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The main goal of this work is to explore the symmetries and develop the dynamics associated with a 3D Abelian BFmodel coupled
to scalar fields submitted to a sigmamodel like constraint, at the classical and quantum levels. Background independence, on which
the model is founded, strongly constrains its nature. We adapt to the present model the techniques of Loop Quantum Gravity in
order to construct its physical Hilbert space and its observables.

1. Introduction

The now quasi-hundred-year-old General Relativity as a
theory of gravitation, despite its tremendous successes in
accounting for predicting phenomena, still lacks a quantum
version. Previous perturbative attempts have shown the non-
renormalizability of the theory [1], whereas the pioneering
nonperturbative approach of Wheeler and DeWitt [2–5]
had its successes concentrated in reduced “minisuperspace”
models dedicated to cosmology. However, very important
progresses have been made in the last decades, especially
in the framework of Loop Quantum Gravity (LQG) [6–9],
based on the canonicalHamiltonian approach ofDirac [10, 11]
applied to the Ashtekar-Barbero [12–14] parametrization of
the theory. General Relativity, as a background independent
theory—in the sense that no background geometry is given
a priori, geometry being dynamical—is a fully constrained
theory, its Hamiltonian being merely a sum of constraints
generating the gauge invariances of the theory.The LQG pro-
gram entails the difficult task of implementing the constraints
of the theory as quantum operators in some predefined
kinematic Hilbert space and to solve them, thus leaving as
a subspace the physical Hilbert space in which act the self-
adjoint operators representing the observables of the theory.
Some of the constraints have been resolved, but the last one,
the so-called scalar constraint. The latter has resisted up to

now a complete solution, the most popular approach being
that of “spin foams” [15, 16].

By contrast, the lower-dimensional gravitation theories
are much more easy to handle, since they can be described as
topological gauge theories, when not coupled to matter [17–
23]. Coupling them to matter however lets them lose their
topological character, excepted in some special cases, where a
complete and rather simple loop quantization can be achieved
[24, 25].

The purpose of this paper is to present the loop quanti-
zation of a background independent theory of the 𝐵𝐹 type
[26, 27] with the Abelian group 𝑈(1) as a gauge group. Back-
ground independence means that no metric is introduced
in the manifold on which the theory is defined, the sole
requirement being the invariance under diffeomorphisms,
beyond the gauge invariance. The 𝐵𝐹 fields are coupled to
a complex scalar “matter” field subject to a 𝜎-model type of
constraint. Background independence severely restricts the
form of the action. It turns out that the topological nature
of the 𝐵𝐹 theory persists in the sense that no local degrees
of freedom are present. However, provided the topology of
2-dimensional space is nontrivial, global degrees of freedom
are present in the theory. We consider spaces with point-
like singularities, in which cases a nontrivial physical Hilbert
space and global observables are explicitly constructed. A
non-Abelian version is presently under study [25].
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The model and its gauge invariances are presented in
Section 2, its classical analysis is done in Section 3 together
with the separation of the first and second class constraints
and the definition of the Dirac brackets, and the quantization
is presented in Section 4. Brief conclusions are given at last.

2. Formulation of the Model

2.1. The Gauge Invariances and the Action. The field content
of the model is a 𝑈(1) connection form 𝐴 = 𝐴𝜇(𝑥)𝑑𝑥

𝜇,
a “𝐵” form 𝐵 = 𝐵𝜇(𝑥)𝑑𝑥

𝜇, a complex scalar field 𝜙(𝑥),
and a 3-form field 𝑒 = (1/3!)𝑒𝜇]𝜌𝑑𝑥

𝜇
𝑑𝑥

]
𝑑𝑥

𝜌, transforming
as (Wedge symbols ∧ are not written explicitly; space-time
indices 𝜇, ], . . . take the values 0, 1, and 2; later on, space
indices will be denoted by the letters 𝑎, 𝑏, . . . taking the values
1, 2; 𝐴𝜇 and 𝜃 are taken as imaginary)

𝐴
󸀠

𝜇
= 𝐴

󸀠

𝜇
+ 𝑔

−1
𝜕𝜇𝑔 = 𝐴𝜇 + 𝜕𝜇𝜃, 𝐵

󸀠
= 𝐵,

𝜙
󸀠
= 𝑔𝜙, 𝜙

󸀠

= 𝑔
−1
𝜙, 𝑒

󸀠
= 𝑒,

(1)

under 𝑈(1) gauge transformations (𝐴𝜇 and 𝜃 are taken as
purely imaginary; 𝐵𝜇 is real) 𝑔(𝑥) = exp 𝜃(𝑥).

The most general action, invariant under the gauge
transformations (1) and background independent, reads

𝑆general

= ∫
M3

(𝐾 (𝜙𝜙) 𝐵𝐹 + 𝜆 (𝜙𝜙) 𝐵𝐷𝜙𝐷𝜙 + 𝑒 [𝜇 (𝜙𝜙) − 𝑅]) ,

(2)

where𝐾, 𝜆, and 𝜇 are arbitrary real functions of 𝜙𝜙, assumed
to be analytic in their argument and to fulfill the conditions

𝐾 (0) ̸= 0 𝜆 (0) ̸= 0 𝜇 (0) = 0; (3)

𝐹 = 𝑑𝐴, and 𝐷 denotes the covariant derivative (covariant
with respect to the gauge transformation (1)):

𝐷𝜙 = (𝑑 − 𝐴) 𝜙, 𝐷𝜙 = (𝑑 + 𝐴) 𝜙. (4)

The integration is performed over some 3-dimensional dif-
ferential manifold M3. The action is obviously invariant
under the diffeomorphisms of M3. Having no metric at our
disposal, it is clear that no other term, such as, for example, a
potential term, can be added.

The parameter 𝑅 can be taken equal to 1 through a
renormalization of the field 𝑒, and one easily shows that one
can reduce the function 𝜇(𝜙𝜙) to the form 𝜇 = 𝜙𝜙 through
a field redefinition 𝜙 → 𝜙

󸀠
(𝜙, 𝜙) = 𝜙𝑓(𝜙𝜙), with 𝑓(𝜙𝜙) =

(𝜇(𝜙𝜙)/𝜙𝜙), compatible with the gauge invariance (1). Having
done this, we have the field equation 𝜙𝜙 = 1 which implies
that the functions 𝐾 and 𝜆 can be replaced by constants.
One of them, let us say 𝜆, can be given the value 1 through
a renormalization of the field 𝐵. We are thus left with only the
constant𝐾 as independent parameter.Wewill take the valued
𝐾 = 1 without loss of generality. The final action is then

𝑆 = ∫
M3

(𝐵𝐹 + 𝐵𝐷𝜙𝐷𝜙 + 𝑒 (𝜙𝜙 − 1)) . (5)

One recognizes in (5) a 𝐵𝐹 action coupled with scalar fields
and a Lagrange multiplier field 𝑒 assuring the 𝜎-model type
constraint 𝜙𝜙 = 1.

It turns out that this action (5) has two more invariances
under the gauge transformations

𝐴
󸀠
= 𝐴, 𝐵

󸀠
= 𝐵 + 𝑑𝜓, 𝜙

󸀠
= 𝜙, 𝑒

󸀠
= 𝑒 − 𝑑𝜓𝐹,

(6)

𝐴
󸀠
= 𝐴 + 𝑑𝜂, 𝐵

󸀠
= 𝐵, 𝜙

󸀠
= 𝜙, 𝑒

󸀠
= 𝑒 + 𝑑𝜂 𝑑𝐵,

(7)

where the scalars 𝜓(𝑥) and 𝜂(𝑥) are the transformation
parameters. The transformation (6) coincides with the usual
topological type transformations of the 𝐵𝐹 model, in the
absence of the fields 𝜙 and 𝑒. Invariance under (7) is specific
for the model.

In order to check the invariances of the action (up
to boundary terms), as well as for all the manipulations
involving partial integrations, it is useful to remember that
the covariant derivative𝐷, defined by𝐷𝑋 = 𝑑𝑋−𝑞𝐴𝑋, where
𝑞 is the𝑈(1) charge of the field𝑋, obeys the Leibniz rule.The
respective𝑈(1) charges of the basic fields𝐴, 𝐵, 𝜙, 𝜙, and 𝑒 are
0, 0, 1, −1, and 0. Let us also note the useful identity

𝐷𝜙𝐷𝜙 = 𝑑𝜙𝑑𝜙 + 𝐴𝑑 (𝜙𝜙) . (8)

The field equations read

𝛿𝑆

𝛿𝐵
= 𝐹 + 𝐷𝜙𝐷𝜙

∗

= 0,
𝛿𝑆

𝛿𝐴
= 𝑑𝐵 − 𝐵𝑑 (𝜙𝜙)

∗

= 0,

𝛿𝑆

𝛿𝜙

= 𝐵𝐹𝜙 − 𝑑𝐵𝐷𝜙 + 𝑒𝜙
∗

= 0,

𝛿𝑆

𝛿𝜙
= 𝐵𝐹𝜙 − 𝑑𝐵𝐷𝜙 + 𝑒𝜙

∗

= 0,

𝛿𝑆

𝛿𝑒
= 𝜙𝜙 − 1

∗

= 0,

(9)

where the symbol ∗

= means “on shell” equality, that is,
“equations of motion being fulfilled.” The last equation is
equivalent to

𝜙 (𝑥)
∗

= 𝑒
𝑖𝜑(𝑥)

, 𝜙 (𝑥)
∗

= 𝑒
−𝑖𝜑(𝑥)

, 𝜑 a real phase. (10)

This system of equations is equivalent to the simpler one:

𝐹
∗

= 0, 𝑑𝐵
∗

= 0, 𝑒
∗

= 0, 𝜙𝜙 − 1
∗

= 0. (11)

2.2. Diffeomorphism Invariance. In the present theory, like in
the topological theories of the Chern-Simons or 𝐵𝐹 type, the
invariance under the diffeomorphisms is a consequence of
the invariance under the gauge transformations (1), (6), and
(7), up to field equations. Indeed, with the diffeomorphisms
being generated by the Lie derivative L𝜉 = 𝑖𝜉𝑑 + 𝑑𝑖𝜉 along
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an infinitesimal vector field 𝜉 when acting on forms (𝑖𝜉 is the
interior derivative, with 𝑖𝜉𝑑𝑥

𝜇
= 𝜉

𝜇), one checks that

L𝜉𝐴
∗

= 𝑑 (𝑖𝜉𝐴) , L𝜉𝐵 = 𝑑 (𝑖𝜉𝐵) ,

L𝜉𝜙
∗

= 𝑖 (𝑖𝜉𝑑𝜑) 𝜙, L𝜉𝜙
∗

= −𝑖 (𝑖𝜉𝑑𝜑) 𝜙,

L𝜉𝑒
∗

= 0,

(12)

where 𝜑 is the phase of the field 𝜙 defined in (10). One sees
that these infinitesimal diffeomorphisms are given, on-shell,
by a combination of the three gauge invariances, with the
respective field dependent infinitesimal parameters given by

𝜃 = 𝑖 (𝑖𝜉𝑑𝜑) , 𝜓 = 𝑖𝜉𝐵, 𝜂 = 𝑖𝜉 (𝐴 − 𝑖𝑑𝜑) . (13)

3. Hamiltonian Analysis and Constraints

We apply here the canonical formalism of Dirac [10, 11]
for systems with constraints. Supposing that the space-time
manifold admits a “time” × “space” foliation M3 = R × Σ,
where the space slice Σ is some two-dimensional manifold,
we first rewrite the action as the time integral

𝑆 = ∫𝑑𝑡𝐿 (𝐴, 𝐴̇, 𝐵, 𝐵̇, 𝜙, ̇𝜙, 𝜙,
̇

𝜙, 𝑒, ̇𝑒) (14)

of a Lagrangian function

𝐿 (𝐴, 𝐴̇, 𝐵, 𝐵̇, 𝜙, ̇𝜙, 𝜙,
̇

𝜙, 𝑒, ̇𝑒)

= ∫
Σ

𝑑
2
𝑥 (𝐵

𝑎
𝜕𝑡𝐴𝑎 − 𝐵

𝑎
𝐷𝑎𝜙𝜕𝑡𝜙

+𝐵
𝑎
𝐷𝑎𝜙𝜕𝑡𝜙 + 𝐴 𝑡C1 + 𝐵𝑡C2 + 𝑒C5) ,

(15)

where

C1 = 𝜕𝑎𝐵
𝑎
+ 𝐵

𝑎
𝜕𝑎 (𝜙𝜙) ,

C2 = 𝐹 + 𝜀
𝑎𝑏
𝐷𝑎𝜙𝐷𝑏𝜙,

C5 = 𝜙𝜙 − 1,

𝐹 =
1

2
𝜀
𝑎𝑏
𝐹𝑎𝑏, 𝐵

𝑎
= 𝜀

𝑎𝑏
𝐵𝑏, 𝑒 =

1

3!
𝜀
𝜇]𝜌

𝑒𝜇]𝜌.

(16)

Following the canonical procedure, we identify the conjugate
momenta of each field𝑋, Π𝑋 = 𝛿𝐿/𝛿𝑋̇:

Π𝐴𝑡
= 0, Π𝐵𝑡

= 0, Π𝑒 = 0,

Π𝜙 = −𝐵
𝑎
𝐷𝑎𝜙, Π

𝜙
= 𝐵

𝑎
𝐷𝑎𝜙,

Π𝐴𝑎
= 𝐵

𝑎
, Π𝐵𝑎

= 0,

(17)

satisfying togetherwith the𝑋’s the equal timePoisson bracket
relations

{𝑋
𝛼
(x) , Π𝑋𝛽

(y)} = 𝛿
𝛼

𝛽
𝛿
2
(x, y) ,

{𝑋
𝛼
(x) , 𝑋𝛽

(y)} = {Π𝑋𝛼 (x) , Π𝑋𝛽
(y)} = 0,

(18)

where the indices 𝛼, 𝛽 run over all components of all fields.
The Legendre transform 𝐻𝑐 = −𝐿 + ∑

𝛼
∫𝑑

2
𝑥Π𝑋𝛼𝑋̇

𝛼 yields
the canonical Hamiltonian

𝐻𝑐 = −∫𝑑
2
𝑥 (𝐴 𝑡C1 + 𝐵𝑡C2 + 𝑒C5) , (19)

with theC’s given in (16).
Noting that the velocities do not appear in any of (17)

for the momenta, we conclude that all of these equations
are (primary) constraints [10, 11]. The equality sign must
be replaced by the “weak equality” sign ≈, meaning that
the constraints are solved at the end, after all calculations
involving Poisson brackets are done. We remark that the last
two constraints in (17) are second class, their brackets being
nonzero: {Π𝐴𝑎

(x) − 𝜀
𝑎𝑏
𝐵𝑏(x), Π𝐵𝑐

(y)} = 𝜀
𝑎𝑏
𝛿
2
(x, y). These

constraints can be solved as strong equalities

Π𝐴𝑎
= 𝜀

𝑎𝑏
𝐵𝑏 = 𝐵

𝑎
, Π𝐵𝑎

= 0, (20)

provided the Poisson brackets are replaced by the corre-
sponding Dirac brackets, which read

{𝐴𝑎 (x) , 𝐵
𝑏
(y)} = 𝛿

𝑏

𝑎
𝛿
2
(x, y) , (21)

the other brackets being left unchanged. We use the same
notation {⋅, ⋅} for these Dirac brackets.

We are left with the five constraints

Π𝐴𝑡
≈ 0, Π𝐵𝑡

≈ 0, Π𝑒 ≈ 0, (22)

C3 (x) = Π𝜙 + 𝐵
𝑎
𝐷𝑎𝜙 ≈ 0,

C4 (x) = Π
𝜙
− 𝐵

𝑎
𝐷𝑎𝜙 ≈ 0.

(23)

The stability of the three constraints (22) under the Hamilto-
nian evolution requires the three secondary constraints

C1 (x) ≈ 0, C2 (x) ≈ 0, C5 (x) ≈ 0, (24)

with C1, C2, and C5 as given in (16). It will turn out
convenient to replaceC1 by the equivalent constraint:

C
󸀠

1
(x) ≈ 0, with

C
󸀠

1
(x) = C1 − 𝜙C3 + 𝜙C4 = 𝜕𝑎𝐵

𝑎
− 𝜙Π𝜙 + 𝜙Π

𝜙
.

(25)

The constraints (22) can be put strongly to zero, the cor-
responding fields 𝐴 𝑡, 𝐵𝑡, and 𝑒 playing now the roles
of Lagrange multipliers 𝜆1, 𝜆2, and 𝜆5. Introducing also
Lagrange multipliers fields for the primary constraints (23),
we define the total Hamiltonian as

𝐻T =

5

∑

𝑚=1

C𝑚 [𝜆𝑚] , (26)

where we have defined the functionals

C𝑚 [𝜆𝑚] = ∫𝑑
2
𝑥𝜆𝑚 (x)C𝑚 (x) , (27)
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considering the Lagrangian multiplier fields 𝜆𝑚 as smooth
test functions.

Since this Hamiltonian is entirely made of constraints—
a characteristic of theories with general covariance—the
stability of our five constraints C𝛼, 𝛼 = 1, . . . , 5, boils
down to examine the matrix 𝑀𝑚𝑛(x, y) ≈ {C𝑚(x),C𝑛(y)} of
their Poisson brackets, written up to constraints, hence the
≈ sign. Indeed, their stability condition reads (summation
convention is assumed)

Ċ𝑚 = {C𝑚, 𝐻T} = 𝑀𝑚𝑛𝜆
𝑛
= 0. (28)

This provides a system of equations for the 𝜆’s; which can be
solved for some of the 𝜆’s in terms of the remaining ones.The
matrix𝑀 reads

𝑀 = (

0 0 0 0 0

0 0 0 𝜙C2 0

0 0 0 − (𝜙C󸀠

1
+C3) 0

0 −𝜙C2 (𝜙C󸀠

1
+C3) 0 −𝜙

0 0 0 𝜙 0

)

× 𝛿
2
(x − y) ,

(29)

where we have substituted the constraint C3 with the equiv-
alent one

C
󸀠

3
= 𝜙C3 − 𝜙C4. (30)

One sees that the first three constraints, C1, C2, and C󸀠

3
,

are first class; that is, their Poisson brackets with any other
constraint are constraints: they generate three gauge invari-
ances of the theory.The last two, namely,C4 andC5, however
are second class. Indeed, denoting them by 𝜒𝑝 (𝑝 = 1, 2),
their Poisson brackets form the matrix 𝐶𝑝𝑞 of nonvanishing
determinant on the constraint surface:

𝐶 = (
0 −𝜙

𝜙 0
) . (31)

These second class constraints may be written as strong
equalities, provided the Poisson brackets are substituted by
the Dirac brackets [10, 11]

{𝑋, 𝑌}D = {𝑋, 𝑌} −∑

𝑝,𝑞

{𝑋, 𝜒𝑝} (𝐶
−1
)
𝑝𝑞

{𝜒𝑞, 𝑌} . (32)

The second class constraints 𝜒𝑝 can be solved for 𝜙 andΠ
𝜙
in

terms of the now independent fields 𝐴𝑎, 𝐵
𝑎, 𝜙, and Π𝜙:

𝜙 =
1

𝜙
, Π

𝜙
= 𝐵

𝑎
𝐷𝑎𝜙. (33)

The independent fields obey the Dirac bracket relations

{𝐴𝑎 (x) , 𝐵
𝑏
(y)}

D
= 𝛿

𝑏

𝑎
𝛿
2
(x − y) ,

{𝜙 (x) , Π𝜙 (y)}D = 𝛿
2
(x − y) ,

{𝐴𝑎 (x) , Π𝜙 (y)}D = 𝐷𝑎 (
1

𝜙
) 𝛿

2
(x − y) ,

{𝐵
𝑎
(x) , Π𝜙 (y)}D = −𝐵

𝑎 1

𝜙
𝛿
2
(x − y) ,

(other brackets vanishing) .

(34)

This system can be diagonalized through the redefinition

Π = Π𝜙 − 𝐵
𝑎
𝐷𝑎 (

1

𝜙
) , (35)

with the result

{𝐴𝑎 (x) , 𝐵
𝑏
(y)}

D
= 𝛿

𝑏

𝑎
𝛿
2
(x − y) ,

{𝜙 (x) , Π (y)}D = 𝛿
2
(x − y) ,

(other brackets vanishing) .

(36)

Finally, the remaining three constraints read, taking (35) into
account,

C1 = 𝜕𝑎𝐵
𝑎
, C2 = 𝐹, C3 = ΦΠ. (37)

They are first class (their Dirac brackets are indeed zero)
and generate the three gauge invariances defined by 𝛿𝑖𝑋 =

{𝑋,C𝑖[𝜖𝑖]} (𝑖 = 1, 2, 3) using the functional notation (27):

𝛿1𝐴𝑎 = −𝜕𝑎𝜖1, 𝛿2𝐴𝑎 = 0, 𝛿3𝐴𝑎 = 0,

𝛿1𝐵
𝑎
= 0, 𝛿2𝐵

𝑎
= −𝜖

𝑎𝑏
𝜕𝑏𝜖2, 𝛿3𝐵

𝑎
= 0,

𝛿1𝜙 = 0, 𝛿2𝜙 = 0, 𝛿3𝜙 = 𝜖3𝜙,

𝛿1Π = 0, 𝛿2Π = 0, 𝛿3Π = −𝜖3Π.

(38)

We see that the 𝑈(1) gauge invariance is split in two
invariances generated by C1 and C3, corresponding to the
invariances (1) and (7) of the Lagrangian formalism. The
invariance generated by C2 corresponds to the topological
type invariance (6).

4. Quantization

4.1. Kinematical Hilbert Space. The constraints C1 and C3

will be solved at the quantum level in this section, whereas
the last one, C2, is left for the next section. Following the
lines of Loop Quantum Gravity [6–9], we will construct
a kinematical Hilbert space Hkin whose vectors |Ψ⟩ are
subjected to the constraintsC1 andC3 in the forms Ĉ1|Ψ⟩ =

0 and Ĉ3|Ψ⟩ = 0, where Ĉ𝑖 are operators representing the
classical C𝑖. Choosing the fields 𝐴𝑎 and 𝜙 as configuration
space coordinates, our task will be to define wave functionals



Advances in Mathematical Physics 5

(we use the “bra” and “ket” Dirac notation, with ⟨𝐴, 𝜙 | Ψ⟩ =

Ψ[𝐴, 𝜙]) Ψ[𝐴, 𝜙] and the scalar product ⟨Ψ | Ψ
󸀠
⟩. The fields

are now promoted to operators 𝐴𝑎, 𝜙, 𝐵
𝑎, and Π̂ obeying

the canonical commutation relations corresponding to the
classical Dirac brackets (36):

[𝐴𝑎 (x) , 𝐵
𝑏
(y)] = 𝑖ℏ𝛿

𝑏

𝑎
𝛿
2
(x − y) ,

[𝜙 (x) , Π̂ (y)] = 𝑖ℏ𝛿
2
(x − y) ,

(other brackets vanishing) .

(39)

𝐴 and 𝜙 act multiplicatively and 𝐵 and Π̂ as functional
derivatives:

𝐵
𝑎
(x) Ψ [𝐴, 𝜙] = −𝑖ℏ

𝛿Ψ [𝐴, 𝜙]

𝛿𝐴𝑎 (x)
,

Π̂ (x) Ψ [𝐴, 𝜙] = −𝑖ℏ
𝛿Ψ [𝐴, 𝜙]

𝛿𝜙 (x)
.

(40)

Everything up to now is purely formal since we have still no
proper Hilbert space. But we can already solve the constraint
Ĉ3(x)Ψ[𝜙, 𝐴] = −𝑖ℏ𝜙𝛿Ψ[𝜙, 𝐴]/𝛿𝜙(x) = 0: the wave
functional only depends on 𝐴, Ψ = Ψ[𝐴].

In order to construct a scalar product defined by an
appropriate integration measure in configuration space, we
first restrict the space of wave functionals to the set of
functions of finite numbers of holonomies of the connection
𝐴—the “cylindrical functions.” If 𝛾 is an orientated curve
in Σ (a “link”), the holonomy of 𝐴 on 𝛾 is defined as the
exponentiated line integral

ℎ𝛾 [𝐴] = exp∫
𝛾

𝐴. (41)

Given a “graph,” that is, a finite set Γ = {𝛾1, . . . , 𝛾𝑁} of
links, a “cylindrical function” ΨΓ,𝜓[𝐴] is function 𝜓 of the
holonomies of Γ:

ΨΓ,𝜓 [𝐴] = 𝜓 (ℎ𝛾1
[𝐴] , . . . , ℎ𝛾𝑁

[𝐴]) . (42)

The cylindrical functions associated with all graphs on Σ

form the vectorial space Cyl, in which we can define a
sesquilinear scalar product using the Haar measure 𝑑𝜇(𝑔) of
the gauge group. For𝑈(1), the (normalized) measure is given
by (1/2𝜋) ∫ 𝑑𝜃𝑓(𝑔(𝜃)) for 𝑔 parameterized as 𝑔(𝜃) = exp(𝑖𝜃).
First, for two cylindrical functions defined on the same graph,

⟨Γ, 𝜓 | Γ, 𝜓
󸀠
⟩

= ∫
𝐺⊗𝑁

∫𝑑𝜇 (𝑔1) ⋅ ⋅ ⋅ 𝑑𝜇 (𝑔𝑁) (𝜓 (𝑔1, . . . , 𝑔𝑁))
∗

× 𝜓
󸀠
(𝑔1, . . . , 𝑔𝑁) .

(43)

Next, for two cylindrical functions corresponding to two
different graphs Γ and Γ

󸀠, one defines

⟨Γ, 𝜓 | Γ
󸀠
, 𝜓

󸀠
⟩

= ∫
𝐺⊗𝑁

∫𝑑𝜇 (𝑔1) ⋅ ⋅ ⋅ 𝑑𝜇 (𝑔𝑁̂) (𝜓 (𝑔1, . . . , 𝑔𝑁))
∗

× 𝜓
󸀠
(𝑔1, . . . , 𝑔𝑁󸀠) ,

(44)

where Γ̂ is the union graph Γ ∪ Γ
󸀠 consisting of 𝑁̂ ≤ (𝑁+𝑁

󸀠
)

links.
With this scalar product in hands we dispose of a norm

so one can define a Hilbert space HCyl through the Cauchy
completion of Cyl.

An orthonormal basis of HCyl may be defined using
the Peter-Weyl theorem—which in the Abelian 𝑈(1) case is
nothing but the Fourier series theorem. Basis elements are the
cylindrical functions

ΨΓ, ⃗𝑛 [𝐴] = 𝜒𝑛1
(ℎ𝛾1

[𝐴]) ⋅ ⋅ ⋅ 𝜒𝑛𝑁
(ℎ𝛾𝑁

[𝐴]) ,

where ⃗𝑛 = (𝑛1, . . . , 𝑛𝑁) , 𝑛𝑘 ∈ Z, 𝑛𝑘 ̸= 0,

(45)

and 𝜒𝑛(𝑔) is the character of the irreducible unitary represen-
tation of “charge” 𝑛 ∈ Z. In the parametrization 𝑔 = exp(𝑖𝜃),
𝜒𝑛(𝑔) = exp(𝑖𝑛𝜃). The orthonormality condition

⟨Γ, ⃗𝑛 | Γ
󸀠
, ⃗𝑛
󸀠
⟩ (46)

is an obvious consequence of the theory of Fourier series.The
prescription of nonvanishing charges 𝑛𝑘 avoids an overcount-
ing of the basis vectors which would otherwise occur since a
graph with a zero charge link would give the same function as
the graph with this link omitted.Therefore, the basis must be
completed with the zero charge function Ψ0 corresponding
to the empty set 0. These basis vectors |Γ, ⃗𝑛⟩ will be called
“charge networks” in analogy with the spin networks of Loop
Quantum Gravity [6–9]. A particular consequence of these
definitions is that vectors corresponding to different graph
are orthogonal, and thus the Hilbert spaceHCyl is the infinite
direct sum of spaces HCyl,Γ, each of them being associated
with a single graph Γ.With this sumbeing performed over the
noncountable set of all graphs,HCyl is a nonseparableHilbert
space.

Let us now turn to the constraint C1 in (37), which
corresponds to the invariance under the𝑈(1) gauge transfor-
mations 𝛿1 of (38). It will be fulfilled by demanding the gauge
invariance of the basis cylindrical functions (45). Under a
gauge transformation 𝐴

󸀠

𝑎
= 𝐴

󸀠

𝑎
+ 𝜕𝑎𝜔, the holonomy (41)

transforms as

ℎ𝛾 [𝐴]
󸀠
= ℎ𝛾 [𝐴] exp (𝜔 (x𝑓) − 𝜔 (x𝑖)) , (47)

where x𝑖 and x𝑓 are the coordinates of the initial and end
points of the link 𝛾, respectively. Thus gauge invariance of a
charge network functionalΨΓ, ⃗𝑛 follows from the requirement
of a “charge conservation law”; that is, the sum of charges
entering a vertex of Γ (point of intersection of links) must be
zero, with the convention that the charge entering a vertex is
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Γ

𝛾1

𝛾2

𝛾3

�2

�1

Figure 1: Closed graph Γ with three links and two vertices. Link
𝛾
𝑘
carrying a charge 𝑛

𝑘
, charge conservation at vertex V

1
(or V

2
)

amounts to −𝑛
1
− 𝑛

2
+ 𝑛

3
= 0.

positive if the vertex lies at the end of the link and negative
if it lies at the beginning. This requires in particular that the
graphs must be closed since no zero charge links are allowed.
An example is depicted in Figure 1.

The vectors of HCyl obeying the condition of gauge
invariance span the nonseparable “kinematical”Hilbert space
Hkin ⊂ HCyl.

4.2. Physical Hilbert Space. The last constraint to be imposed
is the curvature constraint C2 in (37), whose quantum
expression is 𝐹|Ψ⟩ = 0. Its general solution is given by a wave
functionalΨ[𝐴]whose argument𝐴 is a connection with null
curvature. It is sufficient to impose this condition on the basis
vectors ofHkin (charge networks), which will select the basis
of the physical Hilbert spaceHphys ⊂ Hkin.

The condition of null curvature means that, locally, there
exists a scalar function 𝜑 such that

𝐴𝑎 = 𝜕𝑎𝜑. (48)

The rest of the discussion depends on the topology of the
space sheet Σ.

Let us begin with the case where the topology of Σ is
that of R2. Then (48) holds globally, with the result that the
holonomy associated with any link 𝛾with initial and final end
points x𝑖 and x𝑓 takes the form

ℎ𝛾 [𝐴] = exp (𝜑 (x𝑓) − 𝜑 (x𝑖)) . (49)

Together with the fact that the graph associated with any
charge network |Γ, ⃗𝑛⟩ is closed and that the charge conser-
vation condition must hold at each vertex, one easily sees
that its wave functional ΨΓ, ⃗𝑛 is equal to 1. In other words, the
graph Γ shrinks to a single point, and we are left with the sole
vector |0⟩. The physical Hilbert space is reduced to a trivial
1-dimensional space.

The next case is that with the topology of R2
\ {𝑂}, the

2-dimensional plane with one point 𝑂 suppressed. There are
now two classes of closed graphs, those with 𝑂 inside and
those with 𝑂 outside. Two examples of the former class are
shown in Figure 2.

Applying the charge conservation condition as in the
previous case shows that any charge network graph with the
point 𝑂 “outside” reduces to a point with the resulting wave
functional equal to 1, defining the empty state described by

�1

�2

n1 n2

n3

O
n1

O

Figure 2: Two charge network graphs with the singular point 𝑂
“inside.”

the vector |0⟩. On the other hand, any charge network graph
with the point 𝑂 “inside” is equivalent to a single loop 𝛾

with 𝑂 inside, with the resulting wave functional equal to a
unimodular complex number

⟨𝐴 | 𝑛⟩ = Ψ𝑛 [𝐴] = exp (𝑖𝑛𝑄) , (50)

with 𝑛 ∈ Z the charge of the loop. The value of the “flux” 𝑄,
given by

exp (𝑖𝑄) = ℎ𝐶 [𝐴] , (51)

where 𝐶 is a closed positively oriented loop around the
singular point 𝑂, is independent of the form and size of
the loop, and the value of 𝑛 is computed using the charge
conservation condition. Figure 2 shows an example of two
such equivalent graphs.Thebasis of the physicalHilbert space
Hphys then consists of the vectors |𝑛⟩, 𝑛 ∈ Z, with ⟨𝑛 | 𝑛

󸀠
⟩ =

𝛿𝑛𝑛󸀠 . For 𝑛 = 0, one has |0⟩ = |0⟩, corresponding to the former
class of graphs. One notes that the integer number 𝑛 can be
interpreted also as a winding number of the loop: to wind 𝑛

times around the singular point with charge 1 or to wind 1
time the singular point with charge 𝑛 yields the same wave
functional.

The generalization to a plane with 𝑁 singular points,
R2

\ {𝑂1, . . . , 𝑂𝑁}, is straightforward. The basis vectors of
Hphys read | ⃗𝑛⟩ = |𝑛1, . . . , 𝑛𝑁⟩ where 𝑛𝑘 is the charge (or
winding number) of a loop encircling the 𝑘th singular point,
all the other singular points remaining outside of it. The
corresponding wave functional is explicitly given by

⟨𝐴 | ⃗𝑛⟩ = Ψ ⃗𝑛 [𝐴] = exp(𝑖
𝑁

∑

𝑘=1

𝑛𝑘𝑄𝑘) , (52)

where 𝑄𝑘 is the flux associated with the 𝑘th singular point,
defined by

exp (𝑖𝑄𝑘) = ℎ𝐶𝑘
[𝐴] , (53)

where

𝐶𝑘 = closed loop encircling positively

one time the singular point 𝑂𝑘

and leaving aside all the other ones.

(54)
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The orthonormality relations are

⟨𝑛1, . . . , 𝑛𝑁 | 𝑛
󸀠

1
, . . . , 𝑛

󸀠

𝑁󸀠
⟩ = 𝛿𝑁𝑁󸀠

𝑁

∏

𝑘=1

𝛿𝑛𝑘𝑛
󸀠

𝑘

. (55)

Hphys is separable.
One remarks that diffeomorphism invariance, which in

the classical theory is a consequence of its gauge invariances,
is explicit in the quantum theory constructed here, once all
constraints are fulfilled. Note that the states of the (nonsepa-
rable) kinematical Hilbert space, which still do not obey the
curvature constraint C2, are not diffeomorphism invariant
since they depend on the location and form of the associated
graphs.

4.3. Observables. It follows from the above discussion that no
nontrivial observables do exist in the case of a trivial topology
such as that of R2. On the other side, with a nontrivial
topology such as that of R2 with𝑁 singular points 𝑂𝑘, there
is a set of 𝑁 observables 𝐿̂𝑘, 𝑘 = 1, . . . , 𝑁, simultaneously
diagonalized in the basis (52) ofHphys:

𝐿̂𝑘 | ⃗𝑛⟩ = 𝑛𝑘 | ⃗𝑛⟩ , 𝑘 = 1, . . . , 𝑁. (56)

They are explicitly given by

𝐿̂𝑘 = ∫
Σ

𝑑
2
𝑥𝑋

(𝑘)

𝑎
(x) 𝐵𝑎 (x) , (57)

where𝑋(𝑘)

𝑎
is a closed 1-form (𝑑𝑋(𝑘)

= 0), such that its integral
on a loop 𝐶𝑘 as defined by (54) takes the value 𝑖/ℏ, whereas
its integral on a loop 𝐶𝑙 around another singular point 𝑂𝑙
vanishes. Explicitly:

∫
𝐶𝑘

𝑋
(𝑙)

=
𝑖

ℏ
𝛿𝑘𝑙, (58)

the result depending only on the homotopy class of 𝐶𝑘. In
a polar coordinate frame (𝑟, 𝜃) centred in 𝑂𝑘, a particular
solution (a “physical” interpretation may be to view −𝑖𝑋 as
the analogue of a 2-dimensional magnetic field whose source
is a point current of magnitude 1/ℏ located in 𝑂𝑘) for the
1-form 𝑋

(𝑘) is given by 𝐴𝑟 = 0 and 𝐴𝜃 = 𝑖/(2𝜋ℏ). The
result (56) follows from the expression (52) for the basis
vector functionals, together with (53) and the differentiation
formula (taking into account the support property of𝑋(𝑘))

∫
Σ

𝑑
2
𝑥𝑋

(𝑘)

𝑎
(x) 𝛿

𝛿𝐴𝑎 (x)
ℎ𝐶𝑘

[𝐴] = (∫
𝐶𝑘

𝑋)ℎ𝐶𝑘
[𝐴] . (59)

The operators 𝐿̂𝑘 thus defined are obviously self-adjoint in
Hphys and form a complete commutative set of observables.

5. Conclusions

What we have shown, using the Dirac canonical scheme
together with the LQG quantization procedure, is that the
three-dimensional Abelian 𝐵𝐹 model, minimally coupled

to a scalar field obeying a 𝜎-model type of constraint, has
the same degrees of freedom as the pure 𝐵𝐹 model. These
degrees of freedom are nonlocal, of purely topological nature,
characterized by the topological nature of space. They are
represented by a complete set of 𝑁 commuting observables
𝐿̂𝑘 in the case of the space topology being that of R2 with𝑁

points omitted (𝑁 “punctures”).
Two main conclusions can be drawn. First, the model

we have presented is a simple example of how restrictive is
the assumption of background invariance. It eliminates from
the action an infinity of terms which otherwise would be
present if one only postulates 𝑈(1) gauge invariance, such
as potential terms, for instance. It is also interesting to note
that invariance under both gauge transformations (6) and (7)
is a consequence of background invariance and 𝑈(1) gauge
invariance.

The second main conclusion is that we have succeeded
to implement the loop quantization scheme up to the con-
struction of the physical Hilbert space and its observables.
The implementation has turned out to be rather simple,
in contrast to the difficulties which one encounters in 4-
dimensional gravity [6–9]. This simplicity, in our case, origi-
nates from the topological character of the theory, where the
diffeomorphism constraints reduce to a very simple curvature
constraint. Moreover, we have been able to show explicitly
how different topologies of space lead to different Hilbert
spaces and sets of observables, which is a very hard problem
in genuine quantum gravity.

Similar achievements for 3-dimensional theories, non-
Abelian but without coupling with matter, may be found
in [28, 29]. The generalization to a non-Abelian 𝐵𝐹 theory
coupled with matter is not straightforward [25].
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