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Introduction 
Bitcoin is an experimental peer-to-peer digital currency based on public key cryptography. It was 

introduced by Satoshi Nakamoto in 2009 as a version of electronic cash that would allow payments to be 

sent from one party to another without going through a financial institution [1]. Traditionally, financial 

institutions, such as banks, are trusted to store and protect a customer’s currency. The bank will handle 

the transfer of money between its customers and clients, but there are several disadvantages in this 

system. Electronic transfers between banks can be costly since there is usually a transaction fee, they 

can be slow taking several days to complete, and transfers cannot be made anonymously. Other 

payment processors such as Visa, MasterCard, and PayPal also charge fees that can cost several percent 

of the transaction. Bitcoin is a system of owning and transferring currency that omits these trusted third 

parties and instead relies on a peer-to-peer network to validate transactions and prevent double-

spending. 

The Bitcoin Network 
Bitcoin relies on cryptographic proof instead of trusted third parties. Public key cryptography is used to 

make and verify digital signatures that users use to send payments. Let’s suppose Alice and Bob are two 

users in the bitcoin network. Alice and Bob each have an address which is similar to a bank account 

number and tracks the number of bitcoins they have. The address is also associated with a public and 

private key. The private key is used to sign transactions when sending bitcoins while the public key can 

be used by anyone to validate the transaction signature.  

Now, suppose Alice wants to send bitcoins to Bob. 

1. Bob sends his address to Alice. 

2. Alice adds Bob’s address and the amount of bitcoins to a ‘transaction’ message. 

3. Alice then signs the transaction message with her private key and announces her public key for 

signature verification. 

4. Alice broadcast the transaction on the bitcoin network where all users can see the message. 

All users on the Bitcoin network that know the transaction addresses belong to Alice and Bob can see 

that Alice has transferred bitcoins to Bob.  

Later, Bob decides to transfer the same bitcoins to Charlie. Bob now repeats the steps Alice performed 

to send her bitcoin to Bob. 

1. Charlie sends his address to Bob. 

2. Bob adds Charlie’s address and the amount of bitcoins to a ‘transaction’ message. 

3. Bob signs the transaction message with his private key and announces his public key for 

signature verification. 

4. Bob broadcast the transaction on the bitcoin network. 

Another user, Eve cannot try to steal these bitcoins by replacing Bob or Charlie’s address with her own. 

The transfers were signed with Alice and Bob’s private key instructing that the coins were transferred 
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from Alice to Bob and then Bob to Charlie. Once Charlie accepts the coins, he also accepts that the coins 

were first passed from Alice to Bob, and then from Bob to him.  

This record of transactions between Alice, Bob, and Charlie is added to a constantly growing chain of 

blocks that contains the record of all transactions on the bitcoin network. The record of transactions is 

maintained by the bitcoin network, and each block is validated with proof of work before it is accepted 

into the chain. Valid blocks are chained together so that the transfer of bitcoins can be tracked, and if 

one block is modified, all the following blocks will need to be recomputed with proof of work.  Once the 

block containing Alice’s transaction to Bob is added to the block chain, Bob can be confident that the 

transaction has been accepted by other computers in the network and permanently recorded. This 

prevents Alice from trying to send the same coins to another user and double spending her coins. The 

bitcoin network generates blocks every 10 minutes which would require Bob to wait at least this amount 

of time to be able to verify the transaction. 

Only the single longest and fastest-growing block chain is considered valid to protect the bitcoin 

network from malicious attacks. The block chain is constantly growing since new blocks are validated 

every 10 minutes and a malicious user would need to control more than 50% of the network’s 

computing power to be able to modify transactions. Without a significant portion of the network 

computing power, it’s unlikely to be able to try and branch off from the valid block chain creating a 

separate malicious chain since the network will only accept the longest and fastest growing chain. 

Proof of Work 
The bitcoin network requires each block in the chain to include proof of work to ensure its validity. Proof 

of work is a piece of data that is difficult to produce due to being costly or time-consuming. Hashcash is 

the proof of work function used by the bitcoin network and uses two iterations of the secure-hash-

algorithm-256 (SHA-256). Cryptographic hashes are designed to be hard to invert. It’s simple to compute 

y from x, when y=H(x), but it’s very difficult to find x only given y. 

SHA-256 
A hash function maps a message of an arbitrary length to a string of a fixed length, called the ‘message 

hash’ or ‘message digest’. The compression processes of mapping the original message to the new fixed 

length message is known as ‘hashing’.  

 

The proof of work difficulty is adjusted to limit the rate of new block generation to every ten minutes. 

Since it is very difficult and improbable to completely reverse a secure hash in ten minutes, the hash 

must instead have a value less than the current target difficulty. 

 

Example:  

Let’s take the hash of “Hello, world!”.  The target is to find a variation of the hash with a value beginning 

with ‘000’. The string is varied by adding an integer value to the end called a nonce and incrementing it 

until the target is satisfied. 
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Figure 1: Hash target example 

In this example, the target is satisfied after 4251 hashes. Figure 1 shows the first three iterations of the 

hash, and the target is satisfied by the hash “Hello, world!5240”. The difficulty can be increased by 

increasing the number of zeroes in the target since most computers can achieve millions of hashes per 

second. The current bitcoin network target at the time of this writing is shown below. 

0.0000000000000000000198040286459692744948070603286383040 

 

The National Institute of Standards and Technology (NIST) published the Secure Hash Standard [2] in 

2002 that outlined three new Secure Hash Algorithms SHA-256, SHA-384, and SHA-512. SHA-224 was 

later added to form the SHA-2 family of hash functions. The SHA-256 hash algorithm produces a 256-bit 

message hash and consists of three stages. The first stage is message padding and parsing where a 

binary message is appended with ‘1’ and padded with zeroes until its length is equal to 448 mod 512. 

The original message length is then appended as a 64-bit binary number. The padded message is parsed 

into N 512-bit blocks, denoted M(1), M(2), …, M(N). Each of the 512-bit blocks is then passed to the second 

stage, message expansion. The SHA-256 algorithm operates on 32-bit words, and each 512-bit M(i) block 

is broken down into 16 32-bit blocks denoted Mt
(i), for 0 ≤ t ≤ 15. The Message expander also expands 

each M(i) block into 64 32-bit Wt blocks, according to the equations: 

 

𝜎0(𝑥) = 𝑅𝑂𝑇7(𝑥) ⊕ 𝑅𝑂𝑇18(𝑥)⨁ 𝑆𝐻𝐹3(𝑥) 

𝜎1(𝑥) = 𝑅𝑂𝑇17(𝑥) ⊕ 𝑅𝑂𝑇19(𝑥)⨁ 𝑆𝐻𝐹10(𝑥) 

𝑊𝑡 = {
𝑀𝑡

𝑖, 0 ≤ 𝑡 ≤ 15

𝜎1(𝑊𝑡−2) + 𝑊𝑡−7 + 𝜎0(𝑊𝑡−15) + 𝑊𝑡−16, 16 ≤ 𝑡 ≤ 63
 

 

𝑅𝑂𝑇𝑛(𝑥) is a circular rotation of x by n positions to the right. 

𝑆𝐻𝐹𝑛(𝑥) is a right shift of x by n positions. 

The final stage of SHA-256 is message compression. The Wi words from the expansion stage are input to 

the SHA compression function. The compression function has 8  32-bit working variables A, B, …, H, that 

are initialized to the first 32-bits of the fractional parts of the square roots of the first 8 primes (H0
(0)-
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H7
(0)) at the start of each call to the hash function. The compression function is then iterated sixty-four 

times and outlined by: 

𝑇1 = 𝐻 + ∑ (𝐸)
1

+ 𝐶ℎ(𝐸, 𝐹, 𝐺) + 𝐾𝑡 + 𝑊𝑡 

𝑇2 = ∑ (𝐴)
0

+ 𝑀𝑎𝑗(𝐴, 𝐵, 𝐶) 

𝐻 = 𝐺 
𝐹 = 𝐸 

 
𝐷 = 𝐶 

 
𝐵 = 𝐴 

 
𝐺 = 𝐹 

 
𝐸 = 𝐷 + 𝑇1 

 
𝐶 = 𝐵 

 
𝐴 = 𝑇1 + 𝑇2 

Where, 

𝐶ℎ(𝑥, 𝑦, 𝑧) = (𝑥 𝐴𝑁𝐷 𝑦) ⊕ (�̅� 𝐴𝑁𝐷 𝑧) 

𝑀𝑎𝑗(𝑥, 𝑦, 𝑧) = (𝑥 𝐴𝑁𝐷 𝑦) ⊕ (𝑥 𝐴𝑁𝐷 𝑧) ⊕ (𝑦 𝐴𝑁𝐷 𝑧) 

∑ (𝑥)
0

= 𝑅𝑂𝑇2(𝑥) ⊕ 𝑅𝑂𝑇13(𝑥)⨁𝑅𝑂𝑇22(𝑥) 

∑ (𝑥)
1

= 𝑅𝑂𝑇6(𝑥) ⊕ 𝑅𝑂𝑇11(𝑥)⨁𝑅𝑂𝑇25(𝑥) 

 

The Kt inputs are 64 32-bit constants initialized from an array of the first 32 bits of the fractional parts of 

the cube roots of the first 64 primes. After sixty-four iterations of the compression function, an 

intermediate hash value H(i) is calculated: 

𝐻0
(𝑖)

= 𝐴 + 𝐻0
(𝑖−1)

 
 

𝐻1
(𝑖)

= 𝐵 + 𝐻1
(𝑖−1)

 
 

𝐻2
(𝑖)

= 𝐶 + 𝐻2
(𝑖−1)

 
 

𝐻3
(𝑖)

= 𝐷 + 𝐻3
(𝑖−1)

 
 

𝐻4
(𝑖)

= 𝐸 + 𝐻4
(𝑖−1)
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𝐻5
(𝑖)

= 𝐹 + 𝐻5
(𝑖−1)

 

 

𝐻6
(𝑖)

= 𝐺 + 𝐻6
(𝑖−1)

 

 

𝐻7
(𝑖)

= 𝐻 + 𝐻7
(𝑖−1)

 

 

The SHA-256 compression algorithm then repeats on the next 512-bit block from the padded message 

until all N data blocks are processed. The final 256-bit output, H(N), is formed by concatenating the final 

hash values: 

𝐻𝑁 = 𝐻0
(𝑁)

& 𝐻1
(𝑁)

& 𝐻2
(𝑁)

& 𝐻3
(𝑁)

& 𝐻4
(𝑁)

& 𝐻5
(𝑁)

& 𝐻6
(𝑁)

& 𝐻7
(𝑁)

 

 

SHA-256 hash example 

1 . Pad message to be hashed in a way that the result is a multiple of 512 bits long 

 a. With message M of length, in bits, L, append “1” bit to the end of the message. Then, append 

k zero bits, where k is the smallest non-negative solution to L+1+k = 448 mod 512. Finally, 

append the 64 bit block that is equal to the number L in binary 

 b. Example, (8 bit ASCII) message “abc” is shown in Table 1. 

 length, L = 8*3 = 24 

 L+1+k = 24+1+k = 448 

 k = 448 – (24+1) = 423 zero bits 

Table 1: Padded message "abc" 

01100001 01100010 01100011 1 00…0 00…011000 

a, 8 bits b, 8 bits c, 8 bits “1” bit pad Pad 423 bits L, 64 bits 

 

 Padded message length is a multiple of 512 bits. 

2. Parse the massage into 512 bit message blocks M(1), M(2), …, M(N) 

3. Processes message blocks one at a time beginning with a fixed initial has value H(0), sequentially 

compute 

H(i) = H(i-1) + CM(i) (H(i-1)), for i = 1, 2, …, N 

C is the SHA-256 compression function 
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+ is a word-wise mod 232 addition 

H(i) is the hash of the block M(i) 

Initial hash values H(0) are the fractional parts of the square roots of the first eight primes. 

 

Block Header 
The block header is constantly hashed to generate bitcoins. A block header, shown in Table 2 and Figure 

2Figure 3, contains the following fields. 

Table 2: Block header fields 

Field Purpose Updated When Size 

(Bytes) 

Version Block version number When software is upgraded, a 

new version is specified 

4 

hashPrevBlock 256-bit hash of the previous block 

header 

A new block comes in 32 

hashMerkleRoot 256-bit hash based on all of the 

transactions in the block 

A transaction is accepted 32 

Time Current timestamp as seconds 

since 1970-01-01T00:00 UTC 

Every few seconds 4 

Difficulty Current target in compact format The difficulty is adjusted 4 

Nonce 32-bit number (starts at 0) A hash is tried (increments) 4 

 

The block header is an 80 byte value. 

 

Figure 2: Block header size 
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Mining 
Mining is the process of spending computation power to secure bitcoin transactions against reversal and 

to introduce new bitcoins to the system. The incentive to mine bit coins and validate transactions is 

currently driven by the possibility of receiving new bitcoins when a block is validated. The reward serves 

the purpose of distributing new coins in a decentralized way and to motivate bitcoin users to keep 

securing transactions on the network. The mining reward is 25 bitcoins, but this value is halved ever 

210,000 blocks to control the currency supply.  

The rate of block creation is constant at six per hour. This rate is controlled by the difficulty of hashing 

and the number of bitcoins generated per block is set to decrease geometrically, with a 50% reduction 

every four years. This limits the maximum number of bitcoins in the system to 21 million. The 50% 

reduction algorithm is assumed to be based on the approximate rate at which other commodities, such 

as gold, are mined. The 21 million (2.1*1015) is also close to the maximum value of a 64-bit floating point 

number. There are concerns about deflation with the fixed monetary base, but bitcoins can be divided 

down to eight decimal places allowing 0.00000001 quantities of BTC to be traded. The bitcoin protocol 

can also be modified to handle smaller amounts in the future [6]. 

Mining involves hashing the block header until a hash value is found to be less than the current target. 

When a hash value is found, this proof of work validates the new block and the miner gets newly 

generated bitcoins. If a valid hash is not found, the miner tries a new nonce, and recalculates the hash. 

A simplified mining algorithm is shown in Figure 3. 

 

 

Figure 3: Simplification of mining algorithm 

 
 

 

block_header = <version + prev_block + merkle_root + timestamp + bits> 

nonce = 0 

hash = 1 

target = 0.000123456789 

 

while ( hash > target ) 

{ 

hash = SHA256( SHA256( nonce + block_header ) ) 

nonce++ 

} 
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Field Programmable Gate Array 
A field programmable gate array (FPGA) is an integrated circuit designed to be configured by the 

customer or designer after manufacturing. The FPGA configuration is specified by a hardware 

description language (HDL) to implement custom logical functions similar to any application specific 

integrated circuit (ASIC). FPGAs have the advantage of being updatable with new designs and having low 

non-recurring development cost relative to ASICs. FPGAs disadvantage is their higher per unit cost 

relative to ASICs when used in large quantities. 

FPGAs have advantages in bitcoin mining due to their lower power usage and higher levels of 

customization when compared to other commercial off the shelf (COTS) hardware. When bitcoin was 

first introduced, central processing units (CPUs) from Intel and AMD were used as miners, but they were 

quickly replaced by graphics processing units (GPUs) from Nvidia and AMD. CPUs have relatively few 

arithmetic logic units (ALUs) and are designed to run more general executive and decision making 

software. GPUs have the ability to perform lots of repetitive work because they contain large numbers 

of ALUs designed to increase their ability to calculate the mathematical formulas to drive pixels on a 

screen. These same ALUs can be repurposed to repeatedly try different hashes, and the number of ALUs 

has a direct effect on the hash output. FPGAs can be configured to compute the SHA-256 algorithm with 

even more efficiency since their hardware is developed for this task.  
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Objectives 
The main objectives of this project are as follows. 

1. Learn about the bitcoin network and payment system 

2. Study bitcoin mining algorithm and SHA-256 

3. Compare the advantages of implementing bitcoin mining in hardware versus software 

4. Test performance of the open source FPGA Bitcoin miner on Altera DE2-115 development board 

(Cyclone IV EP4CE115F29C7) 

5. Mine block data from the bitcoin network 

6. Identify areas for improvement to increase the miner’s hash rate 

Requirements 
The main function of the miner is to run the SHA-256 algorithm on the block header to produce a valid 

proof of work. Table 3 breaks down the functional requirements derived from this objective. 

Table 3: Miner requirements and specifications 

Marketing 
Requirements 

Engineering Specifications Justification 

1 The miner shall be able to retrieve header 
information from the bitcoin network and 
submit valid proof of work. 

The miner will need to be able to 
retrieve block header information to 
hash and send valid hashes back to the 
bitcoin network to receive any rewards. 

1 The bitcoin mining algorithm (double SHA-
256 hash) shall be implemented on a 
commercial off the shelf (COTS) FPGA. 

An FPGA with enough resources to 
implement the complete mining 
algorithm needs to be chosen. 

2 The miner shall use standard hardware 
interfaces and connectors. 

The miner will need to be easily setup 
by most users and those without 
extensive knowledge of the system. 

2 The miner shall not require the user to 
interface with the system at the hardware 
description level for basic setup. 

Users without prior knowledge of 
FPGAs should be able to use the miner. 

Marketing Requirements 
1. The system shall implement a bitcoin miner on an FPGA. 
2. The system shall be easy to interface and setup. 

 

Design 
The Open-Source FPGA Bitcoin Miner was used as the foundation for this project since it is already 

supported by other users in the bitcoin community [3]. The open source miner also supports solo mining 

or pools and both Xilinx and Altera devices. This project’s goal is to understand the open source miner 

implementation and identify areas for improvement. 
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Software 
The Open-Source FPGA Bitcoin Miner includes scripts to program supported FPGAs and interfaces to the 

bitcoin network. This software primarily retrieves work from the bitcoin network and sends it to the 

FPGA miner. 

Hardware 
The Altera DE2-115, Digilent ZYBO Zynq-7000, and Digilent Nexys-2 development boards were 

considered based on their capabilities and cost. The Digilent Nexys-2 and Altera DE2-115 development 

boards were available from their use in prior coursework. The Digilent ZYBO Zynq-7000 was also a 

possible alternative since it has a XILINX All Programmable System-on-Chip (AP SoC) that integrates a 

dual-core ARM Cortex-A9 processor with Xilinx series 7 FPGA logic. The Altera DE2-115, shown in Figure 

4, was chosen because the Cyclone IV has the highest number of programmable logic elements. 

Development boards based on newer and higher density FPGAs were considered, but their high cost 

prevented their use in this project.  Table 4 shows a breakdown of the development boards considered 

for this project. 

 

Table 4: Development board comparison 

Development 
Board 

FPGA / Processor Logic Count Memory Cost 

Terasic Altera 
DE2-115 

Cyclone IV 
EP4CE115F29C7 

114,480 Logic 
Elements (LEs) 

128 MB SDRAM, 2 MB 
SRAM, 8 MB Flash 

$299 
(Academic) 
 
$595 
(Commercial) 

Digilent 
ZYBO Zynq-
7000 

XILINX 
650Mhz dual-core 
Cortex-A9 
+ 
Equivalent 
reprogrammable logic to 
Atrix-7 FPGA 

28K logic cells 512MB x32 DDR3 
RAM, 128Mb Serial 
Flash 
 
 

 

$125 
(Academic) 
 
$189 
(Commercial) 

Digilent Nexys-2 XILINX Spartan3E-500 
FG320  

500K gates 16MB SDRAM, 16MB 
Flash ROM 

$129 
(Academic) 
 
$169 
(Commercial) 
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Figure 4: Altera DE2-115 

 

fpgaminer_top 

The fpgaminer_top pads the block header to be hashed so that it is a multiple of 512 bits for the SHA-

256 algorithm. The nonce is the only field that is updated for each hash so the first 64 bytes of the block 

header remain constant. The constant portion of the header is hashed once and stored as the midstate 

value for subsequent hash iterations. The remaining 16 bytes of the header contain the nonce and are 

constantly hashed since the nonce is incremented each iteration. The midstate_buf and state registers 

holds the initial midstate value while the data_buf register holds the rest of the 16 byte header 

information.  

The fpgaminer_top also includes two serial sha256_transform modules that perform the double SHA-

256 hash as specified in the Hashcash proof of work function. The state and data register values are 

passed into the first sha256_transform module. The nonce is then updated while the hashes are being 

performed. When the nonce is incremented, it replaces the previous nonce value in the data register. 

This ensures that the miner is constantly trying new nonce values until it finds a hash result that satisfies 

the target. When the second SHA-256 hash is completed, its output is compared with the difficult and if 

the required number of trailing zeroes match, the is_golden_ticket register is set. Since the nonce is 

updated while the SHA-256 hashes are being performed, the current nonce value will be larger than the 

one that actually produced the target hash. An offset is subtracted from the current nonce value to get 

the golden_nonce that resulted in the target hash. A block diagram of the fpgaminer_top is shown in 

Figure 5.
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Figure 5: FPGA miner top 
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SHA-256 compression function 

The SHA-256 compression function is run for 64 iterations on each 512-bit block for the padded 

message. Figure 6 shows one iteration of the SHA-256 compression function. 

 

 

Figure 6: SHA-2 compression function 

Red  is addition modulo 232 

Ch Block 

Ch(E,F,G) = (E AND F) XOR (!E AND G) 

Figure 7 shows the ch block module implementation. Table 5 is the associated truth table for the Ch 

function and shows (E AND F) XOR (!E AND G) is equivalent to G XOR (E AND (F XOR G)). 

module ch (x, y, z, o); 

 

 input [31:0] x, y, z; 

 output [31:0] o; 

 

 assign o = z ^ (x & (y ^ z)); 

 

endmodule 
Figure 7: Ch block Verilog implementation 

assign o = G XOR (E AND (F XOR G)) 
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Table 5: Ch Truth Table 

E F G Ch 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 1 

 

 

Ma Block 

Ma(A,B,C) = (A AND B) XOR (A AND C) XOR (B AND C) 

Figure 8 shows the Ma block module implementation. Table 6 is the truth table for the Ma function and 

shows (A AND B) XOR (A AND C) XOR (B AND C) is equivalent to (A AND B) OR (C AND (A OR B)). 

module maj (x, y, z, o); 

 

 input [31:0] x, y, z; 

 output [31:0] o; 

 

 assign o = (x & y) | (z & (x | y)); 

 

endmodule 
Figure 8: Ma block Verilog implementation 

assign o = (A AND B) OR (C AND (A OR B)) 

Table 6: Ma Truth Table 

A B C Ma 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

 

∑0 Block 

>>> is a logical right rotate 

∑0(A) = (A >>> 2) XOR (A >>> 13) XOR ( A >>> 22) 
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Figure 9 shows the ∑0 block implementation. 

module e0 (x, y); 

 

 input [31:0] x; 

 output [31:0] y; 

 

 assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; 

 

endmodule 
Figure 9: ∑0 block Verilog implementation 

The assign statement in Figure 9 is equivalent to the following 

assign y = ( x >>> 2 ) XOR ( x >>> 13 ) x OR ( x >>> 22) 

∑1 Block 

∑1(E) = (E >>> 6) XOR (E >>> 11) XOR (E >>> 25) 

Figure 10 shows the ∑1 block implementation.  

module e1 (x, y); 

 

 input [31:0] x; 

 output [31:0] y; 

 

 assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; 

 

endmodule 
Figure 10: ∑1 block Verilog implementation 

The assign statement in Figure 10 is equivalent to the following 

assign y = ( x >>> 6 ) XOR ( x >>> 11 ) XOR ( x >>> 25 ) 

s0 Block 

sn = right rotation by n bits 

Rn = right shift by n bits 

σ0(x) =  s7(x) XOR s10(x) XOR R3(x) 

 

Figure 11 shows the s0 block implementation.  

module s0 (x, y); 

 

 input [31:0] x; 

 output [31:0] y; 

 

 assign y[31:29] = x[6:4] ^ x[17:15]; 

 assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; 

 

endmodule 
Figure 11: s0 Block Verilog Implementation 
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s1 Block 

σ1(x) =  s17(x) XOR s19(x) XOR R10(x) 

Figure 12 shows the s1 block implementation. 

module s1 (x, y); 

 

 input [31:0] x; 

 output [31:0] y; 

 

 assign y[31:22] = x[16:7] ^ x[18:9]; 

 assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; 

 

endmodule 
Figure 12: s1 Block Verilog Implementation
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Figure 13: SHA-256 compression block 

 

Figure 15 is the block diagram for the SHA-256 compression function.
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The IDX(x) function, shown in Figure 14, gets the 32-bit word at index x. 

 Example: 
IDX(0) = [31:0] 
IDX(1) = [63:32] 
 

// A quick define to help index 32-bit words inside a larger register. 

`define IDX(x) (((x)+1)*(32)-1):((x)*(32)) 
Figure 14: IDX function 

sha256_digester module 

The sha256_digester module, shown in Figure 15, implements the compression function in Figure 6. 

module sha256_digester (clk, k, rx_w, rx_state, tx_w, tx_state); 

 

 input clk; 

 input [31:0] k; 

 input [511:0] rx_w; 

 input [255:0] rx_state; 

 

 output reg [511:0] tx_w; 

 output reg [255:0] tx_state; 

 

 

 wire [31:0] e0_w, e1_w, ch_w, maj_w, s0_w, s1_w; 

 

 

 e0 e0_blk (rx_state[`IDX(0)], e0_w); 

 e1 e1_blk (rx_state[`IDX(4)], e1_w); 

 ch ch_blk (rx_state[`IDX(4)], rx_state[`IDX(5)], rx_state[`IDX(6)], ch_w); 

 maj maj_blk (rx_state[`IDX(0)], rx_state[`IDX(1)], rx_state[`IDX(2)], maj_w); 

 s0 s0_blk (rx_w[63:32], s0_w); 

 s1 s1_blk (rx_w[479:448], s1_w); 

 

 wire [31:0] t1 = rx_state[`IDX(7)] + e1_w + ch_w + rx_w[31:0] + k; 

 wire [31:0] t2 = e0_w + maj_w; 

 wire [31:0] new_w = s1_w + rx_w[319:288] + s0_w + rx_w[31:0]; 

  

 

 always @ (posedge clk) 

 begin 

  tx_w[511:480] <= new_w; 

  tx_w[479:0] <= rx_w[511:32]; 

 

  tx_state[`IDX(7)] <= rx_state[`IDX(6)]; 

  tx_state[`IDX(6)] <= rx_state[`IDX(5)]; 

  tx_state[`IDX(5)] <= rx_state[`IDX(4)]; 

  tx_state[`IDX(4)] <= rx_state[`IDX(3)] + t1; 

  tx_state[`IDX(3)] <= rx_state[`IDX(2)]; 

  tx_state[`IDX(2)] <= rx_state[`IDX(1)]; 

  tx_state[`IDX(1)] <= rx_state[`IDX(0)]; 

  tx_state[`IDX(0)] <= t1 + t2; 

 end 

 

endmodule 
Figure 15: sha256_digester module 
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Inputs 

k is a constant initialized from an array of the first 32 bits of the fractional parts of the cube roots of the 

first 64 primes 2..311. The values are in hexadecimal and shown in Figure 16. 

 // Constants defined by the SHA-2 standard. 

 localparam Ks = { 

  32'h428a2f98, 32'h71374491, 32'hb5c0fbcf, 32'he9b5dba5, 

  32'h3956c25b, 32'h59f111f1, 32'h923f82a4, 32'hab1c5ed5, 

  32'hd807aa98, 32'h12835b01, 32'h243185be, 32'h550c7dc3, 

  32'h72be5d74, 32'h80deb1fe, 32'h9bdc06a7, 32'hc19bf174, 

  32'he49b69c1, 32'hefbe4786, 32'h0fc19dc6, 32'h240ca1cc, 

  32'h2de92c6f, 32'h4a7484aa, 32'h5cb0a9dc, 32'h76f988da, 

  32'h983e5152, 32'ha831c66d, 32'hb00327c8, 32'hbf597fc7, 

  32'hc6e00bf3, 32'hd5a79147, 32'h06ca6351, 32'h14292967, 

  32'h27b70a85, 32'h2e1b2138, 32'h4d2c6dfc, 32'h53380d13, 

  32'h650a7354, 32'h766a0abb, 32'h81c2c92e, 32'h92722c85, 

  32'ha2bfe8a1, 32'ha81a664b, 32'hc24b8b70, 32'hc76c51a3, 

  32'hd192e819, 32'hd6990624, 32'hf40e3585, 32'h106aa070, 

  32'h19a4c116, 32'h1e376c08, 32'h2748774c, 32'h34b0bcb5, 

  32'h391c0cb3, 32'h4ed8aa4a, 32'h5b9cca4f, 32'h682e6ff3, 

  32'h748f82ee, 32'h78a5636f, 32'h84c87814, 32'h8cc70208, 

  32'h90befffa, 32'ha4506ceb, 32'hbef9a3f7, 32'hc67178f2}; 
Figure 16: Ks, round constants array 

rx_w is initialized to zero and updated based on the next nonce when new data is input into the hasher. 

rx_state is initialized to the initial hash values. The initial hash values, shown in Figure 17, are the first 32 

bits of the fractional parts of the square roots of the first 8 primes 2…19. 

H1(0) = 6a09e667 → register a 
H2(0) = bb67ae85 → register b 
H3(0) = 3c6ef372 → register c 
H4(0) = a54ff53a → register d 
H5(0) = 510e527f → register e 
H6(0) = 9b05688c → register f 
H7(0) = 1f83d9ab → register g 
H8(0) = 5be0cd19 → register h 
 

.rx_state(256'h5be0cd191f83d9ab9b05688c510e527fa54ff53a3c6ef372bb67ae856a09e667), 
Figure 17: Initial hash values 

Outputs 

tx_w contains the message blocks. 

tx_state contains the updated registers a through h after the SHA-256 compression function is applied. 

SHA-256 Compression Function 

The input to e0_blk is the first 32-bit word of rx_state which is initialized to H1(0) = 6a09e667 = register 

a. 

The output of e0_blk is e0_w. Figure 18 shows the e0_blk assignment statement. 
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e0 e0_blk (rx_state[`IDX(0)], e0_w); 
Figure 18: e0 block output 

The input to e1_blk is the fifth 32-bit word of rx_state which is initialized to H5 (0) = 510e527f → register 

e. 

The output of e1_blk is e1_w. Figure 19 shows the e1_blk assignment statement. 

e1 e1_blk (rx_state[`IDX(4)], e1_w); 

Figure 19: e1 block output 

The inputs to ch_blk are the fifth, sixth, and seventh 32-bit words of rx_state. These are initially H5(0) = 

510e527f = register e, H6(0) = 9b05688c = register f, and H7(0) = 1f83d9ab = register g respectively.  

The output of ch_blk is ch_w. Figure 20 shows the ch_block assignment statement. 

ch ch_blk (rx_state[`IDX(4)], rx_state[`IDX(5)], rx_state[`IDX(6)], ch_w); 

Figure 20: ch block output 

The inputs to maj_blk are the first, second, and third 32-bit words of rx_state. These are initially H1(0) = 

6a09e667 = register a, H2(0) = bb67ae85 = register b, and H3(0) = 3c6ef372 = register c respectively. 

The output of maj_blk is maj_w. Figure 21 shows the maj block assignment statement. 

maj maj_blk (rx_state[`IDX(0)], rx_state[`IDX(1)], rx_state[`IDX(2)], maj_w); 

Figure 21: maj block output 

The input to s0_blk is the second 32-bit word of rx_w. 

The output of s0_blk is s0_w. Figure 22 shows the s0_blk assignment statement. 

s0 s0_blk (rx_w[63:32], s0_w); 

Figure 22: s0 block output 

The input to s1_blk is the fifteenth 32-bit word of rx_w. 

The output of s1_blk is s1_w. Figure 23 shows the s1_blk assignment statement.  

s1 s1_blk (rx_w[479:448], s1_w); 
Figure 23: s1 block output 

t1 is the sum of register H, the Ch block, s1 block, the first 32-bit word of rx_w, and k. Figure 24 shows 

the t1 assignment statement. 

wire [31:0] t1 = rx_state[`IDX(7)] + e1_w + ch_w + rx_w[31:0] + k; 
Figure 24: t1 intermediate sum 

t2 is the sum of the ∑0 block and the Ma block. Figure 25 shows the t2 assignment statement.  

wire [31:0] t2 = e0_w + maj_w; 
Figure 25: t2 intermediate sum 
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The tx_w output is the sum of the s1 block, tenth 32-bit word of rx_w, s0 block, and first 32-bit word of 

rx_w. Figure 26 shows the tx_w assignment statement. 

wire [31:0] new_w = s1_w + rx_w[319:288] + s0_w + rx_w[31:0]; 
Figure 26: tx_w output 

Registers a through h are updated. Figure 27 shows the Verilog implementation.  

h ←g 
g ←h 
f ← e 
e ← d + t1 
d ← c 
c ← b 
b ← a 
a ← t1 + t2 
 

 always @ (posedge clk) 

 begin 

  tx_w[511:480] <= new_w; 

  tx_w[479:0] <= rx_w[511:32]; 

 

  tx_state[`IDX(7)] <= rx_state[`IDX(6)]; 

  tx_state[`IDX(6)] <= rx_state[`IDX(5)]; 

  tx_state[`IDX(5)] <= rx_state[`IDX(4)]; 

  tx_state[`IDX(4)] <= rx_state[`IDX(3)] + t1; 

  tx_state[`IDX(3)] <= rx_state[`IDX(2)]; 

  tx_state[`IDX(2)] <= rx_state[`IDX(1)]; 

  tx_state[`IDX(1)] <= rx_state[`IDX(0)]; 

  tx_state[`IDX(0)] <= t1 + t2; 

 end 

Figure 27: SHA-256 compression function register update 

sha256_transform module 
// Perform a SHA-256 transformation on the given 512-bit data, and 256-bit 

// initial state, 

// Outputs one 256-bit hash every LOOP cycle(s). 

// 

// The LOOP parameter determines both the size and speed of this module. 

// A value of 1 implies a fully unrolled SHA-256 calculation spanning 64 round 

// modules and calculating a full SHA-256 hash every clock cycle. A value of 

// 2 implies a half-unrolled loop, with 32 round modules and calculating 

// a full hash in 2 clock cycles. And so forth. 

module sha256_transform #( 

 parameter LOOP = 6'd4 

) ( 

 input clk, 

 input feedback, 

 input [5:0] cnt, 

 input [255:0] rx_state, 

 input [511:0] rx_input, 

 output reg [255:0] tx_hash 

); 

 

 // Constants defined by the SHA-2 standard. 

 localparam Ks = { 

  32'h428a2f98, 32'h71374491, 32'hb5c0fbcf, 32'he9b5dba5, 

  32'h3956c25b, 32'h59f111f1, 32'h923f82a4, 32'hab1c5ed5, 

  32'hd807aa98, 32'h12835b01, 32'h243185be, 32'h550c7dc3, 

  32'h72be5d74, 32'h80deb1fe, 32'h9bdc06a7, 32'hc19bf174, 

  32'he49b69c1, 32'hefbe4786, 32'h0fc19dc6, 32'h240ca1cc, 
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  32'h2de92c6f, 32'h4a7484aa, 32'h5cb0a9dc, 32'h76f988da, 

  32'h983e5152, 32'ha831c66d, 32'hb00327c8, 32'hbf597fc7, 

  32'hc6e00bf3, 32'hd5a79147, 32'h06ca6351, 32'h14292967, 

  32'h27b70a85, 32'h2e1b2138, 32'h4d2c6dfc, 32'h53380d13, 

  32'h650a7354, 32'h766a0abb, 32'h81c2c92e, 32'h92722c85, 

  32'ha2bfe8a1, 32'ha81a664b, 32'hc24b8b70, 32'hc76c51a3, 

  32'hd192e819, 32'hd6990624, 32'hf40e3585, 32'h106aa070, 

  32'h19a4c116, 32'h1e376c08, 32'h2748774c, 32'h34b0bcb5, 

  32'h391c0cb3, 32'h4ed8aa4a, 32'h5b9cca4f, 32'h682e6ff3, 

  32'h748f82ee, 32'h78a5636f, 32'h84c87814, 32'h8cc70208, 

  32'h90befffa, 32'ha4506ceb, 32'hbef9a3f7, 32'hc67178f2}; 

 

 

 genvar i; 

 

 generate 

 

  for (i = 0; i < 64/LOOP; i = i + 1) begin : HASHERS 

   wire [511:0] W; 

   wire [255:0] state; 

 

   if(i == 0) 

    sha256_digester U ( 

     .clk(clk), 

     .k(Ks[32*(63-cnt) +: 32]), 

     .rx_w(feedback ? W : rx_input), 

     .rx_state(feedback ? state : rx_state), 

     .tx_w(W), 

     .tx_state(state) 

    ); 

   else 

    sha256_digester U ( 

     .clk(clk), 

     .k(Ks[32*(63-LOOP*i-cnt) +: 32]), 

     .rx_w(feedback ? W : HASHERS[i-1].W), 

     .rx_state(feedback ? state : HASHERS[i-1].state), 

     .tx_w(W), 

     .tx_state(state) 

    ); 

  end 

 

 endgenerate 

 

 always @ (posedge clk) 

 begin 

  if (!feedback) 

  begin 

   tx_hash[`IDX(0)] <= rx_state[`IDX(0)] + HASHERS[64/LOOP-6'd1].state[`IDX(0)]; 

   tx_hash[`IDX(1)] <= rx_state[`IDX(1)] + HASHERS[64/LOOP-6'd1].state[`IDX(1)]; 

   tx_hash[`IDX(2)] <= rx_state[`IDX(2)] + HASHERS[64/LOOP-6'd1].state[`IDX(2)]; 

   tx_hash[`IDX(3)] <= rx_state[`IDX(3)] + HASHERS[64/LOOP-6'd1].state[`IDX(3)]; 

   tx_hash[`IDX(4)] <= rx_state[`IDX(4)] + HASHERS[64/LOOP-6'd1].state[`IDX(4)]; 

   tx_hash[`IDX(5)] <= rx_state[`IDX(5)] + HASHERS[64/LOOP-6'd1].state[`IDX(5)]; 

   tx_hash[`IDX(6)] <= rx_state[`IDX(6)] + HASHERS[64/LOOP-6'd1].state[`IDX(6)]; 

   tx_hash[`IDX(7)] <= rx_state[`IDX(7)] + HASHERS[64/LOOP-6'd1].state[`IDX(7)]; 

  end 

 end 

 

 

endmodule 
Figure 28: sha256_transform module 

Figure 28 shows the complete sha256_transform module that initializes the double SHA-256 hash. 

Inputs 

feedback is initialized to zero and controls the .rx_w and .rx_state output. 

cnt is also initialized to zero. 
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rx_state is initialized to the initial hash values. These are the first 32 bits of the fractional parts of the 

square roots of the first 8 primes 2…19. 

rx_input is the data (message/block header) to be hashed and is based on the current nonce. 

Outputs 

tx_hash is the hashed output. 

Generate hashers 

The for loop in the sha256_transform module generates the sha256_digester modules. 

Quartus II settings 

Figure 29 shows the Quartus II settings that were used to set the clock rate to 50Mhz. 

 

Figure 29: Verilog HDL Inputs 

 

CONFIG_LOOP_LOG2 = 0 

The CONFIG_LOOP_LOG2 parameter determines how unrolled the SHA-256 compression 

calculations are. A setting of 0 is completely unrolled, resulting in 128 rounds and a larger, but 

faster design. A setting of 1 will reduce to 64 rounds with half the size and speed. A setting of 2 

will reduce to 32 rounds with a quarter of the size and speed. The valid range is 0 to 5. 
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MAIN_CLK_FREQUENCY = 50MHz 

 The clock frequency is set to 50MHz to balance the speed and cooling of the Cyclone IV 

EP4CE115F29C7. 

MAIN_CLK_DIVIDE = 1 

MAIN_CLK_MULTIPLY = 1 

Testing 
The Open-Source FPGA Bitcoin Miner was tested on the Altera DE2-115 development board to verify 

that it could successfully mine bitcoins from the bitcoin network. 

Miner instructions 

The following instructions are included with the Open-Source FPGA Bitcoin Miner 

1) Connect the DE2-115 Development Kit to your PC through USB, connect its power, 
and turn it on. 

2) Ensure that the DE2-115's drivers have been installed successfully on your PC. 
Consult the DE2-115 User Guide for more information on setting up the DE2-115. 

3) Navigate to 'scripts/program' and run 'program-fpga-board.bat'. 
4) Follow the instructions provided by the program-fpga-board script. Select the correct 

cable and programming file. Once programming has succeeded, the DE2-115 is now 
ready to mine! 
1. Note: This script sometimes fails immediately upon execution. Please try running 

it again. 
5) Run 'mine.bat' 
6) If working correctly, 'mine.bat' will leave a console window open where it reports 

hashing rate, estimated hashing rate and accepted/rejected share information. 
7) Profit! 

The Open-Source FPGA Bitcoin Miner was tested with pooled mining since bitcoins are only created 25 

at a time, and the race to validate a block and get the 25 BTC reward is very competitive. It can take a 

long time before a single user could expect to make a return on their mining if any. 

 Pooled mining instead offers smaller, more frequent, and steadier payouts. Bitcoin pools give users 

blocks of lower difficult to solve and each solution found is counted as one ‘share’. Occasionally, a 

solution may also meet the full target difficulty requirements of the bitcoin network and the pool will be 

rewarded the 25 BTC reward. The 25 BTCs are then divided among users based on their number of 

shares. Once a reward is paid out, a new round is started and users in the pool will work for new shares 

of the next block reward. In this way, users in a mining pool get more frequent payouts since they are 

not required to find the hash that satisfies the network target. On the other hand, a user is required to 

share the 25 BTC reward among the mining pool even if they are the user that found the successful 

hash.  
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This project initially tried to mine with btcguild.com, but there were problems connecting the Open-

Source Bitcoin Miner to the pool. The mining.bitcoin.cz was tried next, and it uses a Stratum mining 

protocol instead of the getwork specification that the open source miner is built upon. To fix this 

problem, a Stratum mining proxy is available that bridges the older HTTP/getwork protocol and the 

Stratum mining protocol. The Stratum mining protocol is used since it is not bound by miner 

performance. Once the connection to the mining pool was established, the miner could successfully 

earn shares as shown in Figure 30.  

 

Figure 30: Mining console 

The performance of the open source miner, shown in Figure 30, is around 50MH/s which is relatively 

low compared to other ASIC miners. Butterfly Labs is currently taking pre-orders for a 600GH/s miner, 

but it has a price tag of $2,196 and uses 350W. In comparison, the DE2-115 is estimated to use around 

4.7 watts and cost $300 for academic users. The Butterfly Labs miner still offers exponentially better 

performance at 273MH/$ versus the DE2-115 at 0.16MH/$. To try and speed up the performance of the 

open source miner the SHA-256 hashes could be run in parallel to double the throughput of the miner 

and increase the chance of finding a valid hash. 

The current open source miner has a utilization of 75,049 / 114,480 logic elements or about 66% of the 

Cyclone IV’s resource total. Figure 31 shows the logic element usage in the Quartos synthesis summary. 

Figure 32 also shows that the logic element usage is relatively evenly distributed over the entire FPGA. It 

seemed possible that there might be enough spare area to implement a pipelined design, but the new 

design ended up trying to use 168,104 logic elements or 147% of the available resources. The Quartus II 

design software failed to route the pipelined project because there were not enough logic elements. 
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Figure 31: Quartus synthesis summary, unpipelined 

 

 

Figure 32: Quartus chip planner, unpipelined 

 

Another consideration to take into account is the data rate between the bitcoin mining network pool 

and the miner. The miner needs to request block header information to hash which is 80bytes. The DE2-

115 development board connects to a computer using USB 2.0 which is rated at 480Mb/s (60MB/s).  
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Data rate limitation 

60MB/s / 80bytes = 750,000 per second. 

The USB 2.0 transfer rate limits the number of block headers that can be sent to the miner to 750,000 

per second so the miner could potentially have a max hash rate of 750MH/s. Further speed increases 

could make use of the gigabit Ethernet connection (1000Mb/s or 125MB/s). 

Gigabit Ethernet limitation 

125MB/s / 80bytes = 1,563,000 per second. 

A gigabit connection could have a max has rate around 1.56GH/s.  

Conclusion and Recommendations 
The Open-Source FPGA Miner offers acceptable performance on the Altera DE2-115, but could be 

further improved by pipelining the design and using a higher tier FPGA with more logic elements. 

Another simple performance enhancement would be to increase the clock rate of the miner, but 50MHz 

was used because higher clock rates would require actively cooling the Cyclone IV to prevent damage. A 

final recommendation for this project would be to update the interface between the bitcoin network 

mining pools and the miner to support the newer Stratum protocol. 

While FPGAs currently offer an increase in mining performance over other COTS options, the future of 

bitcoin mining is moving towards ASICs. One of the current dilemmas with bitcoin mining is balancing 

the cost of mining with the potential rewards or received bitcoins from validating blocks. It’s a relatively 

costly investment to purchase mining hardware and pay for the electricity to run it with the volatility of 

the bitcoin market. One of the biggest reasons CPUs and GPUs are no longer used as miners is because 

the electricity to run them often cost more than the amount of bitcoins received from mining. The 

bitcoin network is built upon the idea that other users on the network will validate transactions for 

potential bitcoin rewards. ASICs offer the best performance per watt, but FPGAs may still have a place in 

the future of crypto currency as a platform to test develop new mining algorithms. The biggest 

advantage of FPGAs in crypto currency mining is that they are not limited to one currency such as 

bitcoin. Other competing crypto currencies such as litecoin or dogecoin could be mined with an FPGA 

because it could be reprogramed to run scrypt instead of SHA-256. 
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Appendix A: Source Code 
 

/* 

* 

* Copyright (c) 2011-2012 fpgaminer@bitcoin-mining.com 

* 

* 

* 

* This program is free software: you can redistribute it and/or modify 

* it under the terms of the GNU General Public License as published by 

* the Free Software Foundation, either version 3 of the License, or 

* (at your option) any later version. 

* 

* This program is distributed in the hope that it will be useful, 

* but WITHOUT ANY WARRANTY; without even the implied warranty of 

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

* GNU General Public License for more details. 

* 

* You should have received a copy of the GNU General Public License 

* along with this program.  If not, see <http://www.gnu.org/licenses/>. 

*  

*/ 

 

 

// Top-level module that uses the unoptimized mining core and Virtual Wire 

// external interface. 

 

 

`timescale 1ns/1ps 

 

module fpgaminer_top ( 

 input MAIN_CLK 

); 

 

 // The LOOP_LOG2 parameter determines how unrolled the SHA-256 

 // calculations are. For example, a setting of 0 will completely 

 // unroll the calculations, resulting in 128 rounds and a large, but 

 // fast design. 

 // 

 // A setting of 1 will result in 64 rounds, with half the size and 

 // half the speed. 2 will be 32 rounds, with 1/4th the size and speed. 

 // And so on. 

 // 

 // Valid range: [0, 5] 

`ifdef CONFIG_LOOP_LOG2 

 localparam LOOP_LOG2 = `CONFIG_LOOP_LOG2; 

`else 

 localparam LOOP_LOG2 = 0; 

`endif 

 

 // No need to adjust these parameters 

 localparam [5:0] LOOP = (6'd1 << LOOP_LOG2); 

 // The nonce will always be larger at the time we discover a valid 

 // hash. This is its offset from the nonce that gave rise to the valid 

 // hash (except when LOOP_LOG2 == 0 or 1, where the offset is 131 or 

 // 66 respectively). 

 localparam [31:0] GOLDEN_NONCE_OFFSET = (32'd1 << (7 - LOOP_LOG2)) + 32'd1; 

 

 

 ////  

 reg [255:0] state = 0; 

 reg [511:0] data = 0; 

 reg [31:0] nonce = 32'h00000000; 

 

 

 //// PLL 

 wire hash_clk; 
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 hashing_pll # ( 

  .INPUT_FREQUENCY (`MAIN_CLK_FREQUENCY), 

  .DIVIDE_BY (`MAIN_CLK_DIVIDE), 

  .MULTIPLY_BY (`MAIN_CLK_MULTIPLY) 

 ) pll_blk ( 

  .rx_clk (MAIN_CLK), 

  .tx_hash_clk (hash_clk) 

 ); 

 

 

 //// Hashers 

 wire [255:0] hash, hash2; 

 reg [5:0] cnt = 6'd0; 

 reg feedback = 1'b0; 

 

 sha256_transform #(.LOOP(LOOP)) uut ( 

  .clk(hash_clk), 

  .feedback(feedback), 

  .cnt(cnt), 

  .rx_state(state), 

  .rx_input(data), 

  .tx_hash(hash) 

 ); 

 sha256_transform #(.LOOP(LOOP)) uut2 ( 

  .clk(hash_clk), 

  .feedback(feedback), 

  .cnt(cnt), 

  .rx_state(256'h5be0cd191f83d9ab9b05688c510e527fa54ff53a3c6ef372bb67ae856a09e667), 

  .rx_input({256'h0000010000000000000000000000000000000000000000000000000080000000, 

hash}), 

  .tx_hash(hash2) 

 ); 

 

 

 //// Virtual Wire Control 

 reg [255:0] midstate_buf = 0, data_buf = 0; 

 wire [255:0] midstate_vw, data2_vw; 

 

 virtual_wire # (.OUTPUT_WIDTH(256), .INSTANCE_ID("STAT")) midstate_vw_blk (.clk 

(hash_clk), .rx_data (), .tx_data (midstate_vw)); 

 virtual_wire # (.OUTPUT_WIDTH(256), .INSTANCE_ID("DAT2")) data2_vw_blk (.clk (hash_clk), 

.rx_data (), .tx_data (data2_vw)); 

 

 //// Virtual Wire Output 

 reg [31:0] golden_nonce = 0; 

  

 virtual_wire # (.INPUT_WIDTH(32), .INSTANCE_ID("GNON")) golden_nonce_vw_blk (.clk 

(hash_clk), .rx_data (golden_nonce), .tx_data ()); 

 virtual_wire # (.INPUT_WIDTH(32), .INSTANCE_ID("NONC")) nonce_vw_blk (.clk (hash_clk), 

.rx_data (nonce), .tx_data ()); 

 

 

 //// Control Unit 

 reg is_golden_ticket = 1'b0; 

 reg feedback_d1 = 1'b1; 

 wire [5:0] cnt_next; 

 wire [31:0] nonce_next; 

 wire feedback_next; 

 

 assign cnt_next =  (LOOP == 1) ? 6'd0 : (cnt + 6'd1) & (LOOP-1); 

 // On the first count (cnt==0), load data from previous stage (no feedback) 

 // on 1..LOOP-1, take feedback from current stage 

 // This reduces the throughput by a factor of (LOOP), but also reduces the design size by 

the same amount 

 assign feedback_next = (LOOP == 1) ? 1'b0 : (cnt_next != {(LOOP_LOG2){1'b0}}); 

 assign nonce_next = feedback_next ? nonce : (nonce + 32'd1); 

 

  

 always @ (posedge hash_clk) 

 begin 

  midstate_buf <= midstate_vw; 
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  data_buf <= data2_vw; 

 

  cnt <= cnt_next; 

  feedback <= feedback_next; 

  feedback_d1 <= feedback; 

 

  // Give new data to the hasher 

  state <= midstate_buf; 

  data <= 

{384'h0000028000000000000000000000000000000000000000000000000000000000000000000000000000000000800

00000, nonce_next, data_buf[95:0]}; 

  nonce <= nonce_next; 

 

 

  // Check to see if the last hash generated is valid. 

  is_golden_ticket <= (hash2[255:224] == 32'h00000000) && !feedback_d1; 

  if(is_golden_ticket) 

  begin 

   // TODO: Find a more compact calculation for this 

   if (LOOP == 1) 

    golden_nonce <= nonce - 32'd131; 

   else if (LOOP == 2) 

    golden_nonce <= nonce - 32'd66; 

   else 

    golden_nonce <= nonce - GOLDEN_NONCE_OFFSET; 

  end 

 end 

 

endmodule 

 

 

/* 

* 

* Copyright (c) 2011-2012 fpgaminer@bitcoin-mining.com 

* 

* 

* 

* This program is free software: you can redistribute it and/or modify 

* it under the terms of the GNU General Public License as published by 

* the Free Software Foundation, either version 3 of the License, or 

* (at your option) any later version. 

* 

* This program is distributed in the hope that it will be useful, 

* but WITHOUT ANY WARRANTY; without even the implied warranty of 

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

* GNU General Public License for more details. 

* 

* You should have received a copy of the GNU General Public License 

* along with this program.  If not, see <http://www.gnu.org/licenses/>. 

*  

*/ 

 

 

module virtual_wire # ( 

 parameter INPUT_WIDTH = 0, 

 parameter OUTPUT_WIDTH = 0, 

 parameter INITIAL_VALUE = " 0", 

 parameter INSTANCE_ID = "NONE" 

) ( 

 input clk, 

 input [INPUT_WIDTH-1:0] rx_data, 

 output [OUTPUT_WIDTH-1:0] tx_data 

); 

 

 altsource_probe altsource_probe_component ( 

    .probe (rx_data), 

    .source_clk (clk), 

    .source (tx_data) 
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    // synopsys translate_off 

    , 

    .clrn (), 

    .ena (), 

    .ir_in (), 

    .ir_out (), 

    .jtag_state_cdr (), 

    .jtag_state_cir (), 

    .jtag_state_e1dr (), 

    .jtag_state_sdr (), 

    .jtag_state_tlr (), 

    .jtag_state_udr (), 

    .jtag_state_uir (), 

    .raw_tck (), 

    .source_ena (), 

    .tdi (), 

    .tdo (), 

    .usr1 () 

    // synopsys translate_on 

    ); 

 defparam 

  altsource_probe_component.enable_metastability = "YES", 

  altsource_probe_component.instance_id = INSTANCE_ID, 

  altsource_probe_component.probe_width = INPUT_WIDTH, 

  altsource_probe_component.sld_auto_instance_index = "YES", 

  altsource_probe_component.sld_instance_index = 0, 

  altsource_probe_component.source_initial_value = INITIAL_VALUE, 

  altsource_probe_component.source_width = OUTPUT_WIDTH; 

 

endmodule 

 

 

 

 

// Generate a clock to be used by the hashing cores. 

 

module hashing_pll # ( 

 parameter INPUT_FREQUENCY = 50, 

 parameter DIVIDE_BY = 1, 

 parameter MULTIPLY_BY = 1 

) ( 

 input rx_clk, 

 output tx_hash_clk 

); 

 

 wire [4:0] clks; 

 

 assign tx_hash_clk = clks[0]; 

 

 altpll altpll_component ( 

  .inclk ({1'b0, rx_clk}), 

  .clk (clks), 

  .activeclock (), 

  .areset (1'b0), 

  .clkbad (), 

  .clkena ({6{1'b1}}), 

  .clkloss (), 

  .clkswitch (1'b0), 

  .configupdate (1'b0), 

  .enable0 (), 

  .enable1 (), 

  .extclk (), 

  .extclkena ({4{1'b1}}), 

  .fbin (1'b1), 

  .fbmimicbidir (), 

  .fbout (), 

  .fref (), 

  .icdrclk (), 
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  .locked (), 

  .pfdena (1'b1), 

  .phasecounterselect ({4{1'b1}}), 

  .phasedone (), 

  .phasestep (1'b1), 

  .phaseupdown (1'b1), 

  .pllena (1'b1), 

  .scanaclr (1'b0), 

  .scanclk (1'b0), 

  .scanclkena (1'b1), 

  .scandata (1'b0), 

  .scandataout (), 

  .scandone (), 

  .scanread (1'b0), 

  .scanwrite (1'b0), 

  .sclkout0 (), 

  .sclkout1 (), 

  .vcooverrange (), 

  .vcounderrange ()); 

 defparam 

  altpll_component.bandwidth_type = "AUTO", 

  altpll_component.clk0_divide_by = DIVIDE_BY, 

  altpll_component.clk0_duty_cycle = 50, 

  altpll_component.clk0_multiply_by = MULTIPLY_BY, 

  altpll_component.clk0_phase_shift = "0", 

  altpll_component.compensate_clock = "CLK0", 

  altpll_component.inclk0_input_frequency = (1000000 / INPUT_FREQUENCY), 

  altpll_component.intended_device_family = "Cyclone IV E", 

  altpll_component.lpm_hint = "CBX_MODULE_PREFIX=main_pll", 

  altpll_component.lpm_type = "altpll", 

  altpll_component.operation_mode = "NORMAL", 

  altpll_component.pll_type = "AUTO", 

  altpll_component.port_activeclock = "PORT_UNUSED", 

  altpll_component.port_areset = "PORT_UNUSED", 

  altpll_component.port_clkbad0 = "PORT_UNUSED", 

  altpll_component.port_clkbad1 = "PORT_UNUSED", 

  altpll_component.port_clkloss = "PORT_UNUSED", 

  altpll_component.port_clkswitch = "PORT_UNUSED", 

  altpll_component.port_configupdate = "PORT_UNUSED", 

  altpll_component.port_fbin = "PORT_UNUSED", 

  altpll_component.port_inclk0 = "PORT_USED", 

  altpll_component.port_inclk1 = "PORT_UNUSED", 

  altpll_component.port_locked = "PORT_UNUSED", 

  altpll_component.port_pfdena = "PORT_UNUSED", 

  altpll_component.port_phasecounterselect = "PORT_UNUSED", 

  altpll_component.port_phasedone = "PORT_UNUSED", 

  altpll_component.port_phasestep = "PORT_UNUSED", 

  altpll_component.port_phaseupdown = "PORT_UNUSED", 

  altpll_component.port_pllena = "PORT_UNUSED", 

  altpll_component.port_scanaclr = "PORT_UNUSED", 

  altpll_component.port_scanclk = "PORT_UNUSED", 

  altpll_component.port_scanclkena = "PORT_UNUSED", 

  altpll_component.port_scandata = "PORT_UNUSED", 

  altpll_component.port_scandataout = "PORT_UNUSED", 

  altpll_component.port_scandone = "PORT_UNUSED", 

  altpll_component.port_scanread = "PORT_UNUSED", 

  altpll_component.port_scanwrite = "PORT_UNUSED", 

  altpll_component.port_clk0 = "PORT_USED", 

  altpll_component.port_clk1 = "PORT_UNUSED", 

  altpll_component.port_clk2 = "PORT_UNUSED", 

  altpll_component.port_clk3 = "PORT_UNUSED", 

  altpll_component.port_clk4 = "PORT_UNUSED", 

  altpll_component.port_clk5 = "PORT_UNUSED", 

  altpll_component.port_clkena0 = "PORT_UNUSED", 

  altpll_component.port_clkena1 = "PORT_UNUSED", 

  altpll_component.port_clkena2 = "PORT_UNUSED", 

  altpll_component.port_clkena3 = "PORT_UNUSED", 

  altpll_component.port_clkena4 = "PORT_UNUSED", 

  altpll_component.port_clkena5 = "PORT_UNUSED", 

  altpll_component.port_extclk0 = "PORT_UNUSED", 

  altpll_component.port_extclk1 = "PORT_UNUSED", 
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  altpll_component.port_extclk2 = "PORT_UNUSED", 

  altpll_component.port_extclk3 = "PORT_UNUSED", 

  altpll_component.width_clock = 5; 

 

 

endmodule 

 

 

 

/* 

* 

* Copyright (c) 2011 fpgaminer@bitcoin-mining.com 

* 

* 

* 

* This program is free software: you can redistribute it and/or modify 

* it under the terms of the GNU General Public License as published by 

* the Free Software Foundation, either version 3 of the License, or 

* (at your option) any later version. 

* 

* This program is distributed in the hope that it will be useful, 

* but WITHOUT ANY WARRANTY; without even the implied warranty of 

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

* GNU General Public License for more details. 

* 

* You should have received a copy of the GNU General Public License 

* along with this program.  If not, see <http://www.gnu.org/licenses/>. 

*  

*/ 

 

 

`timescale 1ns/1ps 

 

// A quick define to help index 32-bit words inside a larger register. 

`define IDX(x) (((x)+1)*(32)-1):((x)*(32)) 

 

 

// Perform a SHA-256 transformation on the given 512-bit data, and 256-bit 

// initial state, 

// Outputs one 256-bit hash every LOOP cycle(s). 

// 

// The LOOP parameter determines both the size and speed of this module. 

// A value of 1 implies a fully unrolled SHA-256 calculation spanning 64 round 

// modules and calculating a full SHA-256 hash every clock cycle. A value of 

// 2 implies a half-unrolled loop, with 32 round modules and calculating 

// a full hash in 2 clock cycles. And so forth. 

module sha256_transform #( 

 parameter LOOP = 6'd4 

) ( 

 input clk, 

 input feedback, 

 input [5:0] cnt, 

 input [255:0] rx_state, 

 input [511:0] rx_input, 

 output reg [255:0] tx_hash 

); 

 

 // Constants defined by the SHA-2 standard. 

 localparam Ks = { 

  32'h428a2f98, 32'h71374491, 32'hb5c0fbcf, 32'he9b5dba5, 

  32'h3956c25b, 32'h59f111f1, 32'h923f82a4, 32'hab1c5ed5, 

  32'hd807aa98, 32'h12835b01, 32'h243185be, 32'h550c7dc3, 

  32'h72be5d74, 32'h80deb1fe, 32'h9bdc06a7, 32'hc19bf174, 

  32'he49b69c1, 32'hefbe4786, 32'h0fc19dc6, 32'h240ca1cc, 

  32'h2de92c6f, 32'h4a7484aa, 32'h5cb0a9dc, 32'h76f988da, 

  32'h983e5152, 32'ha831c66d, 32'hb00327c8, 32'hbf597fc7, 

  32'hc6e00bf3, 32'hd5a79147, 32'h06ca6351, 32'h14292967, 

  32'h27b70a85, 32'h2e1b2138, 32'h4d2c6dfc, 32'h53380d13, 
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  32'h650a7354, 32'h766a0abb, 32'h81c2c92e, 32'h92722c85, 

  32'ha2bfe8a1, 32'ha81a664b, 32'hc24b8b70, 32'hc76c51a3, 

  32'hd192e819, 32'hd6990624, 32'hf40e3585, 32'h106aa070, 

  32'h19a4c116, 32'h1e376c08, 32'h2748774c, 32'h34b0bcb5, 

  32'h391c0cb3, 32'h4ed8aa4a, 32'h5b9cca4f, 32'h682e6ff3, 

  32'h748f82ee, 32'h78a5636f, 32'h84c87814, 32'h8cc70208, 

  32'h90befffa, 32'ha4506ceb, 32'hbef9a3f7, 32'hc67178f2}; 

 

 

 genvar i; 

 

 generate 

 

  for (i = 0; i < 64/LOOP; i = i + 1) begin : HASHERS 

   wire [511:0] W; 

   wire [255:0] state; 

 

   if(i == 0) 

    sha256_digester U ( 

     .clk(clk), 

     .k(Ks[32*(63-cnt) +: 32]), 

     .rx_w(feedback ? W : rx_input), 

     .rx_state(feedback ? state : rx_state), 

     .tx_w(W), 

     .tx_state(state) 

    ); 

   else 

    sha256_digester U ( 

     .clk(clk), 

     .k(Ks[32*(63-LOOP*i-cnt) +: 32]), 

     .rx_w(feedback ? W : HASHERS[i-1].W), 

     .rx_state(feedback ? state : HASHERS[i-1].state), 

     .tx_w(W), 

     .tx_state(state) 

    ); 

  end 

 

 endgenerate 

 

 always @ (posedge clk) 

 begin 

  if (!feedback) 

  begin 

   tx_hash[`IDX(0)] <= rx_state[`IDX(0)] + HASHERS[64/LOOP-

6'd1].state[`IDX(0)]; 

   tx_hash[`IDX(1)] <= rx_state[`IDX(1)] + HASHERS[64/LOOP-

6'd1].state[`IDX(1)]; 

   tx_hash[`IDX(2)] <= rx_state[`IDX(2)] + HASHERS[64/LOOP-

6'd1].state[`IDX(2)]; 

   tx_hash[`IDX(3)] <= rx_state[`IDX(3)] + HASHERS[64/LOOP-

6'd1].state[`IDX(3)]; 

   tx_hash[`IDX(4)] <= rx_state[`IDX(4)] + HASHERS[64/LOOP-

6'd1].state[`IDX(4)]; 

   tx_hash[`IDX(5)] <= rx_state[`IDX(5)] + HASHERS[64/LOOP-

6'd1].state[`IDX(5)]; 

   tx_hash[`IDX(6)] <= rx_state[`IDX(6)] + HASHERS[64/LOOP-

6'd1].state[`IDX(6)]; 

   tx_hash[`IDX(7)] <= rx_state[`IDX(7)] + HASHERS[64/LOOP-

6'd1].state[`IDX(7)]; 

  end 

 end 

 

 

endmodule 

 

 

module sha256_digester (clk, k, rx_w, rx_state, tx_w, tx_state); 

 

 input clk; 

 input [31:0] k; 

 input [511:0] rx_w; 
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 input [255:0] rx_state; 

 

 output reg [511:0] tx_w; 

 output reg [255:0] tx_state; 

 

 

 wire [31:0] e0_w, e1_w, ch_w, maj_w, s0_w, s1_w; 

 

 

 e0 e0_blk (rx_state[`IDX(0)], e0_w); 

 e1 e1_blk (rx_state[`IDX(4)], e1_w); 

 ch ch_blk (rx_state[`IDX(4)], rx_state[`IDX(5)], rx_state[`IDX(6)], ch_w); 

 maj maj_blk (rx_state[`IDX(0)], rx_state[`IDX(1)], rx_state[`IDX(2)], maj_w); 

 s0 s0_blk (rx_w[63:32], s0_w); 

 s1 s1_blk (rx_w[479:448], s1_w); 

 

 wire [31:0] t1 = rx_state[`IDX(7)] + e1_w + ch_w + rx_w[31:0] + k; 

 wire [31:0] t2 = e0_w + maj_w; 

 wire [31:0] new_w = s1_w + rx_w[319:288] + s0_w + rx_w[31:0]; 

  

 

 always @ (posedge clk) 

 begin 

  tx_w[511:480] <= new_w; 

  tx_w[479:0] <= rx_w[511:32]; 

 

  tx_state[`IDX(7)] <= rx_state[`IDX(6)]; 

  tx_state[`IDX(6)] <= rx_state[`IDX(5)]; 

  tx_state[`IDX(5)] <= rx_state[`IDX(4)]; 

  tx_state[`IDX(4)] <= rx_state[`IDX(3)] + t1; 

  tx_state[`IDX(3)] <= rx_state[`IDX(2)]; 

  tx_state[`IDX(2)] <= rx_state[`IDX(1)]; 

  tx_state[`IDX(1)] <= rx_state[`IDX(0)]; 

  tx_state[`IDX(0)] <= t1 + t2; 

 end 

 

endmodule 

 

 

/* 

* 

* Copyright (c) 2011-2012 fpgaminer@bitcoin-mining.com 

* 

* 

* 

* This program is free software: you can redistribute it and/or modify 

* it under the terms of the GNU General Public License as published by 

* the Free Software Foundation, either version 3 of the License, or 

* (at your option) any later version. 

* 

* This program is distributed in the hope that it will be useful, 

* but WITHOUT ANY WARRANTY; without even the implied warranty of 

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

* GNU General Public License for more details. 

* 

* You should have received a copy of the GNU General Public License 

* along with this program.  If not, see <http://www.gnu.org/licenses/>. 

*  

*/ 

 

// Double pipelined module 

 

`timescale 1ns/1ps 

 

module fpgaminer_top ( 

 input MAIN_CLK 

); 
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 // The LOOP_LOG2 parameter determines how unrolled the SHA-256 

 // calculations are. For example, a setting of 0 will completely 

 // unroll the calculations, resulting in 128 rounds and a large, but 

 // fast design. 

 // 

 // A setting of 1 will result in 64 rounds, with half the size and 

 // half the speed. 2 will be 32 rounds, with 1/4th the size and speed. 

 // And so on. 

 // 

 // Valid range: [0, 5] 

`ifdef CONFIG_LOOP_LOG2 

 localparam LOOP_LOG2 = `CONFIG_LOOP_LOG2; 

`else 

 localparam LOOP_LOG2 = 0; 

`endif 

 

 // No need to adjust these parameters 

 localparam [5:0] LOOP = (6'd1 << LOOP_LOG2); 

 // The nonce will always be larger at the time we discover a valid 

 // hash. This is its offset from the nonce that gave rise to the valid 

 // hash (except when LOOP_LOG2 == 0 or 1, where the offset is 131 or 

 // 66 respectively). 

 localparam [31:0] GOLDEN_NONCE_OFFSET = (32'd1 << (7 - LOOP_LOG2)) + 32'd1; 

 

 

 ////  

 reg [255:0] state = 0; 

 reg [511:0] data = 0; 

 reg [255:0] state2 = 0; 

 reg [511:0] data2 = 0; 

 reg [31:0] nonce = 32'h00000000; 

 reg [31:0] nonce2 = 32'h00000000; 

 

 

 //// PLL 

 wire hash_clk; 

 

 hashing_pll # ( 

  .INPUT_FREQUENCY (`MAIN_CLK_FREQUENCY), 

  .DIVIDE_BY (`MAIN_CLK_DIVIDE), 

  .MULTIPLY_BY (`MAIN_CLK_MULTIPLY) 

 ) pll_blk ( 

  .rx_clk (MAIN_CLK), 

  .tx_hash_clk (hash_clk) 

 ); 

 

 

 //// Hashers 

 wire [255:0] hash, hash2, hash3, hash4; 

 reg [5:0] cnt = 6'd0; 

 reg [5:0] cnt2 = 6'd500000; 

 reg feedback = 1'b0; 

 reg feedback2 = 1'b0; 

 

 sha256_transform #(.LOOP(LOOP)) uut ( 

  .clk(hash_clk), 

  .feedback(feedback), 

  .cnt(cnt), 

  .rx_state(state), 

  .rx_input(data), 

  .tx_hash(hash) 

 ); 

 sha256_transform #(.LOOP(LOOP)) uut2 ( 

  .clk(hash_clk), 

  .feedback(feedback), 

  .cnt(cnt), 

  .rx_state(256'h5be0cd191f83d9ab9b05688c510e527fa54ff53a3c6ef372bb67ae856a09e667), 

  .rx_input({256'h0000010000000000000000000000000000000000000000000000000080000000, 

hash}), 

  .tx_hash(hash2) 

 ); 
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// Added 

 sha256_transform #(.LOOP(LOOP)) uut3 ( 

  .clk(hash_clk), 

  .feedback(feedback2), 

  .cnt(cnt2), 

  .rx_state(state2), 

  .rx_input(data2), 

  .tx_hash(hash3) 

 ); 

 sha256_transform #(.LOOP(LOOP)) uut4 ( 

  .clk(hash_clk), 

  .feedback(feedback2), 

  .cnt(cnt2), 

  .rx_state(256'h5be0cd191f83d9ab9b05688c510e527fa54ff53a3c6ef372bb67ae856a09e667), 

  .rx_input({256'h0000010000000000000000000000000000000000000000000000000080000000, 

hash3}), 

  .tx_hash(hash4) 

 ); 

// 

 

 //// Virtual Wire Control 

 reg [255:0] midstate_buf = 0, data_buf = 0; 

 wire [255:0] midstate_vw, data2_vw; 

  

 reg [255:0] midstate_buf2 = 0, data_buf2 = 0; 

 wire [255:0] midstate_vw2, data2_vw2; 

 

 virtual_wire # (.OUTPUT_WIDTH(256), .INSTANCE_ID("STAT")) midstate_vw_blk (.clk 

(hash_clk), .rx_data (), .tx_data (midstate_vw)); 

 virtual_wire # (.OUTPUT_WIDTH(256), .INSTANCE_ID("DAT2")) data2_vw_blk (.clk (hash_clk), 

.rx_data (), .tx_data (data2_vw)); 

  

 virtual_wire # (.OUTPUT_WIDTH(256), .INSTANCE_ID("STAT")) midstate_vw_blk2 (.clk 

(hash_clk), .rx_data (), .tx_data (midstate_vw2)); 

 virtual_wire # (.OUTPUT_WIDTH(256), .INSTANCE_ID("DAT2")) data2_vw_blk2 (.clk (hash_clk), 

.rx_data (), .tx_data (data2_vw2)); 

 

 //// Virtual Wire Output 

 reg [31:0] golden_nonce = 0; 

  

 virtual_wire # (.INPUT_WIDTH(32), .INSTANCE_ID("GNON")) golden_nonce_vw_blk (.clk 

(hash_clk), .rx_data (golden_nonce), .tx_data ()); 

 virtual_wire # (.INPUT_WIDTH(32), .INSTANCE_ID("NONC")) nonce_vw_blk (.clk (hash_clk), 

.rx_data (nonce), .tx_data ()); 

 

 

 //// Control Unit 

 reg is_golden_ticket = 1'b0; 

 reg feedback_d1 = 1'b1; 

 wire [5:0] cnt_next; 

 wire [31:0] nonce_next; 

 wire feedback_next; 

  

 reg is_golden_ticket2 = 1'b0; 

 reg feedback_d1_2 = 1'b1; 

 wire [5:0] cnt_next2; 

 wire [31:0] nonce_next2; 

 wire feedback_next2; 

  

 

 assign cnt_next =  (LOOP == 1) ? 6'd0 : (cnt + 6'd1) & (LOOP-1); 

 // On the first count (cnt==0), load data from previous stage (no feedback) 

 // on 1..LOOP-1, take feedback from current stage 

 // This reduces the throughput by a factor of (LOOP), but also reduces the design size by 

the same amount 

 assign feedback_next = (LOOP == 1) ? 1'b0 : (cnt_next != {(LOOP_LOG2){1'b0}}); 

 assign nonce_next = feedback_next ? nonce : (nonce + 32'd1); 

 

 assign cnt_next2 =  (LOOP == 1) ? 6'd0 : (cnt2 + 6'd1) & (LOOP-1); 

 // On the first count (cnt==0), load data from previous stage (no feedback) 
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 // on 1..LOOP-1, take feedback from current stage 

 // This reduces the throughput by a factor of (LOOP), but also reduces the design size by 

the same amount 

 assign feedback_next2 = (LOOP == 1) ? 1'b0 : (cnt_next2 != {(LOOP_LOG2){1'b0}}); 

 assign nonce_next2 = feedback_next2 ? nonce : (nonce + 32'd1); 

 

  

 always @ (posedge hash_clk) 

 begin 

  midstate_buf <= midstate_vw; 

  data_buf <= data2_vw; 

 

  midstate_buf2 <= midstate_vw2; 

  data_buf2 <= data2_vw2; 

   

  cnt <= cnt_next; 

  feedback <= feedback_next; 

  feedback_d1 <= feedback; 

 

  cnt2 <= cnt_next2; 

  feedback2 <= feedback_next2; 

  feedback_d1_2 <= feedback2; 

 

  // Give new data to the hasher 

  state <= midstate_buf; 

  data <= 

{384'h0000028000000000000000000000000000000000000000000000000000000000000000000000000000000000800

00000, nonce_next, data_buf[95:0]}; 

  nonce <= nonce_next; 

 

  state2 <= midstate_buf2; 

  data2 <= 

{384'h0000028000000000000000000000000000000000000000000000000000000000000000000000000000000000800

00000, nonce_next2, data_buf[95:0]}; 

  nonce2 <= nonce_next2; 

 

  // Check to see if the last hash generated is valid. 

  is_golden_ticket <= (hash2[255:224] == 32'h00000000) && !feedback_d1; 

  is_golden_ticket2 <= (hash4[255:224] == 32'h00000000) && !feedback_d1_2; 

  if(is_golden_ticket) 

  begin 

   // TODO: Find a more compact calculation for this 

   if (LOOP == 1) 

    golden_nonce <= nonce - 32'd131; 

   else if (LOOP == 2) 

    golden_nonce <= nonce - 32'd66; 

   else 

    golden_nonce <= nonce - GOLDEN_NONCE_OFFSET; 

     

  end 

  else if(is_golden_ticket2) 

  begin 

   if (LOOP == 1) 

    golden_nonce <= nonce2 - 32'd131; 

   else if (LOOP == 2) 

    golden_nonce <= nonce2 - 32'd66; 

   else 

    golden_nonce <= nonce2 - GOLDEN_NONCE_OFFSET; 

  end 

 end 

 

endmodule 
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Appendix B: Analysis of Senior Project Design 

Project Title: 
FPGA Based Bitcoin Mining 

Student Name: 
Philip Dotemoto 

Student Signature: 
 

Advisor Name: 
John Oliver 

Advisor Initials: 
 

Summary of Functional Requirements: 
Marketing 

Requirements 
Engineering Specifications Justification 

1 The miner shall be able to retrieve header 
information from the bitcoin network and 
submit valid proof of work. 

The miner will need to be able to 
retrieve block header information to 
hash and send valid hashes back to the 
bitcoin network to receive any rewards. 

1 The bitcoin mining algorithm (double SHA-
256 hash) shall be implemented on a 
commercial off the shelf (COTS) FPGA. 

An FPGA with enough resources to 
implement the complete mining 
algorithm needs to be chosen. 

2 The miner shall use standard hardware 
interfaces and connectors. 

The miner will need to be easily setup 
by most users and those without 
extensive knowledge of the system. 

2 The miner shall not require the user to 
interface with the system at the hardware 
description level for basic setup. 

Users without prior knowledge of 
FPGAs should be able to use the miner. 

Marketing Requirements 
1. The system shall implement a bitcoin miner on an FPGA. 
2. The system shall be easy to interface and setup. 

 

Primary Constraints: 
The project constraints in this project are time and limitations with the available FPGA hardware. This 

project was limited in scope to studying the bitcoin mining protocol and verifying the operation of the 

Open-Source Bitcoin miner with the goal of identifying potential areas for improvement. With additional 

time, this project could be extended to try further modifications to the open source miner. The other 

main constraint in this project was the chosen Altera DE2-115 development board. While the Cyclone IV 

EP4CE115F29C7 has enough resources to implement the open source miner, it did not have enough 
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spare resources to place and route a double pipelined configuration. An FPGA with more logical 

elements would have been useful to test the pipelined design. 

Economics: 
While bitcoin mining has the potential to be profitable, the Altera DE2-115 development board does not 

offer enough performance for its price. The DE2-115 has an academic price of $300, and this cost would 

never realistically be recouped when considering the time and power the DE2-115 requires while 

mining. The DE2-115 does have numerous peripheral connections and devices that are not required for 

bitcoin mining. A simplified FPGA miner that includes only an FPGA, clock source, programmer, and 

power supply could be profitable. The price breakdown estimate is Cyclone IV EP4CE115F29C7: $469.37 

for a quantity of 36 = $13.03, support circuitry estimated: $10, printed circuit board: $30, assembly: $20. 

Parts and assembly alone could cost around $75. Selling an FPGA miner for around $100 might be 

profitable for the manufacture, but not the end user looking to make a profit mining bitcoins.   

Manufacturability: 
This project utilized the DE2-115 development board, but a comparable dedicated FPGA miner could be 

manufactured in large scale. 

Sustainability: 
The FPGA mining software is unsustainable when considering the energy and computation power 

required to mine bitcoins is wasted on validating transactions. The SHA-256 hash is desirable for a 

crypto currency, such as bitcoin, because it serves as a proof of work for valid blocks, but the 

computation power of the bitcoin network could potentially be repurposed to solve more useful 

computations.  

Ethical: 
One of the ethical concerns with bitcoins is their ability to be transferred anonymously between users. 

This has made bitcoin a popular payment for illegal substances and goods. Recently, the FBI shut down 

the Silk Road anonymous market because it was primarily a site to buy and sell drugs. Bitcoins were the 

only currency accepted on Silk Road because it is difficult to trace individuals with transactions. While 

bitcoin has its foundations in being a unregulated currency, its usage in illegal transactions highlights 

some of the disadvantages. Another case is the Mt. Gox bitcoin exchange which was a website for users 

to trade bitcoins for other currencies. When Mt. Gox shutdown and filed for bankruptcy many users 

were unable to withdraw bitcoins they had stored with Mt. Gox. Since bitcoins are unregulated, there is 

no government deposit insurance and many users lost their bitcoins.  

Development: 
The development of this project was based on the Open-Source Bitcoin Miner. Future improvements to 

the open source miner include pipelining the design to increase the hash rate, updating the getwork 

protocol to Stratum, and implementing an option for a gigabit Ethernet instead up USB 2.0 to increase 

throughput to the miner.  

 


