) as to imidacloprid.
Similar susceptibility levels were observed when comparing deltamethrin and Cerconil for P. helleri
(SR50 =0.9 [0.8-1.2]-fold), but A. mellifera was more than 400-fold more susceptible to Cerconil than to
deltamethrin.
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Figure 3. Effects of combined exposure to the neonicotinoid imidacloprid and fungicides on bee mortality. Concentration—mortality
curves of Apis mellifera (a) and Partamona helleri (b) exposed to mixtures of imidacloprid and the fungicides chlorothalonil (ch),
thiophanate-methyl (tm) and Cerconil (mixture of chlorothalonil and thiophanate-methyl). LCs values are indicated and dotted lines
represent the 95% fiducial limits of each curve. Symbols represent concentrations tested (on x-axis) and observed mortality (on y-axis).
Vertical bars represent standard error (s.e.) of the mean.

3.2. Non-ergosterol biosynthesis inhibitor fungicides potentiate the insecticide actions
on both Apis mellifera and Partamona helleri

Mixtures of the non-EBI fungicide, Cerconil, and each of its active ingredients (i.e. thiophanate-
methyl and chlorothalonil) with the insecticide imidacloprid significantly increased mortality of A.
mellifera (figure 3a) compared with when imidacloprid was used alone. A mixture of chlorothalonil
(0.01 g a.i. ml~1) with a range of imidacloprid concentrations was 23.9 (13.7-41.8)-fold more toxic to
A. mellifera than imidacloprid alone (figure 3a). Similarly, a mixture of thiophanate-methyl (0.01 g a.i.
ml~!) with imidacloprid potentiated the effect of imidacloprid alone on A. mellifera by approximately
126.0 (80.6-191.0)-fold (figure 3a). When imidacloprid was mixed with the fungicide formulation
containing both non-EBI active ingredients (Cerconil), the mortality of A. mellifera was 1589.8 (1035.7-
2769.2)-fold higher than that observed for imidacloprid alone (figure 3a). In P. helleri, mixtures
of the non-EBI fungicides with imidacloprid also potentiated the effects of imidacloprid (SRsg
for imidacloprid + chlorothalonil = 83.4 [42.7-181.4]; SRs5¢ for imidacloprid + thiophanate-methyl =19.3
[13.3-88.9] and SRsy for imidacloprid + chlorothalonil + thiophanate-methyl =197.0 [100.6-430.1];
figure 3b).

Mixtures of the non-EBI fungicides thiophanate-methyl and chlorothalonil, individually, with the
insecticide deltamethrin led to small increases in mortality compared with deltamethrin alone in
both species (figure 4). For example, mixtures of each of thiophanate-methyl or chlorothalonil with
deltamethrin resulted in toxicity levels less than fourfold for both species (figure 4a,b). Mixtures of both
non-EBI fungicide ingredients (Cerconil) together with deltamethrin caused a small increase in mortality
of A. mellifera (figure 4a), but a 177.0 (58.4-536.7)-fold increase in P. helleri compared with deltamethrin
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Figure 4. Effects of combined exposure to the pyrethroid deltamethrin and fungicides on bee mortality. Concentration—mortality curves
of Apis mellifera (a) and Partamona helleri (b) exposed to mixtures of deltamethrin and the fungicides chlorothalonil (ch), thiophanate-
methyl (tm) and Cerconil (mixture of chlorothalonil and thiophanate-methyl). LCs, values are indicated and dotted lines represent the
95% fiducial limits of each curve. Symbols represent concentrations tested (on x-axis) and observed mortality (on y-axis). Vertical bars
represent standard error (s.e.) of the mean.

alone (figure 4b). Thus, P. helleri was about 4300.4 [2200.1-7800.3]-fold more susceptible than A. mellifera
to the mixture of deltamethrin and the fungicide formulation containing both non-EBI active ingredients
(table 1 and figure 4b).

3.3. Body mass and respiration rates of Apis mellifera and Partamona helleri

The body mass of A. mellifera was 86.4 &+ 0.6 mg (mean +s.e.), whereas that of P. helleri was 16.2 +0.02
mg (mean=s.e.; figure 51). A Kruskal-Wallis test showed that A. mellifera were statistically heavier
than P. helleri (H120=38.3, p=0.002). The respiration rates were significantly higher in A. mellifera
(0.26+0.01 ul CO, h™! bee™!) compared with P. helleri (0.002 +0.0003 ul CO, h~! bee™!; figure 5b). A
Kruskal-Wallis test showed that respiration rates for the two species of bees were significantly different
(H120=26.2, p <0.001). While the weight difference between A. mellifera and P. helleri was approximately
5.3-fold, the respiration rate of A. mellifera was approximately 460-fold higher than that of P. helleri.

4. Discussion

During foraging, bee pollinators can be exposed to different agrochemicals, including insecticides,
fungicides and herbicides in crop landscapes around the world. Here we demonstrate that both
honeybees and Neotropical stingless bees were susceptible to mixtures of fungicides (i.e. chlorothalonil
and thiophanate-methyl) that are normally considered safe in bee risk assessments on their own
[28,29]. In addition, we show that Neotropical stingless bees were more susceptible to insecticides (e.g.
deltamethrin and imidacloprid) compared with the honeybees. These findings reinforce the notion that
A. mellifera is not a faithful model to assess the safety of agrochemicals when compared with other
species of bees [18,30,31] and emphasize the limited value of extrapolating results of toxicity bioassays
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from honeybees to native pollinator species. Previous reports have shown that the combination of
different chemicals in the environment can result in dangerous cocktails to pollinators [11,32]. However,
the majority of studies reporting synergistic interactions between pesticides have focused largely on
European honeybees neglecting Africanized honeybees and stingless bees that are routinely exposed to
agrochemicals and their mixtures in Neotropical agricultural landscapes [11,18,22,24,33].

Fungicides are often sprayed on managed crops when bees are foraging and for this reason their
residues, as well as those of other agrochemicals, have been detected in pollen in honeybee hives [19-21].
Although fungicides are considered safer to bees than other agrochemicals owing to their high LDsg
values [28,29], some fungicide commercial formulations can increase insecticide toxicity [22,23,34]. Most
of these studies, however, have focused on mixtures of insecticides such as pyrethroids or neonicotinoids
and EBI fungicides (i.e. fungicides that inhibit synthesis of ergosterol) [11,25,26], which are known to
alter the levels of cytochrome P45p-mediated detoxification in honeybees, making them more susceptible
to insecticides [33,35]. The effects of non-EBI fungicides such as thiophanate-methyl (an inhibitor of key
enzymes of electron transport chain [36]) and chlorothalonil (a chloronitrile of broad spectrum with an
unclear mode of action [37]) have received little attention.

We found that a commercial fungicide formulation, Cerconil, containing both chlorothalonil and
thiophanate-methyl was as toxic to both bee species as imidacloprid, and at least 400-fold more toxic
than the pyrethroid deltamethrin to A. mellifera. In addition, mixtures of deltamethrin or imidacloprid
and the fungicides chlorothalonil, thiophanate-methyl or both fungicide ingredients (i.e. Cerconil)
increased the mortality levels of pollinators with the magnitude of synergistic interactions depending
on the type of insecticide in the mixture and the bee species. These findings may reflect agrochemical-
or insect-related differences. For example, there is mounting evidence that commercial formulations of
modern agrochemicals comprise components other than the active ingredients that elicit very different
physiological effects on target and non-target organisms, usually enhancing the active ingredient activity
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[22,23,34]. Species-related differences may result from differences in life-history traits (e.g. sociality, body
size, target-site sensitivity and capacity for detoxification by enhanced metabolism) of both bee species.

Although we know little of the detoxification processes in stingless bees, previous studies indicate
that these bees are more susceptible to agrochemicals than other bees [18,30,31]. As respiration rate
is affected by body mass and metabolic rate [38], differences in body mass and respiration rate were
expected between both species [16,18]. Thus, the lower respiration rate of P. helleri is suggestive of a
lower metabolic rate in this species compared with A. mellifera, which may be due to a lower capacity
of xenobiotic detoxification of the former. However, other studies are necessary to fully investigate the
relationship between detoxification process and metabolism in stingless bees.

Thus, although studies in field conditions are necessary to evaluate the real risk to which bees
are subject when exposed to agrochemicals, our findings suggest that the mixtures of some non-EBI
fungicides and insecticides routinely applied to crops pose higher risks to the native pollinators than
to honeybees, compromising the recognized ecological and agricultural importance of the former bee
species in Neotropical regions. Furthermore, our findings reinforce the notion that native bees might be
more suitable models for agrochemical risk assessments in the Neotropical region as they are prevalent
in these areas and are more susceptible to agrochemical exposure than honeybees.
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