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Abstract

Chiral, smectic liquid crystal molecules align in layers and can be controlled by
the application of an electric field, yielding a variety of implications for the quality of
liquid crystal (LC) displays. Both the bulk electroclinic e↵ect (BECE) and surface
electroclinic e↵ect (SECE) impact the angle at which the molecules tilt with respect
to the layer normal in di↵erent areas of a LC cell due to dipole interactions. Certain
LC’s exhibit a continuous Sm-A* to Sm-C* transition, where the angles of the
surface and bulk molecules change continuously with electric field strength. Other
LC’s exhibit first order transitions where we see jumps in the tilt magnitude and
hysteresis at di↵erent values of the applied electric field. The di↵erence in angle
of the bulk and surface molecules in both of these situations causes discrepancies
in the layer spacing within the LC cell. These discrepancies lead to frustrations
within the cell that can be quantified by strain. These frustrations can be relieved
in a number of ways, however the method of relief may lead to negative impacts
on the alignment quality of the display itself. Here, we first investigate the BECE
and SECE separately and then later consider the e↵ects simultaneously. We then
present qualitative representations of this phenomenon and aim to explain significant
decreases in alignment quality seen experimentally for particular values of applied
electric field.
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1 Liquid Crystals: An Introduction

While we encounter liquid crystals on a daily basis - in our smart phones, computer
screens, TVs, etc. - not many people truly appreciate the intricacy of this special phase
of matter. The phases of matter familiar to most are the solid, liquid, and gas, however
these are certainly not the only phases of matter. Liquid crystals are an intermediate
phase present in certain materials between the solid and liquid phase. They display an
intermediate amount of order. Molecules within a solid are essentially fixed in place and
fixed in orientation. The molecules within a liquid, however, are not fixed in place and
are free to move about with whichever orientation they prefer. Liquid crystals are able
to preserve the orientational order of a solid but are similar to a liquid in that they lack
significant positional order and are free to move about. The presence of orientational
order within a liquid crystal is due to their elongated molecular structure. This elongated
structure causes the molecules to, on average, align their long axes in the same direction.
This average orientation can be described by an arrow called the director, which points
along the direction of preferred orientation [1]. Refer to Fig. (1) for clarity.

Figure 1: Liquid crystals are an intermediate phase of matter between a solid and liquid.
They display orientational but not positional order.

There are many di↵erent types of liquid crystals. The type we will be concerned with in
this paper are thermotropic liquid crystals, which occur in specific temperature ranges.
These types of liquid crystals often display di↵erent subphases within the liquid crystal
phase based on temperature as well. In the nematic phase, the molecules display ori-
entational but no positional order. If the temperature is lowered, however, the smectic
phase can be induced. In the smectic phase, the molecules tend to align along the same
direction and they tend to organize themselves in layers, therefore displaying slight po-
sitional order [1]. Fig. (1) shows a smectic liquid crystal. It is the intricacies of the
smectic phase that will be studeied in detail over the course of this paper.
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2 Smectic-A to Smectic-C Transition

Figure 2: On the left is a visual depiction of a liquid crystal in the Sm-A phase and on
the right is a visual depiction of the Sm-C phase. On the far right, there is a geometrical
interpretation of the order parameter vector c.

Smectic liquid crystals in the A-phase (Sm-A) have an average molecular tilt of zero with
respect to the z-axis. A C-phase smectic (Sm-C) occurs when the average molecular tilt
is non-zero. THis transition can be induced by a temperature decrease below a critical
temperature in the cell containing the molecules. A schematic of this transition can be
seen in Fig. (2). The order parameter used to characterize the tilting of the molecules is
the vector ~c, which is the projection of the tilt on to the layer and is given by sin(✓). The
actual tilting of the molecule with respect to the z-axis is thus given by ✓ = sin�1(c).
The total free energy in a liquid crystal cell is modeled using the Landau Free Energy
Equation:

F =

Z
�x�y�z[

1

2
r(T )c2 +

1

4
uc4 +

1

6
vc6] = V f(c), (1)

where V is the volume of the system and f(c) is used to model the free energy density
of liquid crystal molecules in the absence of an electric field and is the following:

f(c) =
1

2
r(T )c2 +

1

4
uc4 +

1

6
vc6. (2)

The parameter r denotes a function of T which is proportional to the percentage above
the transtition temperature. r(T ) = A⌧(T ) where ⌧(T ) = (T � Tc)/Tc and Tc is the
transition temperature. A is a proportionality constant. It is this parameter that directly
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a↵ects the tilting of the molecules when temperature is varied, as a bifurcation in the
system’s stability will occur when temperature is lowered beyond Tc. In this section,
we use r to describe the behavior of the system, but later on we will use ⌧ for a more
qualitative, experimental investigation. The tilting is represented by the order parameter
c where c 6= 0 characterizes the Sm-C transition. In a more advanced analysis, the
magnitude and direction of the vector ~c is accounted for, but for our purposes we analyze
only the magnitude of the tilt. The parameter u dictates which type of transition will
occur and how the fixed points of the system will bifurcate. When u > 0, a continuous
transition will occur. When u < 0 a first order transition will occur. We use this form
of the energy for a number of reasons. Since energetically it does not matter which way
the molecules tilt with respect to the z-axis, we do not include odd powers of c to avoid
the impact of sign changes. We only include enough even powers to stabilize the system
so that the tilt settles to a finite value. When u is negative, we must include up to 6th
order. When u is positive, the sixth order term can be neglected.

An important implication of the Sm-A to Sm-C transition is the impact that it has on
the preferred layer spacing of the system. In the Sm-A phase, the molecules have zero tilt
and thus prefer a larger layer spacing. In the Sm-C phase, the molecules are tilted with
respect to the layer normal which results in a smaller preferred layer spacing throughout
the whole system. This phenomenon is illustrated in Fig. (3). The implications of these
preferred layer spacing changes in a Sm-A to Sm-C transition will be investigated in
further detail towards the end of this paper.

Figure 3: The molecules in a liquid crystal cell have a smaller preferred layer spacing dC
in the Sm-C phase than the larger spacing in the Sm-A phase, dA.

2.1 Analyzing Fixed Points

By analyzing the fixed points of the system, we can gain insight into the stability changes
of the tilting as the temperature fluctuates. As f is an energy, we can obtain an expres-
sion for ċ using ċ = �df

dc :
ċ = �(rc± uc3 + vc5),
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where the + corresponds to a value of u > 0 and the � corresponds to a value of
u < 0.

2.1.1 Continuous Transition

Starting with the more simple case where u > 0, we can solve for the fixed points of the
system by setting ċ = 0 and solving for c⇤. As stated above, the 6th order term can be
ignored since it is working in unison with the 4th order term. Thus, ċ becomes

ċ = �rc⇤ � uc3⇤ = 0.

Solving this equation yields the following fixed point values of c⇤:

c⇤ = 0, c⇤ = ±
p

�r/u.

The fixed point at c⇤ = 0 will exist for all values of r but is only stable for r > 0, and
the fixed points at c⇤ = ±

p
�r/u will only exist for values of r < 0, since u > 0. For

r > 0, the origin is the only stable fixed point, as seen in Fig. (4).

This can be further seen in Fig. (5) by plotting ċ vs. c and looking at where the graph
crosses the origin, or where c = c⇤ . For r > 0, the graph crosses the x-axis only once
at the origin. Since the slope is negative at this point, this means that there is a stable
fixed point at this value of c. When r < 0, the graph crosses the x-axis at three separate
points, once at the origin and once on either side. The graph has negative slope where it
crosses the x-axis not at the origin, corresponding to the wells in Fig. (4) and the fixed
points of c⇤ = ±

p
�r/u. As soon as r becomes negative, the fixed point at the origin

becomes unstable as seen by the positive slope at this point.

The situation where u > 0 is a continuous phase transition. Consider dialing down r from
a positive value to a negative value. At r = 0, a supercritical pitchfork bifurcation occurs
and immediately it becomes more energetically favorable for the molecules within the
liquid crystal cell to begin tilting. Under these circumstances, the nonzero fixed points
are stable. The value of r where the molecules begin to tilt is called the threshold value
of r, and it corresponds to the transition temperature Tc. In this case the threshold
value is r = 0 and the behavior can be seen in the bifurcation diagram in Fig. (6).In
general, the system as a whole will be only in the Sm-A phase for a value of r > 0 and
only in the Sm-C phase for r < 0. This is illustrated simply by the phase diagram in
Fig. (7).

2.1.2 First Order Transition

It is now time to look at the more complicated case, where u < 0. Under these circum-
stances, changing the value of r has an even more radical e↵ect. This results in a first
order transition where the molecules in the liquid crystal cell will jump to a preferred
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Figure 4: Above are the graphs of the free energy vs. the tilting of the molecules for
di↵erent values of r(T ). For graphical purposes, u = +1. On top is the graph of f when
r = 0, which only has one possible angle of tilt at the origin. On the bottom is the
graph of f when r < 0, or T < Tc. In this case, there are three possible values of c⇤,
corresponding to the three fixed points found earlier. These fixed points are the extrema
of the energy function.

value of tilt at a threshold value of r. In this situation, we are no longer able to ignore
the sixth order term so equation (2.1) now becomes:

ċ = �rc+ uc3 � vc5.

where v > 0. As before, the equation for ċ must be set equal to zero and then the fixed
points of the system can be solved for.

ċ = �rc⇤ + uc3⇤ � vc5⇤

= c⇤(�r + uc2⇤ � vc4⇤) = 0.

This yields c⇤ = 0 and �r+ uc2⇤ � vc4⇤ = 0, giving one fixed point at c⇤ = 0 and allowing
us to solve for the next fixed points:
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Figure 5: This figure shows ċ vs. c when u = +1. When ċ = 0, the values of c⇤
are obtained. The slope at each point where the graph crosses the x-axis indicates the
stability of the fixed point. For r < 0, there are two stable fixed points and one unstable.
For r > 0, there is only one stable fixed point at the origin.

Figure 6: The fixed points plotted as a function of r for the continuous phase transition.
The blue lines correspond to stable fixed points and the red corresponds to unstable fixed
points. The value of r where the bifurcation occurs is directly related to the transition
temperature, Tc, of the liquid crystal.

�r + uc2⇤ � vc4⇤ = 0

'⇤ = c2⇤

�r + u'⇤ � v'2
⇤ = 09



Figure 7: For a value of r > 0, the system can only be in the Sm-A phase. To be in the
Sm-C phase, r must be less than zero.

Applying the quadratic formula yields:

'⇤ =
u ±

p
u2 � 4rv

2v
.

Since '⇤ = c2⇤ then,

c2⇤ =
u ±

p
u2 � 4rv

2v
,

c⇤ = ±

s
u ±

p
u2 � 4rv

2v
.

The result of this calculation is the appearance of five possible fixed point values of c⇤
for u < 0. However, by changing the value of r, some of the fixed points will appear or
disappear and their stability will change. For clarity, each fixed point will be discussed
with respect to r in Table (1) and their changing stability will be addressed in Fig. (9).
In order to picture this situation graphically, as was done for the continuous transition, it
is important to look at the free energy vs. c graphs for varying values of r. Refer to Fig.
(8). The fixed points for each value of r correspond to the minimums and maximums
of the energy. This idea is further seen in Fig. (9), where ċ vs. c is plotted. These are
the phase portraits of the system. Conclusions can also be made about the changing
stability of the fixed points. By looking at where the phase plots cross the x-axis, the
slope at each fixed point can be determined. If that slope is negative, that fixed point
is stable. If the slope is positive, the fixed point is unstable.

Due to the appearance and disappearance of fixed points in the first order transition, it
is useful to investigate the bifurcation diagram seen in Fig. (10). As r is dialed down,
we see the appearance of four new fixed points at rc or at the transition temperature Tc.
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Figure 8: This figure shows the free energy vs. c for varying r values, as discussed in
Table (1). For simplicity, u = �1 and v = 1. The peaks and wells of the free energy
correspond to the individual fixed points of the system. By varying r, it is shown that
fixed points appear and reappear.
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Figure 9: This figure shows ċ vs. c for the first order transitions. For simplicity, u = �1
and v = 1. The points at which the graphs cross the x-axis correspond to the fix points
of the system for that value of r. The stability is given by the slope of the line at those
points. Negative slope corresponds to stable fixed points and positive to unstable fixed
points.
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r < 0
q

u�
p
u2�4rv
2v not real. Fixed points are c⇤ = ±

q
u+

p
u2�4rv
2v and c⇤ = 0.

r = 0 3 Possible Fixed Points: c⇤ = 0,±
p

u
v

0 < r < u2

4v 5 Possible Fixed Points: c⇤ = 0,±
q

u±
p
u2�4rv
2v

r = u2

4v 3 Possible Fixed Points: c⇤ = 0,±
p

u
2v

r > u2

4v

p
u2 � 4rv is not real. Only one possible fixed point: c⇤ = 0

Table 1: The above table shows the available fixed points for the first order transition as
the parameter r varies. As one can see, fixed points emerge and are annihilated as r is
ramped up and down. The value of u2

4v is known as rc, and is the r value corresponding
to the critical temperature. Further clarification can be seen graphically in Fig. (8 and
9.

In contrast to the continuous transition discussed above, the molecules will experience
an instantaneous jump in tilt from zero to nonzero at some critical temperature, char-
acteristic of a subcritical pitchfork bifurcation. As seen in the figure, there is a region
between r = 0 and r = r(Tc) where two di↵erent stable states coexist. This allows for
the possibility of hysteresis, meaning that the transition may not always occur at an
exact value of Tc, but will depend on the initial conditions of the system.

To better understand the behavior of this hysteresis, it is useful to think about the phase
transition in a one dimensional phase diagram, seen in Fig. (11). For su�ciently large
values of r, the system is in an entirely Sm-A phase. Once we reach the critical value
of rc, two new minimums appear (reference Fig. (8)). Although these two minimums
appear at this critical value, they do not become energetically favorable until a certain
threshold value, rT , is reached and thus the system will remain in the Sm-A phase. At
the threshold value, the free energy of these two minimums drops lower than the free
energy of the minimum at c = 0, and it now becomes energetically favorable for the
system to be in the Sm-C phase. The minimum at c = 0 does not disappear until r < 0,
which leads to some interesting behavior.

For 0 < r < rc, it is possible for the system to be in either the Sm-A or the Sm-C
phase. Although the Sm-C minimums have a larger free energy when r > rT , a small
perturbation to the system could give the system enough energy to move over the “hump”
and into a tilted state from the non-tilted state at c = 0. This would put the system
in a Sm-C phase before reaching the actual threshold value. Similarly, as r is dialed
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Figure 10: The fixed points plotted as a function of r for the first order phase transition.
For simplicity, u = �1 and v = 1. The blue lines correspond to stable fixed points
and the red corresponds to unstable fixed points. The value of r where a subcritical
pitchfork bifurcation occurs is directly related to the transition temperature, Tc, of the
liquid crystal.

Figure 11: A one dimensional phase diagram for the first order transition showing the
behavior of the system as r changes.

below rT , unless the system experiences the same type of perturbation it may not have
enough energy to go over the “hump” and into the lower energy tilted phase. This would
mean the system would remain in the Sm-A phase even below the threshold value. To
get a better visual idea of these “humps”, reference back to the free energy diagrams
for di↵erent values of r in Fig. (8). The ability of the system to “jump” from one
energy state to another at di↵erent temperature values (di↵erent values of r) is known
as hysteresis. An important analogy to this behavior is the process of supercooling.
The temperature of water can be lowered beyond the freezing point, yet still remain in
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a liquid state. Like the liquid crystal, it must be given an extra ”boost” of energy in
order to jump into the lower energy solid state from the liquid state. However, if the
temperature is lowered very slowly, and there is no presence of any sort of energetic
perturbations, the liquid will remain past the freezing point. This is similar to the liquid
crystal remaining in the Sm-A phase all the way down to r = 0.

Throughout the previous section, we have seen that smectic liquid crystals will undergo a
phase transition from an average tilt of zero, to a nonzero tilt throughout. This happens
by lowering the temperature of the system to some value of Tc. In a continuous phase
transition, we see a supercritical pitchfork bifurcation at this critical point. The tilt
of the molecules gradually increases as we lower temperature past this point. In a first
order transition, we see the potential for hysteresis and a spontaneous jump in the tilting
of the molecules near Tc, as is characteristic of a subcritical pitchfork bifurcation. In
the next section, we will see how the application of an electric field can induce similar
tilting behaviors in a liquid crystal cell while temperature is held constant. We will do
this in a more quantitative way, whereas this section was meant to introduce the basic
mathematical behavior of these phase transitions.

3 The Bulk Electroclinic E↵ect

Certain types of liquid crystals are chiral and contain a permanent dipole moment within
their molecular structure. This characteristic results in ferroelectricity, which is a prop-
erty of materials that allows an electric polarization to be induced by an external electric
field. Due to these properties of the liquid crystal molecules we study, it is possible to
induce the Sm-A* to Sm-C* (where * denotes the chirality) transition by applying an
external electric field to a liquid crystal cell while maintaining a constant temperature
above the critical temperature Tc. This is illustrated in Fig. (12).

When liquid crystal molecules are inserted between two electrodes, they form layers. In
the absence of an applied electric field, the molecules will be in the Sm-A phase and no
tilting will be present. As seen in Fig. (13), it is possible to apply an electric field to the
right or the left. If we rotate the cell 90 degrees, we see that applying a field into or out
of the page results in a tilt to the right or left respectively, a process called electro-optical
switching. In this scenario, the bulk of the cell is now in an induced Sm-C phase and
the average molecular tilt is no longer zero. The basic analysis of section 2 contained
simple values for most of the parameters in order to simply illustrate the behavior of the
system. From this section forward the behavior will be qualitatively similar, however
we will use common experimental values for the parameters in order to compare our
theoretical results to experimental results. In addition, plots will be made in terms of ✓
rather than c by the simple substitution of ✓ = arcsin(c).

Due to the presence of the applied external electric field, it is necessary to introduce
a new term to our original Landau Free Energy equation given in equation (1). This
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Figure 12: A Sm-A to Sm-C transition can be induced by applying an external electric
field to a liquid crystal cell due to the ferroelectric properties of the chiral materials.
This transition can occur while maintaining a constant temperature above Tc.

Figure 13: By applying an electric field into a cell from the left or right, it is possible
to induce a tilting in the bulk of the liquid crystal molecules thus transitioning from a
Sm-A to a Sm-C phase. Depending on which way the field is applied, the molecules will
tilt in di↵erent directions, which is known as electro-optical switching.

equation now becomes:

F =

Z
�x�y�z[

1

2
A⌧(T )c2 +

1

4
uc4 +

1

6
vc6 �D�Ec] = V f(c), (3)

where D� is the coupling strength between the electric field E and the tilting of the
molecules, given by the order parameter c, as before. The free energy density is now
given by:

f(c) =
1

2
A⌧(T )c2 +

1

4
uc4 +

1

6
vc6 �D�Ec. (4)
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We can now minimize equation (4) with respect to c to determine the preferred tilt of
the system for di↵erent values of E. Upon minimization, we obtain:

E =
1

D�
(A⌧(T )c+ uc3 + vc5). (5)

3.1 Continuous BECE

Equation 5 allows us to graph ✓B vs. E for multiple values of u > 0 at a value of ⌧ = 0.1
or 1% above the transition temperature. This can be seen in Fig. (14). As stated above,
a system with a u value larger than zero will display a continuous Sm-A* to Sm-C*,
therefore as we increase or decrease the value of external field E, there will only be one
value of preferred tilt within the system. It has been established that many continuous
Sm-A* to Sm-C* transitions occur at or near a tricritical point. In this scenario, the
tricritical point occurs at u = 0, where the transition changes from continuous to first
order. Therefore, u is a measure of how far the system is from this tricritical point. Thus,
as u is decreased towards zero we see an increase in the susceptibility of the system and
the electric field E has a greater e↵ect on the tilt of the system.

Figure 14: ✓B vs. E curves at a reduced temperature ⌧ = 0.1 for di↵erent values of u.
The susceptibility of the system increases as we approach tricriticality at u = 0.
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3.2 First Order BECE

Figure 15: ✓B vs. E curves for di↵erent values of reduced temperature ⌧ at a value
of u = �0.536 ⇥ 106 J/ (m3 rad2). For large ⌧ the curve is single valued, but for
⌧1st < ⌧ < ⌧CB the curve is multivalued, thus the system will jump between high and
low tilts.

The first order Sm-A* to Sm-C* transition is much more complicated to analyze. The
✓B vs. E curves for di↵erent values of ⌧ > ⌧1st and a u value of �0.536 ⇥ 106 J/ (m3

rad2) are shown in Fig. (15). We ensure ⌧ > ⌧1st so that the system is in the Sm-A*
phase before the application of an external field. For su�ciently large values of ⌧ > ⌧CB,
the curve is still single valued. The Sm-C* to Sm-C* transition will occur continuously.
At values of ⌧1st < ⌧ < ⌧CB the situation is more complicated. In this situation, the
curve becomes multivalued. This means that at certain values of electric field, there are
two possible values of tilt, a low tilt cBL and a high tilt cBH . As the electric field is
ramped up from zero, the system will initially be in the low tilt state. Once a threshold
value of electric field ET is reached, the system will jump to the higher tilt state which
is now more energetically favorable.

It is possible to find the temperature dependence of ET (⌧) by recognizing that the bulk
tilt will jump from cBL to cBH (or vice versa) when the condition f(cBL) = f(cBH)
is satisfied, where f(cB) is given by equation (4). This allows for the constuction of a
phase diagram in E � ⌧ space which can be seen in Fig. (16). The solid middle line
corresponds to a line of Sm-C* - Sm-C* transitions from low to high tilt for each value
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Figure 16: A phase diagram in E� ⌧ space for the bulk tilt of a system displaying a first
order transition. The solid blue line ET (⌧) corresponds to a line of Sm-C* to Sm-C*
transitions from lower tilt to higher tilt. The upper and lower dashed lines represent the
metastability boundaries, EU and EL respectively. Between these lines the bulk tilt is
multivalued and may display hysteresis.

of ⌧ . ET (⌧) spans from ⌧1st to ⌧CB, which is the width of the multivalued region. The
upper and lower dotted lines correspond to the upper and lower electric field values (EU

and EL respectively) for which the multivalued region begins and terminates at each
value of ⌧ . Within this multivalued region, both high tilt and low tilt states are possible.
Above the ET (⌧) line, the high tilt state is energetically favorable while below ET (⌧)
the low tilt state is energetically favorable. It isn’t until EU or EL, however, that the
system will actually be forced to move in to the high/ low tilt state respectively. In the
absence of small energy fluctuations, the system will display a hysteresis loop equal to
the width of the multivalued region.

4 The Surface Electroclinic E↵ect

When a liquid crystal is in contact with a surface, the interaction creates a localized ef-
fective field which causes behavior similar to the BECE at the surface. This phenomenon
is called the surface electroclinic e↵ect (SECE). The surface electroclinic e↵ect is present
whenever a liquid crystal is in contact with a surface regardless of whether or not an
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external electric field is applied. This is due to the coupling of the dipole moments of
the molecules to the treatment of the surface. The SECE by itself creates a localized
tilting of the molecules at the surface, which relaxes back to align along the layer normal
in the bulk. A schematic of this can be seen in Fig. (17). The direction of the tilting at
the surface, cS , is given by the director n̂. This direction is chosen by rubbing the glass
plates with a material that creates grooves and is called the ”rubbing direction” R̂. At
the surface, n̂ and R̂ are parallel but become disaligned in the bulk.

Figure 17: When a liquid crystal is in contact with a surface, a coupling occurs between
the surface and the dipole moments of the molecules, which induces a non-zero tilt cS
at the surface. This occurs in the absence of an applied electric field and the molecules
will relax back to align along the layer normal in the bulk.

Since the molecules are tilted at the surface and relax back as we move into the bulk
of the cell, we must add an extra position-dependent term into our free energy density
as well as the e↵ective surface field term to our total free energy. In the absence of an
applied electric field, the free energy of our system now becomes:

F

A?
=

Z
@x[

1

2
A⌧(T )c2 +

1

4
uc4 +

1

6
vc6 +

1

2
K

✓
dc

dx

◆2

] (6)

�Vsec(x = 0),

where we take Vse to be w, the e↵ective surface field which is proportional to a surface
voltage (Vs) and the enantiomeric excess of the system (e). K is the twist elastic constant
andA? is the surface area of the glass plate of the cell and is used to simplify the integrals.
Since the tilt of the system is now dependent on x, we must minimize equation (4) in
order to find the tilt profile c(x).
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4.1 The Euler - Lagrange Equation

The Euler-Lagrange equation is a very important aspect of the calculus of variations
and we will use it here in order to find the tilt profile of our system. This will allow us
to extract important information about the behavior of the surface electroclinic e↵ect.
The integral in equation (4) is of the form:

F

A?
=

Z x=1

x=0
f(x, c(x), c0(x))dx� wc(x = 0), (7)

and satisfies the conditions c(x = 0) = cS and c(x = 1) = cB, the tilt at the surface
and in the bulk respectively. In the case of only the surface electroclinic e↵ect, the
molecules relax back to align along the layer normal as we extend into the bulk, which
means cB = 0. We keep cB throughout the following analysis, however, so that the same
analysis can be applied to a more complicated situation later on. For an integral of this
form, the Euler - Lagrange equation is as follows:

@f

@c
=

d

dx


@f

@c0

�
, (8)

where

f =
1

2
A⌧(T )c2 +

1

4
uc4 +

1

6
vc6 +

1

2
K

✓
dc

dx

◆2

. (9)

Since f has no explicit dependence on x, we are able to use the Beltrami identity, which
is associated with the Euler- Lagrange equation. The Beltrami identity is:

f �
✓
dc

dx

◆✓
@f

@c0

◆
= H (10)

where H is just a constant. By applying this formula to equation (9) we obtain:

fu(c)�
1

2
K

✓
dc

dx

◆2

= H (11)

where fu(c) or “f uniform” is the free energy density when the tilt is uniform given
in equation (2). We can now use the fact that in the bulk of the cell, dc

dx = 0 and
fu(c) = fu(cB) to rewrite equation (11) as:

fu(c)�
1

2
K

✓
dc

dx

◆2

= fu(cB). (12)

21



By solving for dc
dx , taking the negative root (since tilt decreases into bulk), and solving

the separable di↵erential equation, we obtain:

x =

Z cS

c(x)

dcq
2
K [fu(c)� fu(cB)]

. (13)

This would allow us to obtain the tilt profile c(x), however we first need to know the
preferred tilting at the surface, cS . In order to find the cS that minimizes the equation,
we must go back and apply the Euler Lagrange equation to equation (4). If we then do
a change of variables and minimize, we obtain the useful expression:

fu(cS) = fu(cB) +
w2

2K
. (14)

4.2 ✓S vs. w

In the absence of an applied electric field, fu(cB) = 0 and equation (14) becomes signifi-
cantly more simple. This expression now allows us to obtain plots for the w dependence
of ✓S . For the continous case, as seen in Fig. (18), we have plotted ✓S vs. w for three
di↵erent values of u at one percent above the transition temperature. As was the case
with the bulk tilt, we can see that the surface tilt increases continuously with w and is
more susceptible the closer we are to the tricritical point at u = 0. For the first order
case, as seen in Fig. (19), we have plotted ✓S vs. w for three di↵erent values of ⌧ and
used u = �0.536⇥ 106 J/ (m3 rad2). For su�ciently large values of ⌧ the curve remains
single valued. When we start to decrease ⌧ towards the transition temperature, we see
that our curves become multivalued giving us the possibility of surface tilt jumping and
hysteresis at a certain value of w = wT .

As with the BECE, it is possible to obtain a state map in w�⌧ space that demonstrates
the temperature dependence of wT for a first order transition. This is done by compar-
ing the free energies of the low and high tilt states and finding where they are equal.
Although a similar process was used, the need to integrate the spatially dependent free
energy of the SECE makes this state map a little more di�cult to obtain. It can be
seen in Fig. (20). While the solid line represents wT (⌧), the dashed lines correspond
to the upper and lower metastability limits wU and wL. Between these boundaries, the
surface tilt is multivalued and may display hysteresis. w can be varied by changing the
enantiomeric excess of the system, however varying the enantiomeric excess also impacts
the transition temperature. This complication is discussed in further detail in our pub-
lication [2]. In this paper, varying w is understood to correspond to varying Vs via the
treatment of the surface rather than the enantiomeric excess.
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Figure 18: ✓S vs. w curves at a reduced temperature ⌧ = 0.1 for di↵erent values of u.
The susceptibility of the system increases as we approach tricriticality at u = 0.

Figure 19: ✓S vs. w curves for di↵erent values of reduced temperature ⌧ at a value
of u = �0.536 ⇥ 106 J/ (m3 rad2). For large ⌧ the curve is single valued, but for
⌧1st < ⌧ < ⌧cs the curve is multivalued, thus the system will jump between high and low
tilts.
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Figure 20: A phase diagram in w � ⌧ space for the surface tilt of a system displaying a
first order transition. The solid blue line wT (⌧) corresponds to a line of Sm-C* to Sm-C*
transitions from lower tilt to higher tilt. The upper and lower dashed lines represent the
metastability boundaries, wU and wL respectively. Between these lines the bulk tilt is
multivalued and may display hysteresis.

5 Field Control of the SECE

After studying both the BECE and the SECE independently, we wanted to theoretically
investigate whether or not we can control the surface tilt by applying an external electric
field. An experimental group at the University of Colorado found that it is possible to
vary the amount of surface tilt by applying an electric field opposite the surface field w
as the smectic layers are forming [3]. Here we present the theory.

In order to model both the surface and bulk electroclinic e↵ects together, we must now
introduce the electric field term from equation (3) into equation (4). This gives us our
total Landau free energy:

F
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=

Z
@x[

1

2
A⌧(T )c2 +

1

4
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1

6
vc6 �D�Ec+

1

2
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✓
dc

dx

◆2

] (15)

�Vsec(x = 0),

The analysis of the previous section still holds, however fu(c) is now given by equation
(4), since E 6= 0 and we can no longer ignore the electric field term. We must now use
equation (14) in its entirety since cB is no longer zero.
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5.1 Continuous Transition

In order to find the electric field dependence of the surface tilt, extensive numerical
computation was done. We fixed the e↵ective surface field at a negative value of w for
experimental comparison. For a large array of possible bulk tilt values, we obtained
the corresponding electric field values (E) and bulk free energy densities (equation (4)).
Choosing cS > cB, we looped through an array of possible cS values in order to find the
one which satisfies equation (14). Through this process we were able to obtain an array
of surface tilts and their corresponding electric field value, plotted in figure (21).

Figure 21: ✓S vs. E for a continuous transition with w < 0. Both ✓S and ✓B increase
continuously with the application of an external electric field. The value of electric field
that eliminates the surface tilt completely was found to be ⇡ 5.4⇥ 106 V/m.

As seen from Fig. (21), both the bulk and surface tilts increase and decrease continuously
with electric field variations. Since w < 0, the surface tilt is negative for E = 0. At a
value E0 ⇡ 5.4⇥ 106 V/m. the surface tilt has been completely eliminated.

5.2 First Order Transition

We were also able to obtain ✓S vs. E for a first order transition using a similar numerical
method. As with the bulk tilt, the surface tilt also has the potential to jump and display
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hysteresis for certain values of electric field. The results are plotted in Fig. (22) for
three di↵erent values of ⌧ . As seen from Fig. (16) and (20), ⌧cs < ⌧cb which means
that the surface tilt will become discontinuous at a lower temperature than the bulk
tilt. In Fig. (22a), ⌧ > ⌧cb and both ✓S(E) and ✓B(E) are continuous. In Fig. (22b),
⌧cs < ⌧ < ⌧cb. Here we see that the bulk tilt has become discontinuous and the surface
tilt remains continuous, however there is a kink in ✓S(E) where the bulk tilt jumps.
When dealing with this situation numerically, it is important to ensure that the lowest
energy ✓B value is used to determine ✓S . In Fig. (22c), ⌧ < ⌧cs and we see that both
both ✓S(E) and ✓B(E) are discontinuous. We must be careful to use the lowest energy
✓B in this situation as well.

Figure 22: ✓S vs. E for a first order transition and w > 0.

6 Layering E↵ects

6.1 A Qualitative Analysis of the Continuous Transition

A significant consequence of being able to control the surface tilt with an applied electric
field is that the tilt of the molecules at any given value of E will di↵er between the surface
and the bulk. This can be seen above in Fig. (21) where we plot ✓S and ✓B vs. E for a
continuous transition. Similar to the concept first introduced in section 2, the tilting of
the molecules in the bulk or at the surface will result in a di↵erent preferred layer spacing
in the bulk or at the surface. This preferred layer spacing is given by d = d0cos(✓) where
d0 is the layer spacing at zero tilt. For w < 0, it is useful to investigate di↵erent regions
based upon the value of applied electric field in order to further understand what is
going on in terms of the layers. It is also important to note that the following analysis
will consider the e↵ect of the tilting on the layer spacing and not the e↵ect of the layer
spacing on the molecules. A full analysis would consider both of these e↵ects equally,
however that is beyond the scope of this paper.
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6.1.1 E  0

When E  0, the magnitude of the tilt at the surface is greater than the magnitude of
tilt in the bulk. This can be seen both two-dimensionally and three-dimensionally in
Fig. (23). In this scenario, the preferred layer spacing at the surface is smaller than
the preferred layer spacing in the bulk. Since the layers first form at the surface, this
di↵erence in spacing creates a region of compressive strain with the liquid crystal cell.
In order to relieve this compressive strain, the cell will remove layers in the bulk via edge
dislocations and thus a larger average spacing will be present in the bulk of the cell. A
schematic of this situation can be seen in Fig. (24). Edge dislocations occur close to the
surface and thus result in a relatively well-aligned bulk within the cell.

Figure 23: When E  0, the magnitude of ✓S is greater that the magnitude of ✓B. This
means that the preferred layer spacing is smaller at the surface and creates a region of
compressive strain.

6.1.2 E � E0

As stated above, E0 is the value of electric field for which the surface tilt has been
completely eliminated. For field values larger than this special value, the magnitude of
the surface tilt ✓S is smaller than the magnitude of the bulk tilt ✓B. This means that
the preferred layer spacing at the surface is now larger than the preferred layer spacing
in the bulk, which results in a region of dilative strain. A schematic can be seen in Fig.
(25). Dilative strain can also be relieved by the formation of edge dislocations, however
now the edge dislocations are present to form new layer within the bulk. This results
in a smaller average layer spacing in the bulk, where the molecules experience a higher
amount of tilting. In addition to edge dislocations, however, dilative strain can also
be relieved by a buckling of the layers. This undulation of the layers results in a larger
average layer spacing and is thus able to relieve the strain. Both of these possibilities are
illustrated in Fig. (26), however layer buckling tends to be more energetically favorable
in this scenario [4].
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Figure 24: Compressive strain can be relieved via edge dislocations, which remove layers
as we extend into the bulk, allowing for a larger average layer spacing to account for the
less tilted bulk molecules.

Figure 25: When E � E0, the magnitude of ✓S is smaller that the magnitude of ✓B.
This means that the preferred layer spacing is larger at the surface and creates a region
of dilative strain.

6.1.3 0 < E < E0

When the applied electric field falls within this region, the situation gets a little more
complicated. The molecules at the surface and in the bulk now tilt in opposite directions
since a slightly positive field will make the surface tilt less negative and the bulk tilt
positive. This means that the system will have a region of compressive strain at smaller x
and a region of dilative strain at larger x. This is shown schematically in Fig. (27). Since
compressive strain can only be relieved by dislocations, we expect these to occur in the
region of smaller x while in the dilative region we could potentially have dislocations or
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Figure 26: Dilative strain can be relieved by adding layers via edge dislocations as we
extend into the bulk or by the buckling of the layers in the bulk, which creates a larger
average layer spacing in the bulk.

buckling. Both of these scenarios are shown in Fig. (28). Determining which of these is
energetically favorable is beyond the scope of this paper, however based on experimental
results, we suspect that it will be dislocations only. We call this the intermediate region
and will make a few more comments on its significance in the following section.

Figure 27: When 0 < E < E0, ✓S and ✓B have opposite signs, thus causing a region of
compressive strain at smaller x and a region of dilative strain at larger x.

7 Strain: Quantifying Layer E↵ects

The previous section investigates the qualitative e↵ects of di↵erences in surface and
bulk tilting. This section will introduce a quantitative analysis by defining and looking
at the strain in cells that display this behavior. In doing this we hope to explain the
significant drop o↵s in alignment quality seen experimentally in regions of dilative strain
[3]. This experimental drop o↵ appears to occur right around the value of applied electric
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Figure 28: Since compressive strain can only be relieved via dislocations and dilative
strain can be relieved with dislocations or layer buckling, we propose two potential
schematics for strain relief in the intermediate region.

field which totally eliminates the surface tilt, which we have found theoretically to be
⇡ 5.4⇥ 106 V/m.

In their 1973 paper [4], Noel Clark and Bob Meyer found that pulling apart the top
and bottom plates of a simple non-chiral Sm-A liquid crystal cell caused a dilation of
the layers from their preferred spacing. In this situation, the layers are forced to have a
spacing larger than their preferred spacing. In regions of dilative strain, dislocations or
buckling may occur. The displacement of the layers is given by:

u(x, z) = ↵z + u0 cos(q1x) cos(q3z), (16)

where q1 is the buckling wave vector and is equal to 2⇡/�. The cos(q3z) term (q3 = ⇡/d)
is required to satisfy boundary conditions at the top (z = d/2) and bottom (z = �d/2)
plates, and ↵ is the dilative strain. The magnitude of the strain due to an imposed layer
spacing d is

↵ = 1� dp
d

(17)

where dp is the preferred spacing of the system. In regions of compressive strain, ↵ < 0
and in regions of dilative strain, ↵ > 0. In regions of dilative strain it can be shown that
the threshold strain for the onset of buckling is given by

↵T =
2⇡

Lz

✓
K1

B

◆ 1
2

(18)

where Lz is the height of the cell, B is the smectic bulk modulus and K1 is the smectic
bend modulus. If we plug in typical experimental values for these parameters [4] we find
that ↵T ⇡ 10�4.
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In the Clark-Meyer analysis, they were able to induce a non-zero strain in the cell by
moving the top and bottom plates, and thus changing d. In our analysis, we consider
fixing the top and bottom plates (and thus d) and then changing dp by having the
molecules tilt through the bulk electroclinic e↵ect. In both cases, the layer spacing d
is larger than the preferred spacing dp, and thus a similar analysis applies and we can
use the same ↵T . For the Sm-A* to Sm-C* transition, d = dS since upon cooling into
the Sm-A* phase, the layers first nucleate at the surface and then extend into the bulk.
The preferred spacing of the system is position dependent since the tilt varies as we
go from the surface to the bulk. The preferred layer spacing of the system dp, as seen
schematically in Fig. (3), is given by

dp(x) = dA cos(✓p(x)) (19)

where dA is the spacing in the Sm-A phase when no tilting is present (the maximum
possible spacing). Using equations (17) and (19) we can obtain a position dependent
strain

↵(x) = 1� dp(x)

dS
= 1� cos(✓(x))

cos(✓S)
(20)

where ✓(x) can be found using equation (13). The max strain within the system at any
given time can be found using

↵max(E) = 1� cos(✓B)

cos(✓S)
. (21)

Using equation (21), we can plot the maximum strain versus our electric field which can
be seen in Fig. (29). From this figure, our theoretical value of ↵T ⇡ 10�4 for the onset of
buckling yields an electric field value of ET ⇡ 2.5⇥ 106 V/m. Experimentally, however,
ET was found to be ⇡ 5.4⇥ 106 V/m and was approximately equal to the electric field
value for which the surface tilt was completely eliminated, E0.

For a possible explanation of the discrepancy between these two values of ET we turn
to Fig. (30). In the previous section we introduced the possibility of three di↵erent
regions based on the applied electric field. For E < 0, we are in a region of purely
compressive strain and can only relieve this strain with dislocations. For E > E0, we are
in a region of purely dilative strain and can relieve this strain with either dislocations
or buckling, however buckling is more energetically favorable. The intermediate region,
for 0 < E < E0, contains both dilative and compressive strain. In this region, we
proposed two di↵erent ideas for strain relief: a pair of dislocations and a dislocation-
buckling scenario. Since dislocations occur relatively close to the surface, the bulk of
the cell remains comparatively well aligned. Although it is theoretically possible to have
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Figure 29: Max strain versus electric field for a continous transition.

buckling around a value of ET ⇡ 2.5⇥ 106 V/m within this region, we do not see a drop
o↵ in alignment quality until a value of E0 ⇡ ET ⇡ 5⇥ 106 V/m.

Although the energetics of dislocations vs. buckling in the intermediate region are be-
yond the scope of this project, we propose that the onset of buckling will not occur
unless we are in a region of purely dilative strain, E > E0.
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Figure 30: The di↵erent regions of strain within a LC cell based on di↵ering surface
and bulk tilts for a span of electric field values. For E < 0 strain is compressive, for
E > E0 strain is dilative, and for 0 < E < E0 we are in an intermediate region where
both compressive and dilative strain are present.
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