

Background

- Around 26% of Kenya's GDP comes from agriculture activity¹
- Agriculture makes up 75% of the jobs within Kenya¹
- Major and minor droughts occur each decade, leaving millions of civilians without food²
- Drying trends have been observed in Eastern regions of Kenya³
- Sea surface temperature (SST) has been shown to affect some regions of Africa⁴

Purpose

- Identify and categorize differences in rainfall trends of various regions in Kenya
- Analyze precipitation trends and correlations with SST anomalies
- Improve predictions of long and short wet season rainfall in different regions

Methodology

- Gridded precipitation⁵ data was chosen over raw station data after graphical comparison
- Two regions were established: Eastern Kenya and the Rift Valley
- A gridded data set computed rainfall values; trends and inter-annual values were compared for 1979-2012
- Seasonal cycles for each region were computed and rainfall trends for 1979-2012 were calculated
- Rainfall anomalies were correlated with SST for two west seasons

References

Herrero, M., Ringler, C., Steeg, J., Thornton, P., Zhu, T., Bryan, E., et al. Climate Variability and Climate Change: Impacts on Kenyan Agriculture. International Food Policy Research Institute . Retrieved July 17, 2014, from https://cgspace.cgiar.org/bitstream/handle/10568/2665/Kenya_Project.

² Duran, J. (2002). Kenyan droughts: a community based approach with Microcredits. . Retrieved July 17, 2014, from http://www.unisdr.org/2005/campaign/docs/case-study-Kenya.pdf.

³ U.S Department of the Interior and U.S Geological Society. (2010, August). A Climate Trend Analysis of Kenya—August 2010. Retrieved July 17, 2014, from www. pubs.usgs.gov/fs/2010/3074/pdf/ fs2010-3074.pdf.

⁴ Huhne, C., and Slingo, J. (2011). Kenya Climate: Observations, projections and impacts. . Retrieved July 17, 2014, from http://www.metoffice.gov.uk/media/pdf/b/j/Kenya.pdf.

⁵Schneider U., A. Becker, A. Meyer-Christoffer, and M. Ziese, B. Rudolf, 2011: Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre (GPCC), DWD, 12 pp.

CSU The California State University

CAL POLY

CESAME

Rainfall and Sea Surface Temperature (SST) Analysis of Eastern and Western Regions of Kenya

Kimberly Lykens¹ and Brant Liebmann² ¹STEM Teacher and Researcher (STAR) Fellow, Wittenberg University, Springfield, OH 45504 ² NOAA ESRL, Physical Sciences Division, Boulder, CO 80303

Rift Valley Rainfall

Figure 2. Seasonal cycle trend of Kenya Rift Valley precipitation calculated from 1901-2012; two wet seasons are observed

Figure 3. 'Long rain' wet season total of Kenya Rift Valley precipitation calculated from **GPCC** data from1979-2012; a slight decrease in rainfall per year is observed

Figure 4. 'Short rain' wet season total precipitation of Kenya Rift Valley calculated from GPCC data from1979-2012; an increase in rainfall per year is observed

This material is based upon work supported by the Chevron Corporation, Howard Hughes Medical Institute, the National Marine Sanctuary Foundation, National Science Foundation, and S.D. Bechtel, Jr. Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funders. The STAR program is administered by the Cal Poly Center for Excellence in STEM Education (CESAME) on behalf of the California State University.

Correlations with SST Anomalies

-0.6 -0.5 -0.4 -0.3 0.3 0.4 0.5 0.6 0.7

	Correla	tion: Gri	dded D	ata of E	ast Keny	ya vs S	ST, Ma	r-May
Ν	K baz	S PER	Jai-	· · · · ·			· 24	V Va
Ν								A A A A A A A A A A A A A A A A A A A
0		and the second sec			× 5 C			* \$
S		·					• (
s			1005				100)4/	

Figure 5. (a) Gridded precipitation data of long wet season in East Kenya and SST correlation (R-values displayed)

Correlation: Gridded Data of East Kenya vs SST, Oct-Dec

30N 15N 0									
15S	P.C							····	
305	0E	60E	90E	120E	150E	180	150W	120W	90W
(b)	Gridd	ed precip	oitation	data of s	hort wet	season	in East	Kenya ar	nd SST

correlation (R-values displayed)

Correlation:	Gridded	Data of Ri	ft Valley vs	SST, Mar-May

30N	T. P. S.	Show And			
15N			*	•	
0					Š
15S					
30S			······	· · · · ·	

(C) Gridded precipitation data of long wet season in Rift Valley and SST correlation (R-values displayed)

Correlation: Gridded Data of Rift Valley vs SST, Oct-Dec

30N 15N 15S 30S

30F (d) Gridded precipitation data of short wet season in Rift Valley and SST correlation (R-values displayed)

⁽Figure 5b, 5d)

East Kenya Rainfall

Figure 6. GPCC seasonal cycle trend of Eastern Kenya precipitation calculated from 1901-2012; two wet seasons are observed

Figure 7. 'Long rain' wet season total precipitation of East Kenya from1979-2012; a declining trend of mm of rainfall per year is observed

Figure 8. 'Short rain' wet season total precipitation of East Kenya from1979-2012; an increasing trend in mm of rainfall per year is observed

Two distinct climates, with distinct seasonal

 Rift Valley trends display a slight decline in rainfall in long rainy season and an increase in rain during short rainy season (Figure 3,4)

during the long rainy season and increased rain during short rainy season (Figure 7,8)

long rainy seasons had little correlation in

Strong positive correlation between rainfall and SST in Indian Ocean is observed for both regions during short wet season