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Abstract 

The DC smart wall plug is a subsystem within the Cal Poly DC House Project. The previous 

version faces challenges supplying DC voltage to meet household appliances’ nominal values. 

Specifically, it can only output the minimum required voltage for DC appliances to operate, resulting in 

unwanted power loss. In addition, the maximum output voltage is rated at 15V, which is insufficient to 

power most DC appliances. This design improvement project incorporates NFC technology as a solution 

to overcome the power loss and a new buck converter configuration to increase the output voltage 

range.  Additionally, the new design introduces short-circuit and reverse polarity protection. Packaging 

the DC wall plug within an enclosure brings the final design to a production-ready stage. Eventually, the 

smart plug will reside in a DC House. 
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Chapter 1: Introduction 
  

 In today’s technologically advanced society, electricity is available to most countries around the 

world. However, not the entire world is fortunate enough to enjoy a leisure life simplified with 

electricity. The single thought of helping improve the lives of people around the world who live without 

electricity, by providing them access to electricity, gave birth to a single great idea: the DC house. The 

DC house project, initiated at Cal Poly San Luis Obispo in 2010, is a completely modular and self-

dependent power supply system that is able to provide convenient means of electricity to small cities 

and villages not located on any electrical grid. The DC House features a scalable system, so people can 

purchase the right amount of power according to their need. For example, if a family only needs a 10W 

light bulb, all they need to buy is the light bulb and the components that meet the 10W requirement; if 

they want more power, an option to attach additional components is available. The goal of the DC house 

is to provide sustainable and low cost electricity for the less fortunate areas without the need for large 

scale infrastructure. 

As the name implies, a DC house operates solely on DC power since most renewable energy 

sources at low power levels generate DC power. As a result, all of the design phases also incorporate the 

designing of DC power generators based on sustainable sources such as hydroelectricity, solar power, 

wind power as well as human power. Having a DC House setup in areas where utility grids are out of 

reach is more efficient as the power comes from the previously stated renewable energy sources [1]. 

This eliminates the need to convert from DC power to AC and then back to DC. The power generated will 

then be stored within large batteries to be later distributed among several DC houses, and then finally 

into various household appliances. 

 The DC smart wall plug acts as a subsystem in the DC house project that transforms 48V, from 

the main power line of the DC house, to various lower voltages required by different household 

appliances. The previous design outputs sufficient voltage, easily at the minimum voltage level, to 
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operate some DC appliances; however, improvements are needed to acquire better operation and 

accuracy [2]. One drawback is that the minimum operational voltage that the wall plug provides usually 

results in unwanted power losses. The proposed design revision described in this report incorporates 

NFC technology to automatically detect and output the required voltage rating of the load, thus the title 

“smart”. Overall, the DC smart wall plug is a variable buck converter that automatically supplies power 

to various DC loads at relatively high efficiencies. The ultimate goal of this project is to provide an 

effortless experience on using DC wall plug in a DC House as anyone would with AC wall plug in a 

traditional house. 
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Chapter 2: Background 
 A quarter of humanity, 1.6 billion people, live their everyday lives without electricity. Of the 1.6 

billion, a total of approximately 930 million (58%) live in South or East Asia, and approximately 547 

million (34%) live in Sub-Saharan Africa [3]. This is primarily due to the juxtaposition of poverty and 

geographical challenges present in the country that make implementing a power grid nearly impossible. 

This brings us to Dr. Taufik’s solution: the DC House Project. It is a humanitarian project to design a 

cheap, sustainable house that will be built in locations off the utility grid [1]. As the name implies, the 

house operates solely on DC power. This power originates from renewable energy sources such as solar, 

hydro-electric, or even human-powered. These generators output DC power, thus can be used to 

directly power the DC house, eliminating the need to convert DC power to AC. The elimination of the 

conversion step benefits the system greatly, as DC to AC conversion would require additional parts, 

increasing cost, and would decrease power efficiency due to conversion losses. Moreover, using a DC-DC 

distribution system reduces heat generation by 1.5% and decreases the overall size of power supplies by 

20% [4].  Overall, the purpose of the DC house is to provide electricity to the quarter of humanity who 

live without it by giving them an affordable mean to convert the natural energy around them into 

electrical energy. 

 To deliver power into appliances from the main 48V power line, a DC wall plug has been 

designed. The initial design of the wall plug during phase 1 of the DC house required manual selection of 

four fixed output voltages through a selector pin (RSelect) inside the plug receptacle [5]. This was found to 

be too inflexible of a system and thus a smart DC wall plug was designed in phase 2. The advantage of 

incorporating a smart DC wall plug was that it could automatically detect what output parameters are 

necessary to power a specific DC appliance, which would ideally maximize power efficiency. The method 

used was to step up output voltage in 0.5V intervals until a load was detected [2]. However, due to the 

non-idealities of electrical appliances, this method achieved only the minimum turn-on voltages for the 
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appliances rather than the nominal (optimal) voltage. This results in excess load, decreasing the 

efficiency of the power delivered to the load. Other shortcomings of the previous design include a lack 

of any type of electrical protection and a small voltage range of 5V -15V.  

As an improvement of the original Smart DC wall plug concept from previous work, a new name 

is given to differentiate the two: the DC SWaP (Smart Wall Plug). The improved design overcomes the 

shortcomings of the previous concept. The SWaP is not only capable of reaching appliances demanded 

voltage, but also handles enough power to operate large DC loads (TV, refrigerator, etc.). To ensure the 

SWaP automatically outputs the correct voltage accurately, communication is established between the 

load and supply. Instead of continuously monitoring the current condition, which keeps the 

microprocessor busy, it is easier to let the load set the desired voltage. In turn, the wall plug will supply 

the same voltage until the load disconnects. As a precaution, safety features are added to the system to 

shut down the wall plug under unsafe conditions. To achieve this goal, a passive “tag” is attached to the 

DC load and the SWaP reads the tag to determine the output. Several methods were up for debate 

when designing the SWaP, include RFID, Bar Code, and color code. The final decision was made between 

the RFID and NFC (similar to RFID but operates at higher frequency and shorter distance). Finally, the 

NFC approach seems to be more suitable than the RFID due to the short operating distance and large 

amount of data storage space in NFC tag, which gives more room for future improvements of the 

project. The main concern for using NFC is its price; the added NFC reader adds more cost of the wall 

plug. However, since the NFC is a relatively new technology, with increased popularity, the price will 

drop in the near future. 

 



  Page 
10 

 
  

Chapter 3: Requirements and Specifications 
 The purpose of the Smart Dc Wall plug is to provide an easy-to-use and efficient power source 

for various loads inside the DC house without manually changing the output voltage. Customer needs 

dictates that the Smart DC Wall plug shall power at least two various household items with voltage 

ratings between 5V to 24V, such as clocks and radios, at maximum efficiency. Moreover, it shall include 

short circuit, overvoltage, and reverse polarity protection for the customers’ protection as well as 

increased product lifespan [3]. Other considerations taken into account include the maximum power 

output of the wall plug shall not exceed 50 watts and the output voltage is within 5% difference of the 

load nominal input voltage.  For customer convenience, the outlet must have a clear distinction that 

only DC appliances in a certain orientation may be used. 

 Safety is a major concern when it comes to DC power systems. Unlike the normalized AC power 

systems, being shocked by DC power systems is more fatal since the power flow is continuous; AC power 

oscillates and returns to zero. Moreover, DC current tends to just make the heart stand still [5]. This 

characteristic juxtaposed with the previously stated continuous behavior of DC current can simulate a 

heart attack, possibly leading to death. 

Table 3-1: 2nd Generation Smart DC Wall Plug Requirements and Specifications 

Marketing 

Requirements 

Engineering 

Specifications 
Justification 

4, 8 1. Achieve ±5% nominal DC load voltage Electronic devices have the best performance 

and efficiency when operating at rated voltage. 

1, 2, 5 2. All components should fit into a multi-

layer 4” by 4” PCB board. 

4” by 4” is the typical size for wall plug box. 

3 3. Should include short circuit protection or 

overcurrent protection 

Adding current surge protection will increase 

overall sustainability 

3 4. The system should include reverse 

polarity protection 

Plugging in an appliance with the wrong 

polarity can damage it. This error is easy to do 

since the wall plug’s physical design is two-

pronged 

2 5. The overall product shall consume little or 

no power, unless it is delivering power 

The microprocessor is constantly consuming 

power even without a load 
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7 6. The DC SWaP and AC loads shall not be 

compatible with each other  

This reduces the chance of using AC loads on 

the DC wall plug 

2, 8 7. Should have an output peak power of 

100W 

This maximum power output provides more 

than adequate power for most small electrical 

household appliances. The upper limit is set as 

to not oversupply current to the devices. 

8 8. The system should have an output voltage 

range of 5-24V  

To accommodate more appliances, a larger 

voltage range is needed. 

 9. The voltage step-down process should 

have a minimum of 80% power efficiency 

Every watt of power is important in small 

power systems, so high power efficiency is 

desired to optimize power usage. 

2,3,6,8 10. The load and line regulation of the system 

shall be below 2% 

Low percentages are required so the output 

voltages stays near constant value. 

Marketing Requirements 

1. Reduce package size. 

2. Increase efficiency. 

3. System should include the same safety features as other commercially available DC power supply offered. 

4. System should detect and output the rated input voltage for any DC load. 

5. Final product does not require user configuration after installation.  

6. Final product should mimic the functionality of AC wall plug. 

7. Customers can tell the difference between the DC wall plug and AC wall plug. 

8. The system should be able to accommodate daily household electrical appliances 

The requirements and specifications table format derives from [7], Chapter 3.  
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Chapter 4: Design  

Section A: Designing the DC SWaP Prototype 

 The previous design proved the concept of a self-adjustable output voltage DC transformer. 

However, the design was not without flaws, which brings us to the intention of this project: to design 

and fabricate a “smarter” DC wall plug. 

Figure 4-1 shows an overall block diagram from the previous design (V1.0). It takes 48V DC input 

and outputs 5 to 15V to the load. The output voltage is set upon detection of a load. A microprocessor is 

used to sample the output current. If there is no current, then the microcontroller steps up the buck 

converter’s output voltage through a digital potentiometer until the load current is stable. According to 

the previous design’s test results, this design has no problem reaching an appliance’s minimum 

operating voltage. However, it is not capable of supplying an appliance’s nominally rated voltage. 

 

Figure 4-1: Block Diagram for Design V1.0 [2] 

 In order to fix this flaw and increase the accuracy of the output voltage, an upgrade (V2.0) of the 

wall plug was necessary. The second version, later renamed to the DC SWaP, lets the appliance set the 

output voltage directly with additional sensors. Numerous technologies were considered for the 
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implementation including RFID, barcode reader, and color detection. Due to the nature of the outlet, it 

was determined that NFC (Near Field Communication, a variant of RFID) is the best option due to their 

short operating distance (≤ 3”) and compact size.. In this new approach shown in Figure 4-2, the 

appliance will carry a NFC tag to communicate with the NFC reader in the wall plug. The NFC reader 

transfers the appliance’s information to the Arduino which then sets the output voltage of the buck 

converter. The Buck converter only turns on when a NFC tag is detected.   

 

Figure 4-2: DC SWaP Block Diagram 

 In V1.0, the buck converter (LM5117 Evaluation Board) is designed and built by Texas 

Instruments. It gives very limited flexibility for adjusting output voltage and power capability. As the 

power requirements of the appliances used with the DC SWaP vary greatly from one another, a different 

buck converter is needed to improve design freedom and accommodate for the various output 

demands. The new controller selected, the LTC3891 buck controller, can handle a much larger output 

voltage and output power range. Moreover, it contains overvoltage protection and over current 

protection. The overvoltage protection kicks in when the feedback pin rises by more than 10% above its 

regulation point of 0.8V and shuts off the top MOSFET (Q1 in Figure 4-3) and turns on the bottom 

MOSFET (Q2 in Figure 4-3) until the over voltage condition is cleared [6]. As for over current protection, 
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the controller has an ILIM pin which limits the maximum allowed current through the output of the buck.  

Simulation results of the circuit can be seen in Figures 4-4 and 4-5 below. 

 

 

 

Figure 4-4: LTC3891 simulation results (48V input, 5V@10A output. Top Plot: Upper (red) and lower (cyan) 

MOSFET Gate voltage. Bottom Plot: Inductor current (blue) and output voltage (green) 

Figure 4-3: LTSpice model of the LTC3891 Buck Controller 
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 The simulation shown in Figure 4-4 above shows a steady 5V output and 10A load with a 

minimized inductor current ripple. This proves that this buck converter is above to operate at high 

relatively high loads and still be able to deliver a minimum of 50W. 

 

Figure 4-5: LTC3891 simulation results (48V input,24V@10A output. Top Plot: Upper (red) and lower (cyan) 

MOSFET Gate voltage. Bottom Plot: Inductor current (blue) and output voltage (green). 

 The simulation shown in Figure 4-5 above shows an output slightly above 24V with a load of 

10A. Although this proves that the buck is able to output 240W of power, it is unadvised as it creates a 

larger inductor current ripple. 

Section B: Component Calculations 

 The first step in designing a buck is setting the output voltage. The LTC3891 chip sets its output 

voltage by an external feedback resistor divider placed across the output as shown in Figure 4-6 below. 

To improve frequency response, great care should be taken to route the VFB line away from noise 

sources such as the inductor or the SW line. 
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Figure 4-6: Setting Output Voltage of the LTC3891 [6] 

 For R1, a 487kΩ resistor was chosen. Thus, a 100kΩ digital potentiometer with 256 steps fulfills 

the role of R2. The following equations are thus derived from LTC 3891 datasheet [6] to determine how 

to set the digital potentiometer. Calculations for the output voltage of the buck converter begins with 

the equation below.  

𝑉𝑂𝑈𝑇 = 0.8 (1 +
𝑅1

𝑅2
) = 0.8(1 +

487𝑘

𝑅2
) 

To solve for the required R2 value, rearrange the equation: 

𝑅2 =
487𝑘

𝑉𝑂𝑈𝑇
0.8

− 1
 

Next, represent the resistance of the digital potentiometer based on its characteristics. The step level 

represents the 8-bit digital potentiometer’s wiper position ranging from 0 to 255.  

𝑅2 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑆𝑡𝑒𝑝 𝐿𝑒𝑣𝑒𝑙 

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑠𝑡𝑒𝑝𝑠
=

94.5𝑘

256
(𝑆𝑡𝑒𝑝 𝐿𝑒𝑣𝑒𝑙) 

Combining the previous 2 equations yields: 

𝑆𝑡𝑒𝑝 𝐿𝑒𝑣𝑒𝑙 =
487𝑘(256)

94.5𝑘(
𝑉𝑂𝑈𝑇
0.8 − 1)

 

Rearranging the inductor ripple current equation provided and using the maximum output voltage, we 

can calculate the critical inductance. To complete the calculation, switching frequency must be known: 

resistor R3 has been selected as to set the controller’s operational frequency to 166 kHz. This is a 

relatively low frequency for a switching converter, running at low frequency helps to reduce switching 



  Page 
17 

 
  

noise and makes debugging easier when failure occurs. To calculate the maximum critical inductance, 

the maximum output voltage (24V) is used, and most 24V household appliances (refrigerator, motor, 

etc.) typically have a minimum operation point larger than 1A, therefore a maximum of 2A inductor 

current ripple can be allowed to maintain continuous conduction mode (CCM).  

𝐿 =
1

(𝑓)∆𝐼𝐿
𝑉𝑂𝑈𝑇 (1 −

𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
) =

1

(166𝑘𝐻𝑧)(2𝐴)
(24𝑉) (1 −

24𝑉

48𝑉
) = 36𝜇𝐻 [7] 

In designing switching converters, an inductor with higher inductance than the critical 

inductance is preferred; a 47µH inductor was chosen. With the selected inductor, the next step is to 

calculate the output capacitance.  

𝐶𝑂 =
1−𝐷

∆𝑉∗𝐿∗𝑓2 [7] 

The minimum capacitance needed to filter the output to have a 1% ripple can be calculated by 

finding when the duty cycle is at its lowest. In this case, it is when the output voltage is 5V. 

𝐷 =
𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
=

5𝑉

48𝑉
 [7] 

  With that, all the variables required to solve for the output capacitance are present. 

𝐶𝑂 =
1 −

5
48

(.01) ∗ (47 ∗ 10−6) ∗ (166 ∗ 103)2
= 69.17µ𝐹 

However, through personal experience, more capacitance in parallel is required to reduce the 

output ripple as well as Equivalent series resistance (ESR). Thus, a 150µF output capacitor, as seen in the 

simulations provided, meets the requirements. With all the buck components calculated for, it was 

decided to design a PCB. Using a PCB benefits us as it involves less human error in assembling the buck 

and allows the use of surface mount components, which achieves our design requirement of keeping 

the buck small. Express PCB is the software used to design the PCB as it is user friendly and the 

production cost is at a reasonable price. The PCB layout can be seen in Figure 4-7 below and the overall 

design can be seen in Figure 4-8 below. 
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Figure 4-7 - Prototype PCB Layout 

 
Figure 4-8: Design Prototype 

Section C: DC SWaP Design Revisions 

 After testing the prototype, we discovered several flaws with the design. First of all, some traces 

on the PCB, namely the output trace, were too thin to physically operate under high load conditions. 

Moreover, the via-hole field was initially planned for a prepackaged buck converter to power the 

Arduino, but they were out of budget and out of stock. Thus, we replaced the via-hole field on the PCB 

with a secondary buck converter using the LT1676 chip [8] as seen in Figure 4-9 below. The output of the 

secondary is set to 7.3V to send power to both the Arduino (7V minimum required input) and the 

EXTVcc of LTC3891 (8V Maximum for bypassing internal regulator to increase efficiency [9]). 
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Figure 4-9 - Buck Converter for Arduino 

 The third flaw found with the DC SWaP prototype was that at higher loads, there was a distinct, 

audible buzz coming from the inductor. This does not necessarily mean poor performance, but it does 

arouse concern. This problem was solved by changing to a different MOSFET. We theorized the problem 

came from the resonance caused by the RDSON and parasitic capacitance of the MOSFET, and by 

switching to one with lower values, the resonance point was shifted. 

 Another flaw found was the amount of noise generated from the synchronous switch, so we 

implemented an RC snubber circuit. The final change was to add a heat sink to the main switch of the 

main buck converter to increase thermal dissipation as the MOSFET would get noticeably hot operating 

under higher loads. The final PCB layout and the board can be seen in Figure 4-10 below.

 

Figure 4-10: Final PCB layout (left) and PCB Board with all Components (Right) 
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Section D: DC SWaP Extremities 

 To package our DC SWaP, a blue electrical box has enough space to contain all the electronics. A 

mechanical set up was devised to control the reset pin of the Arduino. It involves using a two pronged 

outlet and a three-pronged plug. A hole was drilled into the wooden cover where the third prong is 

supposed to go, and on the other side of the hole, two metal plates were placed. How it works is that 

when the plug is put in, it shorts the two plates together and when the plug is disconnected, it triggers 

the reset pin of the Arduino, allowing a signal to turn off the buck converter by switching the RUN pin of 

LTC3891 to low (0V).  Figure 4-11 below shows how the mechanical system works. A switch connecting 

the main power line and the PCB for manual shut off of the whole system was also included for safe 

measure. 

 

Figure 4-11: Cross Section of the Wall Plug 

 To test our appliances, we removed any AC/DC transformer and outfitted them with our own 

plugs. Each plug is polarized and prevents the load from being connected in reverse polarity. On each 
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plug, we programmed the RFID tags to contain the voltage levels according to the ratings of the 

appliance that they will tag. An example of the custom plug can be seen in Figure 4-12 below. Figure 4-

13 shows the finished product.  

 

Figure 4-12: Custom Plug for DC SWaP 

 

Figure 4-13: Finished DC SWaP 
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Chapter 5: Testing 

Section A: Testing DC SWaP Prototype 

To test our design, we used the MPJA DC regulated power supply and the BK Precision 150W DC 

Electronic Load. Testing the buck with an output voltage of 16V resulted in frying the controller. This was 

determined to be due to the ExtVcc pin having different settings for different load ratings. As a result, 

testing the buck began with output settings of 5V at 1A.   

 

Figure 5-1: Buck Tested at 5V and 1A output 

 From Figure 5-1, the power efficiency can be determined using the equation below. 

𝜂 =
𝑉𝑂𝑈𝑇𝐼𝑂𝑈𝑇

𝑉𝐼𝑁𝐼𝐼𝑁
𝑥 100 =

4.445𝑉 ∗  .999𝐴

48𝑉 ∗  .121𝐴
𝑥100 =  76.46% 

 This output efficiency calculated here is expected as buck converters are less efficient at lower 

output voltages. When testing a DC fan rated at 12V and 1.5A, power efficiency within our desired range 

is obtained. Figure 5-2 below shows a power efficiency of 90.5% 
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Figure 5-2: Testing of a 12V DC Fan 

 Checking the output voltage of the buck with output settings of 12V and 2A yielded a fairly noisy 

signal. Taking a look at the switching signal, a large overshoot and ripple is observed. Figure 5-3 shows a 

1.64V overshoot and an under-damped curve.  To correct this, a RC snubber is required.   

 

Figure 5-3: Prototype Synchronous Switch Ripple 

RC snubber calculation [10]: 

 It is important to measure the effective capacitance, effective inductance and ringing frequency 

at the SW node of the buck converter to solve the resister and capacitor needed for the RC snubber.  

The ringing frequency measured at the switch node Fring = 52MHz 
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Effective capacitance is 1/3 of the external capacitor needed between SW and GND to reduce Fring by 

half. Ceff is measured to be 300pF. 

Effective inductance Leff = 
1

(𝐶𝑒𝑓𝑓∗(2𝜋𝐹𝑟𝑖𝑛𝑔)2)
 = 28.4nH 

Capacitor required for the snubber: 

 Csnub ≥ 5 Ceffective = 1.5nF 

Resistor required for the snubber: 

 Rsnub =
1

2
√

𝐿𝑒𝑓𝑓

𝐶𝑒𝑓𝑓
 = 4.7Ω 

Section B: DC SWaP Final Design Testing 

 Appendix C contains the data extracted from the equipment within the power electronics 

laboratory. The following figures were derived from the data collected. 

 The first test performed on the final product was the power efficiency test. This test used the 

same set up as mentioned in the previous section. Output levels of 5V, 9V, 12V, 15V, and 24V were 

tested at loads rated from 0.5A to 4A in intervals of 0.5A. Plotting the data yields the graphs below. 

 

Figure 5-4: DC SWaP Power Efficiency 
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 From the graph seen in Figure 5-4 above, the majority of the various output settings operates 

within the 80% power efficiency requirement stated in chapter 3 above. Only the average power 

efficiency of the 5V output lies below the 80% mark, sitting at 77.315% power efficiency. All other 

averages are above 85%, and the highest average is 94.6% when the output voltage is at 24V. The trends 

of the graph tell us that power efficiency increases with output voltage, and that at a load of 

approximately 2.5A, the DC SWaP reaches its peak efficiency. 

To test line regulation, output voltages of 5V, 9V, 12V, 15V and 24V were tested at a load of 3A. 

The input voltages used to test were 38V and 58V (48V nominal ±10V). The following equation was used 

to calculate the amount of line regulation. The data in the appendix show that the system has very little 

line regulation with a maximum of only 0.2%. This achieves the goal set in Chapter 3 of having less than 

2% line regulation. 

The next test is to revisit the synchronous switch to observe its switching behavior. With the 

added snubber circuit, the overshoot decreased and the ripple is noticeably reduced. The resulting 

waveform can be seen in Figure 5-5 below.  

 

Figure 5-5 - Synchronous Switch Capture with Snubber 



  Page 
26 

 
  

A final test on the overcurrent protection within the buck controller ensures the safety features 

of the controller are operational. During this test, the power rating of the DC SWaP is also measured. To 

do this, the output voltage is kept constant while the load is increased until the output voltage becomes 

noisy because noise generates a significant amount of heat in the main switch. In this case, the current 

at which the output voltage starts to get noisy is called the critical current. A 20% safety margin is 

allowed and then the values are used to calculate the power rating, as seen in the equation below. The 

load is then further increased until the controller shuts off; the current at which this happens is called 

IMAX. This test is repeated for output voltages of 5V, 9V, 12V, 15V, and 24V. A test is performed for 

different ILIM configurations: ILIM connected to GND, ILIM connected to INTVCC, and ILIM floating. However, 

the test for IMAX was not performed for ILIM connected to INTVCC and ILIM floating because the short circuit 

protection system triggers a current that exceeds the component ratings (12A for the inductor). 

𝑃𝑜𝑤𝑒𝑟 𝑅𝑎𝑡𝑖𝑛𝑔 = 𝑉𝑂𝑈𝑇 ∗ (0.8 ∗ 𝐼𝐶𝑅𝐼𝑇𝐼𝐶𝐴𝐿) 

Table 5-1: Power Rating and Short Circuit Test Data 

Table 5-1: Power Rating and Short Circuit Test Data 

ILIM Setting GND (low power mode) INTVcc  (mid power mode) Floating/N.C. (high power mode) 
VOUT (V) 5 9 12 15 24 5 9 12 15 24 5 9 12 15 24 
IMAX (A) 3.8 4.5 4.7 4.6 4.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
ICRITICAL (A) 2.3 3.6 3 3.3 4.1 2.6 3 3.7 4.2 5 3.3 5.3 6.5 5 5.5 
POWER RATING (W) 9 26 28 40 79 10 22 36 50 96 13 38 62 60 105 
 

 From Table 5-1 above, it can be seen that the short circuit protection is operational for the ILIM = 

GND setting. Also, the power rating is within the range of most appliances and meets our requirement 

of 100W limit for most cases except for at high outputs.  

With all these in check, testing using real appliances can now begin. The four appliances tested 

were a portable radio, a 2-speed fan, a portable cooler, and a TV. Each appliance was rated at 12V 

except for the radio, which was rated at 5V. However, each appliance demanded a different load. 
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Regardless, the DC SWaP was able to successfully power each appliance, such as the TV shown in Figure 

5-6 shown below. 

 

Figure 5-6 - DC SWaP Powering a TV 

 

 

  



  Page 
28 

 
  

Chapter 6: Conclusion and Recommendations 
 In this project, a DC smart wall plug was created which applied theory from previous work. The 

DC SWaP is able to take 48 V DC from the main power bus of the DC House and convert it down to any 

voltage level between 5 to 24 volts. The output voltage of the buck converter within the DC SWaP is set 

through an NFC reading which will be processed by an Arduino and then used to communicate to adjust 

a digital potentiometer.  A total of four DC appliances were tested: a 5V radio, a 12V TV, a 12V cooler, 

and a 12V fan. With the aid of the DC SWaP, each appliance operates as expected. 

Results on the tests conducted on the DC SWaP met requirements described in chapter 3. 

However, this does not mean that the DC SWaP is flawless. One problem that remains with the DC SWaP 

currently is that it generates a fair amount of heat when powering the cooler (60W load). Not enough 

testing has been conducted to observe any side effects, making it a must to investigate in the future. 

Also, there has been insufficient testing to measure the power consumption of the DC SWaP while idling 

and the system’s load regulation. Along with that, a method to trigger the run pin via software rather 

than hardware should be implemented as it would facilitate replicating the DC SWaP. 

To further improve the DC SWaP, the next step is to integrate the NFC antenna to the front 

panel of the wall plug and implement a microcontroller on to a single PCB alongside with the DC-DC 

converters. Integrated components will reduce the overall size as well as manufacturing difficulty. 

Ideally the wall plug should not have an antenna sticking out of the wall plug which may cause safety 

concerns. With that, a method to handle two loads simultaneously should be researched as wall plugs 

can normally handle more than two loads. For example, a SIMO (single inductor multiple output) buck 

converter topology in conjunction with multiple antennas, instead of one, is another possible solution. 

Finally, further testing should also be conducted on a larger variety of DC appliances to verify the 

functionality of the wall plug since only 5V and 12V appliances were tested. 
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APPENDIX A — ANALYSIS OF SENIOR PROJECT DESIGN 
 

1. Summary of Functional Requirements 

The purpose of the Smart Dc Wall plug is to provide an easy-to-use and efficient power source for 

various loads inside the DC house without manually changing the output voltage. Customer needs 

dictates that the Smart DC Wall plug shall power at least two various household items with voltage 

ratings between 5V to 24V, such as clocks and radios, at maximum efficiency. Moreover, it shall include 

short circuit, overvoltage, and reverse polarity protection for the customers’ protection as well as 

increased product lifespan [2]. Other considerations taken into account include the maximum power 

output of the wall plug shall not exceed 50 watts and the output voltage is within 5% difference of the 

load nominal input voltage.  For customer convenience, the outlet must have a clear distinction that 

only DC appliances in a certain orientation may be used. 

 

In summary, the Smart DC Wall plug shall: 

 transform 48V from a central DC power line into a variable voltage (5-24V) 

 automatically detects and outputs the load voltage required to operate various household 

appliances to within 5% difference of nominal values 

 consume little or no power with no load 

 supply DC power to a minimum of 2 loads simultaneously 

 operate only with DC appliances, no AC appliances 

 

2. Primary Constraints 

The primary constraint in this project is to redesign the DC-DC conversion stage to meet the large 

range of output requirements while maintaining high efficiency.  The output rating of the previous 
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design only rated at 50W with 15V and 9A maximum output [2]. It is nearly impossible to maintain 

constant efficiency because DC-DC converters in general have more loss when the potential between 

input and output increases (e.g. 48V to 5V). The smart DC wall plug only works as a constant voltage 

power supply, therefore any loads requiring constant current is not compatible with the wall plug. 

Another constraint would be the limiting number of loads the system can handle each time; each load 

requires at least 1 DC-DC converter and a control signal from the microcontroller.   

 

3. Economic 

The experiment requires two electrical engineering students and an advisor with experience in 

the power electronics field. The project has an estimated cost of $100 which is paid for by the 

student and later reimbursed by Cal Poly. 

As a non-profit project, the DC house may not gain any substantial profit. Any profit directly 

generated from the project will be used to improve the smart wall plug and the DC house. The 

project indirectly generates benefits by providing better living environment thus increase 

productivity. Table 3 below elaborates more on the economic impacts of the smart DC wall plug. 

Table A-1 - Types of Economic Capitals and Their Impacts Relative to the Smart DC Wall Plug 

Capital Impact 

Human The product supports the renewable energy market, creating jobs in the 

related field. Includes, and is not limited to, product design improvement, 

assembly, testing, and maintenance.  

Financial Since the product’s main source of power is to be DC power generated from 

renewable sources, the product saves money in the long run. The benefits 

mimic those of a solar panel. 

Manufactured/Real This product requires machinery to enter mass production, test fixtures to test 

it, and tools for maintenance.  

Natural As the main source of DC power comes from renewable energy sources, using 

this product will protect Earth’s natural resources such as coal and petroleum 

in the long run. 

 

Costs accrue at: 



  Page 
32 

 
  

 Designing the product 

 Manufacturing the product 

 Shipping the product 

 Installing the product 

Benefits accrue at: 

 Using the product 

 Using DC power instead of AC saves Earth’s natural resources 

 

4. If manufactured on a commercial basis: 

If the DC smart wall plug were manufactured on a commercial basis, the sales number is 

correlated to the number of DC house being build each year and the power rated for each house. For 

example, if the DC House were to supply 300W total, there would need to be at least six wall plugs at 

50W each if full load were to be drawn at any given point. Since the product is mainly targeting 3rd world 

country market, very low profit will be made. Similar to most electronic products, the estimate life time 

of the smart wall plug is around 10 years. Small upgrades will be made at least every 3 years to make 

sure it will compatible to newer DC appliances. The operation cost for the product should cost no more 

than the price of the product and installation fee with the life time of the wall plug. Purchase price for 

the wall plug would have to be low enough to allow for purchase by the low-income families that would 

most likely be attempting to buy or build a DC House. Table 4 below shows estimations of these values. 

Table A-2 - Manufacturing Estimates 

Estimated number of devices sold per year: 500 

Estimated Manufacturing cost for each device $50 

Estimated purchase price for each device $55 

Estimated profit per year $2,500 

Cost for user to operate device (per unit time) >$5.00/Mo 
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5. Environmental 

Manufacturing the product harms nature as it incorporates the use of ICs and PCBs which leaves 

behind a large carbon footprint. This destroys the environment around the factories and locations 

near where the production waste is stored. Species impacted are those living within the vicinity of 

the locations described previously. However, all parts used are RoHS compliant, meaning they are 

free of hazardous substances. Regarding disposal, the circuit board can be recycled using modern 

PCB recycling methods for recovering valuable metals and other materials. Additionally, the 

receptacle and electrical box can both be used in other applications and are not specific to this 

design. 

In an indirection fashion, the DC house project protects the environment by reducing the 

consumption of petroleum and other natural gases as a main power source. Instead, the project 

incorporates renewable energy power generators, such as portable water turbines or solar panels. 

 

6. Manufacturability 

The PCB used in the design of the wall plug is a standard, double-layer board, and could be 

easily produced by automated processes should large-scale production be warranted. The resulting 

printed circuit board assembly could also be produced by automation, and thus reduce both 

production time and cost substantially. The most significant challenge in manufacturing the wall 

plug is setting up standard for the RFID tag information in the plug so that companies that make DC 

appliance could follow.  A secondary issue is being able to decrease cost to an affordable level 

relative to those in third world countries. This issue will be most likely addressed in the transition 

from the prototyping phase to production phase of the DC house. 
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7. Sustainability 

Referring to the “Four E’s of Sustainability:” Energy, Environment, Economics, and Equity, the DC 

House Project is an ideal example of using these concepts together in order to improve the health, 

comfort, and safety of many through the use of renewable energy. The design improvement 

increases the power efficiency of the load. 

Since the project is to be implemented in third world countries, its design specifications include 

being durable not easily tampered with. If the wall plug requires maintenance, then it shall be 

simple and kept to the minimal so the users will be able to do so themselves without difficulty. 

Ideally, the wall plug would have a lifetime of over 20 years. All the parts used in the plug are RoHS 

compliant, and by using the minimal number of components without adding superfluous 

functionality, the wall plug is an environmentally-friendly device. In addition, the materials used are 

easily recycled by modern electronics reclamation facilities. 

The benefits of using the DC House with the Smart Wall Plug has equitable benefits for the 

world, as the adoption of this technology will lead to further developments in low-power appliances, 

reduced greenhouse gas emissions, decreased accidents from fuel handling, and decreased sickness 

from generator emissions. Implementing this kind of technology in developing nations promotes the 

use of renewable resources and cuts back on the consumption of fossil fuels. Renewable energy 

would be gradually implemented and accepted as countries using DC houses grows economically 

and industrially. 

Upgrades for the small DC wall plug include changing the RFID tag/reader to have an algorithm 

to determine the correct output voltage. A manual switch or button to turn off the smart DC wall 

plug reduces overall power consumption. 
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8. Ethical 

The Smart DC Wall Plug was constructed with the highest ethical considerations in mind, as it is 

part of DC House project which aims to bring clean, renewable power to those unfortunate enough 

to go without. As with the case of any electronics project, the impact of harmful chemicals was 

taken into consideration and minimized with the use of RoHS compliant parts, and hardware that is 

easily recyclable and reusable for other applications.  

The smart DC wall plug is ethical because it is a necessary part of the DC house project, which is 

designed to address the lack of electricity in third world countries. This relates to the IEEE code of 

ethics stating to help the public and to treat all persons fairly, regardless of race or national origin.  

However, since not every village will be able to afford remodeling every house into a DC house, it 

will create an inequality between those who do and those who don’t. 

9. Health and Safety 

As with all electrical wall outlets, sticking any body part into the plug or any non-insulated metal 

into the wall plug can cause in a worst case scenario, heart failure due to electrical shock. As large 

currents running through the human body causes heart failure, we implement short circuit 

protection to prevent any large current from leaving the wall plug. We also implemented reverse 

polarity protection to prevent any appliance from being connected incorrectly. Other safety 

concerns can be related to the standard 120V AC wall plug and are not unique to the Smart DC wall 

plug. 

10. Social and Political 

Approximately 1.6 billion people, a quarter of the human population, live without electricity [3]. 

The project mainly focuses on decreasing this number by providing low-cost means of providing 

electricity to third world countries. Those who manufacture and those who use this product are the 

direct stakeholders. Indirect stakeholders are the AC power companies, for more people using DC 
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power means less people using AC power, resulting is a decrease in profit for the AC power 

companies. Every year, governments around the globe write legislatures for new incentives for 

development of renewable resources. As a result of this, the solar industry alone has grown by 847% 

from 2000 to 2007[1]. 

 In summary, goal of the DC house is to provide electrical equality for all, to provide electricity for 

those who don’t have electricity in their daily lives. 

11. Development 

 To aid in the assembly process we learned PCB design 

 As design requirements dictate, we learned the operations and integration techniques of buck 

converters 

 Simulation techniques for buck converters were learned  

 To meet safety requirements, we learned over voltage protection techniques  

 To meet safety requirements, we learned reverse polarity protection techniques 

 To meet safety requirements, we learned short circuit protection techniques  

 For sensing, we learned how to use RFID/NFCs  
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APPENDIX B – TEST DATA 
Table C-1 – Power Efficiency Data with Vout = 5V 

Vout = 5 

Iout Vout(exp) Iin Pin Pout Efficiency 

0.5 4.958 0.081 3.888 2.479 63.76029 

1 4.905 0.136 6.528 4.905 75.13787 

1.5 4.855 0.19 9.12 7.2825 79.85197 

2 4.798 0.248 11.904 9.596 80.61156 

2.5 4.747 0.305 14.64 11.8675 81.06216 

3 4.693 0.363 17.424 14.079 80.80234 

3.5 4.647 0.427 20.496 16.2645 79.35451 

4 4.592 0.491 23.568 18.368 77.93618 

    
Average 77.31461 

 

Table C-2– Power Efficiency Data with Vout = 9V 

Vout = 9 

Iout Vout(exp) Iin Pin Pout Efficiency 

0.5 8.987 0.122 5.856 4.4935 76.73327 

1 8.937 0.219 10.512 8.937 85.01712 

1.5 8.888 0.315 15.12 13.332 88.1746 

2 8.839 0.414 19.872 17.678 88.95934 

2.5 8.788 0.511 24.528 21.97 89.5711 

3 8.738 0.614 29.472 26.214 88.94544 

3.5 8.687 0.715 34.32 30.4045 88.5912 

4 8.637 0.817 39.216 34.548 88.0967 

    
Average 86.7611 

 

Table C-3 – Power Efficiency Data with Vout = 12V 

Vout = 12 

Iout Vout(exp) Iin Pin Pout Efficiency 

0.5 12.11 0.154 7.392 6.055 81.91288 

1 12.05 0.284 13.632 12.05 88.39495 

1.5 12.01 0.413 19.824 18.015 90.8747 

2 11.95 0.544 26.112 23.9 91.5288 

2.5 11.91 0.674 32.352 29.775 92.0345 

3 11.85 0.807 38.736 35.55 91.77509 

3.5 11.81 0.944 45.312 41.335 91.22308 

4 11.75 1.079 51.792 47 90.74761 

    
Average 89.81145 
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Table C-4 – Power Efficiency Data with Vout = 15V 

Vout = 15 

Iout Vout(exp) Iin Pin Pout Efficiency 

0.5 15.05 0.185 8.88 7.525 84.74099 

1 14.99 0.346 16.608 14.99 90.25771 

1.5 14.96 0.505 24.24 22.44 92.57426 

2 14.9 0.667 32.016 29.8 93.07846 

2.5 14.85 0.829 39.792 37.125 93.29765 

3 14.8 0.992 47.616 44.4 93.24597 

3.5 14.76 1.155 55.44 51.66 93.18182 

4 14.72 1.321 63.408 58.88 92.85895 

    
Average 91.65447 

 

Table C-5 – Power Efficiency Data with Vout = 24V 

Vout = 24 

Iout Vout(exp) Iin Pin Pout Efficiency 

0.5 24.38 0.282 13.536 12.19 90.05615 

1 24.34 0.541 25.968 24.34 93.73075 

1.5 24.31 0.797 38.256 36.465 95.31838 

2 24.26 1.058 50.784 48.52 95.5419 

2.5 24.22 1.317 63.216 60.55 95.78271 

3 24.17 1.58 75.84 72.51 95.60918 

3.5 24.14 1.841 88.368 84.49 95.61153 

4 24.08 2.106 101.088 96.32 95.28332 

    
Average 94.61674 

 

Table C-6 – Line Regulation Data with VOUT,LOW = 38V,  VOUT,HIGH= 58V, and IOUT = 3A 

Vout,nom (V) 5 9 12 15 24 

Vout,low (V) 4.702 8.745 11.85 14.81 24.18 

Vout,high (V) 4.692 8.731 11.83 14.78 24.15 

Line Reg. 0.2000% 0.1556% 0.1667% 0.2000% 0.1250% 
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APPENDIX C – ARDUINO CODE 

Code 1: Arduino Code for Wall Plug 

#include <Wire.h> 
#include <Adafruit_NFCShield_I2C.h> 
#include <SPI.h> 
 
#define IRQ   (2) 
#define RESET (3)  // Not connected by default on the NFC Shield 
 
Adafruit_NFCShield_I2C nfc(IRQ, RESET); 
 
int runpin =12; 
 
void setup(void) { 
  Serial.begin(115200); 
  Serial.println("Hello!"); 
  pinMode(runpin, OUTPUT);   
  digitalWrite(runpin, HIGH);    //Resets run pin on Buck controller 
  nfc.begin(); 
  Wire.begin(); 
  uint32_t versiondata = nfc.getFirmwareVersion(); 
  if (! versiondata) { 
    Serial.print("Didn't find PN53x board"); 
    while (1); // halt 
  } 
  // Got ok data, print it out! 
  Serial.print("Found chip PN5"); Serial.println((versiondata>>24) & 0xFF, HEX);  
  Serial.print("Firmware ver. "); Serial.print((versiondata>>16) & 0xFF, DEC);  
  Serial.print('.'); Serial.println((versiondata>>8) & 0xFF, DEC);   
  // configure board to read RFID tags 
  nfc.SAMConfig(); 
  Serial.println("Waiting for an ISO14443A Card ...");  
} 
 
 
void loop(void) { 
  uint8_t success; 
  uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0 };  // Buffer to store the returned UID 
  uint8_t uidLength;                        // Length of the UID (4 or 7 bytes depending on ISO14443A card type) 
  char value[] = ""; 
  double value2;  //Voltage reading from Tag 
  int value3; //Step level data, sent to Digital Potentiometer 
  byte val = 0; 
   
  // Wait for an ISO14443A type cards (Mifare, etc.).  When one is found 
  // 'uid' will be populated with the UID, and uidLength will indicate 
  // if the uid is 4 bytes (Mifare Classic) or 7 bytes (Mifare Ultralight) 
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  success = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, uid, &uidLength); 
 
  if (success) { 
    // Display some basic information about the card 
    Serial.println("Found an ISO14443A card"); 
    Serial.print("  UID Length: ");Serial.print(uidLength, DEC);Serial.println(" bytes"); 
    Serial.print("  UID Value: "); 
    nfc.PrintHex(uid, uidLength); 
    Serial.println(""); 
     
    if (uidLength == 4) 
    { 
      // We probably have a Mifare Classic card ...  
      Serial.println("Seems to be a Mifare Classic card (4 byte UID)"); 
     
      // Now we need to try to authenticate it for read/write access 
      // Try with the factory default KeyA: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 
      Serial.println("Trying to authenticate block 4 with default KEYA value"); 
      uint8_t keya[6] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 
     
      // Start with block 4 (the first block of sector 1) since sector 0 
      // contains the manufacturer data and it's probably better just 
      // to leave it alone unless you know what you're doing 
      success = nfc.mifareclassic_AuthenticateBlock(uid, uidLength, 4, 0, keya); 
     
      if (success) 
      { 
        Serial.println("Sector 1 (Blocks 4..7) has been authenticated"); 
        uint8_t data[16]; 
//Reading data below 
        // Try to read the contents of block 4 
        success = nfc.mifareclassic_ReadDataBlock(4, data); 
     
        if (success) 
        { 
          // Data seems to have been read ... spit it out 
          Serial.println("Reading Block 4:"); 
          nfc.PrintHexChar(data, 16); 
          Serial.println(""); 
          // Wait a bit before reading the card again 
          delay(10); 
          int i=0; 
          for(i=0; i<16; i++){ 
            value[i] = (char)data[i]; 
          } 
          value2 = atof(value); 
          Serial.println(value2); 
          if (value2 >=5 & value2 <=24) //See if valid voltage range 
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          { 
            value3 = ((1314/((value2/.8)-1))-1); //converting voltage to step level 
            Serial.println(value3); 
            Wire.beginTransmission(47); // transmit to device #44 (0x2c) 
                                // device address is specified in datasheet 
            Wire.write(byte(0x02));            // sends instruction byte   
            Wire.write(value3);             // sends potentiometer value byte   
            Wire.endTransmission();     // stop transmitting 
            digitalWrite(runpin, LOW);  //Sets the run pin high to tell the Buck controller to begin output 
            delay(10);  
          } 
          else 
            { 
              Serial.println("Ooops... the voltage rating of the appliance is not supported! This DC SWaP only 
supports appliances operating between 5V-24V."); 
              digitalWrite(runpin, HIGH);  //Resets run pin on Buck controller 
          } 
        } 
        else 
        { 
          Serial.println("Ooops ... unable to read the requested block.  Try another key?"); 
          digitalWrite(runpin, HIGH);  //Resets run pin on Buck controller 
        } 
      } 
      else 
      { 
        Serial.println("Ooops ... authentication failed: Try another key?"); 
        digitalWrite(runpin, HIGH);  //Resets run pin on Buck controller 
      } 
    } 
    if (uidLength == 7) 
    { 
      // We probably have a Mifare Ultralight card ... 
      Serial.println("Seems to be a Mifare Ultralight tag (7 byte UID)"); 
     
      // Try to read the first general-purpose user page (#4) 
      Serial.println("Reading page 4"); 
      uint8_t data[32]; 
      success = nfc.mifareultralight_ReadPage (4, data); 
      if (success) 
      { 
        // Data seems to have been read ... spit it out 
        nfc.PrintHexChar(data, 4); 
        Serial.println(""); 
 
        // Wait a bit before reading the card again 
        delay(10); 
        int i=0; 
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          for(i=0; i<16; i++){ 
            value[i] = (char)data[i]; 
          } 
          value2 = atof(value); 
          Serial.println(value2); 
          value3 = ((1314/((value2/.8)-1))-1); //converting voltage to step level 
          Serial.println(value3); 
          Wire.beginTransmission(47); // transmit to device #44 (0x2c) 
                              // device address is specified in datasheet 
          Wire.write(byte(0x02));            // sends instruction byte   
          Wire.write(value3);             // sends potentiometer value byte   
          Wire.endTransmission();     // stop transmitting 
          digitalWrite(runpin, LOW);  //Sets the run pin high to tell the Buck controller to begin output 
          delay(10);  
      } 
      else 
      { 
        Serial.println("Ooops ... unable to read the requested page!?"); 
        digitalWrite(runpin, HIGH);   //Resets run pin on Buck controller 
      } 
    } 
  } 
} 
 

Code 2: Arduino Code for Programming Tags 

 

#include <Wire.h> 
#include <Adafruit_NFCShield_I2C.h> 
#include <SPI.h> 
 
#define IRQ   (2) 
#define RESET (3)  // Not connected by default on the NFC Shield 
 
Adafruit_NFCShield_I2C nfc(IRQ, RESET); 
 
const int slaveSelectPin = 10; 
 
void setup(void) { 
  Serial.begin(115200); 
  Serial.println("Hello!"); 
 
  nfc.begin(); 
  Wire.begin(); 
  uint32_t versiondata = nfc.getFirmwareVersion(); 
  if (! versiondata) { 
    Serial.print("Didn't find PN53x board"); 
    while (1); // halt 
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  } 
  // Got ok data, print it out! 
  Serial.print("Found chip PN5"); Serial.println((versiondata>>24) & 0xFF, HEX);  
  Serial.print("Firmware ver. "); Serial.print((versiondata>>16) & 0xFF, DEC);  
  Serial.print('.'); Serial.println((versiondata>>8) & 0xFF, DEC); 
   
  // configure board to read RFID tags 
  nfc.SAMConfig(); 
   
  Serial.println("Waiting for an ISO14443A Card ..."); 
} 
 
void loop(void) { 
  uint8_t success; 
  uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0 };  // Buffer to store the returned UID 
  uint8_t uidLength;                        // Length of the UID (4 or 7 bytes depending on ISO14443A card type) 
  char value[] = ""; 
  double value2;  //Voltage reading from the NFC 
  
  byte val = 0; 
   
  // Wait for an ISO14443A type cards (Mifare, etc.).  When one is found 
  // 'uid' will be populated with the UID, and uidLength will indicate 
  // if the uid is 4 bytes (Mifare Classic) or 7 bytes (Mifare Ultralight) 
  success = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, uid, &uidLength); 
   
  if (success) { 
    // Display some basic information about the card 
    Serial.println("Found an ISO14443A card"); 
    Serial.print("  UID Length: ");Serial.print(uidLength, DEC);Serial.println(" bytes"); 
    Serial.print("  UID Value: "); 
    nfc.PrintHex(uid, uidLength); 
    Serial.println(""); 
     
    if (uidLength == 4) 
    { 
      // We probably have a Mifare Classic card ...  
      Serial.println("Seems to be a Mifare Classic card (4 byte UID)"); 
     
      // Now we need to try to authenticate it for read/write access 
      // Try with the factory default KeyA: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 
      Serial.println("Trying to authenticate block 4 with default KEYA value"); 
      uint8_t keya[6] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 
     
      // Start with block 4 (the first block of sector 1) since sector 0 
      // contains the manufacturer data and it's probably better just 
      // to leave it alone unless you know what you're doing 
      success = nfc.mifareclassic_AuthenticateBlock(uid, uidLength, 4, 0, keya); 
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      if (success) 
      { 
        Serial.println("Sector 1 (Blocks 4..7) has been authenticated"); 
        uint8_t data[16]; 
//writing data below     
        // the following line is written out to the NFC tag and this text should be read back in a minute 
        memcpy(data, (const uint8_t[]){ '1', '2', '.', '0', '0', '0', '0', '0', '0', '0', '0', '0', 0, 0, 0, 0 }, sizeof data); 
        success = nfc.mifareclassic_WriteDataBlock (4, data); 
 
//Reading data below 
        // Try to read the contents of block 4 
        success = nfc.mifareclassic_ReadDataBlock(4, data); //Read block 4 data 
     
        if (success) 
        { 
          // Data seems to have been read ... spit it out 
          Serial.println("Reading Block 4:");  
          nfc.PrintHexChar(data, 16); 
          Serial.println(""); 
          // Wait a bit before reading the card again 
          delay(1000); 
          int i=0; 
          for(i=0; i<16; i++){ 
            value[i] = (char)data[i]; 
          } 
          value2 = atof(value); 
          Serial.print ("Voltage Rating (V) written to NFC TAG:"); Serial.println(value2); 
          Serial.println(""); 
          delay(10);  
         
        } 
        else 
        { 
          Serial.println("Ooops ... unable to read the requested block.  Try another key?"); 
        } 
      } 
      else 
      { 
        Serial.println("Ooops ... authentication failed: Try another key?"); 
      } 
    } 
     
    if (uidLength == 7) 
    { 
      // We probably have a Mifare Ultralight card ... 
      Serial.println("Seems to be a Mifare Ultralight tag (7 byte UID)"); 
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      // Try to read the first general-purpose user page (#4) 
      Serial.println("Reading page 4"); 
      uint8_t data[32]; 
      success = nfc.mifareultralight_ReadPage (4, data); //Write to page 4 
      if (success) 
      { 
        // Data seems to have been read ... spit it out 
        nfc.PrintHexChar(data, 4); 
        Serial.println(""); 
 
        // Wait a bit before reading the card again 
        delay(1000); 
        int i=0; 
          for(i=0; i<16; i++){ 
            value[i] = (char)data[i]; 
          } 
          value2 = atof(value); 
          Serial.print("Voltage Rating (V) written to NFC TAG:");  Serial.println(value2); 
          Serial.println(""); 
          delay(10);  
      } 
      else 
      { 
        Serial.println("Ooops ... unable to read the requested page!?"); 
      } 
    } 
  } 
} 


