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Abstract

The building of multivariate calibration models using near-infrared spectroscopy (NIR) and partial least squares (PLS) to

estimate the lignin content in different parts of sugarcane genotypes is presented. Laboratory analyses were performed to

determine the lignin content using the Klason method. The independent variables were obtained from different materials:

dry bagasse, bagasse-with-juice, leaf, and stalk. The NIR spectra in the range of 10 000–4000 cm�1 were obtained dir-

ectly for each material. The models were built using PLS regression, and different algorithms for variable selection were

tested and compared: iPLS, biPLS, genetic algorithm (GA), and the ordered predictors selection method (OPS). The best

models were obtained by feature selection with the OPS algorithm. The values of the root mean square error prediction

(RMSEP), correlation of prediction (RP), and ratio of performance to deviation (RPD) were, respectively, for dry bagasse

equal to 0.85, 0.97, and 2.87; for bagasse-with-juice equal to 0.65, 0.94, and 2.77; for leaf equal to 0.58, 0.96, and 2.56;

for the middle stalk equal to 0.61, 0.95, and 3.24; and for the top stalk equal to 0.58, 0.96, and 2.34. The OPS algo-

rithm selected fewer variables, with greater predictive capacity. All the models are reliable, with high accuracy for

predicting lignin in sugarcane, and significantly reduce the time to perform the analysis, the cost and the chemical reagent

consumption, thus optimizing the entire process. In general, the future application of these models will have a positive

impact on the biofuels industry, where there is a need for rapid decision-making regarding clone production and genetic

breeding program.
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Introduction

In the last few decades, the world has seen a gradual

increase in interest in the development of biofuels due to

greater concern about the environmental problems caused

by the burning of fossil fuels. Environmental damage caused

by increasing the concentration of the gases responsible for

the greenhouse effect, and the depletion of the easily

extracted oil reserves, have encouraged the use of renew-

able inputs.1,2 The goal is to reduce the consumption of

fossil fuels such as oil, coal, and natural gas. In this context,

economic, social, and environmental sustainability across

the world will depend heavily on research into alternative

energy sources. In Brazil, research into biofuels is crucial to

maintain the current position of Brazilian energy auton-

omy, beyond the interest in producing surpluses for

export.3 Renewable biofuels must be understood as a

way to reduce the dependence on oil, reduce emissions
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of greenhouse gases, and encourage development in the

agricultural sector.4

Considering this need, lignocellulosic biomass is an

important alternative energy source to oil. Sugarcane

(Saccharum spp.) has about two-thirds of its mass in ligno-

cellulosic material, a complex polymer consisting of cellu-

lose, hemicellulose, and lignin.5,6 Besides sugarcane juice,

which is a raw material for the production of sugar and

ethanol, the industrialization process also produces bagasse

and straw, previously classified as waste agricultural produc-

tion. This highly energy-dense biomass has the potential to

be converted into chemicals and biofuels, liquid or gaseous,

through biochemical and thermochemical processes.1,7 This

material contains abundant energy that is not used effi-

ciently by the current technologies, therefore representing

a huge potential for energy production.8–11

The possible applications of biomass from sugarcane

bagasse as an energy source include either burning it dir-

ectly or obtaining biofuels or chemicals. Therefore, clones

with the highest-productivity lignocellulosic biomass are

necessary for this purpose. The quantification of these bio-

polymers and sugars in the cane is needed to aid decision-

making in relation to the production of clones and genetic

breeding program.5,12 Thus, a large amount of wet chemical

analysis is necessary. Despite their accuracy, precision, and

robustness, these analyses cannot be applied in an industrial

or commercial setting or in extensive research, since they

are expensive, extremely time-consuming, and environmen-

tally harmful due to the high consumption of reagents and

the necessary disposal of the polluting products.

The use of chemometric methods to extract informa-

tion from multivariate data, such as spectra, can significantly

reduce the time, cost, and environmental impact of chem-

ical analysis.5,13–15 In this sense, the use of spectroscopy in

the region of the near infrared (NIR), which covers the

range of 12 800–4000 cm�1, has been widely and success-

fully applied in the nondestructive determination of lignin

composition in various agricultural products.16–27 However,

few studies have been conducted with spectra obtained

directly from the leaf and/or stem, which require no

sample preparation procedure. Most of the work involves

the use of bagasse, which needs to be dried, ground, and

sieved before obtaining the spectra. Rapid and nondestruc-

tive determination is highly desirable in situations with a

large number of samples and a short period of time for

decision making. Besides, to the best of our knowledge,

this is the first work to perform this spectroscopic analysis

directly on sugarcane material.

Near-infrared spectroscopy is a rapid technique (< 1 min

to obtain the spectrum), non-invasive, suitable for use in

production lines, and requires minimal sample preparation.

In addition, NIR spectroscopy coupled with chemometric

methods provides robust calibrations, i.e., the model par-

ameters do not change significantly when new samples are

added or removed from the calibration set.

The classical analysis of the lignin content is the

Klason28,29 method, which is an extremely time-consuming

method, and requires considerable amounts of chemical

reagents (mainly acidic), thus being impractical for imple-

mentation in large quantities of samples and especially for

fast decision making. Hence, the aim of this study is to build

and validate multivariate calibration models for predicting

the lignin content directly in the cane or biomass, using NIR

spectroscopy and chemometric methods, such as PLS

regression. In this way, the models will be applied to per-

form estimates of the lignin content in different clones, to

select the best crops for energy production. The contribution

of this work is to use different parts (or forms of processing)

of cane sugar, such as bagasse, bagasse-with-juice, and differ-

ent parts of the stem and leaf. The main objective of the work

is to build a multivariate model with high predictive capacity

to lignin contents from sugarcane materials with minimum

sample preparation. Thus, we aim to find simultaneously

the best model and sampling approach to predict lignin.

The goal is to reduce substantially the time required for

sample preparation, in order to obtain quick results.

Experimental

Samples

Three hundred experimental sugarcane (Saccharum spp.)

genotypes were supplied by the germplasm bank of the

Sugarcane Genetic Breeding Program (PMGCA) from

Universidade Federal de Viçosa, Viçosa, Minas Gerais (MG),

Brazil. The plantation was set in May 2014 using rows 5 m in

length in an experimental field in Viçosa, MG, Brazil (20�4403700

latitude south, 42�5003800 longitude west). Ten stalks per geno-

type, both with and without juice, were ground. Thus, a homo-

geneous and representative sample of bagasse was crushed,

using a Willy type grinder with 0.5 mm sieves, and ground, of

each genotype and brought to the laboratory. Different stalks

of the same genotype may not have the same lignin content,

but a sampling pull from ten stalks would be representative.

The aim, therefore, was to work with a representative sam-

pling, considering variability of the fiber content and featuring

morphoanatomic plants. Thus, it is assured that the calibra-

tion set was representative of the population for which the

future predictions will be performed.

Chemical Analysis

The stalks were submitted to disintegration and homogen-

ization. An aliquot of 500 g was submitted to a hydraulic

press to obtain the extracted juice. After the juice extrac-

tion, the residue was dried in an oven for 24 h at 45 �C. It

was then crushed and separated through a 0.4 mm mesh.

The extractive samples (2 g dry weight) were extracted

successively in water and ethanol in a Soxhlet extraction

unit for a period of 10 h and 5 h, respectively. Finally, the
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samples were taken to a greenhouse (65 �C) for drying.

This procedure is necessary to remove compounds that

are not part of the structural biomass and may interfere

in analysis. According to the Klason method,28,29 approxi-

mately 0.3 g of the material was placed in 100 mL tubes and

3.00� 0.01 mL of 72% sulfuric acid (H2SO4) added and

shaken until the sample reached complete homogeneity.

The tubes were sampled in a bath of water at 30� 3 �C

for 2 h, stirring the samples with a glass stick every 10 min,

without withdrawing the sample from the bath. The sample

was then diluted with 84.00� 0.04 mL of deionized water

to reduce the concentration of sulfuric acid. Samples were

autoclaved at 121�C, 15 psi for 1 h. Then, the acid-insoluble

fraction was allowed to stand before being filtered. Vacuum

filtration of the hydrolysis solutions after autoclaving was

carried out through the previously weighed sintered glass

crucibles (Laborglas 2D 50 mL). The crucibles with lignin

and acid-insoluble residue pellets were placed in the stove

for a period of 5 h (65 �C), until weight constant, and the

Klason lignin content determined gravimetrically. The mass

of the insoluble dry residue represents the lignin content.

Although the National Renewable Energy Laboratory

(NREL) procedure recommended the ash subtraction

step, this procedure was not performed because we con-

sidered that the amount of ash was small and would not

have large variations between the samples.

Spectrophotometric Analysis

For spectrophotometric analysis, the samples used for

the determination of the lignin content were selected.

The spectra were obtained in different locations and con-

ditions of the sample: dry bagasse, bagasse-with-juice, stalk,

and leaf. The goal at this stage was to find the best material

to perform the prediction quickly and with high accuracy.

For the bagasse-with-juice, the stalks of the genotypes were

submitted to disintegration and homogenization, and then

they were ground together with the juice and stored.

The dry bagasse spectra were obtained with the same

material used for the determination of lignin (Figure 1: D,

C1). In addition, the spectra were taken from the leaf blade

sheet þ3 of each genotype, according to the Kuijper

system.30 To obtain the spectra, the middle third leaves

were used, excluding the midrib (Figure 1: D, D1).

The leaves were removed, individually conditioned in plastic

bags and frozen at �80�C. At the time of obtaining the

spectra, the leaves were thawed. Prior to the process of

obtaining the spectra, spectra were drawn on different

parts of the leaves and it was realized that there was no

great variation. Thus, a region close to the groove was

chosen and all samples followed this pattern (Figure 1: D,

D1). The spectra were taken from one to six months

after harvest.

For the stalk, the samples were cut into two different

parts, i.e., the upper part (third upper stalk) and the middle

region (third middle stalk), and stored in a freezer at

�80 �C. To obtain the spectra, a longitudinal cut was

made and the spectrum was obtained from the inner part

(Figure 1: A, B, B1, and B2).

A total of 378 analyses were performed on dry bagasse,

232 on bagasse-with-juice, 256 on leaf, 221 on middle stalk,

and 223 on top stalk. These differences in the number of

Figure 1. Samples and way of obtaining the spectra. (A, B) Stalk and stalk cut in longitudinal section, (C) accessory used to contain the

bagasse dry and with broth, (D) cut leaf, (E) input of reflectance-integrating sphere, (B1, B2) way of obtaining the stalk spectra, (C1) way

of obtaining the bagasse spectra, (D1) way of obtaining the leaf spectra.

Teófilo et al. 2003



samples occurred because some samples were lost in col-

lection, preparation, and storage.

The y-vector (dependent variable) was built with the

same samples for all experimental conditions. The X

matrix (independent variables) was different for each con-

dition (leaf, stalk, dry bagasse, and bagasse-with-juice), but

the y vector was the same.

The NIR spectra were obtained using a Fourier transform

NIR (FT-NIR) 660 spectrometer (Agilent Technologies),

with a reflectance-integrating sphere accessory, from

PIKE Technologies. The range investigated was 10 000–

4000 cm�1 with an increment of 4 cm�1. The spectra

were obtained using the software Pro Resolutions

Version 5.1, storing information such as log (1/R), where

R is the reflectance collected. For each sample, a total of 64

scans were performed and the average was stored.

Multivariate Analytical Calibration

The spectra were imported by the software Matlab 2016a

(The Mathworks Inc.). For model building, the PLS regres-

sion was used. Algorithms for feature selection, such as

genetic algorithm (GA),31,32 iPLS,33 and OPS,34 were

applied to improve the models and verify the more import-

ant spectral regions for regression. The algorithms for the

variable selection using OPS, model-building, and validation

are homemade, available at http://www.deq.ufv.br/chemo-

metrics. All the calculations were performed in Matlab

2016a. The computational package used for the calculations

of iPLS was iToolbox.33 PLS-Toolbox 6.7 for Matlab was

used to perform the GA. The GA was carried out using

the following optimized parameters: population (54); gener-

ations (300); mutation rate (0.008); window width (1); con-

vergence (80); startup (50); and cross-over (2).

The Kennard and Stone algorithm35 was used to separ-

ate the sets for calibration and prediction. Thus, it sought

samples representative of the population distributed

throughout the set space. For all models, 40 samples

were selected for the prediction set.

Models Evaluation and Figures of Merit Calculation

The quality of the models was evaluated by the root mean

square error (RMSE), which was calculated according to

Eq. 1. R, the correlation coefficient, was calculated using Eq. 2:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPIm
i¼1 yi � ŷið Þ

2

Im

s
ð1Þ

R ¼

PIm
i¼1 ðŷi � ŷÞ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPIm

i¼1 ðŷi � ŷÞ2
PIm

i¼1 yi � �yð Þ
2

q ð2Þ

where y is the experimental value, ŷ and ŷ are the scalar

and vector of the estimated values, respectively, �y is a scalar

of the mean values in y and Im is the number of samples.

The number of factors in the model was determined by

internal validation (cross-validation [CV]), applying the

random method with splits equal to 15 and iterations

equal to 5. In cross-validation, when Im is the number

of samples in the calibration set (training), the error and

correlation coefficients are denoted RMSECV and Rcv,

respectively. When Im is the number of predicting samples

(P), the error and correlation coefficients are denoted

RMSEP and Rp, respectively.34

The performance of model was also evaluated by calcu-

lating the ratio of performance to deviation (RPD), calcu-

lated as the standard deviation (SD) of the cross-validation

set divided by the RMSECV.36 According to Chang et al.,36

the prediction results can be divided into three classes, with

(1) good predictions having RPD> 2; (2) predictions with

potential having RPD between 1.4 and 2.0; and (3) unreliable

predictions having RPD< 1.4. The percentage of the relative

error (%RE), ratio between the absolute error and

the measured value, was also calculated and it is an import-

ant parameter to verify the accuracy of the built models.

Bias is defined as the arithmetic mean of the prediction

errors, and must be near to zero. This parameter can be

obtained by Eq. 3:

bias ¼
1

Im

XIm
i¼1

yið � ŷiÞ ð3Þ

where y is the true value, ŷ is the estimated value and Im is

the number of predictions. A t-test for evaluating the stat-

istical significance of the bias was performed.

In addition, figures of merit were calculated for the best

model.

1. Selectivity: this is a measure of the degree of overlap

between the signal of the species of interest and inter-

ferents in the sample.5,37 The selectivity was determined

according to Eq. 4:

SEL ¼
nas

xk k
ð4Þ

where nas is the scalar value of the net analytical signal for a

given sample and kxk is the norm of the instrumental signal

vector.

2. Sensitivity: the sensitivity, in the inverse calibration

model, is proportional to the regression vector

kbk,5,38,39 according to Eq. 5:

SEN ¼
1

bk k
ð5Þ
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3. Analytical sensitivity (�): this is defined as the ratio

between the sensitivity and the standard deviation of

the reference signal, according to Eq. 6:5,37

� ¼
SEN

�xk k
ð6Þ

The inverse of this parameter (g�1) represents the smal-

lest difference in the concentration of samples that can be

distinguished by the method.38,40

4. Limit of detection (LOD) and limit of quantification

(LOQ): in general, LOD and LOQ are calculated accord-

ing to Eqs. 7–8. 39

LOD ¼3 � �rk k � bk k ð7Þ

LOQ ¼ 10 � �rk k � bk k ð8Þ

where jjdrjj is the norm of the standard deviation vector of

the columns of the noise matrix and jjbjj is the norm of the

regression vector. In this work, an alternative method for

determining the LOD, based on one of the proposed

IUPAC methods41 was applied, according to Eq. 9:

LOD ¼
âþ ea

b̂
ð9Þ

where â is the intercept of the regression equation of the

measured and predicted values, b̂ is the regression coeffi-

cient, and ea is the variance of the intercept.42

Results and Discussion

Near-Infrared Spectra

The NIR spectra of the samples dry bagasse, bagasse-with-

juice, leaf, middle stalk, and top stalk are presented in

Figure 2.

The interpretation of the spectra presented in Figure 2 is

facilitated by using the pure spectra of the main compo-

nents present in biomass sugarcane, i.e., lignin, cellulose,

and xylose. The spectra of the pure components are

shown in Figure 3.

Figure 2. Near-infrared spectra for (a) dry bagasse, (b) bagasse-with-juice, (c) leaf, and (d) stalks.

Teófilo et al. 2005



Although lignin is a polymer that does not have a stand-

ard structure, the NIR spectra of the extracted and purified

compound can be used as a spectral reference. This is pos-

sible because most functional groups present in the lignin

structures are common, such as phenols, hydroxyl groups,

carbonyl groups, carbon–carbon bonds, and carbon–

hydrogen bonds. Note that the NIR spectrum of pure

lignin has information on these groups. The region at

4000–6000 cm�1 contains C–H and C¼O stretching, and

stretching combinations of C–C and C–O–C. The region at

5000–5500 cm�1 contains OH stretching, and stretching

combinations of C–O (3u). For water, O–H stretches

occur at 5100 cm�1 and 7000 cm�1. These is differentiated

from the phenolic O–H stretch, 10 500 cm�1, outside your

bandpass, 7000 cm�1, obscured by water and 5200 cm�1,

which can see in the extracted sample, but not the spectra.

Note that aromatic C–H stretch is present at 5995 cm�1

(Figure 3). The continuous increase above 8000 to

10 000 cm�1 is characteristic of polymeric OH combin-

ations (2u).43

For cellulose, the most important regions are CH

stretching and the stretching combinations of C–C and

C–O–C at 4000 cm�1. Between 4019 and 4386 cm�1, the

C–H and C–C stretching combinations are found.

The O–H and C–H stretching for cellulose are found at

4405 cm�1. The stretching combinations of O–H and C–O

bonds are found at 4762 cm�1. The polymeric stretching

modes of OH (2u) are found at 4785 cm�1. OH stretching

and stretching combinations of C¼O (3u) occur at

5495 cm�1. The polymeric OH stretching combinations

(2u) are found at 6897 cm�1.

Xylose is the main hemicellulose monomer in the

bagasse of sugarcane. It is observed from Figure 3 that

xylose has regions in common with cellulose.43

From Figure 2, note that the spectra of dry bagasse and

dry bagasse-with-juice include the spectral information con-

tained in the spectra of cellulose, lignin, and xylose.

From the leaf spectra, information is observed on phen-

olic groups around 5950 cm�1 and the presence of water in

the strong peak at 5220 cm�1, which is a combination of the

asymmetric stretching and bonds of water molecules.

At 7020 cm�1 another strong peak of the first overtone

occurs, and at 8640 cm�1 the isosbetic point of water is

observed. Therefore, the leaf spectra display marked inter-

ference from water.

The stalk spectra have a strong systematic shift; how-

ever, water, cellulose, and lignin information can be

detected in the region 4000–6000 cm�1.

Building of Models

For lignin, the obtained values were in the range of 16.23–

33.85% (w/w). The mean value was 23.44% and the pooled

standard deviation was 0.96; therefore, the relative stand-

ard deviation was 4.9%. This result confirms the high pre-

cision of the gravimetric method.

For all data sets, the best transformation method was

smoothing, second derivative, followed by mean centering.

The statistical parameters calculated for all models are

presented in Table 1.

Analyzing Table 1, it can be noticed that, in general,

the number of latent variables required to build the

models was 10, except for the middle part of the stalk.

This number, although high, is justified since, in most

cases, the spectra were obtained in biological samples

where the complexity of the system is considerable

high, implying in a larger number of latent variables to

explain the model. However, the models in the literature,

for the most part, have long processes of preparation

of samples such as: drying, grinding, grinding, purifica-

tion, among others, requiring a lower number of latent

variables.

Furthermore, it can be observed that for all models, the

bias was not significant, indicating that there is no trend in

the residues and, therefore, the systematic error of the

model can be disregarded.

Comparison and Interpretation of Models

The high RMSEP and RMSECV errors of the model contain-

ing all variables confirm the necessity of performing the

selection of variables in the multivariate calibration. The

worst RMSEP was obtained when performing the selection

using iPLS and biPLS. The reason for this poor performance

can be linked to the fact that lignin is a complex molecule

and, consequently, is active in different regions of the NIR

(Figure 3). As the iPLS and biPLS perform selection by inter-

vals, they do not work well when the information is spread

across the spectrum.
Figure 3. Spectra of pure solid compounds: D-(þ)-xylose (dash

dot line), alkaline lignin (dot line), and cellulose (solid line).

2006 Applied Spectroscopy 71(8)



Table 1. Statistical parameters for dry bagasse, bagasse-with-juice, leaf and middle, and upper third of the stalk models.

Models dry bagasse Models bagasse-with-juice

Full OPS iPLS biPLS GA Full OPS iPLS biPLS GA

nLV 10 10 10 10 10 10 10 10 10 10

hOPS – 24 – – – – 19 – – –

nVars 1038 445 346 519 387 1038 265 346 520 352

RPD 1.84 2.87 1.84 1.64 2.7 1.42 2.77 1.68 1.51 2.57

RMSECV 1.42 0.89 1.43 1.58 0.95 1.31 0.71 1.2 1.22 0.74

RMSEC 0.53 0.44 0.76 0.63 0.5 0.3 0.32 0.33 0.38 0.32

Rc 0.98 0.99 0.96 0.97 0.98 0.99 0.99 0.99 0.98 0.99

Rcv 0.87 0.94 0.86 0.83 0.94 0.79 0.94 0.83 0.81 0.93

RMSEP 0.98 0.85 1.39 1.08 0.88 1.16 0.65 1.48 1.37 0.67

Rp 0.93 0.97 0.87 0.93 0.96 0.86 0.94 0.8 0.81 0.95

Bias �0.052 �0.0066 0.018 �0.0004 �0.0033 0.03 0.003 �0.093 �0.044 0.03

%RE 3.22 2.82 4.9 3.48 2.7 3.17 1.94 3.31 3.74 2.35

Models – leaf Models – middle stalk

Full OPS iPLS biPLS GA Full OPS iPLS biPLS GA

nLV 10 10 10 10 10 8 8 8 8 8

hOPS 25 16

nVars 1038 305 346 519 324 1038 205 346 519 338

RPD 1.41 2.56 1.15 1.17 2.72 1.77 3.24 1.38 1.31 2.16

RMSECV 1.32 0.76 1.84 1.55 0.72 1.21 0.63 1.76 1.57 0.87

RMSEC 0.43 0.35 0.54 0.69 0.35 0.3 0.31 0.33 0.38 0.35

Rc 0.98 0.98 0.97 0.94 0.99 0.99 0.99 0.99 0.98 0.99

Rcv 0.78 0.93 0.62 0.69 0.94 0.84 0.96 0.71 0.72 0.91

RMSEP 0.77 0.67 0.99 1.01 0.64 0.73 0.61 0.93 0.9 0.62

Rp 0.93 0.96 0.9 0.91 0.95 0.9 0.95 0.87 0.89 0.94

Bias �0.015 0.017 0.003 �0.045 0.0043 0.017 0.018 �0.083 �0.0099 �0.039

%RE 2.62 2.47 3.47 3.27 2.3 2.52 1.97 2.82 2.83 2

Models - upper third of the stalk

Full OPS iPLS biPLS GA

nLV 10 10 10 10 10

hOPS 15

nVars 1038 300 346 519 357

RPD 1.47 2.33 1.21 1.43 2.55

RMSECV 1.43 0.89 2.1 1.58 0.83

RMSEC 0.29 0.3 0.37 0.38 0.33

Rc 0.99 0.99 0.98 0.98 0.99

Rcv 0.78 0.91 0.61 0.74 0.93

RMSEP 0.58 0.58 0.65 0.65 0.57

Rp 0.96 0.96 0.95 0.95 0.96

Bias 0.019 0.045 �0.088 �0.065 0.051

%RE 2.01 1.94 2.3 1.98 1.91

Teófilo et al. 2007



In contrast, a comparison between the GA and OPS

algorithms shows that there was no significant difference

in the RMSEP and RMSECV values. Additionally, all the

models built with GA and OPS obtained RPD values greater

than 2, indicating that the prediction is reliable. However,

higher RPD values were observed for the OPS. The OPS

algorithm also selected fewer variables, producing a more

robust model which will last longer and be easier to main-

tain. In this context, it is important to highlight the compu-

tational time of both methods. While the OPS performed

the calculations in minutes, the GA took hours.

Additionally, significant time was consumed to optimize

the parameters used in the GA. Thus, the model using

the OPS algorithm can be considered more efficient and

simpler. The results presented in Table 1 indicate that the

OPS model shows a high ability to predict the lignin content

in sugarcane bagasse-with-juice, with high accuracy in rela-

tion to the reference method. The variables selected for

the OPS model are presented in Figure 5a.

For dry bagasse, the highest relative error found (in

absolute values) was 5.57% and the lowest was 0.03% (cali-

bration set). For the prediction set, the values were in the

range (in absolute value) of 7.70–0.16%. For dry bagasse, as

the error values are relatively small, it can be concluded

that the model is able to perform lignin prediction in sugar-

cane dry bagasse with high accuracy. Measured versus pre-

dicted values plotted for the calibration and prediction sets

are presented in Figure 4a.

For bagasse-with-juice, the biggest relative error found

(in absolute value) was 4.28%, and the lowest 0.01% (cali-

bration set). The prediction-set values were in the range (in

absolute value) 9.02–0.002%. As the relative error values

are small, it can be concluded that the model can predict

lignin in sugarcane bagasse-with-juice with high accuracy.

The measured versus predicted values are shown in

Figure 4b.

Regarding the leaf, different studies are found in the litera-

ture relating the NIR spectra to various leaf properties.44,45 In

these studies, the leaves were dried and crushed, in contrast

to the present work, in which the spectrum was obtained

directly from the green leaf, with no sample preparation pro-

cedure. Menesatti et al.46 evaluated the nutritional properties

of oranges by obtaining the spectra directly from the dry leaf.

In that case, there was a direct correlation between the

properties of a leaf and its spectrum. The current work is

dedicated to correlating the leaf spectrum (obtained without

any sample preparation) with the bagasse lignin content, and

therefore provides an indirect correlation.

This is possible because the leaf is known to contain

compounds that may be indirectly related to the content

of lignin in bagasse. The major advantage of this approach is

that the spectra can be obtained on-site, directly from the

leaf, without the need to harvest. This result suggests the

possibility of monitoring the concentration of lignin during

plant growth.

The relative error ranges obtained are (in absolute

values) 8.94–0.04% (calibration set) and 9.06–0.07%

(prediction set). This shows that it is feasible to realize

the prediction of the lignin content in sugarcane through

the leaf spectrum, reducing significantly the time spent on

analysis and the consumption of chemical reagents.

Figure 4c contains the measured versus predicted values

for set calibration and prediction.

The purpose of building a model using the stalk spec-

trum is the ease of obtaining the spectrum. In this work, we

have prepared two different parts of the stalk (top and

middle) to build the models. To perform the analysis, the

sample preparation is minimal. Differently from the dry

bagasse, which requires grinding, sieving and drying of the

sample, the stalk is simply cut and taken to the laboratory

for analysis. Thus, one can obtain hundreds of results in a

single day, eliminating considerable time dedicated to

sample preparation.

For the model obtained with the middle part of the stalk,

using the OPS algorithm, the error range (in absolute

values) was 4.66–0.002%. For the prediction set, the

range is 12.05–0.08%. For the top of the stem, the relative

error values found for the calibration set and prediction

were, respectively, 0.009–6.18% and 6.53–0.02%. These fig-

ures confirm the model’s ability to predict lignin in sugar-

cane with high accuracy.

Figure 4d and 4e shows the measured versus predicted

values for these sets of data (calibration and prediction).

In general, comparing the models statistically (F test,

99%), for most cases there is no significant difference

between the models using the different methods of variable

selection (except for iPLS and biPLS which worsened the

performance of the models). In all cases, the OPS and GA

algorithms do not present significant difference. Although

RMSEC and R values are very close, this fact does not

exclude the need to use variable selection: the models

become more interpretive, the possibility of identifying

variables with greater predictive capacity and a consider-

able decrease of relative error values (prediction set).

The variables selected for the OPS and GA models are

presented in Figure 5.

From Figure 5, note that for dry bagasse, no significant

differences can be observed in the variables selected by the

various selection methods used.

The OPS and the GA selected 445 and 387 variables,

respectively. The difference of 58 variables can be observed

in the unselected regions shown in Figure 5f.

These results indicate that ground, sieved, and homoge-

neous dry bagasse facilitates access to lignin by NIR. The

selection of variables across the spectrum is justified, since

the lignin spectra (Figure 2) contain information throughout

the region investigated.

For bagasse-with-juice, OPS and GA selected 265 and

352 variables, respectively. The difference of 87 variables

can be observed in the regions not selected in Figure 4b.
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In this case, the OPS showed better results and chose a

smaller number of variables than the GA.

From Figure 5b, it is observed that the regions at 4300–

6300 cm�1 are those with large interference from cellulose

and xylose, which justifies the selection of few variables by

the OPS in this region. Similar behavior can be observed for

the leaf and stalk.

On the other hand, the regions at 4000–4200 cm�1 and

8500–10000 cm�1 were always selected, since in these

regions lignin has bands that differentiate it from the

other compounds present.

In most cases, the OPS algorithm selected fewer

variables than GA. Genetic algorithm, on the other hand,

failed to select variables for bagasse-with-juice at

Figure 4. Reference lignin values versus NIR-predicted lignin values for (a) dry bagasse, (b) bagasse-with-juice, (c) leaf, (d) middle stalk,

and (e) upper third of the stalk.
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9000–10 000 cm�1, which is a region in which the lignin has

good selectivity.

Figures of Merit

Figures of merit for the OPS–PLS and full models are pre-

sented in Table 2. A comparison between the results shown

in Table 2 indicates that the selectivity of the OPS model

increased compared with the full model, which was

expected given the variable selection.

The inverse of the analytical sensitivity, g�1, allows us to

establish the smallest variation in concentration between

samples that can be distinguished by the method. It is

noted from Table 2 that this figure was higher for the

OPS models.

The LOD and LOQ values did not change signifi-

cantly from the OPS to the full model, indicating that for

the data studied, OPS does not decrease the LOD and

LOQ values.

Conclusion

The analysis of the statistical parameters indicates that both

the OPS and GA algorithms decreased significantly the

errors of cross-validation, prediction, and RPD. Note that

the computational time of the OPS algorithm is consider-

ably less than the GA. For this reason, the final models

were all chosen using the algorithm OPS. The OPS

method combined with PLS regression allows the building

of more simple, interpretable, and predictive models. All

the models showed good predictive capability and the

methods are inexpensive, environmentally friendly, and

extremely quick. As all models, after the selection of vari-

ables, presented satisfactory statistical parameters, a viable

option for industrial application would be the use of stalks

and leaves, which do not require any sample preparation.
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(e–j) upper third of the stalk. Vertical lines indicate the selected variables.

Table 2. Figures of merit calculated for the OPS–PLS model and for the model with all variables (full model).

Dry bagasse Bagasse-with-juice Leaf Middle stalk Upper stalk

OPS Full OPS Full OPS Full OPS Full OPS Full

SEL 0.0503 0.0373 0.057 0.038 0.0571 0.0422 0.062 0.039 0.057 0.042

SEN. 1.22� 10�5 1.52� 10�5 1.80� 10�5 5.87� 10�5 3.78� 10�5 4.37� 10�5 2.00� 10�4 8.90� 10�4 7.6� 10�5 6.9� 10�5

g 1.72 1.77 6.31 6.91 8.69 12.31 36.34 10.49 8.54 10.49

g�1 0.58 0.56 0.16 0.14 0.11 0.081 0.15 0.095 0.12 0.090

LOD 2.53 2.71 3.69 3.65 3.74 4.10 3.75 3.66 3.58 3.66

LOQ 7.67 8.22 11.18 11.07 11.33 12.43 11.38 11.1 10.84 11.1
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