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Chapter 1: Project Abstract 

Cal Poly’s Energy Harvesting from Exercise Machines (EHFEM) project comprises of 

multiple subprojects seeking to effectively create a sustainable energy source through harvesting 

electrical energy generated from physical exercise machines.  This project designs and 

implements a Buck-Boost DC-DC converter using a LT3791-1 4-Switch Buck-Boost Controller, 

replacing the previous SEPIC design. The DC-DC converter must operate within limits set by the 

maximum input range of the LT3791-1 controller. An input protection system prevents inputs 

higher than rated values, which may adversely damage the Buck-Boost DC-DC converter. These 

inputs include overvoltage transients, average voltage, and current output by the Precor EFX 

561i elliptical generator. Therefore, integrating a modified version of Ryan Turner and Zack 

Weiler’s DC-DC Converter Input Protection System prevents system damage if generator 

outputs stray beyond safe operational range. This system also provides charge accumulation 

protection generated during an open-load phase during start-up of the Enphase M175 Micro-

Inverter. Additionally, the DC-DC converter’s output must provide a voltage within the micro-

inverter’s input voltage range to apply 240VRMS power back to the electrical grid. 
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Chapter 2: Introduction 

California Poly San Luis Obispo’s ongoing EHFEM project seeks to effectively harvest 

renewable energy from power generated by physical exercise machines at a low implementation 

cost. The EHFEM project seeks to convert exercise machines into energy generating units that 

attain a zero lifecycle cost after ten years. A team of mechanical and electrical engineering 

students first established the EHFEM project in 2007 while seeking to convert an exercise bike 

into a standalone DC and AC generating system [1]. Since then, the EHFEM project has 

progressed on to harvesting electrical energy from elliptical trainers. Overall, the EHFEM project 

consists of multiple subprojects focusing on converting different exercise machine types into 

power generators.  

The EHFEM project currently focuses on converting a Precor EFX 561i elliptical 

machine into an effective power generating unit. Previous project teams developed a generator 

unit attached to the elliptical machine.  This project scales the output voltage and current of the 

on-board generator using a DC-DC converter and feeds into an Enphase M175 Micro-Inverter to 

send AC power back to the electrical grid with minimum power conversion loss. An input 

protection system connects between the generator and DC-DC converter preventing transient 

voltage and current spikes from adversely damaging the DC-DC converter.  This project seeks to 

implement an input protection scheme with a buck-boost DC-DC converter based on a LT3791-1 

topology to improve upon the previously designed SEPIC topology and input protection system 

[2, 3]. 

The LT3791-1 accepts a maximum input voltage of 60V [4]. Any input exceeding this 

maximum threshold may adversely damage the controller. Therefore, an input protection system 

helps to prevent DC-DC converter damage during overvoltage transients exceeding 60V. A 
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modified version of the previous input protection system should apply a maximum of 60V to the 

DC-DC converter [2]. 

A previous SEPIC input protection system failure resulted in a catastrophic failure that 

damaged both the input protection circuit and SEPIC converter designed by Martin Kou [3]. The 

new input protection circuit must operate within 4.7V to 60V and protect against transient and 

sustained overvoltage events while allowing the DC-DC converter to remain operational. 

Customer Needs Assessment 

Overall, the EHFEM project targets users of Cal Poly’s Recreational Center and aims to 

modify existing or newly installed elliptical machines with energy generating units. EHFEM 

altered elliptical machines effectively convert mechanical energy into electrical energy applied 

back to the electrical grid. The implementation of this project’s Buck-Boost DC-DC converter 

and its input protection system must not alter the user’s exercise experience or negatively impact 

their safety. It must also fit within the enclosure of the Precor EFX 561i elliptical machine in a 

way that resists damage resulting from vibration or water spilled on the enclosure. Additionally, 

the implemented system must properly function and connect, both physically and electrically, 

with the existing generator and Enphase M175 Micro-Inverter. The unit should also maintain a 

nominal life expectancy of at least 10 years with an average use of 18 hours per day and reach 

zero system lifecycle cost. 
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Chapter 3: Project Objectives 

3.1. Requirements and Specifications 

Subcomponent characteristics primarily influenced this project’s overall requirements 

and specifications. Prior EHFEM subprojects and manufacturer-provided components defined 

design parameters. Previous converter design cost estimates aided in projecting this system’s 

final cost. Required system inputs and outputs derive from output characteristics of the elliptical 

machine’s generator and micro-inverter’s input characteristics. Electrical specifications derive 

from Martin Kou’s thesis, Ryan Turner’s and Zack Weiler’s senior projects, and component 

datasheets. Integrating banana-to-banana leads rather than soldered leads prevent potential 

broken contact points between the generator, converter, and micro-inverter. Marketing 

requirements derive from a customer needs assessment. Overall, the system must maintain a low 

cost, operate reliably and safely, and must couple with existing components while not altering 

the user’s exercise experience when operating the elliptical machine. Table 3-1 summarizes 

project requirements and specifications. 

Table 3-1: EHFEM DC/DC Converter with IPSC Requirements and Specifications 

Marketing 
Requirements 

Engineering 
Specifications 

Justification 

1 System and component costs must 
not exceed $300 per unit. 

The previous input protection system’s 
cost approximated $46.00. Furthermore, 
the previous SEPIC DC-DC converter 
design cost approximately $365.00. A 
proposed 18% cost reduction decreases 
total project expenses while maintaining 
or increasing functionality. [6] [7] 
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2, 3, 7 System must fulfill NEC, IEEE 
1547, and NEMA electrical safety 
standards. 

Must fulfill national standards for safe 
electrical and mechanical operation. 
National Electrical Code applies to 
electrical wiring and installation safety 
requirements.  IEEE 1547 applies to inter-
connections between generators and the 
power grid. NEMA applies to testing and 
operational safety standards. [5] [6] [7] 

2, 3, 6 Must have an operational life of 
65,700 hours without need of repair 
or replacement. 

The system must operate a minimum of 
10 years under normal use (18 hour per 
day), totaling approximately 33000 hours. 

4 Input protection system must 
provide an overvoltage protection 
up to 150V. 

Prior tests demonstrate the Precor 
elliptical trainer capable of generating 
voltage spikes over 100V, far above the 
maximum LT3791-1 input voltage [2]. 
Therefore implementing a protection 
system prevents component damage. 

4 DC-DC converter must receive a 
maximum input voltage of 60V. 

LT3791-1 accepts nominal input voltages 
ranging from 4.7V to 60V. Voltages 
excess of 60V may cause significant 
damage to the DC-DC converter [4].  

4 DC-DC converter must supply less 
than 8A to the Enphase M175 
Micro-Inverter.  

The Enphase M175 Micro-Inverter’s 
accepts a maximum input current of 8A 
[8]. Higher values may adversely damage 
the micro-inverter. 

4 DC-DC converter must maintain 
36V ± 5% output to the Enphase 
M175 Micro-Inverter. 

The Enphase M175 Micro-Inverter must 
receive a 36V input to maintain peak 
power conversion efficiency [9]. 

4 System input and output 
connections must feature banana 
plugs. 

All components must physically and 
electrically connect with each other. 
Readily removable or connectable 
banana-to-banana leads are more durable 
than soldered wire connection leads. 

4, 5 System must fit within elliptical 
trainer’s enclosure. 

All components should fit within the 
elliptical trainer’s enclosure to prevent 
user tampering. 

5 System must have an operational 
input impedance of approximately 
10 Ω. 

The input impedance must remain 10Ω to 
preserve the user’s exercise experience. 
Altering the input impedance alters the 
braking system’s nominal resistance [2]. 

6 Circuit components must maintain 
ROHS compliance. 

Promotes safe component disposal, 
thereby decreasing long-term harmful 
environmental impacts. 
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Marketing Requirements 
1. Low cost 
2. Reliable 
3. Structurally durable 
4. Compatible and easy to implement with existing components 
5. Does not change the user’s exercise experience 
6. Environmentally sustainable 
7. Conform to safety standards 

The requirements and specifications table format derives from [10], Chapter 3. 
 

Table 3-2: EHFEM DC/DC Converter with IPSC Deliverables 

Delivery Date Deliverable Description 
Feb. 20, 2014 Cal Poly EE Department Design Review 

Mar. 14, 2014 EE463 Report 

Mar. 14, 2014 EE463 Demo Device(s) 

May 23, 2014 EE464 Report 

May 23, 2014 EE464 Demo Device(s) 

May 30, 2014 ABET Sr. Project Analysis 

May 30, 2014 Sr. Project Expo Poster 
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Chapter 4: Functional Decomposition 

4.1. Level Zero Block Diagram 

The level zero functional decomposition block diagram, shown in Figure 4-1, depicts a 

one input and one output system. This block receives an input DC power from the elliptical 

trainer’s generator and scales its voltage up or down to output power rated at 36V to the Enphase 

Micro-Inverter.  

 

 

Figure 4-1: Level Zero Block Diagram 

Table 4-1 Level Zero Block Diagram Functional Analysis 

 
Input 
 

• Generated DC power from EFX 546i Elliptical Trainer 

• 0V - 60V average depending on user’s fitness and machine’s resistance 

• 6A max input current at 10Ω input impedance 
 
Output 
 

• 36V ±5% Output Voltage for Enphase Micro-Inverter 

• 7.5A max output current 

 
Functionality 
 

Converts generated DC power from EFX 546i Elliptical Trainer to rated 
36V applied to Enphase Micro-Inverter   

 

4.2. Level One Block Diagram 

The level one block diagram depicts three main system blocks with primary 

functionalities displayed in Figure 4-2.  The DC-DC converter may require two controllers in 

parallel instead of one controller. Figure 4-2 also includes an input protection circuit, its 

feedback loop, and its system functionality. 

Buck-Boost DC-DC Converter with an 

Input Protection 

Generated DC power 

from Precor EFX 

546i Elliptical 

Trainer 

DC Power at 36V 

Output Voltage for 

Enphase M175 Micro-

Inverter 
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Figure 4-2: Level One Block Diagram 
 
 

Table 4-2: Level One Block Diagram Protection Circuit Functional  Analysis 
  

Module LT4356 Protection Circuit 

Inputs • Generated DC power from EFX 546i Elliptical Trainer 

• 0V - 60V average depending on user’s fitness and machine’s resistance 
Outputs • Regulated 60V and 6A max current at 10 Ω input impedance 

Functionality Surge stopper regulates system input voltage and current to 60V and 6.5A.  
Contains current sensing feedback loop from an input of Enphase Micro-Inverter 
to protection circuit to detect transient over-voltage events occurring at converter 
input. Also detects five minute start-up period of Enphase Micro-Inverter.  When 
transient or five minute start-up period occurs, voltage builds up over the limit of 
the system and the protection circuit provides an alternate path for voltage and 
current to dissipate. 

 

Table 4-3: Level One Block Diagram DC-DC Converter Circuit Functional Analysis 

Module LT3791-1 DC-DC Converter 

Inputs • Regulated 60V and 6A max current at 10 Ω input impedance 
Outputs • 36V ±5% output voltage for Enphase Micro-Inverter 

• 7.5A max output current 

Functionality Converts DC power provided from protection circuit to  power rated at 36V that 
the Enphase Micro-Inverter can invert to 240V RMS AC power. Controller 
regulates the output voltage and current output. 

  

Generated 

DC power 

from 

Precor 

EFX 546i 

Elliptical 

Trainer 

LT4356 

Protection 

Circuit 

LT3791-1 

DC-DC Converter 

DC power at 36V 

output voltage 

with 8A max 

current for 

Enphase M175 

Micro-Inverter 

Current 

Voltage 

Feedback Loop 
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Chapter 5: Project Planning 

5.1. Initial Gantt Chart 

 

 

Figure 5-1: Estimated Project Gantt Chart 
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Figure 5-1Error! Reference source not found. depicts this project’s estimated Gantt Chart 

during EE460, EE463, and EE464.  Fall 2013 covers EE460 and lists course deliverables. Winter 

2014 depicts an initial system design phase, not including an academic winter break. Initial 

system design occurs over five weeks with time allocated for revisions and faculty advisor 

design confirmation. Two further design and confirmation phases ensure proper circuit design 

before ordering, building, and testing a prototype. Parts selection occurs throughout the first two 

design processes with a two week buffer accommodating purchasing and shipping a finalized 

parts list. Three additional weeks provide adequate time for prototype construction. Prototype 

testing occurs during a period two weeks prior and two weeks after an academic spring break. 

Implementing further design revision and part purchasing stages over the course of five weeks 

prepare for the final circuit design. An initial Project Report V1 is due the last day of EE463 at 

the end of Winter Quarter. The final design and Project Report V2 are due on May 23rd, the end 

of Spring Quarter’s 8th week of instruction. Documentation occurs throughout design, prototype, 

and test phases. 

5.2. Predicted Cost Estimate 

Approximately 2 LT3791-1 ICs maintain the previous SEPIC DC-DC power output 

capacity of 288W. Each IC costs approximately $7.50, totaling a minimum of $22.50.  A 

modified version of Ryan Turner and Zach Weiler’s DC-DC Converter Input Protection System 

project serves as the input protection system [2]. Their system cost $46.43 including various 

components. Further appropriation of funds considers the cost of the converter and input 

protection circuit PCBs in addition to component costs for the DC-DC converter schema itself. 

Optimistically, the full design, implementation, and testing of this project requires 150 

hours in addition to best-case component costs. 
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Nominally, aside from the previously estimated costs of the LT3791-1 ICs and input 

protection system, the DC-DC converter and PCB manufacturing may cost higher than expected. 

An additional $85.00 considers shipping and handling, not including component costs. 

Nominally, the full design, implementation, and testing of this project requires 200 man hours.  

Pessimistically, the full design, implementation, and testing of this project requires 400 

hours in addition to the cost for additional misplaced or damaged parts. Our pessimistic 

estimation also considers multiple iterations of the project.  

Costs Optimistic Most Likely Pessimistic Estimated 
Total Component (Fixed) 

Component Cost 
LT 3791 $ 22.50 

LT 4356 $ 8.49 

IPSC and  
DC-DC converter hardware  

$ 70-90 

Converter PCB $ 100-300 

Protection Circuit PCB $ 5-80 

LT3791-1 Controller $ 10-20 

Total Component Cost Min = $ 215.99 
Max = $ 520.56 

 

$215.00 $300 $520.00 $272.50 

Total Labor (Variable) 
$16 per hour 

$2,400.00 
150 Hrs 

$3,200.00 
200 Hrs 

$6,400.00 
400 Hrs 

$3600.00 

Total Cost $3,872.50 

Figure 5-2: Project Cost Estimates 
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Chapter 6: Previous Buck-Boost Converter Design Discussions 

6.1. Alvin Hilario Four Switch Topology 

 Alvin Hilario’s Four-Switch Buck-Boost DC-DC converter design, Figure 6-1, utilizes 

two LT3780 High-Efficiency, Synchronous, 4-Switch Buck-Boost Controllers and an LTC4444 

High Voltage Synchronous N-Channel MOSFET Driver. LT3780 PWM controls two LTC4444s, 

each of which control four NMOS switches connected to the power inductor. Hilario’s design 

operates within a 5V to 52V input voltage range with 94.07% average power efficiency. Worst-

case 68.84% power efficiency occurred at a 5V converter input. The inverter’s worst output 

voltage ripple reaches 380mV, or 1.05%. His converter design cost roughly $80 including a 

custom-made PCB board. Hilario noted that the microinverter’s inability to mimic a constant 

resistance and tends to draw too much current from the converter, thereby deregulating its 

intended 36V output.   

Figure 6-1: Alvin Hilario’s Four-Switch Buck-Boost DC-DC Converter Design [9] 
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6.2. Martin Kou SEPIC Topology 

 

Martin Kou designed the Single Ended Primary Inductor Converter topology depicted in 

Figure 6-2. A SEPIC design controls energy exchange between coupling capacitors and 

switching inductors using a NMOS switch. Kou’s SEPIC design attained 78.3% converter power 

efficiency at a 60V input and accepts an input range of 8V to 60V. Kou’s project obtained a 

maximum of 78.7% power efficiency at a 50V input. Kou’s SEPIC design does not feature a 

current limiter and uses fuses between the converter’s output and inverter’s input. Kou’s SEPIC 

design cost $404.99. 

 

  

Figure 6-2: Martin Kou’s SEPIC DC-DC Converter Design [3] 
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6.3. LT3791-1 Design Parameterization 

Operational Enphase M175-24-240 Micro-Inverter’s and elliptical machine’s generator 

characteristics limit input and output characteristics of the proposed DC-DC converter. Alvin 

Hilario previously characterized the Enphase Micro-Inverter’s maximum 87.10% operating 

power efficiency at a 36V input voltage. Therefore, the converter’s output voltage must regulate 

36V for maximum micro-inverter efficiency. Furthermore, the micro-inverter accepts an 8A 

maximum input current [8]. However, the DC-DC converter should limit the microinverter input 

current to 7.5A or lower to prevent microinverter damage. The microinverter accepts 270W 

maximum at a regulated 36V and 7.5A input current. Sections 7.3 and 7.4 describe output 

current and voltage programming. 

The elliptical machine’s generator supplies power across a 10Ω resistor and provides a 

maximum 360W power output at 60V. Assuming maximum efficiency, where PIN = POUT, the 

DC-DC Converter design handles up to 270W with a 52V input. Therefore, knowing � = ��

� , the 

maximum input voltage to the system approximates 52V. Setting an overvoltage limit using a 

resistive voltage divider at the OVLO pin as described in Section 7.7 ceases device operation 

above a 51V input. Triggering an overvoltage event shuts off and resets the converter and ceases 

power MOSFET switching. An input protection system should divert converter input power 

when the converter is non-operational. 

  

  

Chapter 7: LT3791-1 Topology Component Selection Overview 

7.1. Block Diagram 
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Figure 7-1: LT3791-1 Buck Boost 4-Switch Buck-Boost Controller Block Diagram [4] 

 This controller provides an output voltage above, 

IVINP and IVINN pins detect current through the 

7.2. Programing Switching Frequency using RT Pin 

The LT3791-1 controller features a programmable 

A resistor, RT, connecting RT to ground 



27 

 

Figure 7-2 and 

Figure 7-3 display the relationship between RT and switching frequency values. Selecting 

a 400 kHz switching frequency and 59kΩ RT value provides an arbitrary median between power 

efficiency and component sizes offered by the LT3791-1 controller. 

 
Figure 7-2: Programmable LT3791-1 RT resistor values and switching frequency plot 

 

 
Figure 7-3: RT vs. fOSC, programmable switching frequency [4] 

7.3. Programming Output Current using ROUT 

Placing ROUT in series with the output load programs the converter’s maximum output 

current. ISP and ISN pins sense the voltage drop across ROUT while VCTRL sets a V(ISP-ISN) 

threshold. Figure 7-4 lists typical V(ISP-ISN) thresholds versus VCTRL. When VCTRL > 1.3V, the 

����=100������  ( 7.3-2 ). VCTRL tied to INTVCC sets V(ISP-ISN) to 100mV. 

Two LT3791-1 controllers evenly split supplied output current. Therefore, each controller 

requires one ROUT. Initially, a 7.5A output load current resulted in a 0.0267Ω ROUT value, thereby 
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outputting 3.75A per controller. However, an equivalent current sense resistor was not available, 

so ROUT was selected as the next-nearest value of 0.027 Ω. Selecting ROUT as 0.027Ω sets the 

����=100������  ( 7.3-2 ). Each controller provides the load with 3.7A or a maximum 7.4A 

output current. Therefore, the load may receive a maximum power of 266.4W provided a 7.4A 

IOUT and 36V VOUT as programmed by ROUT and FB pin feedback voltage. 

 
Figure 7-4: Output current selection, VCTRL vs V(ISP-ISN) [4] 

 
 

���� = ������ !!"�
�#$�∗&!   ( 7.3-1 ) 

���� = &!!"�
�#$�

  ( 7.3-2 ) 

 

Equation ����= ������ !!"�
�#$�∗&!   ( 7.3-1 ) determines maximum output current of a 

single device when the CTRL pin voltage pulls less than 1V.  Equation ����= &!!"�
�#$�

  ( 7.3-2 

) determines maximum output current when the CTRL pin voltage pulls above 1.3V. 

Intermediate VCTRL values noted in Figure 7-4 replace the 100mV in Equation ����= &!!"�
�#$�

 

 ( 7.3-2 ) with corresponding V(ISP-ISN) values. 

7.4. Programming Output Voltage using FB Pin 

 

Figure 7-5: FB Pin output voltage divider [4] 
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A resistive voltage divider provides a 1.2V feedback to the FB pin when the output 

reaches the desired output voltage. Initially, R5 and R6 were selected as 200kΩ and 6.9kΩ, 

thereby programming an 35.98V output voltage. However, equivalent valued resistors lacked 

stock in Digikey and Mouser’s databases, so R5 and R6 were selected as the next-nearest values 

of 196kΩ and 6.81kΩ. These values program the output voltage to 35.73V, well within the 5% 

tolerance of the 36V design requirement, Equation ����= 1.2� ∗ &'()*+(.,&)*
(.,&)* = 35.737� 

 ( 7.4-2 ). 

���� = 1.2 ∗ �.+�/
�/

  ( 7.4-1 ) 

���� = 1.2� ∗ &'()*+(.,&)*
(.,&)* = 35.737�  ( 7.4-2 ) 

7.5. Inductor Selection 

Equations 01�23> �#$�∗5�6789:;<��#$�=∗&!! 
?∗@#$�89:;<∗%�BCCDE∗�6789:;<

 ( 7.5-1) and 01��F�>

�678967<
� 5�#$���678967<=∗&!!
?∗@#$�89:;<∗%�BCCDE∗�#$�

�  ( 7.5-2 ) specify inductor sizing. 

0G�HI > �#$�∗5�6789:;<��#$�=∗&!! 
?∗@#$�89:;<∗%�BCCDE∗�6789:;<

 ( 7.5-1 ) 

0G��J� > �678967<
� 5�#$���678967<=∗&!!
?∗@#$�89:;<∗%�BCCDE∗�#$�

�  ( 7.5-2 ) 

Inductor sizing depends upon variables including: output voltage VOUT, switching 

frequency f, allowable inductor current ripple %Ripple, minimum input voltage VIN(MIN), 

maximum input voltage VIN(MAX), and maximum output load current IOUT(MAX). %Ripple was 

estimated as 20% to 40% of the output current values as noted by Design Calculations for Buck-

Boost Converters by Michael Green of Texas Instruments [11]. 

Table 7-1 Inductor selection base parameters 

VIN(MIN) [V] VIN(MAX) [V] VOUT [V] f [kHz] IOUT(MAX) [A] % Ripple [%] 

5 V 51 V 36 V 400 kHz 3.7 A 30 % 
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Programmable undervoltage and overvoltage limits set in Section 7.7 determine VIN(MIN) 

and VIN(MAX). A 36V VOUT is the optimal Enphase M175-24-240 Micro-Inverter input voltage as 

measured by previous project groups. Sections 7.2 and 7.3 indicate programming output current 

as 3.7A and switching frequency to 400 kHz.  % Ripple was arbitrarily selected as a 30% 

inductor ripple current in respect to IOUT(MAX). Table 7-2 calculates a minimum inductor value 

based on the values in Table 7-1 variables. 

  



31 

 

Table 7-2: Minimum inductance value calculations 

Calculation of minimum KLMNO 
 

> ���� ∗ 5�@P8QRS< − ����= ∗ 100 
U ∗ ����8QRS< ∗ %�VWWXY ∗ �@P8QRS<

 

> 836�< ∗ 851� − 36�< ∗ 100 
400,000 [\ ∗ 3.7] ∗ 30% ∗ 51� 

0G�HI > 23.847 _[ 

Calculation of minimum KL``ab 
 

>
�@P8Q@P<

 5���� − �@P8Q@P<= ∗ 100
U ∗ ����8QRS< ∗ %�VWWXY ∗ ����

  

> 85�< 836� − 5�< ∗ 100
400,000[\ ∗ 3.7] ∗ 30% ∗ 836�<  

0G��J� > 1.35 _[ 
 

Table 7-2: Minimum inductance value provides calculations showing that inductor size 

must exceed 23.847 _[. Selecting an Abracon AIRD-03-270K inductor rated at 27_[ with a 

±10% tolerance, 3.5A current rating, 23A saturation current, and a maximum 12�Ω DCR meets 

this requirement. The Abracon AIRD-03-270K was the only inductor available and in-stock at 

Digikey or Mouser with specifications closest to the minimum inductor value of 23.847_[ and a 

high current saturation rating. 

7.6. RSENSE and Maximum Output Current Selection 

The required output current of the device determines inductor current sense resistor, 

RSENSE, selection. Selecting an RSENSE value determines maximum peak or valley current in boost 

or buck operation. LT3791-1’s datasheet provides Equations 

 REF _Ref383771969 \h  \* MERGEFORMAT 0G��J� > �678967<
� 5�#$���678967<=∗&!!
?∗@#$�89:;<∗%�BCCDE∗�#$�

�  ( 

����d]e1��F�=51���Ff�Ff−Δ�02∗���d������   ( 7.6-1) and 

����d]e1�23=847.5���Ff�Ff+Δ�02<  ( 7.6-2). 

����8QRSi##j�< = k l&"�
�jm7jm

− n@�
 o ∗ k�678967<

�#$�
o   ( 7.6-1 ) 

����8QRSi$�p< = 8qr.l"�
�jm7jm

+ n@�
 <  ( 7.6-2 ) 

 
����d]e1��F�=51���Ff�Ff−Δ�02∗���d������   ( 7.6-1 ) and 

����d]e1�23=847.5���Ff�Ff+Δ�02<  ( 7.6-2 ) equates to Equations 

�Ff�Ffd]e1��F�=2∗51��∗���d��2∗����∗����+Δ�01��F�∗���d��  
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�Ff�Ffd]e1�23=2∗47.5��2∗����−Δ�081�23<  (  7.6-4 ) to solve for maximum 

RSENSE values. RSENSE ranges from 20% to 30% lower than the maximum calculated value as 

denoted by LT3791-1’s datasheet. 

�JsPJs8QRS<i##j� =  ∗l&"�∗�678967<
 ∗@#$�∗�#$�+n@�8i##j�<∗�678967<

   (  7.6-3 ) 

�JsPJs8QRS<i$�p =  ∗qr.l"�
 ∗@#$��n@�8i$�p<

  (  7.6-4 ) 

 

 

Table 7-3: RSENSE selection base parameters 

VIN(MIN) [V] VIN(MAX) [V] VOUT [V] f [kHz] IOUT [A] % Ripple [%] tuK[A] 
5 V 51 V 36 V 400 kHz 3.7 A 30 % 1.05 A 

 
Table 7-4: Maximum RSENSE value calculations 

Calculation of vawxaw8yz{<L``ab  

 

< 2 ∗ 51�� ∗ �@P8Q@P<
2 ∗ ���� ∗ ���� + Δ�}8G��J�< ∗ �@P8Q@P<

 

< 2 ∗ 51�� ∗ 5�
2 ∗ 3.7] ∗ 36� ∗ 1.05A ∗ 5� 

�JsPJs < 0.001863 Ω 

Calculation of vawxaw8yz{<LMNO  

 

< 2 ∗ 47.5��
2 ∗ ���� − Δ�}8G�HI<

 

< 2 ∗ 47.5��
2 ∗ 3.7] − 1.05A 

�JsPJs < 0.016 Ω 
 

RSENSE must equal less than 1.6mΩ as calculated in Table 7-4: Maximum RSENSE value. 

Selecting a 1.5mΩ RSENSE satisfies these requirements. LT3791-1’s datasheet recommends 

RSENSE 20% to 30% lower than its maximum calculated RSENSE value in either buck or boost 

mode, however 1mΩ is the next available lowest current sense resistor value. 

7.7. Programming VIN Undervoltage and Overvoltage Limits 
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Figure 7-6: Undervoltage and overvoltage condition hysteresis windows 

LT3791-1’s EN/UVLO pin doubles as an enable control pin and undervoltage condition 

sensor. A resistor voltage divider sets a typical 1.2V at the EN/UVLO pin. Input bias current to 

EN/UVLO remains sub-_A while above 1.2V. Feedback below 1.2V enables a 3_A pull-down 

current so the user can define a rising hysteresis. Triggering an undervoltage condition resets the 

system’s soft-start. A resistive divider on the OVLO pin sets an overvoltage condition. 

Triggering an overvoltage condition causes the controller to cease switching and resets the 

system’s soft-start.  

�����0�−=1.2∗�1+�2�2    ( 7.7-1 ) and 

�����0�+=3_]∗�1+1.215∗�1+�2�2 ( 7.7-2 ) set undervoltage falling and rising edge 

���(��0�−<=3∗�3+�4�4           ( 7.7-3 ) and �����0�+=2.925∗�3+�4�4           ( 7.7-4 ) 

set overvoltage falling and rising edge conditions. Figure 7-6: Undervoltage and overvoltage 

condition depicts undervoltage and overvoltage hysteresis windows. 

�@P8��}��< = 1.2 ∗ ��+��
��

    ( 7.7-1 ) 

�@P5��}��= = 3_] ∗ �& + 1.215 ∗ ��+��
��

 ( 7.7-2 ) 

�@P8��}��< = 3 ∗ 8��+��<
��

           ( 7.7-3 ) 

�@P5��}��= = 2.925 ∗ ��+��
��

           ( 7.7-4 ) 

 

Table 7-5: Undervoltage and overvoltage rising/falling hysteresis equations 

�@P8��}��< [�] 5.071 V 

�@P5��}��=[�] 5.734 V 

�@P8��}��<[�] 51.387 V 
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Figure 7-7: Overvoltage and undervoltage resistive voltage dividers [4] 

Selecting R1 and R3 as 200k, and R2 and R4 as 62k and 12.4k, sets the falling and rising 

hysteresis conditions shown Table 7-5. Undervoltage and overvoltage limits set the maximum 

operating range to approximately 5.7V to 51V, well within the maximum 4.7V to 60V operating 

range of the LT3791-1 controller. A 51.4V maximum voltage limit allows a 275.625W 

maximum input power since the converter can output a maximum of 270W to the inverter given 

36V and 7.5A output specifications as described in Section 6.3. 

7.8. Programming Input Current Limit 

Placing an input current sense resistor, RIN, between pins IVINN and IVINP programs an 

input current limit. Using Equation ( 7.8-1), a 10mΩ resistor programs the input current limit to 

4.2A. Each device should accept less than 2.5A knowing that a 50V input supplies up to 5A 

across a 10Ω resistance. The device switches from constant-voltage mode to constant-current 

mode when voltage across RIN reaches 50mV. If the voltage across RIN exceeds 50mV, then the 

�@P5��}��=[�] 50.102 V 
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device decreases the amount of current delivered to the output, thereby regulating the current 

sense voltage to 50mV. 

�@P = l!"�
�67

  ( 7.8-1) 

 

 
Figure 7-8: Input Current Limit vs RIN [4] 

 
7.9. Programming Soft-Start 

Programmable soft-start reduces input power current surges by gradually increasing the 

controller’s input current limit.  Defining a soft-start capacitor, CSS, in Equation ���= &. �
&q �R ∗ 2��      

( 7.9-1 ) sets soft-start time. A 33nF soft-start capacitor provides a soft-start interval of 2.8ms. A 

100kΩ resistor placed in series between the soft-start capacitor and VREF contributes extra soft-

start charging current. LT3791-1’s datasheet recommends a minimum soft-start value of 22nF. 

��� = &. �
&q �R ∗ 2��      ( 7.9-1 ) 
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7.10. Power MOSFET Consideration 

Each LT3791-1 requires four external power NMOS devices to control the charging and 

discharging phases of the power inductor during converter operation. INTVCC limits gate drive 

voltage to 5V, thus suggesting use of logic-level threshold MOSFET. Linear Technology’s 

sample circuits in LT3791-1’s datasheet specified Renesas RJK0651DPB NMOS devices as 

starting power MOSFETS. Initially MOSFET selection included the RJK0651DPB. However, 

distributors ran out of stock during the late-design phase, and Infineon’s IPP230N06L3G NMOS 

was selected as an alternate [12].  

Infineon’s IPP230N06L3G features a 60V drain-source breakdown voltage, a typical 

1.7V gate-threshold voltage, a low 16pF reverse transfer capacitance, and a low 23mΩ on-

resistance. Specifically, low reverse capacitance, 2�JJ, low on-resistance, ��J8�P<,  minimize 

switching losses. 

The converter’s design specifies a 400 kHz switching frequency or 2.5µs switching 

period. IPP230N06L3G’s datasheet specifies 9ns turn-on and 19ns turn-off delays. Therefore the 

RJK0651DPB switches fast enough and accommodates a 400 kHz switching frequency. 

�Q&8G��J�< = k@#$�∗�#$�
�67

o
 

∗ �� ∗ ��J8�P<     ( 7.10-1 ) 

�Q 8G�HI< = �67��#$�
�67

∗ ����
 ∗ �� ∗ ��J8�P<  ( 7.10-2 ) 

�Q�8G��J�< = 8�#$���67<∗�#$�
�67

� ∗ ����
 ∗ �� ∗ ��J8�P< + )∗�#$�

� ∗@#$�∗H�jj∗?
�67

  ( 7.10-3 ) 

�Qq8G��J�< = �67
�#$�

∗ k@#$�∗�#$�
�67

o
 

∗ �� ∗ ��J8�P<       ( 7.10-4 ) 

 

LT3791-1’s datasheet specifies Equations �d11��F�=k@#$�∗�#$�
�67

o
 

∗ �� ∗ ��J8�P<   

�d481��F�<=�������∗����∗�������2∗��∗��F��       ( 7.10-4 )  to determine maximum 

power dissipation at maximum output current. Normalization factor, �� , accounts for varying 

RDS(ON) with temperature changes, as shown in Figure 7-9, at a rate of 0.4%/oC. A maximum 
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junction temperature of 125oC uses a ��  of 1.5. The constant k accounts for losses caused by 

reverse-recovery current and has an empirical value of 1.7. Low RDS(ON) and CRSS devices 

minimize maximum power dissipation per MOSFET.  

 

 
Figure 7-9: Normalized RDS(ON) vs. Temperature, [4] 

 

Table 7-6: Power MOSFET selection base specifications 
 

 REF _Ref384161742 \h  \* MERGEFORMAT �d11��F�= k@#$�∗�#$�
�67

o
 

∗ �� ∗ ��J8�P<   

�d481��F�<=�������∗����∗�������2∗��∗��F��       ( 7.10-4, using  

 

VIN [V] VOUT [V] f [kHz] IOUT [A] RDS(ON) [Ω] CRSS [pF] �b8yz{<  k 

5V- 36 V 400 3.7 A 23 16 pF 1.5 1.7 

V

IN [V] 
VOUT [V] f [kHz] IOUT [A] 

RDS(ON) [Ω] CRSS [pF] �b8yz{<  k 

5V-51.4 36 V 400 3.7 A 23 mΩ 16 pF 1.5 1.7 
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Table 7-6’s variables, calculates each switch’s maximum power during buck and boost 

mode.  Table 7-7: Maximum MOSFET power dissipation calculation displays calculated power 

dissipation results. 
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 Table 7-7: Maximum MOSFET power dissipation calculation  

�Q&8G��J�< = k@#$�∗�#$�
�67

o
 

∗ �� ∗ ��J8�P<  

�Q&8G��J�< = k�.rR∗�(�
l� o

 
∗ 1.5 ∗ 23�Ω   

 �y�8L``ab< = ��. �� 

�Q 8G�HI< = �67��#$�
�67

∗ ����
 ∗ �� ∗ ��J8�P<  

�Q 8G�HI< = l&.q���(�
l&.q� ∗ 83.7]< ∗ 1.5 ∗ 23�Ω  

�y�8LMNO< =  �. ����  

�Q�8G��J�< = 8�#$���67<∗�#$�
�67

� ∗ ����
 ∗ �� ∗ ��J8�P< + )∗�#$�

� ∗@#$�∗H�jj∗?
�67

  

�Q�8G��J�< = 8�(��l�<∗�(�
8l�<� ∗ 83.7]< ∗ 1.5 ∗ 23�Ω + &.r∗8�(�<�∗�.rR∗&(C?∗q!!)��

l�   

�y�8L``ab< =  ��. ���� 

�Qq8G��J�< = �67
�#$�

∗ k@#$�∗�#$�
�67

o
 

∗ �� ∗ ��J8�P<  

�Qq8G��J�< = l�
�(� ∗ k�.rR∗�(�

l� o
 

∗ 1.5 ∗ 23�Ω  

�y�8L``ab< =  �. ���� 

 
7.11. Controller Syncing 

LT3791-1 features clock syncing operates two parallel devices using CLKOUT and 

SYNC pins. The CLKOUT pin provides a 180o out-of-phase square waveform at the switching 

frequency set by RT in Section 7.2. The primary controller’s CLKOUT connects to the secondary 

controller’s SYNC pin with the primary controller’s SYNC pin grounded. Connecting CLKOUT 

and SYNC generates a parallel two-phase converter, allowing each converter to split the total 

output load current while decreasing output ripple voltage. Two synchronized converters regulate 

36V at 3.7A per device rather than one converter supplying 36V and 7.4A. 



40 

 

 
Figure 7-10: Parallel LT3791-1 DC-DC converter output currents  

Board 1 Current (Green), Board 2 Current (Blue), Output current (Red) 
 

 Figure 7-10 displays the output load current (red trace) and output currents of two 

synchronized LT3791-1 controllers (green and blue traces). Each LT3791-1 controller outputs an 

average of 1.8A to supply a 3.6A load current at a 36V input and 36V output in buck-boost 

mode. 
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Chapter 8: LT3791-1 Operation Discussion 

8.1. Power Switch Operation 

Each LT3791-1 chip controls four external switches, M1-M4, connected to the power 

inductor, VIN, VOUT, and ground through a current sense resistor as shown in Figure 8-1: Four 

output switches across power inductor.  The device operates in buck, buck-boost, or boost 

operation. The following discussion presents the operation of the four switches described in 

LT3791-1’s datasheet.  

 
Figure 8-1: Four output switches across power inductor [4] 

Buck Operation 

 
Figure 8-2: Power MOSFET buck operation, modified switching pattern [4] 

 Buck operation occurs when �@P > ����, during which switch M4 is always on and 

switch M3 is always off. Switch M2 turns on at the start of every cycle and RSENSE sense 

inductor current whenever switch M2 is on. When the sensed inductor voltage falls below the 
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reference voltage, VC, switch M2 turns off and switch M1 turns on. Switches M1 and M2 

continue to synchronously operate as a typical synchronous buck regulator. Switch M1’s duty 

cycle increases until the maximum duty cycle of the converter reaches 92%, or until the buck-

boost region is reached, where VIN approaches VOUT. Figure 8-2displays buck mode switch 

operation and Figure 8-3: Buck operation waveform  displays buck operation switching 

waveform. 

 
Figure 8-3: Buck operation waveform [4] 

Buck-Boost Operation 

 
Figure 8-4: Power MOSFET buck-boost operation, modified switching pattern [4] 

 
Buck-Boost operation occurs when �@P ≈ ���� during which switches M2 and M4 turn 

on and M1 and M3 turn off at the start of every cycle. Then, switches M1 and M4 remain on 

until M1 and M3 turn on.  Switches M1 and M4 then turn on for the rest of the cycle. Buck-

Boost mode operates at a 8% switching duty cycle. Figure 8-4 displays switching operation and 

Figure 8-5 displays buck-boost operating switching waveform.  
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Figure 8-5: Buck-Boost operation waveform [4] 

Boost Operation 

 
Figure 8-6: Power MOSFET boost operation, modified switching pattern [4] 

 Boost operation occurs when �@P < ���� during which switches M1 is always on and M2 

is always off. Switch M3 turns on at the start of every cycle and RSENSE sense inductor current 

whenever M3 switches. Switches M3 turns off and M4 turns on when the sensed inductor current 

exceeds VC. Switches M3 and M4 continuously alternate in operation, thereby operating as a 

typical synchronous boost regulator. The switching duty cycle of M3 continues to decrease until 

reaching a minimum duty cycle of 8%. Figure 8-6 displays boost switching operation and Figure 

8-7 displays boost operation switching waveform. 
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Figure 8-7: Boost operation waveform [4] 

8.2. CCM and DCM Operation 

The LT3791-1 controller operates in Continuous Conduction Mode (CCM) or 

Discontinuous Condition Mode (DCM). LT3791-1’s datasheet recommends CCM for heavy 

loads and CCM activates when the CCM pin pulls higher than 1.5V, allowing inductor current to 

flow negative. DCM is recommended for light loads and activates when the CCM pin pulls less 

than 0.3V disallowing negative inductor current and allowing inductor current to remain at 0A 

during switching periods.   

Connecting pins CCM to 2/10������� with a 100kΩ pull-up resistor to INTVCC programs DCM 

operation at light loads and CCM operation at heavy loads. A light-load detection pulls down 

2/10������� , which pulls up when FB exceeds 1.15V and the voltage across the output current sense 

resistor, V(ISP-ISN), senses less than 10mV. Pulling down 2/10������� thus pulls down pin CCM and 

initiates DCM. Switch operations function as described in Section 8.1 for buck and boost 

operations in CCM mode. Switch operations in DCM function the same as in CCM but switch 

M4 turns off when inductor current flows negative. 
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Chapter 9: First Design Iteration 

9.1. Initial Design  

 
Figure 9-1: Parallel LT3791-1 Buck-Boost Converter Topology LTspice Schematic



 

 

 Table 9-1: Initial LT3791-1 Buck-Boost Converter Component list

Type Component Value Component $/unit QTY Sum P/N Description Company 

Inductor Power Inductor 39u Inductor $6.08 2 $12.16 AIRD-03-270K INDUCTOR PWR DRUM CORE 27UH Abracon 

Resistors In-Curr Sense Res 12m R1 $1.17 2 $2.34 ERJ-8BWFR012V RES 0.012 OHM 1W 1% 1206 SMD Panasonic 

EN/UVLO 200k R2 $0.10 2 $0.20 RC2012F204CS RES 200K OHM 1/8W 1% 0805 Samsung 

EN/UVLE 62k R3 $0.10 2 $0.20 ERJ-6ENF6202V RES 62K OHM 1/8W 1% 0805 SMD Panasonic 

Compensation 51 R4 $0.89 2 $1.78 CRCW080551R0FKEA RES 51.0 OHM 1/8W 1% 0805 SMD Vishay Dale 

OVLO 200k R5 $0.10 2 $0.20 ERJ-6ENF2003V RES 200K OHM 1/8W 1% 0805 SMD Panasonic 

OVLO 12.4k R6 $0.10 2 $0.20 ERJ-6ENF1242V RES 12.4K OHM 1/8W 1% 0805 SMD Panasonic 

RT 59k R7 $0.10 2 $0.20 ERJ-6ENF5902V RES 59K OHM 1/8W 1% 0805 SMD Panasonic 

Rsense 1m R8 $0.67 2 $1.34 CSR2512C0R001F RES 0.001 OHM 3W 1% 2512 Riedon 

FB1 196k R9 $0.10 2 $0.20 ERJ-6ENF1963V RES 196K OHM 1/8W 1% 0805 SMD Panasonic 

FB2 6.98k R10 $0.10 2 $0.20 ERJ-6ENF1202V RES 12K OHM 1/8W 1% 0805 SMD Panasonic 

ROUT 27m R11 $1.25 2 $2.50 WSL2512R0270FEA18 RES .027 OHM 2W 1% 2512 SMD Vishay Dale 

RSHORT 200k R12 $0.10 2 $0.20 ERJ-6ENF2003V RES 200K OHM 1/8W 1% 0805 SMD Panasonic 

C/10 100k R13 $0.10 2 $0.20 ERJ-6ENF1003V RES 100K OHM 1/8W 1% 0805 SMD Panasonic 

RSS 100k R14 $0.10 2 $0.20 ERJ-6ENF1003V RES 100K OHM 1/8W 1% 0805 SMD Panasonic 

RVC 3k R15 $0.10 2 $0.20 ERJ-6ENF3001V RES 3K OHM 1/8W 1% 0805 SMD Panasonic 

Switches     Q1-Q8 $1.06 8 $8.48 IPP230N06L3 G MOSFET N-CH 60V 30A TO220-3 Infineon 

Capacitors CSS 33nF C1 $0.24 2 $0.48 C0603C333K8RACTU CAP CER 0.033UF 10V 10% X7R 0603 Kemet 

VC 33nF C2 $0.24 2 $0.48 C0603C333K8RACTU CAP CER 0.033UF 10V 10% X7R 0603 Kemet 

IN 470n C3 $0.12 2 $0.24 C1005X5R1A474K050BB CAP CER 0.47UF 10V 10% X5R 0402 TDK 

INTVCC 4.7u C4 $1.40 2 $2.80 C3225X7S2A475M200AB CAP CER 4.7UF 100V 20% X7S 1210 TDK 

VREF 0.1uF C5 $0.10 2 $0.20 C1608X7R1E104K080AA CAP CER 0.1UF 25V 10% X7R 0603 TDK 

BST 0.1uF C6 and C7 $0.10 4 $0.40 C1608X7R1E104K080AA CAP CER 0.1UF 25V 10% X7R 0603 TDK 

COUT 4.7u C8 $0.48 4 $1.92 CL32B475KBUYNNE CAP CER 4.7UF 50V 10% X7R 1210 Samsung 

Cap_IN 4.7u C11 $0.45 2 $0.90 CGA6M3X7S2A475K200AB CAP CER 4.7UF 100V 10% X7S 1210 TDK 

Schottky     D1-D4 $0.44 4 $1.76 
BAT46WJ,115 

DIODE SCHOTKY 100V 0.25A 
SOD323F 

NXP 
Semicond. 

Controller LT3791-1   Controller $11.21  2 $22.42  LT3791IFE-1#PBF IC REG CTRLR BUCK BST 38TSSOP Linear Tech 

        TOTAL $62.40       

     W/ Tax $67.39    



 

 

 Figure 9-1 displays the initial implementation of this project’s Buck-Boost DC-DC 

Converter based on an LT3791-1 4-Switch Buck-Boost Controller topology. Chapter 7 describes 

component selection. Table 9-1 outlines component cost and quantity before tax and shipping. 

Digikey.com’s database provided a listing of all components. Section 17.D includes the initial 

design’s SPICE Netlist. 

9.2. Initial Design Simulations 

Programmed overvoltage and undervoltage limits from Section 7.7 limit simulation voltage 

inputs between 5V and 51V. Simulated input power results from �@P = �67
�

�67
 where RIN represents 

the nominal 10Ω elliptical machine resistance. �@P  =  ���� estimates output current knowing a 

regulated 36V ����. Therefore, �@P = �@P
 ∗ 10Ω = ���� = ���� ∗ ����. Calculations using a 

specific input power result in a specific current load. For example, a 50V input yields a 6.94A load 

current.  

Section 17.E displays measured power efficiency measurements across a 6V to 51V input 

range while  
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Figure 9-2 summarizes measured efficiency data. The synchronized parallel LT3791-1 

Buck-Boost converter design performs at 94.3% average power efficiency across the simulated 6V 

to 51V input range. Simulated average power efficiency performs higher than Alvin Hilario’s 

94.07% power efficiency and Martin Kou’s 78.3% power efficiency. 

 

 

Figure 9-2: Parallel LT3791-1 Buck-Boost Converter Power Efficiency vs. VIN  
 

 Tests also observed overvoltage and undervoltage conditions. System input voltage 

increased to 50V over 1ms to allow the converter enough time to regulate the output to 36V. Then, 

the output slowly increased to 54V to determine the voltage input at which the converter shuts off 

due to an overvoltage fault. Section 7.7 set the programmable overvoltage condition to 51.387 V. 

Figure 9-3 displays an overvoltage event triggering at 51.389V whereupon circuit operation 

ceases. Figure 9-4 displays an overvoltage event entering a safe operating range triggering at 

50.54V, resuming switch operation. Figure 9-5 displays an undervoltage safety condition at 

approximately 6V at which the converter initiates operation. Figure 9-6 displays an undervoltage 

fault which ceases converter switching at approximately 5.056V. 

82

84

86

88

90

92

94

96

98

0 10 20 30 40 50 60

P
o

w
e

r 
E

ff
ic

ie
n

cy
 [

%
]

VIN [V]

VIN Vs. Power Efficiency



49 

 

 
Figure 9-3: Input Overvoltage Fault Condition 

VIN (Blue), VOUT (Green), Inductor 1 Current (Red), Inductor 2 Current (Cyan) 
 

 
Figure 9-4: Input Overvoltage Safe Condition 

VIN (Red), Inductor 1 Current (Green) 
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Figure 9-5: Input Undervoltage Safe Condition 

VIN (Blue), VOUT (Green), GQ1 (Red) 

 

 
Figure 9-6: Input Undervoltage Fault Condition 

VIN (Blue), VOUT (Green), GQ1 (Red) 
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9.3. Initial Design Errors 

Further inspection of the first design iteration noted numerous critical errors. High current 

and power transients generated unreasonable simulations throughout all voltage and power inputs. 

The following discussion considers a 50V/250W input to the DC-DC converter using Figure 9-1 

simulations. LTspice’s ideal voltage source models supply as much current desired by the circuit to 

properly operate and maintain a specified source output voltage. Figure 9-7 displays initial design 

results with 800 kHz input power spikes reaching 3.6kW at a 50V input. The measured 800 kHz 

power spikes correlate with the two LT3791-1 controllers synchronously operating at 400 kHz 

180o degrees out of phase. The on-board EFX 546i Elliptical Trainer’s generator does not supply 

3.6kW at 50V; the generator may supply a maximum 250W across a 10Ω load. Therefore, further 

simulation design alterations must constrain and reduce input power transients. 

 
Figure 9-7: Switching Power Transients, 50V Input  

Input Power (Green), Output Power (Blue) 
 

Furthermore, power MOSFETs experienced large switching currents; far higher than their 

30A current rating. During buck mode operation at a 50V input, switches Q1 and Q2 experience 

67A switching current spikes. 67A exceeds IPP230N06L3’s 30A rated current. Selecting higher 
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current and power rated MOSFETs may resolve the switching current spike issue displayed in 

Figure 9-8 and Figure 9-9. Figure 9-8 plots Q1 and Q2 switching currents while Figure 9-9 plots 

Q3 and Q4 switching currents. Figure 9-10 display power spikes correlating with switching current 

spikes. Switches Q1 and Q2 operate synchronously while in buck mode (VIN > VOUT) while Q3 

remains off and Q4 remains on. Figure 9-11 closely inspects ID, VDS, and the power dissipation of 

Q1. VDS does not decrease to 0V from 50V before ID reaches 67A and thus a power spike of up to 

3.3kW occurs. 

 
Figure 9-8: MOSFET switching current, 50V input, buck mode 

Q1 (Blue), Q2 (Green) 
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Figure 9-9: MOSFET switching currents, 50V input, buck mode 

Q3 (Cyan), Q4 (Red) 
 

 
Figure 9-10: MOSFETS instantaneous power spikes, 50V input, buck 

Q1 (Blue), Q2 (Green), Q3 (Red), Q4 (Cyan) 
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Figure 9-11: Closer inspection of Q1 turn-on VDS versus ID and resultant power spike 

PDQ1 (Blue), VDSQ1(Cyan), IDQ1(Green) 
 

During a 10V input boost mode operation, switches Q3 and Q4 experience 13A switching 

current spikes, shown in Figure 9-12 and Figure 9-13. Figure 9-12 plots Q1 and Q2’s switching 

currents while Figure 9-13 plots Q3 and Q4’s switching currents. These current spikes correlate 

with MOSFET power spikes shown in Figure 9-14. Switches Q3 and Q4 operate synchronously in 

boost mode (VIN < VOUT) while Q2 remains off and Q1 remains on. Figure 9-15 closely inspects 

ID, VDS, and power dissipation of Q4. VDS does not decrease to 0V from 36V before ID reaches 

67A and thus a power spike of up to 3.3kW occurs.  
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Figure 9-12: MOSFET switching current, 10V input, boost 

Q1 (Blue), Q2 (Green) 
 

 
Figure 9-13: 10V input, boost, MOSFET switching current 

Q3 (Cyan), Q4 (Green) 
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Figure 9-14: MOSFET instantaneous power spikes, 10V input, boost 

Q1 (Green), Q2 (Blue), Q3 (Red), Q4 (Cyan) 
 

 
Figure 9-15: Closer inspection of Q4 turn-off VDS versus ID and resultant power spike 

PDQ1 (Blue), VDSQ1(Cyan), IDQ1(Green) 
 

Output and input capacitors also experienced large power transients due to MOSFET 

switching. Adequately sized output capacitors must handle output voltage ripple during boost 

operation due to discontinuous conduction mode. Furthermore, adequately sized input capacitors 

must filter the input square wave current resultant of buck operation. Multiple parallel input and 
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output capacitors increase effective capacitance, reduce effective capacitor ESR, and allow higher 

RMS current handling. The initial design incorporated one input and two output 4.7_[ capacitors, 

which was simulated and unable to handle the RMS current flowing through each capacitor. Figure 

9-17 displays 35A switching currents flowing through an input capacitor. 

 
Figure 9-16: Simulated input capacitor power transients, 50V input 

 

 
Figure 9-17: Simulated Input capacitor current transients, 50V input 

 
Dr. Braun suggested three possible solutions to mitigate input power spikes aside from 

selecting a better power MOSFET. The first option introduced a parasitic series resistance to 
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LTspice’s ideal voltage source to limit input current and power. The second option investigated the 

use of a snubber cell to reduce MOSFET current and voltage rises. The last option consisted of 

adding a parasitic input resistance at the input that decreased over time. 
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Chapter 10: Second Design Iteration 

10.1. New Power MOSFET Consideration 

The initial Infineon IPP230N06L3 MOSFET was ill-suited for the design because 

simulated switching drain current exceeded 30A and power dissipation exceeded 2.9kW. An 

Infineon IPI045N10N3 MOSFET rated at 100V drain-to-source voltage, 100A drain current, and a 

maximum 4.5�Ω drain-to-source on-resistance replaced the initial MOSFET.  

However, fellow EHFEM project member, Matthew Wong, discovered a more suitable 

power MOSFET. He discovered IXYS’s IXTH180N10T N-Channel MOSFET parameterized by a 

100V drain-to-source voltage, 180A drain current, and a maximum 6.4�Ω drain-to-source on-

resistance. 

Table 10-1  compares Infineon’s IPP230N06L3, IPI045N10N3, and IXYS’ 

IXTH180N10T. IPP230N06L3 and IPI045N10N3 exhibit logic-level characteristics and are 

characterized by a low typical threshold voltage at 1.7V and 2.7V. While not considered a logic-

level device, IXTH180N10T’s exhibits a typical 3.5V typical threshold voltage. LT3791-1’s 

datasheet suggested the use of logic-level power MOSFETs; therefore, the LT3791-1 controller 

may experience difficulty driving four IXTH180N10T MOSFETs. Of the three MOSFETs, the 

IXTH180N10T features the highest drain current, drain pulse current, and maximum power 

dissipation. IXTH180N10T also exhibits the lowest junction-to-case thermal resistance 

 at 0.31°2/ . 
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Table 10-1: MOSFET Comparison Chart, 25oC, [13] [14] [15] 

 IPP230N06L3 G IPI045N10N3 G IXTH180N10T 
Package TO-220 TO-263 TO-247 

Operating Temp [°N] -55 – 175 °2 -55 – 175 °2 -55 – 175 °2 

RTHJC [°N/�] 4.2 °2/  0.7°2/  0.31 °2/  

RTHJA [°N/�] 62°2/  62°2/  N.A. 

VDS [V] 60 V 100 V 100 V 

VGS(TH) [V], Typical 1.7 V 2.7 V 3.5 V 

ID [A] 30 A 100 A 180 A 

IDPULSE [A] 120 A 400 A 450 A 

RDSON(MAX) [¡¢] 23 �Ω @ 30A, 10V 4.5 �Ω @ 100A, 10V 6.4 �Ω @ 25A, 10V 

Gate Charge (QG) [nC] 10 nC @ 4.5V 117 nC @ 10V 151 nC @ 10V 

Input Capacitance [pF] 1600 pF 8410 pF 6900 pF 

Maximum Power [W] 36W 214 W 480W 

 

 IXTH180N10T lacked a publically available VDMOS LTspice model for simulation use. 

Therefore, requiring LTspice parameter extraction from IXYS IXTH180N10T’s datasheet. 

However, IXYS only provides IXTH180N10T’s preliminary technical information [14]. As a 

result, key characteristics including a power deration chart and typical junction-to-ambient thermal 

resistance remain unavailable. Table 10-2 displays the derived LTspice model.  

Table 10-2: IXTH180N10T LTspice Model 

.model IXTH180N10T_2 VDMOS(RG=3.3 Vto=4.5 Rd=6.4m Rs=0.0m Rb=2.8m 
 Cgdmax=0.3n Cgdmin=0.15n Cgs=6n Cjo=0.8n mfg=IXYS Vds=100 Ron=6.5m 
 Qg=151n BV=100 IBV=250E-6 Vj=0.95 Kp=100.18) 

 
RG, or gate resistance, remained unspecified within listed characteristic values of the first 

three pages of IXYS’s IXTH180N10T datasheet. However, a 3.3�Ω value gate resistance value 

Figure 10-1: TO-220, TO-262, and TO-247 Packages 
[Left, Center, Right] 
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appears within Resistive Turn-On Time and Turn-Off/Turn-On Switching Time charts; therefore 

parameter RG = 3.3. VTO represents the threshold voltage of the MOSFET. VTO equates to 

IXTH180N10T’s specified VGS(TH), typically 3.5V. The sum of parameters Rd and Rs should equal 

to RDS(ON), or 6.4mΩ. Maximum and minimum CRSS values, or 300pF and 150pF, characterize 

Cgdmax and Cgdmin. Cgs equates to (CISS - COSS), or (6900pF – 900pF) = 6000pF.  Breakdown 

voltage, BV, occurs at 100V. The datasheet specifies a 250uA reverse breakdown current. Junction 

potential, VJ, equals VSD or 0.95V. Equation (10.1-1) calculates transconductance, Kp, using 

datasheet parameters. g represents forward transcondunctance, gfs, defined on page 2 of 

IXTH180N10T’s datasheet and ID is 60A at 25oC and 6V VGS.  

3W = £�

 @¤
= k&&!:

¥o
�

 ((!R) = 100.83 R
��  (  10.1-1 ) 
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10.2. Further Design Alterations 

The initial 27uH Abracon AIRD-03-270K unshielded inductor featured a 13.5A current 

rating, 23A saturation current, and 12mΩ max DC resistance. However, using an unshielded 

inductor near analog signal carrying traces may negatively affect critical signals. The unshielded 

inductor may form an inductive couple with nearby traces over an air-gap because the inductor’s 

magnetic field escapes its package. A shielded inductor maintains most of its magnetic field within 

its package and thus mitigates inductive coupling to other components or traces [16]. Shielded 

inductors also maintain less wire turns than an unshielded equivalent and thus have a lower DCR 

and smaller physical profile.  

No in stock approximate 27 uH shielded inductors were available within Digikey’s catalog 

based on Section 7.5’s inductor selection criteria. A 22uH inductor fulfills requirements if the 

allowable ripple current increases to 40% from 30% in Section 7.5. Therefore, selecting Wurth 

Electronic Inc’s 74435582200, WE-HCI series, 22uH inductor fulfills requirements. The 

74435582200 features a 15A current rating, 18A saturation current, and 7mΩ DCR. Wurth 

Electronic’s 74435582200 benefits from shielding, a lower DCR, and higher current rating 

compared to the AIRD-03-270K. Using a shielded inductor minimizes the inductor’s magnetic 

fields adverse electromagnetic effects on nearby components and traces. 

Further additions include Schottky diodes connected across the Q2 and Q4’s drain and 

source. Figure 10-3 displays the addition of Schottky diodes across Q2 and Q4. LT3791-1’s 

datasheet suggests implementing Schottky diodes to conduct current during the dead time between 

power MOSFET switching [4]. The additional Schottky diodes intend to prevent the body diode of 

switches Q2 and Q4 from turning on and storing charge during dead time. They also reduce 

reverse-recovery current between switch M4’s turn-off and switch M3’s turn-on cycle. Selecting 
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Fairchild Semiconductor’s MBR20100CT 100V 10A Schottky diode fulfills this application. The 

Schottky diode must handle current flowing through Q2 and Q4, equivalent to the inductor current. 

Figure 10-2 displays 3.6A inductor and Schottky diode currents for a 50V input at maximum 

current output. Therefore, the MBR20100CT’s 10A forward current rating suffices. 

 
Figure 10-2: Parallel LT3791-1 Buck-Boost Converter Topology with IXTH180N10T MOSFETS 

50V, Inductor Current vs. Schottky Diode Current 
Inductor Current (Purple), ID5 (Green), ID1 
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Figure 10-3: Additional Schottky Diodes D3 and D4 across Drain-Source of Q2 and Q4 
 

Additional 100V 4.7uF output and input capacitors aid in filtering RMS output and input 

current. Initially, each controller had one input capacitor and two output capacitors. Input 

capacitors must filter square-wave current in buck mode due to Q1 switching periodically allowing 

then stopping system current flow. Similarly, output capacitors must filter RMS current due to Q4 

switching at a 36V output. 

10.3. Input Parasitic Resistance 

Adding an input voltage source parasitic resistance reduced input power spikes. Dr. Braun 

suggested using parasitic resistance values under 1Ω. Although a series parasitic resistance 

decreased input power spikes, it also decreased system input voltage. Adding a series parasitic 

resistance did not completely limit input power, but it did significantly decrease power transients. 

Input power larger than nominal values were still apparent as the design charged up to a 36V 

output. However, the additional parasitic resistance did limit input current power at steady state. 

Figure 10-4 and Figure 10-5 compare simulations with and without a parasitic input source 

resistance. The additional parasitic resistance noticeably reduced input power transients. 
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Figure 10-4: Parallel LT3791-1 Buck-Boost Converter Topology with IXTH180N10T MOSFETS  

50V, 250W nominal input with 1Ω parasitic source resistance 
Input Voltage (Red), Output Voltage (Cyan), Input Power (Green), Output Power (Blue) 

 

 
Figure 10-5: Simulated Parallel LT3791-1 Buck-Boost Converter Topology with 

IXTH180N10T MOSFETS 50V, 250W nominal input without parasitic source resistance 
Input Voltage (Blue), Output Voltage (Cyan), Input Power (Red), Output Power (Green) 

 
Although adding a parasitic input source resistance significantly decreased input power 

transients, it also generated further problems testing the design. The additional parasitic input 

resistance causes an internal voltage source droop and thus input voltages fall below nominal 

values. For example, the 50V input voltage case described in Figure 10-4 droops to 44.3V at 
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steady state. Parasitic source resistances cause problems at lower voltage inputs. At a 6V input, a 

large parasitic source resistance decreases actual applied input voltage to less than 5V. The 

converter then ceases operation due to an undervoltage detection fault. Therefore, parasitic input 

source resistance must decrease as input voltage decreases to prevent the device from ceasing 

operation.  

10.4. Snubber Circuit Design 

High MOSFET switching current and instantaneous power spikes throughout simulation 

scenarios indicate potential MOSFET damage during circuit operation. Therefore, implementing a 

snubber cell to reduce MOSFET switching current may mitigate potential damage. 

MOSFET simulations indicated current spikes occurred during the turn-on phase of Q1 and 

Q2 when the system operated in buck mode at input voltages larger than 36V.  Theoretically, 

adding a snubber cell onto MOSFETs delays current rise and reduces current peaks. Therefore, 

adding a snubber cell may achieve desired low switching current and reduce instantaneous power 

spikes. 

Initial snubber circuit selected to obtain this goal was mentioned in Markin Kou’s thesis 

which shows turn-on and turn-off snubber circuit design. This design is shown in Figure 10-6 and 

was added onto Q1 to reduce current spikes at the maximum input and load.   
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Figure 10-6: Martin Kou’s Basic Turn-On Snubber Circuit Design [3] 

 
Another consideration was implementing a simple RC snubber circuit that contained an RC 

circuit connected to ground.  Figure 10-7 displays a sample RC snubber. This design tip was stated 

in a Texas Instrument’s article [17]. 

 

Figure 10-7: Simple RC Snubber Circuit [17] 
 

Figure 10-7  was modified to be a turn-off RC snubber circuit for Q4 current flow and 

power spikes.  Figure 10-8 displays the converter an RDC and RC snubber design on Q1 and Q4.  
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Figure 10-8: Parallel LT3791-1 Buck-Boost Converter Topology 

 with additional turn-on and turn-off snubber cells 

Adding snubber circuits dramatically decreased current spikes, leading to a direct decrease 

in power spikes.  As shown in Figure 10-9, the current spike of Q4 decreased by ¼, which reduced 

the MOSFET power spike from 2kW to 300W.  This reduction was effective in terms of overall 

power dissipation but it still required significant improvement.  None of the considered MOSFETs 

aside from IXTH180N10T could handle instantaneous 300W power dissipation.   
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Figure 10-9: Parallel LT3791-1 Buck-Boost Converter Topology simulations, Q4 
Drain Current (Red), VDS (Green, Dissipated Power (Purple) 

Various other snubber circuit designs were considered and tested including RCL, RCD, and 

RLD snubber. However, none of these circuits were able to completely reduce the power 

dissipation to operating level.  

Equation ( 10.4-1 ) was used to find the value of the snubber capacitor. 

2JP�G = @�∗¦§
 ∗��                                                           ( 10.44-1 ) 

Vs equates to 36V, the output voltage or drain voltage of Q4.  The simulated period of 

switching estimates 2.6us as �?’s value. A 0.96pF snubber capacitance results from these 

parameters. The capacitor must discharge before the transistor turns on again. Equation ( 10.4-2 ) 

estimates the snubber resistance. Since �¨© = �?, the value of RSNUB estimates 5420Ω.   

RSNUB < 
¦ª«
l∗H                                                           ( 10.44-2 ) 

The snubber circuit with these values, however, did not reduce the current spike nor delay 

the rise of current. Therefore, snubber capacitance and resistance were manipulated until suitable 
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switching current and instantaneous power dissipation simulations were obtained. Snubber circuits 

add two additional components per MOSFET to this design. In total, turn-on and turn off snubbers 

potentially add sixteen passive components to the system. Adding snubber cells was eliminated 

due to its complexity and its numerous component additions to the final PCB. 

10.5. Decreasing Input Resistance 

 
Figure 10-10: Parallel LT3791-1 Buck-Boost Converter Topology with IXTH180N10T 

MOSFETS decreasing input source resistance 
 

Dr. Braun suggested implementing a decreasing input resistance to mitigate input power 

transients resultant of Q1 switching. The added input resistance shown in Figure 10-10 starts at 2Ω 

and decreases by 1Ω every millisecond because simulations generally range from 2ms to 7ms. 

Ideally, input resistance falls to 0.1 Ω before output voltage reaches 36V steady state.  

Higher than nominal power peaks persisted despite the added input resistance. Figure 10-11 

displays a 50V input case using the declining input resistance from Figure 10-10. Input power 

represented by the gray trace peaks above 300W near 1.5ms. The elliptical generator’s output does 

not provide more than 250W at 50V. Furthermore, input power transients appear during system 

steady-state. Figure 10-12 displays a comparative green input power trace with more noticeable 
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transients as the device VOUT charges up to 36V. Therefore, a declining input parasitic resistance 

was deemed not a suitable solution for limiting system input power. 

 
Figure 10-11: Parallel LT3791-1 Buck-Boost Converter Topology with IXTH180N10T MOSFETS 

with decreasing input resistance simulation, 50V, 250W input 
 

 
Figure 10-12: Parallel LT3791-1 Buck-Boost Converter Topology with IXTH180N10T 

MOSFETS without decreasing input resistance simulation, 50V, 250W input  
 
 
 
 

10.6. Heat Sink Selection 
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Table 10-3 displays two heat sinks considered for this design. Power MOSFETs require 

adequate heat sinking to prevent thermal damage to the MSOFET package resulting from power 

dissipation. Each MOSFET requires a heat sink. Critical heat sink parameters include physical size 

and natural thermal resistance. Small heat sinks with low thermal resistance should are prioritized 

used because PCB space is limited to 2.5” by 3.8” board size based on ExpressPCB’s Miniboard 

service. 

Table 10-3: Heat Sink Comparison 

Heat Sink 

 

Ohmite WA-T247-101E [18] 

 

Ohmite C247-025-1AE-ND [19] 

Size 0.72” x 0.63” 0.98” x 0.785” 

RS-A  

Natural 
11°C/W  Not Available 

RS-A  

Forced Air Flow 
8°C/W @ 500 LFM 6°C/W @ 350 LFM 

Cost per unit $2.13 $3.77 

 
Initially, selecting an Ohmite WA-T247-101E heat sink, featuring a 0.72” by 0.63” 

footprint and 11oC/W natural thermal resistance, fulfilled this design. At high loads, simulated 

IXTH180N10T power dissipation averages 8W. Therefore, the Ohmite WA-T247-101E should 

maintain MOSFET temperature at high loads to 88oC, or 113oC considering an additional 25oC 

ambient room temperature. 113oC remains under IXTH180N10T’s 175oC maximum operating 

temperature. 



73 

 

However, Digikey and Mouser stock ran out of the WA-T247-101E; therefore requiring the 

selection of a new in-stock replacement heat sinks. Heat sink reselection proved difficult because 

the PCB ordering occurred before ordering parts. Thus, MOSFET spacing was not ideal for heat 

sinks specified larger than WA-T247-101E’s footprint. Selecting an Ohmite C247-025-1AE-ND as 

a suitable replacement fulfilled size constraints. The C247-025-1AE-ND compares larger than the 

WA-T247-101E, 0.98” x 0.785” compared to 0.72” by 0.63”. The newly selected heat sinks fit on 

the PCB layout tightly. Furthermore, the C247-025-1AE-ND’s datasheet provides no natural 

thermal resistance rating, but lists a 6°C/W RSA at 350 LFM. Therefore, a fan was highly advised 

fan during testing stages. 
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Chapter 11: Final Design 

 
Figure 11-1: Final Parallel LT3791-1 4-Switch Buck-Boost Configuration 

 
Figure 11-1 displays the final parallel LT3791-1 Four-Switch Buck Boost controller design 

including Chapter 10 MOSFET, capacitor, and inductor alterations. Section 17.F displays 

LTspice’s steady-state Efficiency Report 6V, 10V, 20V, 30V, 40V, and 50V input cases results.  

 summarizes Efficiency Report results. Higher than nominal power inputs persisted despite 

circuit alterations and additional source parasitic resistance. Figure 11-2 displays a 50V, 250W 

input case with 270W input power peaks as the system charges to regulate a 36V output. Figure 
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11-3 displays a 10V, 1W case with 50W input power peaks as the system charges. Neither input 

power cases are possible in a real world scenario because the elliptical machine’s on-board 

generator limits converter input power. Therefore, this project heavily relies upon analyzing 

system’s steady-state operation which operates within input power parameters at all input powers. 

Section 17.F includes all steady-state efficiency reports and the final design’s SPICE Netlist. 

Specifically, simulated steady-state input power should approximately equal nominal input power. 

Figure 11-4 presents an updated single stage schematic including updated component names for 

easier recognition. Future testing shall determine proper circuit operation compared to steady-state 

analysis reports. 

Table 11-1: Final Design Test Cases 

Nominal Input Cases  Expected Output Cases 

Input Voltage 
[V] 

Input Current 
[A] 

Input Power 
[W] 

Eff.  
[%] 

Output 
Voltage [V] 

Output 
Power [W] 

Output 
Current [A] 

Output 
Resistance [¢] 

6 0.6 3.6 0.95 36 3.42 0.095 378.9 

10 1 10 0.95 36 9.5 0.26 136.4 

20 2 40 0.95 36 38 1.05 34.1 

30 3 90 0.95 36 85.5 2.375 15.1 

40 4 160 0.95 36 152 4.22 8.5 

50 5 250 0.95 36 237.5 6.59 5.4 

 

17.F Steady State Efficiency Report Summary 

Nominal Simulation 

Input 
Voltage 
[V] 

Input 
Power 
[W] 

Parasitic 
Resistance [¢] 

Input 
Voltage 
[V] 

Input 
Power 
[W] 

Output 
Voltage [V] 

Output 
Power [W] 

Eff. 
[%] 

50 250 1 44.4 247 36.3 239 96.9 

40 160 1 35.4 162 36.4 155 95.2 

30 90 0.9 26.7 90.4 36.2 86.8 96 

20 40 0.9 16.9 38.6 33.4 35.9 93 

10 10 0.5 9.1 9.71 34.1 8.54 87.9 

6 3.6 0.1 5.94 2.95 31.2 2.5 84.6 
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Figure 11-2: Final Parallel LT3791-1 4-Switch Buck-Boost Configuration 

50V case and 1Ω parasitic input resistance 
Input Voltage (Red), Output Voltage (Cyan), Input Power (Green), Output Power (Blue) 

 

 
Figure 11-3: Final Parallel LT3791-1 4-Switch Buck-Boost Configuration  

10V case and 0.1Ω parasitic input resistance 
Input Voltage (Red), Output Voltage (Cyan), Input Power (Green), Output Power (Blue) 
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Figure 11-4: Final Single Stage LT3791-1 Design Schematic with altered component names 
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Chapter 12: PCB Design and Assembly 

12.1. First Iteration 

 
Figure 12-1: First PCB Iteration 

ExpressPCB Miniboard PCB manufacturing service offers three 2-layer boards for $75.00 

or three 4-layer PCB boards for $98.00 plus shipping and handling. The Miniboard option offers 

three identical 2.5” x 3.8” boards designed using ExpressPCB’s proprietary schematic and PCB 

design software. Initially selecting a two-layer design minimized PCB cost, although a costlier 4-

layer board provides top and bottom layers for copper traces and two inner power or ground 

planes. 

Figure 12-1 displays the initial PCB design using a 2-layer board. Large input and output 

copper filled planes handle large input and output currents. Large input and output copper planes 

also provide ample power plane heat dissipation. This draft, however, had various functional flaws. 

For example, the initial design lacked additional input capacitor pads. Furthermore, undersized 
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drain and source traces connected to the power MOSFETs may inadequately handle expected 

current flow. Most MOSFET source and drain traces face potential damage  under initial design 

conditions because traces inadequately sized to carry expected current.  

Furthermore, the initial design phase did not consider MOSFET heat sink footprints. This 

design lacked adequate board spacing between each MOSFET accommodating additional heat sink 

components.  Additionally, placing power MOSFETs close to each other degrades natural airflow 

and decreases the natural cooling of each power MOSFET. Pin 29, TEST1, lacked a SGND 

connection as prescribed in LT3791-1’s datasheet. Ground return paths between output sensing 

resistor, R11, and Q3’s source were not considered and would have generated noise on the output 

sensing resistor’s copper trace. Q3’s source should connect directly to the output sensing resistor to 

mitigate noise. Multiple traces between LT3791-1 and Q4 interfered with straightforward 

connections between Q3’s source and the output current sensing resistor. Using back traces 

connected to vias solve interference problems.  Additionally, critical sensing components spread 

widely with long traces throughout the board generate noise problems. Traces carrying analog 

signals, especially from sensing components, require minimal trace lengths to minimize noise 
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12.2. Second Iteration 

 
Figure 12-2: Second PCB Iteration 

Figure 12-2 displays Figure 12-1’s revision. Considering a 4-layer PCB design increased 

available copper trace, ground, and power plane space. 4-layer PCBs include a top layer, power 

layer, ground layer, and bottom layer. Top layer traces connect most of the power components 

including MOSFETs, input and output planes, power inductor, and analog signal components.  

Bottom layer traces connect components when components could not connect on the top layer.  All 

components requiring ground connections connected to ground plane using direct throughput vias. 

The 4-layer board’s ground plane allowed elimination of previous multiple ground traces using 

traces and vias. 
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Despite board space efficiency improvements, certain traces remained undersized 

concerning current carrying capability. Specifically, traces connecting MOSFET sources, drains, 

and bootstrap capacitors, C6 and C7, were too thin to handle the simulated current flowing through 

them. Improperly sized high-current carrying traces connected Q2 and Q3’s additional Schottky 

diodes. Furthermore, the additional Schottky diodes interfered with connecting the inductor’s 

traces on the top plane. However placing back-board high-current carrying traces poses may 

generate noise on components or traces above the inductor’s traces. Relocating the MOSFETs 

farther apart accommodated space for potential heat sink additions. No heat sinks were selected at 

this point. Placing the MOSFETs farther apart to accommodate heat sinks also increased distance 

between LT3791-1’s gate drivers and MOSFET gates. Minimal distance between the MOSFETs 

gates and LT3791-1’s gate drivers reduces high frequency trace noise.   
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12.3. Third Iteration 

 
Figure 12-3: Third PCB Design Iteration 

Figure 12-3 displays Figure 12-2’s revision. Modifications include two extra input 

capacitors, decreased spacing between output capacitors, and a banana jack testing connection. 

Matthew Wong added additional copper to high current traces to increase trace sizes between 

power MOSFET sources and drains, inductor, Schottky diodes, and sensing resistors.  

Furthermore, additional silkscreen heat sink outlines estimate MOSFET spacing. Two MOSFETs 

placed close to each other increases the thermal resistance of heat sinks and decreases nearby 

natural airflow thereby decreasing heat sink thermal effectiveness. Increasing empty air space 

between heat sinks increases effective natural air flow and aid cooling.  Additional bottom trace 

copper increases thermal dissipation generated by high current flow. Appropriate through-hole vias 
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connected to pins 9, 33, 34 allow header pin connections for EN, CLKOUT, and SYNC signals. 

Relocating power components creates direct traces from the inductor to the MOSFETs. A through-

hole via facilitates a direct connection between the output sensing resistor and Q3’s source which 

experienced interference from other traces.  A direct via connects pin 39, SGND, to an SGND 

plane.   

12.4. Fourth Iteration 

 
Figure 12-4: Fourth PCB Design Iteration 

Figure 12-4 displays Figure 12-3’s revision. Unnecessary bottom copper planes bottom 

layer were removed because current generally flows through the shortest path from source to 

destination. Relocating MOSFETs created air gaps which allow increased natural air flow with 

minimal heat sink contact.  Moving the ground pin to the bottom right-hand side of the board 
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provides space for Q1.  Moving Q4 higher on the board required reducing the outpour copper 

plane size. Q4’s drain also connects directly to output capacitors C8 and C9.  

12.5. Fifth Iteration 

 
Figure 12-5: Fifth PCB Design Iteration 

Figure 12-5 improves upon Figure 12-4’s PCB design. A new shielded inductor prevents 

electromagnetic field influencing nearby traces and components. The new inductor features a low 

square surface mount profile.  Placing traces outside of the silkscreened inductor boundaries 

minimizes inductive interference with traces.  LT3791-1’s ground through-hole via shifted below 

the controller to provide more pad contact. 
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12.6. Final Iteration 

 
Figure 12-6: Final PCB Design Iteration 

Figure 12-6 displays the final PCB design iteration. Four additional through-hole vias 

accommodate VREF, FB, inductor current sense, and Vcctest header pins. An additional via 

accommodates a header pin connected directly to SGND. Additional extra capacitors pads added 

to FB and output sensing resistor for future use. The final design iteration also features additional 

input and output capacitors pads. Since traces connecting power side of the board, mostly 

MOSFETs and inductor, carry a lot of current, 45 degree corners were added to every corner trace.  

An additional via to the bottom-left corner provides a PGND header test pin. Input and output 

grounds were also added adjacent to the copper input and output planes.  

  



86 

 

12.7. Solder Order and Assembly 

 
Figure 12-7: Final PCB Schematic 

 
Table 12-1: Component Soldering Order 

Red components are optional 
 

1. LT3791-1 

2. C20 

3. C21 

4. C11 

5. C12 

6. C13 

7. R1 

8. C3 

9. R4 

10. C6 

11. R3 

12. R2 

13. C4 

14. C5 

15. C7 

16. R11 

17. C10 

18. C9 

19. C8 

20. R8 

21. R7 

22. R14 

23. C1 

24. D2 

25. R5 

26. R6 

27. C2 

28. R15 

29. R12 

30. R13 

31. D1 

32. R10 

33. C30 

34. R9 

35. Inductor 

36. Q1 

37. Q2 

38. Q3 

39. Q4 

40. D5 

41. D6 

42. Header Pins 

 
Table 12-1 displays component soldering order corresponding with the ease of soldering 

components based on Figure 12-7. Red components feature optional capacitor pads for filtering 
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sense resistor noise. Generally, soldering small or complex components prioritizes over larger 

components. Therefore soldering through-hole components, such as MOSFETs and Schottky 

Diodes, yield lesser priority. Complex components containing many pins, like the LT3791-1 

controller, should be soldered first due to its 38-pin TFSOP design.  

Prioritizing certain components increased the eased hand soldering, knowing that the 

soldering iron’s tip would not fit certain directions. Soldering started on the left-hand side of the 

PCB. For example, soldering C11, C12, and C13 prioritized over R1 because soldering R1 first 

prohibits effectively soldering the C11, C12, and C13’s top pads. Additionally, soldering R11, 

C11, C10, and C9 before R8 eases R11 and C11’s soldered without interference from R8’s 

package. The inductor mounted last because it was the biggest package and produced the largest 

soldering obstacle. 

Through-hole mounted components mounted second-to-last. Q1, Q2, Q3, and Q4 mounted 

with  their heat sinks attached. Mounting the MOSFETs without heat sinks attached proved a 

problem for Q3 and Q4 because their clips open or close when mounted due to conflicting and 

obtrusive orientation. Header pins were mounted last with their plastic bodies atop the PCB and 

soldered on the back board.  

Soldering occurred procedurally. For example, LT3791-1’s IC soldered first on all boards, 

then C11, then C12, then C13, etcetera until all components were mounted. Continuity checks 

occurred at each soldering phase. All soldered components passed continuity checks. Continuity 

checks involved testing for continuity between a target pin and all expected connecting pins or 

pads based on Figure 12-7. Figure 12-8 displays the finished PCB after soldering all components. 
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Figure 12-8: Soldered and assembled PCB 
 

  



89 

 

Chapter 13: Input Protection Circuit Design 

13.1. Previous IPSC Design 

 
Figure 13-1: Ryan Turner and Zack Weiler’s Input Protection Circuit [2] 

Ryan Turner and Zack Weiler’s input protection circuit provides a baseline modifiable 

input protection scheme. Their testing indicated the Enphase Micro-inverter effectively operates as 

an open load during its initial five minute start-up phase, which leads the DC-DC converter to 

build up charge at its input.  Their IPSC design prevents adverse converter damage by providing an 

alternate path to dissipate excessive generated power during the inverter’s start-up.   

Their design utilizes a LT6101 High Voltage, High-Side Current Sense Amplifier 

comparator to detect changing current flow through a current sensing resistor.  This sensing 

resistor, placed in series with the converter output and inverter input, does not experience a voltage 

drop during an absence of current flow due to an the open load condition at the inverter. The 

comparator outputs a low signal when the current sense resistor detects no current flow. This 

signal inverts and amplifies to become a high signal which enables an alternate path to safely 

dissipate excessive power instead of damaging the converter.  

However, this methodology only protects the system from built up charge due to an open 

inverter load during start-up phase and not necessarily from overvoltage situations. Their design 

included a capacitor array to filter input voltage and reduce hazardous voltage transients up to 

150V. Over the course of their testing they found that their capacitors innately smoothed input 
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voltage to approximately 60V during peak elliptical power generation. Their circuit does not hard-

limit a specific voltage applied to the converter. 

13.2. Modified Input Protection System Design 

 
Figure 13-2: Cameron Kiddoo and Eric Funsten’s Protection System 

Cameron Kiddoo and Eric Funston’s senior project designed a current limiter and 

overvoltage input protection system. Their design includes Turner and Weiler’s capacitive filtering 

array, C1 through C5, as shown in Figure 13-2, to filter out high frequency transient responses 

induced by the elliptical’s generator. Kiddoo and Funston’s design implements an additional 

current limiter to protect the micro-inverter from receiving more than 8A input current from the 

converter. This discussion only includes their design characteristics relevant to the converter’s 

input protection because their current limiter design diverts current away from the micro-inverter 

and does not directly influence converter functionality. 

An LT1017 Micropower Dual Comparator controls the gate of a Fairchild Semiconductor 

FGA180N33ATD Insulated Gate Bipolar Transistor, or IGBT. The elliptical machine’s on-board 

battery powers the LT1017 comparator. An input voltage divider, R3 and R4, tied to LT1017’s V+ 

input pin, outputs 3.3V at a 50V input. The LT1017 compares the voltage divider’s output to a 

3.3V reference supplied by the current limiter’s microcontroller. The comparator then outputs a 
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high signal through a pull-up resistor, R9, when V+ surpasses the 3.3V reference voltage. 

Therefore, input voltages higher than 50V causes the IBGT to turn on, thereby diverting current 

flow through R7 instead of the converter. The comparator outputs a low signal while input 

voltages remain below 50V, during which the converter functions properly. Kiddoo and Funston’s 

design effectively filters input voltage transients and limits converter input voltage to 50V. 
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Chapter 14: Hardware Testing 

14.1. Test Plan 

 
Figure 14-1: Parallel LT3791-1 4-Switch Buck-Boost Controller Test Configuration 
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 Preemptive testing using a DC power source must occur before connecting the converter to 

the elliptical machine to prevent damage to the converter or other components. Figure 14-1 

displays two parallel LT3791-1 4-Switch Buck Boost Controller PCBs with an input power supply 

and output electronic load. The following discussion outlines this project’s test plan. 

Setup 
1. Jumper wires interconnect the following header pins: 

a. EN 

b. Grounds in center of boards 

c. Primary board CLKOUT to secondary board SYNC 

d. Primary board SYNC to SGND 

2. Banana-to-spade leads interconnect: 

a. Power supply to positive and negative terminals of VIN 

b. Electronic load to positive and negative terminals of VOUT 

Procedure 
1. Connect pins, inputs, and outputs as described in Setup. 

2. Table 14-1Error! Reference source not found. outlines tests cases where using a power 

source limiting input voltage and current l and electronic load configured for corresponding 

output voltage/currents. 

Table 14-1: Expected Input and Output Test Cases 

Input  
Voltage [V] 

Input  
Current [A] 

Input  
Power [W] 

Estimated  
Efficiency [%] 

Output  
Voltage [V] 

Output  
Current [A] 

6 0.6 3.6 90 36 0.09 

10 1 10 90 36 0.25 

20 2 40 90 36 1 

30 3 90 90 36 2.5 

40 4 160 90 36 4 

50 5 250 90 36 6.25 

3. Configure the power source’s output voltage and current limit according to Table 14-1.  
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4. Configure the electronic load in constant-current mode to desired load current from Table 

14-1. 

5. Enable the power source, then enable the electronic load. 

6. Record Vin, Iin, Vout, and Iout. 

7. Turn off the power source then the electronic load. 

8. Alter power source and electronic load parameters based on provided test cases. 

9. Readings using multimeters or oscilloscopes must reference proper grounds. Probes 

measuring analog signal ground to SGND. Probes measuring power signals ground to 

PGND. 

14.2. Test Results 

6V Constant Voltage Load  

This project’s buck-boost converter design did not function properly for all test cases.  The 

converter did not demand enough current from the power source; drawing less than 1A at all test 

cases. System output voltage measured 0V by the electronic load with no current drawn, indicating 

a malfunctioning circuit operation.  The converter partially functioned correctly when the 

electronic load operated in constant voltage mode.  In this case, the system demanded the expected 

amount of current from the source. The system demanded 0.6A at 6V from the power source. 

However, the converter’s output could not maintain 36V, but output 10.36V. Setting the electronic 

load to constant voltage mode defeats the purpose of designing a converter to output 36V since the 

electronic load sets the output voltage. Testing should occur using constant-current mode so the 

converter self-regulates output voltage. 

Multiple abnormalities presented themselves during the 6V test case under a constant-

voltage load.  Gate voltage of Q1, shown in Figure 14-2, suggests the system experiences 
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excessive MOSFET gate capacitance. High gate capacitance prohibits gate voltage from increasing 

to the necessary 5V gate drive output by TG1 of the LT3791-1 controller. Therefore, high gate 

capacitance prohibits proper MOSFET switching. 

 
Figure 14-2: Primary Board Q1 Gate Voltage, 6V Input 

Q2’s drain connects to Q1’s source which experienced no drain voltage because Q1 fails to 

switch on.  Additionally, this problem signifies voltage build up across the power inductor. Q2’s 

gate experienced gate drive problems as shown in Figure 14-3. Although a 399.7 kHz driving 

signal is apparent, gate voltage does not rise to 5V indicating proper gate drive from BG1 of the 

LT3791-1 controller. 
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Figure 14-3: Primary Board Q2 Gate Voltage, 6V Input 

Figure 14-4 indicates Q3 switching at 399.8 kHz at a 94.9% duty cycle. Q3 and Q4’s gate 

drives mirror duty cycles. Figure 14-5 indicates Q4 switching at 399.8 kHz at a 7.6% duty cycle. 

This indicates that the two MOSFETs function properly. 

 
Figure 14-4: Primary Board Q3 Gate Voltage, 6V Input 
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Figure 14-5: Primary Board Q4 Gate Voltage, 6V Input 

30V Constant Current Load 

Simulations indicate a 30V input case functions better than a 6V input case. Therefore, 

testing a 30V or 90W input case may yield better results than a 6V case. Similar to the 6V case, a 

30V input also experienced various unexpected errors. Multiple analog signal pins were probed to 

determine possible malfunction causes. The following discussion addresses possible explanations 

of circuit faults.   

Multiple measured signals behaved differently than expected from simulations.  First, the 

system output provided no voltage or current.  Accordingly, the FB pin receives no feedback 

because no voltage forms across the FB’s voltage divider, as shown in Figure 17-3. Furthermore, 

LT3791-1’s SHORT pin remains always active because FB receives less than 400 mV. Therefore, 

the system operates in DCM. Voltages at SW1 and SW2 remain at 0V due to no voltage build up 

across the inductor, as shown in Figure 17-11 and Figure 17-12. This problem results from 

switches Q1 through Q4 not switching and allowing current flow through the inductor. Damaged, 
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or poorly selected, MOSFETS or a non-ideal controlling CLKOUT signal may cause system 

abnormalities. 

The first hypothesis assumes MOSFETs switching improperly.  Q1’s gate should 

experience a 33V peak-to-peak gate drive with a 92% duty cycle from TG1. TG1 superimposes 5V 

onto the voltage sensed at the inductor from SW1. Q1’s gate, however, only received a 4.5V peak-

to-peak with a 20% duty cycle as shown in Figure 17-7.  Q2’s gate drive, connected to BG1, 

delivered a 76% duty cycle instead of 27% and as shown in Figure 17-8.  Q3’s gate also 

experienced similar behavior, providing a 67% duty cycle instead of 28%. Q2 and Q3 gate voltage 

measures 4.5V while the simulation result expects 5V. Figure 17-8 and Figure 17-9 display proper 

gate drive voltages of Q2 and Q3.  Q4’s gate drive measures at a voltage and duty cycle dissimilar 

to simulation results. Figure 17-10 displays Q4’s 5V peak-to-peak TG2 gate drive operating at a 

30% duty cycle.  Theoretically, TG2 should provide 41V peak to peak with 70% duty cycle. 

The second hypothesis assumes a malfunctioning CKLOUT signal causes circuit 

malfunctioning. A simulated CLKOUT signal expects a 5V peak-to-peak output but measured 

CLKOUT provided a 2V peak-to-peak output shown in Figure 17-5.  CLKOUT synchronizes the 

two boards to operate 180o
 out of phase and directly influence internal buck and boost logic of the 

LT3791-1 controller.  Therefore, a non-ideal CLKOUT signal could negatively impact the 

secondary board’s MOSFET switching. CLKOUT controls logic which control TG1, TG2, BG1, 

and BG2, the four gate drive pins. However, CLKOUT of secondary board operated correctly with 

5V peak to peak shown in Figure 17-6.  CLKOUT cannot fully explain abnormal circuit behavior 

because a single LT3791-1 board does not regulate 36V. 

Additional testing proved CLKOUT functions correctly at 5V peak-to-peak at 400 kHz 

when a single board is tested instead of two parallel boards.  This test indicated a potential loading 
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effect between the primary CLKOUT and secondary’s SYNC pins.  Pin function description of 

LT3791-1 in datasheet states that Pin 34, SYNC, contains an internal 90 ¬Ω resistor terminated to 

ground. A loading effect insinuates that the primary’s CLKOUT could only supply roughly 20uA.  

An internal 90 ¬Ω resistor loading CLKOUT is unlikely due because CLKOUT can supply more 

than 20uA. However, a loading theory describes the relation between master CLKOUT and slave 

SYNC most logically. Therefore, adding a buffer constructed using an op-amp inverter between 

primary and secondary boards could potentially increase the likelihood of proper operation.   

Considering all other passive component selections could not cause system failure and all 

other passive components function as expected, another hypothesis proposes improper MOSFET 

operation as this problem’s root cause. As described previously, improper MOSFET switching, or 

lack thereof, results in no inductor current and thus no functional or measureable converter output.  

Conducting the simulation shown in Figure 14-6 may provide an answer to improper MOSFET 

behavior. 
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Figure 14-6: LTspice Simulation Confirming MOSFET Functionality, 30V, Q1 damaged 

According to data obtained from testing, all MOSFET gates experienced 5V peak to peak 

with 400 kHz frequency. Also source of Q1, which supplies voltage to the inductor applies 0V at 

all times.  If Q1 appears damaged as an open-circuit in the simulation and each node of MOSFETs 

provides the same result as the experiment, the simulation would confirm the hypothesis of 

MOSFET malfunction.   
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Figure 14-7: Q1 Gate Drive, TG1, Q1 damaged, 5VPP 400 kHz 

 

 
Figure 14-8: Q1 Gate Drive, TG2, Q1 damaged, 5VPP 400 kHz 

Comparing  

Figure 14-7 and Figure 17-7 indicate both tested and simulated circuits experience the same 

TG1 voltage waveforms operating at 400 kHz. Comparing simulated versus measured TG2 

waveforms from Figure 14-8 and Figure 17-10 indicate similarities between experimental and 

simulated results. Similarities between simulated and measured results strongly support the idea of 
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a damaged MOSFET. Characterizing MOSFET Q1 may help determine if Q1 was inadvertently 

damaged. 

14.3. IXTH180N10T MOSFET Characterization 

Q1was desoldered from a PCB and tested to confirm proper MOSFET operation.  Prior 

testing hypothesized that damaged MOSFETs operated as an open-circuit, despite proper gate 

drive voltage. A damaged MOSFET represents a probable cause of malfunctioning converter 

behavior. Of four switches, Q1 maintains the highest damage probability because its drain 

connects directly to the power source through a current sense resistor. A damaged Q1 switch 

prohibits voltage forming across the inductor, and thus directly inhibits circuit operation. 

Therefore, Q1 was tested to confirm proper operation using a Keithley 2400 Source-Meter, an 

Agilent 33120A Function Generator, and an Agilent MSO-X 2012A Mixed Signal Oscilloscope. 

 
Figure 14-9: Q1 Gate Voltage vs. Source Voltage 

Gate (Yellow) Source (Green) 



103 

 

Gate drive voltage verifies proper Q1 turns on and turn off operation. Oscilloscope probes 

observe Q1’s drain and source voltages with Q1’s source functioning as a common ground. The 

Agilent 33120A Function Generator applied a 5Vpp, 4.8 kHz, 50% duty cycle square wave to Q1’s 

gate while the Keithley 2400 Source-Meter supplied a 10V drain voltage. Figure 14-9’s displays 

Q1 gate voltage and source voltage. Testing determined that Q1’s gate and source appeared 

shorted together. Increasing or decreasing input VPP of the gate directly increased observed source 

voltage. Figure 14-10 displays Q1 gate current (yellow trace) and drain voltage (green trace). 

Drain voltage does not decrease to 0V when Q1’s drain is held at 5V. Testing Q2 using the same 

procedure observed similar results.  

 

 
Figure 14-10: Q1 Gate Voltage vs. Drain Voltage 

Q2 Gate (Yellow) Drain (Green) 
 

 Further drain current and drain-to-source resistance tested proper operation of Q1’s 

MOSFET. Testing RDS and ID determines the threshold voltage of IXTH180N10T. Theoretically, 
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RDS measures within a magnitude of a few MΩ when Q1 switches off and approximately 6.3mΩ 

when Q1switches on during proper MOSFET operation. Similarly, drain current should start to 

flow as VGS approaches specified VGS(TH) but remains within a _] range until MOSFET turn on. 

 First, RDS versus VGS characteristics were tested. A Fluke Digital Multimeter measured 

drain-to-source resistance as the gate experienced a 5Vpp, 4.8 kHz, 50% duty cycle square wave 

input. Q1’s source functioned as a common ground. Gate voltage increased incrementally until 

sufficient data characterized a drain-to-source resistance versus VGS curve  with 0V drain voltage. 

Figure 14-11 plots measured RDS versus VGS. The MOSFET turns on when VGS nears 3.75V, a 

value within the 2.5 to 4.5V range specified by IXTH180N10T’s datasheet. RDS decreases from 

6MΩ to 1kΩ during turn-on at a 0V drain voltage. 

 
Figure 14-11: Drain-to-Source Resistance Characterization 

 

ID versus VGS characteristics was also tested. Again, Q1’s source functioned as a common 

ground. The Keithley Source-Meter set to 0.4V and a 1A current compliance at the drain. The 

function generator controlled Q1’s gate with a 4.8 kHz, 50% duty cycle square wave of varying 

magnitude. Initially with VGS below its threshold value, _] measured drain current indicated an 
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off-state MOSFET. Gate voltage increased until drain current begins flowing. Figure 14-12 and 

Figure 14-13 display ID vs VGS tested at 0.4V and 6V drain voltage. ID vs. VGS tests indicate ID 

starts to flow when VGS nears 4V. However, these characteristics may differ at higher drain 

voltages. 

 
Figure 14-12: Drain Current Characterization, VD = 0V 

 

  
Figure 14-13: Drain Current Characterization, VD = 6V 
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Chapter 15: Conclusion 

 The total cost for this project summed to $275.60 which is significantly cheaper than that 

of Martin Kou’s $404.99 SEPIC topology. This cost reduction from results from the fewer 

components needed to build this project’s design. Kou’s SEPIC topology required 152 total 

components whereas this design required 117 components. This project, however, was 

significantly more expensive than that of Alvin Hilario who built working system under $80. An 

LT3791-1 topology may be a viable converter design with ample cost effectiveness if mass 

produced because a majority of the building cost consisted of PCB manufacturing.  

Redesigning the PCB layout to fit components properly is highly recommended for future 

use. The current PCB design uses a smaller heat sink than the model currently selected. Larger air 

gaps between adjacent MOSFETs and heat sinks increase natural air circulation and cooling. 

Increasing board dimensions may also help to alleviate component crowding and increases surface 

area thereby allowing larger high-current carrying power traces. 

Multiple operational errors occurred during this design including possible malfunction of 

MOSFETs and improper operation of CLKOUT. Characterization of MOSFETs before assembling 

the board would be recommended to avoid confusion in determining the cause of faulty 

components. An additional recommendation involves adding a buffer or inverter between the 

CLKOUT and SYNC of primary and secondary boards to decrease CLKOUT loading and increase 

the likelihood of proper operation. 

Overall, this project determined that a Buck-Boost DC-DC Converter based on a parallel 

LT3791-1 4-Switch Buck-Boost Controller topology is a viable converter design. Simulations 

indicated efficient circuit operation between 6V and 50V input voltages, signifying 3.6W and 

250W inputs, with simulated efficiencies ranging from 84.6% at 6V to 96.9% at 50V. Overall 
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system efficiency averages to 92.28%. Thus, this design theoretically operates slightly more 

efficiently than Martin Kou’s 92.4% overall efficient SEPIC converter at maximum load although 

not as efficiently as Alvin Hilario’s 95% overall efficient 4-Switch Buck Boost converter design. 

Further project testing must occur to produce a fully functioning Paralleled LT3791-1       

4-Switch Buck-Boost DC-DC Converter. Additional required testing should also verify converter 

compatibility with Cameron Kiddoo and Eric Funsten’s input protection circuit and current limiter. 

Both the input protection and converter systems must function cohesively before attaching to the 

Precor EFX 546i Elliptical Trainer’s generator and the Enphase M175 Micro-Inverter. Ensuring 

proper system functionality greatly increases the odds of a well-protected, highly efficient, 

exercise energy harvesting system. 
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Chapter 17: Appendix 

A. Excel Component Sizing Calculation Spreadsheet 

A custom-made Microsoft Excel spreadsheet aided omponent selection for the LT3791-1 4-

Switch Buck-Boost Controller. LT3791-1’s datasheet included numerous equations converted into 

Excel formulas. Using an Excel spread sheet sped up calculations passive components such as 

resistor and inductor sizing without the need to hand-calculate component values. 
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B. Final Project Gantt Chart 

 

  

Figure 17-1: Final Project Gantt Chart 



 

 

C. Final Bill of Materials 

Type Schematic Name Value Component $/unit QTY Sum P/N Description Company 

Inductor Inductor 22u Inductor $7.83 2 $15.66 AIRD-03-270K INDUCTOR PWR DRUM CORE 27UH Abracon 

Resistors RLSENSE 12m R1 $1.17 2 $2.34 ERJ-8BWFR012V RES 0.012 OHM 1W 1% 1206 SMD Panasonic 

REN1 200k R2 $0.10 2 $0.20 RC2012F204CS RES 200K OHM 1/8W 1% 0805 Samsung 

REN2 62k R3 $0.10 2 $0.20 ERJ-6ENF6202V RES 62K OHM 1/8W 1% 0805 SMD Panasonic 

Rcomp 51 R4 $0.10 2 $0.20 ERJ-6ENF51R0V RES 51 OHM 1/8W 1% 0805 SMD Panasonic 

ROVLO1 200k R5 $0.10 2 $0.20 ERJ-6ENF2003V RES 200K OHM 1/8W 1% 0805 SMD Panasonic 

ROVLO2 12.4k R6 $0.10 2 $0.20 ERJ-6ENF1242V RES 12.4K OHM 1/8W 1% 0805 SMD Panasonic 

RT 59k R7 $0.10 2 $0.20 ERJ-6ENF5902V RES 59K OHM 1/8W 1% 0805 SMD Panasonic 

Rsense 1.5m R8 $1.11 2 $2.22 ERJ-M1WTF1M5U RES 0.0015 OHM 1W 1% 2512 SMD Panasonic 

RFB1 196k R9 $0.10 2 $0.20 ERJ-6ENF1963V RES 196K OHM 1/8W 1% 0805 SMD Panasonic 

RFB2 6.81k R10 $0.10 2 $0.20 ERJ-6ENF6811V RES 6.81K OHM 1/8W 1% 0805 SMD Panasonic 

ROUT 27m R11 $1.17 2 $2.34 ERJ-8BWFR027V RES 0.027 OHM 1W 1% 1206 SMD Panasonic 

RSHORT 200k R12 $0.10 2 $0.20 ERJ-6ENF2003V RES 200K OHM 1/8W 1% 0805 SMD Panasonic 

RC/10 100k R13 $0.10 2 $0.20 ERJ-6ENF1003V RES 100K OHM 1/8W 1% 0805 SMD Panasonic 

RSS 100k R14 $0.10 2 $0.20 ERJ-6ENF1003V RES 100K OHM 1/8W 1% 0805 SMD Panasonic 

RVC 3k R15 $0.10 2 $0.20 ERJ-6ENF3001V RES 3K OHM 1/8W 1% 0805 SMD Panasonic 

Switches Q1-Q8 $4.03 8 $32.20 IXTH180N10T MOSFET N-CH 100V 180A TO-247 IXYS 

Capacitors CSS 33nF C1 $0.24 2 $0.48 C0603C333K8RACTU CAP CER 0.033UF 10V 10% X7R 0603 Kemet 

CVC 33nF C2 $0.24 2 $0.48 C0603C333K8RACTU CAP CER 0.033UF 10V 10% X7R 0603 Kemet 

Ccomp 470n C3 $0.41 2 $0.82 C0603C474K8RACTU CAP CER 0.47UF 10V 10% X7R 0603 Kemet 

CINTVCC 4.7u C4 $1.40 2 $2.80 C3225X7S2A475M200AB CAP CER 4.7UF 100V 20% X7S 1210 TDK 

CVREF 0.1uF C5 $0.10 2 $0.20 C1608X7R1E104K080AA CAP CER 0.1UF 25V 10% X7R 0603 TDK 

CBS 0.1uF C6 and C7 $0.10 4 $0.40 C1608X7R1E104K080AA CAP CER 0.1UF 25V 10% X7R 0603 TDK 

COUT 4.7u COUT $1.23 8 $9.84 C3225X7S2A475K200AB CAP CER 4.7UF 100V 10% X7S 1210 TDK 

CIN 4.7u CIN $1.23 8 $9.84 C3225X7S2A475K200AB CAP CER 4.7UF 100V 10% X7S 1210 TDK 

Schottky D1, D2 D1,D2,D5,D6 $0.44 4 $1.76 
BAT46WJ,115 

DIODE SCHOTKY 100V 0.25A 
SOD323F NXP Semicond. 
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D3, D4 D3,D4,D7,D8 $1.23 4 $4.92 MBR20100CTTU DIODE SCHOTTKY 100V 10A TO220 Fairchild Semi 

Controller LT3791-1 Controller $11.21  3 $33.63  LT3791IFE-1#PBF IC REG CTRLR BUCK BST 38TSSOP Linear Tech 

Heat Sink $3.09  8 $24.72  C247-025-1AE HEATSINK FOR TO-247 WITH 1 CLIP Ohmite 

Header 
Pins $0.13  18 $2.30  961102-6404-AR 

CONN HEADER VERT SGL 2POS 
GOLD 3M 

POSTS RED $4.05  4 $16.20  111-0702-001 Emerson 

BLACK $4.05  6 $24.30  111-0703-001 Emerson 

PCB 4-Layer PCB $32.67  2 $65.33  ExpressPCB 

TOTAL $255.19 

TAX $275.60 

 

 



 

 

D. LTspice Netlist 

Initial Design Netlist 
* C:\Users\Sheldon\Desktop\Senior Project\Final DC DC Design\Power Trace Cases\LT3791-1_Parallel_50V.asc 
C1 N050 0 33n V=10 Rser=.01 
R1 IN N026 12m 
R2 IN N005 200k tol=1 
R3 N005 0 62k tol=1 
R4 N028 N026 51 tol=1 
C3 IN N028 470n 
C4 N029 0 4.7µ V=100 Rser=.001 
R5 IN N031 200k tol=1 
R6 N031 0 12.4k tol=1 
R7 N046 0 59k tol=1 
C5 N045 0 .1µ V=25 Rser=.01 
L2 N037 N038 27µ Rser=.012 
C6 N032 N037 .47µ V=25 Rser=.01 
D3 N029 N032 BAT46WJ 
C7 N030 N038 .47µ V=25 Rser=.01 
D4 N029 N030 BAT46WJ 
R8 N043 0 1.5m tol=1 
R9 OUT N049 196k tol=1 
R10 N049 0 6.81k tol=1 
R11 N027 OUT 27m tol=1 
C8 N027 0 4.7µ V=50 Irms=0 Rser=0.1 Lser=0 
XU2 N045 N050 N045 N044 N042 N045 N039 N036 N005 IN N028 N026 N029 N034 N032 N037 0 N040 N041 
MP_01 N038 N030 MP_02 N035 N027 OUT N043 0 MP_03 0 N048 N044 N033 N009 N046 N047 N049 N031 
LT3791-1 
R12 N029 N042 200K tol=1 
R14 N045 N050 100K tol=1 
C11 N026 0 4.7µ x2 V=100 Rser=0.1 
C14 N025 0 33n V=10 Rser=.01 
C15 P001 0 33nF V=10 Rser=.01 
R17 IN N001 12m tol=1 
R18 IN N005 200k tol=1 
R19 N005 0 62k tol=1 
R20 N003 N001 51 tol=1 
C16 IN N003 470n V=10 Rser=.01 
C17 N004 0 4.7µ V=100 Rser=.01 
R21 IN N007 200k tol=1 
R22 N007 0 12.4k tol=1 
R23 N021 0 59k tol=1 
C18 N020 0 .1µ V=25 Rser=.01 
M§Q1 N001 N010 N013 N013 IPI045N10N3 
L1 N013 N014 27µ Rser=.012 
C19 N008 N013 .47µ V=25 Rser=.01 
D1 N004 N008 BAT46WJ 
C20 N006 N014 .47µ V=25 Rser=.01 
D2 N004 N006 BAT46WJ 
R24 N018 0 1.5m tol=1 
R25 OUT N024 196k 
R26 N024 0 6.81k tol=1 
R27 N002 OUT 27m tol=1 
C21 N002 0 4.7µ V=50 Irms=0 Rser=0.1 Lser=0 
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XU1 N020 N025 N020 N019 N017 N020 NC_01 N012 N005 IN N003 N001 N004 N010 N008 N013 0 N015 N016 
MP_04 N014 N006 MP_05 N011 N002 OUT N018 0 MP_06 0 N023 N019 N009 0 N021 N022 N024 N007 
LT3791-1 
R28 N004 N017 200K tol=1 
R29 N020 N025 100K tol=1 
C24 N001 0 4.7µ x2 V=100 Rser=.1 
V1 IN 0 PWL(0 0 0.5m 50) Rser=.2 
R13 N022 P001 3k tol=1 
C2 N051 0 33nF V=10 Rser=.01 
R15 N047 N051 3k tol=1 
I§LOAD OUT 0 6.94 
R16 N004 N019 100k 
R30 N029 N044 100k 
M§Q2 N013 N015 N018 N018 IPI045N10N3 
M§Q3 N014 N016 N018 N018 IPI045N10N3 
M§Q4 N002 N011 N014 N014 IPI045N10N3 
M§Q5 N026 N034 N037 N037 IPI045N10N3 
M§Q6 N037 N040 N043 N043 IPI045N10N3 
M§Q7 N038 N041 N043 N043 IPI045N10N3 
M§Q8 N027 N035 N038 N038 IPI045N10N3 
C22 N001 0 4.7µ x2 V=100 Rser=.1 
C23 N001 0 4.7µ x2 V=100 Rser=.1 
C25 N001 0 4.7µ x2 V=100 Rser=.1 
C26 N026 0 4.7µ x2 V=100 Rser=0.1 
C27 N026 0 4.7µ x2 V=100 Rser=0.1 
C28 N026 0 4.7µ x2 V=100 Rser=0.1 
C9 N002 0 4.7µ V=50 Irms=0 Rser=0.1 Lser=0 
C10 N002 0 4.7µ V=50 Irms=0 Rser=0.1 Lser=0 
C12 N002 0 4.7µ V=50 Irms=0 Rser=0.1 Lser=0 
C13 N027 0 4.7µ V=50 Irms=0 Rser=0.1 Lser=0 
C29 N027 0 4.7µ V=50 Irms=0 Rser=0.1 Lser=0 
C30 N027 0 4.7µ V=50 Irms=0 Rser=0.1 Lser=0 
.model D D 
.lib C:\Program Files (x86)\LTC\LTspiceIV\lib\cmp\standard.dio 
.model NMOS NMOS 
.model PMOS PMOS 
.lib C:\Program Files (x86)\LTC\LTspiceIV\lib\cmp\standard.mos 
.tran 0 3m 0 2u steady startup nodiscard 
.lib LT3791-1.sub 
.backanno 
.end 
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Final Design Netlist 
* C:\Users\Sheldon\Desktop\Senior Project\LTSpice\IXTH180N10T_50V_22uH.asc 
CSS2 N045 0 33n V=10 Rser=.01 
RIN2 IN N024 12m 
REN3 IN N005 200k tol=1 
REN4 N005 0 62k tol=1 
R2 N026 N024 51 tol=1 
C2 IN N026 470n V=10 Rser=0.01 
CINTV2 N027 0 4.7µ V=100 Rser=.001 
ROV3 IN N029 200k tol=1 
ROV4 N029 0 12.4k tol=1 
RT2 N041 0 59k tol=1 
CVREF2 N040 0 .1µ V=25 Rser=.01 
L2 N033 N034 22µ Ipk=15 Rser=0.007 
CBS3 N030 N033 0.1µ V=25 Rser=.01 
D5 N027 N030 BAT46WJ 
CBS4 N028 N034 0.1µ V=25 Rser=.01 
D6 N027 N028 BAT46WJ 
RLSENSE2 N037 0 1.5m tol=1 
RFB3 OUT N044 196k tol=1 
RFB4 N044 0 6.81k tol=1 
ROUT2 N025 OUT 27m tol=1 
XU2 N040 N045 N040 N039 N036 N040 E D N005 IN N026 N024 N027 N032 N030 N033 0 N035 N038 MP_01 
N034 N028 MP_02 N031 N025 OUT N037 0 MP_03 0 N043 N039 C CLKOUT N041 N042 N044 N029 LT3791-1 
RSHORT2 N027 N036 200K tol=1 
RSS2 N040 N045 100K tol=1 
CSS1 N023 0 33n V=10 Rser=.01 
CVC1 P001 0 33nF V=10 Rser=.01 
RIN1 IN N001 12m tol=1 
REN1 IN N005 200k tol=1 
REN2 N005 0 62k tol=1 
R1 N003 N001 51 tol=1 
C1 IN N003 470n V=10 Rser=.01 
CINTV1 N004 0 4.7µ V=100 Rser=.01 
ROV1 IN N007 200k tol=1 
ROV2 N007 0 12.4k tol=1 
RT1 N019 0 59k tol=1 
CVREF1 N018 0 .1µ V=25 Rser=.01 
M§Q1 N001 N009 N011 N011 IXTH180N10T_2 
L1 N012 N011 22µ Ipk=15 Rser=0.007 
CBS1 N008 N011 0.1µ V=25 Rser=.01 
D1 N004 N008 BAT46WJ 
CBS2 N006 N012 0.1µ V=25 Rser=.01 
D2 N004 N006 BAT46WJ 
RLSENSE1 N015 0 1.5m tol=1 
RFB1 OUT N022 196k 
RFB2 N022 0 6.81k tol=1 
ROUT1 N002 OUT 27m tol=1 
COUT4 N002 0 4.7µ V=50 Irms=0 Rser=0.1 Lser=0 
XU1 N018 N023 N018 N017 N014 N018 B A N005 IN N003 N001 N004 N009 N008 N011 0 N013 N016 MP_04 
N012 N006 MP_05 N010 N002 OUT N015 0 MP_06 0 N021 N017 CLKOUT 0 N019 N020 N022 N007 LT3791-1 
RSHORT1 N004 N014 200K tol=1 
RSS1 N018 N023 100K tol=1 
V1 IN 0 PWL(0 0 1m 50) Rser=1 
RVC1 N020 P001 3k tol=1 
CVC2 N046 0 33nF V=10 Rser=.01 
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RVC2 N042 N046 3k tol=1 
RCCM1 N004 N017 100k 
RCCM2 N027 N039 100k 
M§Q2 N011 N013 N015 N015 IXTH180N10T_2 
M§Q3 N012 N016 N015 N015 IXTH180N10T_2 
M§Q4 N002 N010 N012 N012 IXTH180N10T_2 
M§Q5 N024 N032 N033 N033 IXTH180N10T_2 
M§Q6 N033 N035 N037 N037 IXTH180N10T_2 
M§Q7 N034 N038 N037 N037 IXTH180N10T_2 
M§Q8 N025 N031 N034 N034 IXTH180N10T_2 
COUT3 N002 0 4.7µ V=50 Irms=0 Rser=0.1 Lser=0 
COUT1 N002 0 4.7µ V=50 Irms=0 Rser=0.1 Lser=0 
D3 N015 N011 MBR20100CT 
D7 N037 N033 MBR20100CT 
D8 N034 N025 MBR20100CT 
D4 N012 N002 MBR20100CT 
R31 B 0 1G 
R32 A 0 1G 
R33 D 0 1G 
R34 C 0 1G 
R35 E 0 1G 
I1 OUT 0 6.6 load 
CIN3 N001 0 4.7µ V=100 Rser=0.1 
CIN4 N001 0 4.7µ V=100 Rser=0.1 
CIN7 N024 0 4.7µ V=100 Rser=0.1 
CIN8 N024 0 4.7µ V=100 Rser=0.1 
CIN1 N001 0 4.7µ V=100 Rser=0.1 
CIN2 N001 0 4.7µ V=100 Rser=0.1 
COUT2 N002 0 4.7µ V=50 Irms=0 Rser=0.1 Lser=0 
CIN5 N024 0 4.7µ V=100 Rser=0.1 
CIN6 N024 0 4.7µ V=100 Rser=0.1 
COUT8 N025 0 4.7µ V=50 Irms=0 Rser=0.1 Lser=0 
COUT7 N025 0 4.7µ V=50 Irms=0 Rser=0.1 Lser=0 
COUT5 N025 0 4.7µ V=50 Irms=0 Rser=0.1 Lser=0 
COUT6 N025 0 4.7µ V=50 Irms=0 Rser=0.1 Lser=0 
.model D D 
.lib C:\Program Files (x86)\LTC\LTspiceIV\lib\cmp\standard.dio 
.model NMOS NMOS 
.model PMOS PMOS 
.lib C:\Program Files (x86)\LTC\LTspiceIV\lib\cmp\standard.mos 
.tran 0 3m 0 2u steady startup nodiscard 
.lib LT3791-1.sub 
.backanno 
.end 
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E. Initial Design Results 

Based on (Figure 9-1) and Initial Design Netlist (Section D) 

Table 17-1: Power dissipation and efficiency, �@P = 6� 

Efficiency: 83.0% 

Input: 4.31W @ 6V 

Output: 3.57W @ 35.7V 

Ref.       Irms     Ipeak  Dissipation  Ref.       Irms     Ipeak 
 
Dissipation 

C1       0mA       0mA       0mW  R1   383mA   598mA   880µW 

C2       0mA       0mA       0mW  R2       0mA       0mA   105µW 

C3       0mA       0mA       0mW  R3       0mA       0mA     32µW 

C4     37mA   627mA       0mW  R4       0mA       0mA       0µW 

C5       0mA       0mA       0mW  R5       0mA       0mA   160µW 

C6       0mA       0mA       0mW  R6       0mA       0mA     10µW 

C7       3mA   198mA       0mW  R7       0mA       0mA     17µW 

C8   270mA 10284mA       0mW  R8   434mA 10898mA   282µW 

C11     13mA     33mA       0mW  R9       0mA       0mA       6mW 

C14       0mA       0mA       0mW  R10       0mA       0mA   212µW 

C15       0mA       0mA       0mW  R11     52mA   432mA     72µW 

C16       0mA       0mA       0mW  R12       0mA       0mA       0µW 

C17     37mA   628mA       0mW  R13       0mA       0mA       0µW 

C18       0mA       0mA       0mW  R14       0mA       0mA       0µW 

C19       0mA       0mA       0mW  R15       0mA       0mA       0µW 

C20       3mA   198mA       0mW  R16       0mA       0mA   245µW 

C21   267mA 10212mA       0mW  R17   381mA   607mA   872µW 

C24     13mA     35mA       0mW  R18       0mA       0mA   105µW 

D1       0mA       0mA       0mW  R19       0mA       0mA     32µW 

D2       3mA   198mA       0mW  R20       0mA       0mA       0µW 

D3       0mA       0mA       0mW  R21       0mA       0mA   160µW 

D4       3mA   198mA       0mW  R22       0mA       0mA     10µW 

L1   379mA   610mA       2mW  R23       0mA       0mA     17µW 

L2   381mA   602mA       2mW  R24   431mA 11168mA   279µW 

Q1   379mA   610mA       4mW  R25       0mA       0mA       6mW 

Q2       0mA     26mA      -0mW  R26       0mA       0mA   212µW 

Q3   423mA 10695mA   276mW  R27     51mA   377mA     71µW 

Q4   278mA 10542mA     36mW  R28       0mA       0mA       0µW 

Q5   381mA   602mA       4mW  R29       0mA       0mA       0µW 

Q6       0mA     24mA       0mW  R30       0mA       0mA   245µW 

Q7   425mA 10423mA   277mW  U1     54mA   788mA     40mW 

Q8   279mA 10277mA     37mW  U2     54mA   789mA     40mW 
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Table 17-2: Power dissipation and efficiency, �@P = 10� 

Efficiency: 90.9% 

Input: 10.9W @ 10V 

Output: 9.94W @ 35.7V 

Ref.       Irms     Ipeak  Dissipation  Ref.       Irms     Ipeak  Dissipation 

C1       0mA       0mA       0mW  R1   580mA   880mA       4mW 

C2       0mA       0mA       0mW  R2       0mA       0mA   291µW 

C3       0mA       0mA       0mW  R3       0mA       0mA     90µW 

C4     36mA   628mA       0mW  R4       0mA       0mA       0µW 

C5       0mA       0mA       0mW  R5       0mA       0mA   443µW 

C6       0mA       0mA       0mW  R6       0mA       0mA     27µW 

C7       4mA   207mA       0mW  R7       0mA       0mA     17µW 

C8   371mA 13020mA       0mW  R8   571mA 13667mA   488µW 

C11     31mA     57mA       0mW  R9       0mA       0mA       6mW 

C14       0mA       0mA       0mW  R10       0mA       0mA   212µW 

C15       0mA       0mA       0mW  R11   140mA   619mA   530µW 

C16       0mA       0mA       0mW  R12       0mA       0mA       0µW 

C17     36mA   628mA       0mW  R13       0mA       0mA       0µW 

C18       0mA       0mA       0mW  R14       0mA       0mA       0µW 

C19       0mA       0mA       0mW  R15       0mA       0mA       0µW 

C20       4mA   207mA       0mW  R16       0mA       0mA   245µW 

C21   365mA 12852mA       0mW  R17   578mA   889mA       4mW 

C24     32mA     57mA       0mW  R18       0mA       0mA   291µW 

D1       0mA       0mA       0mW  R19       0mA       0mA     90µW 

D2       4mA   207mA       0mW  R20       0mA       0mA       0µW 

D3       0mA       0mA       0mW  R21       0mA       0mA   443µW 

D4       4mA   207mA       0mW  R22       0mA       0mA     27µW 

L1   576mA   902mA       4mW  R23       0mA       0mA     17µW 

L2   578mA   896mA       4mW  R24   568mA 13883mA   484µW 

Q1   576mA   902mA       8mW  R25       0mA       0mA       6mW 

Q2       0mA     37mA      -0mW  R26       0mA       0mA   212µW 

Q3   562mA 13427mA   314mW  R27   139mA   555mA   525µW 

Q4   398mA 13191mA   102mW  R28       0mA       0mA       0µW 

Q5   578mA   896mA       8mW  R29       0mA       0mA       0µW 

Q6       0mA     34mA      -0mW  R30       0mA       0mA   245µW 

Q7   564mA 13211mA   315mW  U1     55mA   791mA     57mW 

Q8   399mA 12983mA   102mW  U2     55mA   791mA     57mW 

 
 
 

Table 17-3: Power dissipation and efficiency, �@P = 15� 
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Efficiency: 93.8% 

Input: 23.8W @ 15V 

Output: 22.3W @ 35.7V 

Ref.       Irms     Ipeak  Dissipation  Ref.       Irms     Ipeak  Dissipation 

C1       0mA       0mA       0mW  R1       5mA     13mA       0µW 

C2       0mA       0mA       0mW  R2       0mA       0mA   656µW 

C3       0mA       0mA       0mW  R3       0mA       0mA   203µW 

C4     36mA   635mA       0mW  R4       0mA       0mA       0µW 

C5       0mA       0mA       0mW  R5       0mA       0mA       1mW 

C6       0mA       0mA       0mW  R6       0mA       0mA     60µW 

C7       4mA   225mA       0mW  R7       0mA       0mA     17µW 

C8   533mA 17987mA       1mW  R8   728mA 18564mA   795µW 

C11       1mA     10mA       0mW  R9       0mA       0mA       6mW 

C14       0mA       0mA       0mW  R10       0mA       0mA   212µW 

C15       0mA       0mA       0mW  R11   314mA   990mA       3mW 

C16       0mA       0mA       0mW  R12       0mA       0mA       0µW 

C17     36mA   635mA       0mW  R13       0mA       0mA       0µW 

C18       0mA       0mA       0mW  R14       0mA       0mA       0µW 

C19       0mA       0mA       0mW  R15       0mA       0mA       0µW 

C20       4mA   226mA       0mW  R16       0mA       0mA   245µW 

C21   525mA 17706mA       1mW  R17       5mA     14mA       0µW 

C24       2mA     13mA       0mW  R18       0mA       0mA   656µW 

D1       0mA       0mA       0mW  R19       0mA       0mA   203µW 

D2       4mA   226mA       0mW  R20       0mA       0mA       0µW 

D3       0mA       0mA       0mW  R21       0mA       0mA       1mW 

D4       4mA   225mA       0mW  R22       0mA       0mA     60µW 

L1   823mA 1226mA       8mW  R23       0mA       0mA     17µW 

L2   827mA 1217mA       8mW  R24   724mA 18633mA   787µW 

Q1   823mA 1226mA     17mW  R25       0mA       0mA       6mW 

Q2       0mA     59mA      -0mW  R26       0mA       0mA   212µW 

Q3   719mA 18207mA   393mW  R27   312mA   912mA       3mW 

Q4   618mA 17804mA   232mW  R28       0mA       0mA       0µW 

Q5   827mA 1217mA     17mW  R29       0mA       0mA       0µW 

Q6       0mA     60mA       0mW  R30       0mA       0mA   245µW 

Q7   723mA 18139mA   395mW  U1     55mA   803mA     79mW 

Q8   622mA 17739mA   233mW  U2     55mA   803mA     79mW 

 
 
 
 

Table 17-4: Power dissipation and efficiency, �@P = 20� 

Efficiency: 96.5% 
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         Input: 40.8W @ 20V 

      Output: 39.3W @ 35.7V 

Ref.       Irms     Ipeak  Dissipation  Ref.       Irms     Ipeak  Dissipation 

C1       0mA       0mA       0mW  R1 1048mA 1421mA     13mW 

C2       0mA       0mA       0mW  R2       0mA       0mA       1mW 

C3       0mA       0mA       0mW  R3       0mA       0mA   361µW 

C4     37mA   647mA       0mW  R4       0mA       0mA       0µW 

C5       0mA       0mA       0mW  R5       0mA       0mA       2mW 

C6       0mA       0mA       0mW  R6       0mA       0mA   110µW 

C7     35mA   648mA       0mW  R7       0mA       0mA     17µW 

C8   658mA 21021mA       1mW  R8   808mA 21619mA   978µW 

C11     35mA     56mA       0mW  R9       0mA       0mA       6mW 

C14       0mA       0mA       0mW  R10       0mA       0mA   212µW 

C15       0mA       0mA       0mW  R11   553mA 1315mA       8mW 

C16       0mA       0mA       0mW  R12       0mA       0mA       0µW 

C17     37mA   647mA       0mW  R13       0mA       0mA       0µW 

C18       0mA       0mA       0mW  R14       0mA       0mA       0µW 

C19       0mA       0mA       0mW  R15       0mA       0mA       0µW 

C20     35mA   648mA       0mW  R16       0mA       0mA       0µW 

C21   648mA 20775mA       1mW  R17 1042mA 1423mA     13mW 

C24     35mA     65mA       0mW  R18       0mA       0mA       1mW 

D1       0mA       0mA       0mW  R19       0mA       0mA   361µW 

D2       7mA   244mA       1mW  R20       0mA       0mA       0µW 

D3       0mA       0mA       0mW  R21       0mA       0mA       2mW 

D4       7mA   244mA       1mW  R22       0mA       0mA   110µW 

L1 1036mA 1441mA     13mW  R23       0mA       0mA     17µW 

L2 1043mA 1443mA     13mW  R24   802mA 21541mA   965µW 

Q1 1036mA 1441mA     26mW  R25       0mA       0mA       6mW 

Q2       0mA     70mA      -0mW  R26       0mA       0mA   212µW 

Q3   797mA 21134mA   450mW  R27   549mA 1223mA       8mW 

Q4   855mA 20513mA     39mW  R28       0mA       0mA       0µW 

Q5 1043mA 1443mA     27mW  R29       0mA       0mA       0µW 

Q6       0mA     69mA      -0mW  R30       0mA       0mA       0µW 

Q7   802mA 21212mA   453mW  U1     55mA   817mA   153mW 

Q8   861mA 20587mA     40mW  U2     55mA   817mA   153mW 

 
 
 

Efficiency: 97.1% 

         Input: 63.7W @ 25V 

      Output: 61.8W @ 35.7V 

Table 17-5: Power dissipation and efficiency, �@P = 25� 
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Ref.       Irms     Ipeak  Dissipation  Ref.       Irms     Ipeak  Dissipation 

C1       0mA       0mA       0mW  R1 1294mA 1655mA     20mW 

C2       0mA       0mA       0mW  R2       0mA       0mA       2mW 

C3       0mA       0mA       0mW  R3       0mA       0mA   564µW 

C4     37mA   651mA       0mW  R4       0mA       0mA       0µW 

C5       0mA       0mA       0mW  R5       0mA       0mA       3mW 

C6       0mA       0mA       0mW  R6       0mA       0mA   172µW 

C7     34mA   637mA       0mW  R7       0mA       0mA     17µW 

C8   780mA 27308mA       1mW  R8   879mA 27782mA       1mW 

C11     32mA     56mA       0mW  R9       0mA       0mA       6mW 

C14       0mA       0mA       0mW  R10       0mA       0mA   212µW 

C15       0mA       0mA       0mW  R11   868mA 1859mA     20mW 

C16       0mA       0mA       0mW  R12       0mA       0mA       0µW 

C17     37mA   652mA       0mW  R13       0mA       0mA       0µW 

C18       0mA       0mA       0mW  R14       0mA       0mA       0µW 

C19       0mA       0mA       0mW  R15       0mA       0mA       0µW 

C20     34mA   636mA       0mW  R16       0mA       0mA       0µW 

C21   768mA 27218mA       1mW  R17 1286mA 1655mA     20mW 

C24     33mA     88mA       0mW  R18       0mA       0mA       2mW 

D1       0mA       0mA       0mW  R19       0mA       0mA   564µW 

D2       7mA   268mA       1mW  R20       0mA       0mA       0µW 

D3       0mA       0mA       0mW  R21       0mA       0mA       3mW 

D4       7mA   268mA       1mW  R22       0mA       0mA   172µW 

L1 1280mA 1672mA     20mW  R23       0mA       0mA     17µW 

L2 1288mA 1676mA     20mW  R24   874mA 27872mA       1mW 

Q1 1280mA 1673mA     40mW  R25       0mA       0mA       6mW 

Q2       0mA   105mA      -0mW  R26       0mA       0mA   212µW 

Q3   868mA 27501mA   570mW  R27   863mA 1738mA     20mW 

Q4 1163mA 26528mA     60mW  R28       0mA       0mA       0µW 

Q5 1288mA 1676mA     41mW  R29       0mA       0mA       0µW 

Q6       0mA     99mA       0mW  R30       0mA       0mA       0µW 

Q7   873mA 27412mA   573mW  U1     55mA   836mA   187mW 

Q8 1170mA 26446mA     61mW  U2     55mA   837mA   186mW 

 
  

 

Efficiency: 95.1% 

         Input: 94W @ 30V 

      Output: 89.4W @ 35.7V 

Ref.       Irms     Ipeak  Dissipation  Ref.       Irms     Ipeak  Dissipation 

Table 17-6: Power dissipation and efficiency, �@P = 30� 
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C1       0mA       0mA       0mW  R1 3229mA 16597mA   125mW 

C2       0mA       0mA       0mW  R2       0mA       0mA       3mW 

C3       0mA       3mA       0mW  R3       0mA       0mA   812µW 

C4     55mA 1058mA       0mW  R4       0mA       3mA       2µW 

C5       0mA       0mA       0mW  R5       0mA       0mA       4mW 

C6     39mA 1339mA       0mW  R6       0mA       0mA   247µW 

C7     33mA   615mA       0mW  R7       0mA       0mA     17µW 

C8 1546mA 51367mA       5mW  R8 2518mA 58161mA     10mW 

C11   968mA 45318mA       4mW  R9       0mA       0mA       6mW 

C14       0mA       0mA       0mW  R10       0mA       0mA   212µW 

C15       0mA       0mA       0mW  R11 2560mA 3074mA   177mW 

C16       0mA       0mA       0mW  R12       0mA       0mA       0µW 

C17     36mA   652mA       0mW  R13       0mA       0mA       0µW 

C18       0mA       0mA       0mW  R14       0mA       0mA       0µW 

C19       1mA     37mA       0mW  R15       0mA       0mA       0µW 

C20     25mA   586mA       0mW  R16       0mA       0mA   205µW 

C21   542mA 7970mA       1mW  R17       7mA     18mA       1µW 

C24       2mA     14mA       0mW  R18       0mA       0mA       3mW 

D1       1mA     37mA       0mW  R19       0mA       0mA   812µW 

D2       5mA   193mA       0mW  R20       0mA       0mA       0µW 

D3     18mA 1024mA       2mW  R21       0mA       0mA       4mW 

D4       8mA   381mA       1mW  R22       0mA       0mA   247µW 

L1     78mA   187mA       0mW  R23       0mA       0mA     17µW 

L2 3384mA 4034mA   137mW  R24   162mA 8459mA     39µW 

Q1       0mA       0mA       0mW  R25       0mA       0mA       6mW 

Q2     72mA   186mA     15mW  R26       0mA       0mA   212µW 

Q3   157mA 8013mA     67mW  R27   524mA 1643mA       7mW 

Q4   147mA 7725mA     78mW  R28       0mA       0mA       0µW 

Q5 3452mA 61885mA 1471mW  R29       0mA       0mA       1µW 

Q6 1490mA 58246mA   118mW  R30       0mA       0mA       0µW 

Q7 2026mA 53766mA 1474mW  U1     53mA   788mA   181mW 

Q8 3105mA 50420mA   326mW  U2     58mA   976mA   420mW 

 

   

Efficiency: 95.4% 

         Input: 135W @ 36V 

      Output: 129W @ 35.8V 

Ref.       Irms     Ipeak  Dissipation  Ref.       Irms     Ipeak  Dissipation 

C1       0mA       0mA       0mW  R1 1974mA 13657mA     47mW 

C2       0mA       0mA       0mW  R2       0mA       0mA       4mW 

Table 17-7: Power dissipation and efficiency, �@P = 36� 
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C3       0mA       3mA       0mW  R3       0mA       0mA       1mW 

C4     57mA   944mA       0mW  R4       0mA       3mA       1µW 

C5       0mA       0mA       0mW  R5       0mA       0mA       6mW 

C6     39mA 1277mA       0mW  R6       0mA       0mA   356µW 

C7     32mA   714mA       0mW  R7       0mA       0mA     17µW 

C8 1064mA 47973mA       2mW  R8 1407mA 49458mA       3mW 

C11   642mA 37853mA       2mW  R9       0mA       0mA       6mW 

C14       0mA       0mA       0mW  R10       0mA       0mA   212µW 

C15       0mA       0mA       0mW  R11 1804mA 3622mA     88mW 

C16       0mA       0mA       0mW  R12       0mA       0mA       0µW 

C17     57mA   975mA       0mW  R13       0mA       0mA       0µW 

C18       0mA       0mA       0mW  R14       0mA       0mA       0µW 

C19     39mA 1298mA       0mW  R15       0mA       0mA       0µW 

C20     32mA   714mA       0mW  R16       0mA       0mA       0µW 

C21 1051mA 47576mA       2mW  R17 1962mA 2805mA     46mW 

C24   837mA 50162mA       0mW  R18       0mA       0mA       4mW 

D1     18mA   940mA       2mW  R19       0mA       0mA       1mW 

D2     11mA   350mA       1mW  R20       0mA       0mA       1µW 

D3     18mA   910mA       2mW  R21       0mA       0mA       6mW 

D4     11mA   351mA       1mW  R22       0mA       0mA   356µW 

L1 2048mA 2795mA     50mW  R23       0mA       0mA     17µW 

L2 2055mA 2802mA     51mW  R24 1402mA 49302mA       3mW 

Q1 2123mA 51346mA 1005mW  R25       0mA       0mA       6mW 

Q2   954mA 48810mA     55mW  R26       0mA       0mA   212µW 

Q3 1020mA 49057mA   956mW  R27 1797mA 3333mA     87mW 

Q4 2091mA 46643mA   356mW  R28       0mA       0mA       0µW 

Q5 2131mA 51480mA 1007mW  R29       0mA       0mA       0µW 

Q6   957mA 48938mA     55mW  R30       0mA       0mA       0µW 

Q7 1024mA 49212mA   959mW  U1     58mA   946mA   486mW 

Q8 2099mA 46789mA   358mW  U2     58mA   947mA   485mW 

 

 

Efficiency: 95.5% 

         Input: 165W @ 40V 

      Output: 157W @ 35.8V 

Ref.       Irms     Ipeak  Dissipation  Ref.       Irms     Ipeak  Dissipation 

C1       0mA       0mA       0mW  R1 2178mA 12646mA     57mW 

C2       0mA       0mA       0mW  R2       0mA       0mA       5mW 

C3       0mA       2mA       0mW  R3       0mA       0mA       1mW 

C4     58mA   944mA       0mW  R4       0mA       2mA       1µW 

Table 17-8: Power dissipation and efficiency, �@P = 40� 
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C5       0mA       0mA       0mW  R5       0mA       0mA       7mW 

C6     39mA 1294mA       0mW  R6       0mA       0mA   440µW 

C7     32mA   711mA       0mW  R7       0mA       0mA     17µW 

C8 1023mA 47456mA       2mW  R8 1575mA 47773mA       4mW 

C11   707mA 35560mA       2mW  R9       0mA       0mA       6mW 

C14       0mA       0mA       0mW  R10       0mA       0mA   212µW 

C15       0mA       0mA       0mW  R11 2202mA 3955mA   131mW 

C16       0mA       1mA       0mW  R12       0mA       0mA       0µW 

C17     58mA   941mA       0mW  R13       0mA       0mA       0µW 

C18       0mA       0mA       0mW  R14       0mA       0mA       0µW 

C19     39mA 1292mA       0mW  R15       0mA       0mA       0µW 

C20     32mA   707mA       0mW  R16       0mA       0mA       0µW 

C21 1011mA 47546mA       2mW  R17 2172mA 2649mA     57mW 

C24   919mA 46655mA       0mW  R18       0mA       0mA       5mW 

D1     18mA   914mA       2mW  R19       0mA       0mA       1mW 

D2     13mA   341mA       1mW  R20       0mA       1mA       1µW 

D3     18mA   918mA       2mW  R21       0mA       0mA       7mW 

D4     13mA   341mA       1mW  R22       0mA       0mA   440µW 

L1 2333mA 2654mA     65mW  R23       0mA       0mA     17µW 

L2 2336mA 2657mA     66mW  R24 1573mA 47866mA       4mW 

Q1 2348mA 47622mA 1243mW  R25       0mA       0mA       6mW 

Q2 1177mA 45429mA     73mW  R26       0mA       0mA   212µW 

Q3 1036mA 47614mA 1097mW  R27 2199mA 3728mA   131mW 

Q4 2430mA 45344mA   430mW  R28       0mA       0mA       0µW 

Q5 2351mA 48183mA 1242mW  R29       0mA       0mA       0µW 

Q6 1178mA 45952mA     73mW  R30       0mA       0mA       0µW 

Q7 1037mA 47519mA 1099mW  U1     58mA   941mA   541mW 

Q8 2433mA 45257mA   430mW  U2     58mA   941mA   540mW 

 

 

Table 17-9: Power dissipation and efficiency, �@P = 45� 

Efficiency: 96.8% 

         Input: 207W @ 45V 

      Output: 200W @ 35.8V 

Ref.       Irms     Ipeak Dissipation  Ref.       Irms     Ipeak  Dissipation 

C1       0mA       0mA       0mW  R1 2512mA 14082mA     76mW 

C2       0mA       0mA       0mW  R2       0mA       0mA       6mW 

C3       0mA       3mA       0mW  R3       0mA       0mA       2mW 

C4     43mA   963mA       0mW  R4       0mA       3mA       3µW 

C5       0mA       0mA       0mW  R5       0mA       0mA       9mW 

C6     40mA 1302mA       0mW  R6       0mA       0mA   556µW 
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C7       1mA   711mA       0mW  R7       0mA       0mA     17µW 

C8   193mA 1851mA       0mW  R8 1540mA 50966mA       4mW 

C11   815mA 39583mA       3mW  R9       0mA       0mA       6mW 

C14       0mA       0mA       0mW  R10       0mA       0mA   212µW 

C15       0mA       0mA       0mW  R11 2800mA 2834mA   212mW 

C16       0mA       1mA       0mW  R12       0mA       0mA       0µW 

C17     43mA   961mA       0mW  R13       0mA       0mA       0µW 

C18       0mA       0mA       0mW  R14       0mA       0mA       1µW 

C19     40mA 1300mA       0mW  R15       0mA       0mA       0µW 

C20       1mA   711mA       0mW  R16       0mA       0mA       0µW 

C21   190mA 1797mA       0mW  R17 2510mA 3228mA     76mW 

C24 1056mA 52643mA       0mW  R18       0mA       0mA       6mW 

D1     18mA   941mA       2mW  R19       0mA       0mA       2mW 

D2       0mA     25mA       0mW  R20       0mA       1mA       3µW 

D3     18mA   943mA       2mW  R21       0mA       0mA       9mW 

D4       0mA     25mA       0mW  R22       0mA       0mA   556µW 

L1 2807mA 3246mA     95mW  R23       0mA       0mA     17µW 

L2 2807mA 3238mA     95mW  R24 1539mA 51107mA       4mW 

Q1 2719mA 53800mA 1627mW  R25       0mA       0mA       6mW 

Q2 1541mA 51191mA   106mW  R26       0mA       0mA   212µW 

Q3       1mA 1792mA      -0mW  R27 2800mA 2827mA   212mW 

Q4 2807mA 4615mA   812mW  R28       0mA       0mA       0µW 

Q5 2720mA 53649mA 1626mW  R29       0mA       0mA       1µW 

Q6 1542mA 51050mA   106mW  R30       0mA       0mA       0µW 

Q7       1mA 1859mA      -0mW  U1     58mA   962mA   354mW 

Q8 2807mA 4672mA   811mW  U2     58mA   962mA   353mW 
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Table 17-10: Power dissipation and efficiency, �@P = 50� 

Efficiency: 96.7% 

         Input: 256W @ 50V 

      Output: 248W @ 35.8V 

Ref.       Irms     Ipeak  Dissipation  Ref.       Irms     Ipeak  Dissipation 

C1       0mA       0mA       0mW  R1 2950mA 15981mA   104mW 

C2       0mA       0mA       0mW  R2       0mA       0mA       7mW 

C3       0mA       3mA       0mW  R3       0mA       0mA       2mW 

C4     43mA 1075mA       0mW  R4       0mA       3mA       6µW 

C5       0mA       0mA       0mW  R5       0mA       0mA     11mW 

C6     40mA 1403mA       0mW  R6       0mA       0mA   687µW 

C7       2mA   721mA       0mW  R7       0mA       0mA     17µW 

C8   271mA 1826mA       0mW  R8 2113mA 57482mA       7mW 

C11   961mA 44736mA       4mW  R9       0mA       0mA       6mW 

C14       0mA       0mA       0mW  R10       0mA       0mA   212µW 

C15       0mA       0mA       0mW  R11 3471mA 3510mA   325mW 

C16       0mA       1mA       0mW  R12       0mA       0mA       0µW 

C17     43mA 1079mA       0mW  R13       0mA       0mA       0µW 

C18       0mA       0mA       0mW  R14       0mA       0mA       0µW 

C19     40mA 1407mA       0mW  R15       0mA       0mA       0µW 

C20       2mA   721mA       0mW  R16       0mA       0mA       0µW 

C21   268mA 1782mA       0mW  R17 2947mA 4000mA   104mW 

C24 1242mA 58819mA       0mW  R18       0mA       0mA       7mW 

D1     19mA 1063mA       2mW  R19       0mA       0mA       2mW 

D2       0mA     25mA       0mW  R20       0mA       1mA       6µW 

D3     19mA 1059mA       2mW  R21       0mA       0mA     11mW 

D4       0mA     25mA       0mW  R22       0mA       0mA   687µW 

L1 3480mA 4029mA   145mW  R23       0mA       0mA     17µW 

L2 3482mA 4043mA   146mW  R24 2112mA 57001mA       7mW 

Q1 3195mA 60190mA 2163mW  R25       0mA       0mA       6mW 

Q2 2114mA 57093mA   169mW  R26       0mA       0mA   212µW 

Q3       1mA 1810mA      -0mW  R27 3469mA 3489mA   325mW 

Q4 3480mA 5246mA   826mW  R28       0mA       0mA       0µW 

Q5 3197mA 60706mA 2160mW  R29       0mA       0mA       0µW 

Q6 2116mA 57573mA   169mW  R30       0mA       0mA       0µW 

Q7       1mA 1862mA      -0mW  U1     59mA   980mA   399mW 

Q8 3482mA 5302mA   827mW  U2     59mA   981mA   398mW 
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F. Finalized LTspice Simulation Results  

Based on Figure 11-1  and Initial Design Netlist (Section D) 

Efficiency: 84.6% 

         Input: 2.95W @ 5.94V 

      Output: 2.5W @ 31.2V 

Ref.       Irms     Ipeak  Dissipation  Ref.       Irms     Ipeak  Dissipation 

C1       0mA       0mA       0mW  D4   265mA 2782mA     28mW 

C2       0mA       0mA       0mW  D5       5mA   376mA       0mW 

CBS1       6mA   605mA       0mW  D6       1mA     27mA       0mW 

CBS2       1mA     27mA       0mW  D7       0mA       5mA       0mW 

CBS3       7mA   604mA       0mW  D8   261mA 2757mA     28mW 

CBS4       1mA     27mA       0mW  L1   686mA 2827mA       3mW 

CIN1     19mA   116mA       0mW  L2   685mA 2802mA       3mW 

CIN2     19mA   116mA       0mW  Q1   686mA 2828mA       7mW 

CIN3     19mA   116mA       0mW  Q2       6mA   911mA       0mW 

CIN4     19mA   116mA       0mW  Q3   631mA 3275mA   125mW 

CIN5     19mA   118mA       0mW  Q4     48mA 2025mA       1mW 

CIN6     19mA   118mA       0mW  Q5   685mA 2802mA       7mW 

CIN7     19mA   118mA       0mW  Q6       8mA   930mA       0mW 

CIN8     19mA   118mA       0mW  Q7   631mA 3254mA   123mW 

CINTV1     58mA   682mA       0mW  Q8     48mA 2027mA       1mW 

CINTV2     61mA   716mA       0mW  R1       0mA       0mA       0µW 

COUT1     52mA   531mA       0mW  R2       0mA       0mA       0µW 

COUT2     52mA   531mA       0mW  R31       0mA       0mA       0µW 

COUT3     52mA   531mA       0mW  R32       0mA       0mA       0µW 

COUT4     52mA   531mA       0mW  R33       0mA       0mA       0µW 

COUT5     51mA   525mA       0mW  R34       0mA       0mA       0µW 

COUT6     51mA   525mA       0mW  R35       0mA       0mA       0µW 

COUT7     51mA   525mA       0mW  RCCM1       0mA       0mA       0µW 

COUT8     51mA   525mA       0mW  RCCM2       0mA       0mA       0µW 

CSS1       0mA       0mA       0mW  REN1       0mA       0mA   103µW 

CSS2       0mA       0mA       0mW  REN2       0mA       0mA     32µW 

CVC1       0mA       0mA       0mW  REN3       0mA       0mA   103µW 

CVC2       0mA       0mA       0mW  REN4       0mA       0mA     32µW 

CVREF1       0mA       0mA       0mW  RFB1       0mA       0mA       5mW 

CVREF2       0mA       0mA       0mW  RFB2       0mA       0mA   161µW 

D1       3mA   373mA       0mW  RFB3       0mA       0mA       5mW 

D2       1mA     27mA      -0mW  RFB4       0mA       0mA   161µW 

D3       0mA       5mA       0mW  RIN1   648mA 2632mA       5mW 

Table 17-11: Power dissipation and efficiency, �@P = 6� and 0.1Ω input parasitic 
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Ref.       Irms     Ipeak  Dissipation  Ref.       Irms     Ipeak  Dissipation 

RIN2   646mA 2604mA       5mW  RSS1       0mA       0mA     16µW 

RLSENSE1   634mA 3481mA   603µW  RSS2       0mA       0mA     16µW 

RLSENSE2   635mA 3461mA   604µW  RT1       0mA       0mA     17µW 

ROUT1   110mA   778mA   329µW  RT2       0mA       0mA     17µW 

ROUT2   110mA   772mA   328µW  RVC1       0mA       0mA       0µW 

ROV1       0mA       0mA   156µW  RVC2       0mA       0mA       0µW 

ROV2       0mA       0mA     10µW  U1     98mA   812mA     51mW 

ROV3       0mA       0mA   156µW  U2     98mA   813mA     52mW 

ROV4       0mA       0mA     10µW  

RSHORT1       0mA       0mA       0µW  

RSHORT2       0mA       0mA       0µW  
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Efficiency: 87.9%   

Input: 9.71W @ 9.1V   

Output: 8.54W @ 34.1V   

Ref.       Irms     Ipeak  Dissipation  Ref.       Irms     Ipeak  Dissipation 

C1       0mA       1mA       0mW  D7       2mA   527mA       0mW 

C2       0mA       1mA       0mW  D8   609mA 5850mA     94mW 

CBS1       0mA       0mA       0mW  L1 1487mA 5980mA     15mW 

CBS2       2mA   147mA       0mW  L2 1316mA 5900mA     12mW 

CBS3       1mA   526mA       0mW  Q1 1487mA 5980mA     32mW 

CBS4       2mA   146mA       0mW  Q2       0mA       4mA       0mW 

CIN1     98mA 1004mA       1mW  Q3 1311mA 6402mA   394mW 

CIN2     98mA 1004mA       1mW  Q4     80mA 3203mA       1mW 

CIN3     98mA 1004mA       1mW  Q5 1316mA 5901mA     25mW 

CIN4     98mA 1004mA       1mW  Q6       1mA   665mA       0mW 

CIN5     98mA 1030mA       1mW  Q7 1164mA 6365mA   173mW 

CIN6     98mA 1030mA       1mW  Q8     59mA 3156mA       1mW 

CIN7     98mA 1030mA       1mW  R1       0mA       0mA       0µW 

CIN8     98mA 1030mA       1mW  R2       0mA       0mA       0µW 

CINTV1     57mA   706mA       0mW  R31       0mA       0mA       0µW 

CINTV2     64mA   729mA       0mW  R32       0mA       0mA       0µW 

COUT1   127mA 1346mA       2mW  R33       0mA       0mA       0µW 

COUT2   127mA 1346mA       2mW  R34       0mA       0mA       0µW 

COUT3   127mA 1346mA       2mW  R35       0mA       0mA       0µW 

COUT4   127mA 1346mA       2mW  RCCM1       0mA       0mA   196µW 

COUT5   115mA 1324mA       1mW  RCCM2       0mA       0mA   196µW 

COUT6   115mA 1324mA       1mW  REN1       0mA       0mA   244µW 

COUT7   115mA 1324mA       1mW  REN2       0mA       0mA     76µW 

COUT8   115mA 1324mA       1mW  REN3       0mA       0mA   244µW 

CSS1       0mA       0mA       0mW  REN4       0mA       0mA     76µW 

CSS2       0mA       0mA       0mW  RFB1       0mA       0mA       6mW 

CVC1       0mA       0mA       0mW  RFB2       0mA       0mA   198µW 

CVC2       0mA       0mA       0mW  RFB3       0mA       0mA       6mW 

CVREF1       0mA       0mA       0mW  RFB4       0mA       0mA   198µW 

CVREF2       0mA       0mA       0mW  RIN1 1438mA 6317mA     25mW 

D1       0mA       0mA       0mW  RIN2 1251mA 6196mA     19mW 

D2       2mA   147mA       0mW  RLSENSE1 1313mA 6590mA       3mW 

D3       0mA       0mA       0mW  RLSENSE2 1165mA 6553mA       2mW 

D4   700mA 5928mA   150mW  ROUT1   315mA 1867mA       3mW 

D5       1mA   184mA       0mW  ROUT2   268mA 1893mA       2mW 

D6       2mA   146mA       0mW  ROV1       0mA       0mA   371µW 

Table 17-12: Power dissipation and efficiency, �@P = 10� and 0.5Ω input parasitic 
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Ref.       Irms     Ipeak  Dissipation 

ROV2       0mA       0mA     23µW 

ROV3       0mA       0mA   371µW 

ROV4       0mA       0mA     23µW 

RSHORT1       0mA       0mA       0µW 

RSHORT2       0mA       0mA       0µW 

RSS1       0mA       0mA       1µW 

RSS2       0mA       0mA       1µW 

RT1       0mA       0mA     17µW 

RT2       0mA       0mA     17µW 

RVC1       0mA       0mA       0µW 

RVC2       0mA       0mA       0µW 

U1   102mA   813mA     99mW 

U2   102mA   813mA     95mW 
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Efficiency: 93.1% 

Input: 38.6W @ 16.9V 

Output: 35.9W @ 33.4V 

Ref.       Irms     Ipeak  Dissipation  Ref.       Irms     Ipeak Dissipation 

C1       0mA       0mA       0mW  D7     31mA 1436mA       1mW 

C2       0mA       0mA       0mW  D8 1325mA 4070mA   472mW 

CBS1       6mA   543mA       0mW  L1 1887mA 4109mA     25mW 

CBS2       2mA     31mA       0mW  L2 1899mA 4111mA     25mW 

CBS3       6mA   540mA       0mW  Q1 1887mA 4109mA     52mW 

CBS4       4mA   685mA       0mW  Q2     26mA 1633mA       0mW 

CIN1     85mA   465mA       1mW  Q3 1351mA 4102mA   481mW 

CIN2     85mA   465mA       1mW  Q4     91mA 2829mA       1mW 

CIN3     85mA   465mA       1mW  Q5 1898mA 4111mA     52mW 

CIN4     85mA   465mA       1mW  Q6     26mA 1623mA       0mW 

CIN5     85mA   465mA       1mW  Q7 1359mA 4104mA   484mW 

CIN6     85mA   465mA       1mW  Q8     95mA 2838mA       1mW 

CIN7     85mA   465mA       1mW  R1       0mA       0mA       0µW 

CIN8     85mA   465mA       1mW  R2       0mA       0mA       0µW 

CINTV1     57mA   859mA       0mW  R31       0mA       0mA       0µW 

CINTV2     62mA   879mA       0mW  R32       0mA       0mA       0µW 

COUT1   185mA   716mA       3mW  R33       0mA       0mA       0µW 

COUT2   185mA   716mA       3mW  R34       0mA       0mA       0µW 

COUT3   185mA   716mA       3mW  R35       0mA       0mA       0µW 

COUT4   185mA   716mA       3mW  RCCM1       0mA       0mA       0µW 

COUT5   184mA   710mA       3mW  RCCM2       0mA       0mA       0µW 

COUT6   184mA   710mA       3mW  REN1       0mA       0mA   837µW 

COUT7   184mA   710mA       3mW  REN2       0mA       0mA   259µW 

COUT8   184mA   710mA       3mW  REN3       0mA       0mA   837µW 

CSS1       0mA       0mA       0mW  REN4       0mA       0mA   259µW 

CSS2       0mA       0mA       0mW  RFB1       0mA       0mA       5mW 

CVC1       0mA       0mA       0mW  RFB2       0mA       0mA   188µW 

CVC2       0mA       0mA       0mW  RFB3       0mA       0mA       5mW 

CVREF1       0mA       0mA       0mW  RFB4       0mA       0mA   188µW 

CVREF2       0mA       0mA       0mW  RIN1 1862mA 3711mA     42mW 

D1       4mA   262mA       0mW  RIN2 1873mA 3711mA     42mW 

D2       2mA     31mA       0mW  RLSENSE1 1353mA 4250mA       3mW 

D3     34mA 1445mA       1mW  RLSENSE2 1361mA 4254mA       3mW 

D4 1316mA 4068mA   467mW  ROUT1   734mA 1738mA     15mW 

D5       4mA   261mA       0mW  ROUT2   741mA 1748mA     15mW 

D6       2mA     31mA       0mW  ROV1       0mA       0mA       1mW 

Table 17-13: Power dissipation and efficiency, �@P = 20� and 0.9Ω input parasitic 
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Ref.       Irms     Ipeak  Dissipation 

ROV2       0mA       0mA     79µW 

ROV3       0mA       0mA       1mW 

ROV4       0mA       0mA     79µW 

RSHORT1       0mA       0mA       0µW 

RSHORT2       0mA       0mA       0µW 

RSS1       0mA       0mA       3µW 

RSS2       0mA       0mA       3µW 

RT1       0mA       0mA     17µW 

RT2       0mA       0mA     17µW 

RVC1       0mA       0mA       0µW 

RVC2       0mA       0mA       0µW 

U1   103mA   813mA   208mW 

U2   103mA   813mA   207mW 
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Efficiency: 96.0% 

Input: 90.4W @ 26.7V 

Output: 86.8W @ 36.2V 

Ref.       Irms     Ipeak  Dissipation  Ref.       Irms     Ipeak  Dissipation 

C1       0mA       0mA       0mW  D7     33mA 2690mA       2mW 

C2       0mA       0mA       0mW  D8 1530mA 4269mA   653mW 

CBS1       4mA   542mA       0mW  L1 1880mA 4229mA     25mW 

CBS2     23mA   802mA       0mW  L2 1882mA 4293mA     25mW 

CBS3       3mA   541mA       0mW  Q1 1880mA 4230mA     52mW 

CBS4     23mA   763mA       0mW  Q2     26mA 2852mA       0mW 

CIN1     73mA   384mA       1mW  Q3 1008mA 4353mA   581mW 

CIN2     73mA   384mA       1mW  Q4   442mA 2885mA       8mW 

CIN3     73mA   384mA       1mW  Q5 1882mA 4295mA     50mW 

CIN4     73mA   384mA       1mW  Q6     26mA 2857mA       0mW 

CIN5     73mA   386mA       1mW  Q7 1010mA 4427mA   580mW 

CIN6     73mA   386mA       1mW  Q8   441mA 2909mA       7mW 

CIN7     73mA   386mA       1mW  R1       0mA       0mA       0µW 

CIN8     73mA   386mA       1mW  R2       0mA       0mA       0µW 

CINTV1     58mA   882mA       0mW  R31       0mA       0mA       0µW 

CINTV2     63mA   898mA       0mW  R32       0mA       0mA       0µW 

COUT1   170mA   831mA       3mW  R33       0mA       0mA       0µW 

COUT2   170mA   831mA       3mW  R34       0mA       0mA       0µW 

COUT3   170mA   831mA       3mW  R35       0mA       0mA       0µW 

COUT4   170mA   831mA       3mW  RCCM1       0mA       0mA       0µW 

COUT5   169mA   834mA       3mW  RCCM2       0mA       0mA       0µW 

COUT6   169mA   834mA       3mW  REN1       0mA       0mA       2mW 

COUT7   169mA   834mA       3mW  REN2       0mA       0mA   643µW 

COUT8   169mA   834mA       3mW  REN3       0mA       0mA       2mW 

CSS1       0mA       0mA       0mW  REN4       0mA       0mA   643µW 

CSS2       0mA       0mA       0mW  RFB1       0mA       0mA       6mW 

CVC1       0mA       0mA       0mW  RFB2       0mA       0mA   217µW 

CVC2       0mA       0mA       0mW  RFB3       0mA       0mA       6mW 

CVREF1       0mA       0mA       0mW  RFB4       0mA       0mA   217µW 

CVREF2       0mA       0mA       0mW  RIN1 1888mA 3581mA     43mW 

D1       3mA   274mA       0mW  RIN2 1888mA 3585mA     43mW 

D2       9mA   138mA       0mW  RLSENSE1 1013mA 4553mA       2mW 

D3     41mA 2686mA       2mW  RLSENSE2 1014mA 4626mA       2mW 

D4 1528mA 4205mA   654mW  ROUT1 1273mA 2502mA     44mW 

D5       2mA   275mA       0mW  ROUT2 1272mA 2542mA     44mW 

D6       9mA   140mA       0mW  ROV1       0mA       0mA       3mW 

Table 17-14: Power dissipation and efficiency, �@P = 30� and 0.9Ω input parasitic 
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Ref.       Irms     Ipeak  Dissipation 

ROV2       0mA       0mA   196µW 

ROV3       0mA       0mA       3mW 

ROV4       0mA       0mA   196µW 

RSHORT1       0mA       0mA       0µW 

RSHORT2       0mA       0mA       0µW 

RSS1       0mA       0mA       2µW 

RSS2       0mA       0mA       2µW 

RT1       0mA       0mA     17µW 

RT2       0mA       0mA     17µW 

RVC1       0mA       0mA       0µW 

RVC2       0mA       0mA       0µW 

U1   104mA   844mA   368mW 

U2   104mA   846mA   367mW 
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Table 17-15: Power dissipation and efficiency, �@P = 40� and 1Ω input parasitic 

Efficiency: 95.2% 

Input: 162W @ 35.4V 

Output: 155W @ 36.4V 

Ref.       Irms     Ipeak  Dissipation  Ref.       Irms     Ipeak  Dissipation 

C1       0mA       0mA       0mW  D7   579mA 2549mA     86mW 

C2       0mA       0mA       0mW  D8   671mA 2889mA   104mW 

CBS1     64mA   540mA       0mW  L1 2497mA 2902mA     44mW 

CBS2     73mA   804mA       0mW  L2 2496mA 2899mA     44mW 

CBS3     64mA   537mA       0mW  Q1 2376mA 3301mA   896mW 

CBS4     73mA   771mA       0mW  Q2   453mA 2723mA     39mW 

CIN1   136mA   399mA       2mW  Q3   980mA 3257mA   807mW 

CIN2   136mA   399mA       2mW  Q4 2208mA 2900mA   122mW 

CIN3   136mA   399mA       2mW  Q5 2373mA 3305mA   896mW 

CIN4   136mA   399mA       2mW  Q6   458mA 2720mA     38mW 

CIN5   137mA   402mA       2mW  Q7   979mA 3252mA   792mW 

CIN6   137mA   402mA       2mW  Q8 2207mA 2896mA   121mW 

CIN7   137mA   402mA       2mW  R1       0mA       0mA       0µW 

CIN8   137mA   402mA       2mW  R2       0mA       0mA       0µW 

CINTV1   115mA   922mA       0mW  R31       0mA       0mA       0µW 

CINTV2   119mA   930mA       0mW  R32       0mA       0mA       0µW 

COUT1   172mA   546mA       3mW  R33       0mA       0mA       0µW 

COUT2   172mA   546mA       3mW  R34       0mA       0mA       0µW 

COUT3   172mA   546mA       3mW  R35       0mA       0mA       0µW 

COUT4   172mA   546mA       3mW  RCCM1       0mA       0mA       0µW 

COUT5   172mA   547mA       3mW  RCCM2       0mA       0mA       0µW 

COUT6   172mA   547mA       3mW  REN1       0mA       0mA       4mW 

COUT7   172mA   547mA       3mW  REN2       0mA       0mA       1mW 

COUT8   172mA   547mA       3mW  REN3       0mA       0mA       4mW 

CSS1       0mA       0mA       0mW  REN4       0mA       0mA       1mW 

CSS2       0mA       0mA       0mW  RFB1       0mA       0mA       6mW 

CVC1       0mA       0mA       0mW  RFB2       0mA       0mA   219µW 

CVC2       0mA       0mA       0mW  RFB3       0mA       0mA       6mW 

CVREF1       0mA       0mA       0mW  RFB4       0mA       0mA   219µW 

CVREF2       0mA       0mA       0mW  RIN1 2335mA 3265mA     65mW 

D1     49mA   289mA       8mW  RIN2 2332mA 3237mA     65mW 

D2     34mA   180mA       5mW  RLSENSE1 1232mA 3464mA       2mW 

D3   577mA 2552mA     85mW  RLSENSE2 1233mA 3459mA       2mW 

D4   669mA 2892mA   105mW  ROUT1 2158mA 2987mA   126mW 

D5     49mA   290mA       8mW  ROUT2 2156mA 2994mA   126mW 

D6     34mA   181mA       5mW  ROV1       0mA       0mA       6mW 
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Ref.       Irms     Ipeak  Dissipation 

ROV2       0mA       0mA   344µW 

ROV3       0mA       0mA       6mW 

ROV4       0mA       0mA   344µW 

RSHORT1       0mA       0mA       0µW 

RSHORT2       0mA       0mA       0µW 

RSS1       0mA       0mA       0µW 

RSS2       0mA       0mA       0µW 

RT1       0mA       0mA     17µW 

RT2       0mA       0mA     17µW 

RVC1       0mA       0mA       0µW 

RVC2       0mA       0mA       0µW 

U1   104mA   864mA 1557mW 

U2   104mA   862mA 1558mW 
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Table 17-16: Power dissipation and efficiency, �@P = 50� and 1Ω input parasitic 

Efficiency: 96.9% 

Input: 247W @ 44.4V 

Output: 239W @ 36.3V 

Ref.       Irms     Ipeak  Dissipation  Ref.       Irms     Ipeak  Dissipation 

C1       0mA       0mA       0mW  D7   769mA 3456mA   118mW 

C2       0mA       0mA       0mW  D8 1380mA 3650mA   345mW 

CBS1     66mA   527mA       0mW  L1 3318mA 3780mA     77mW 

CBS2     12mA   651mA       0mW  L2 3318mA 3774mA     77mW 

CBS3     66mA   527mA       0mW  Q1 3041mA 3955mA 1618mW 

CBS4     12mA   659mA       0mW  Q2 1045mA 3644mA     54mW 

CIN1   202mA   448mA       4mW  Q3       0mA     11mA      -0mW 

CIN2   202mA   448mA       4mW  Q4 3025mA 3780mA   142mW 

CIN3   202mA   448mA       4mW  Q5 3032mA 3951mA 1615mW 

CIN4   202mA   448mA       4mW  Q6 1065mA 3637mA     57mW 

CIN5   204mA   452mA       4mW  Q7       0mA     11mA      -0mW 

CIN6   204mA   452mA       4mW  Q8 3017mA 3774mA   141mW 

CIN7   204mA   452mA       4mW  R1       0mA       0mA       1µW 

CIN8   204mA   452mA       4mW  R2       0mA       0mA       1µW 

CINTV1     96mA   942mA       0mW  R31       0mA       0mA       0µW 

CINTV2   100mA   956mA       0mW  R32       0mA       0mA       0µW 

COUT1     34mA     85mA       0mW  R33       0mA       0mA       0µW 

COUT2     34mA     85mA       0mW  R34       0mA       0mA       0µW 

COUT3     34mA     85mA       0mW  R35       0mA       0mA       0µW 

COUT4     34mA     85mA       0mW  RCCM1       0mA       0mA       0µW 

COUT5     33mA     85mA       0mW  RCCM2       0mA       0mA       0µW 

COUT6     33mA     85mA       0mW  REN1       0mA       0mA       6mW 

COUT7     33mA     85mA       0mW  REN2       0mA       0mA       2mW 

COUT8     33mA     85mA       0mW  REN3       0mA       0mA       6mW 

CSS1       0mA       0mA       0mW  REN4       0mA       0mA       2mW 

CSS2       0mA       0mA       0mW  RFB1       0mA       0mA       6mW 

CVC1       0mA       0mA       0mW  RFB2       0mA       0mA   218µW 

CVC2       0mA       0mA       0mW  RFB3       0mA       0mA       6mW 

CVREF1       0mA       0mA       0mW  RFB4       0mA       0mA   218µW 

CVREF2       0mA       0mA       0mW  RIN1 2899mA 4152mA   101mW 

D1     51mA   307mA       8mW  RIN2 2888mA 4154mA   100mW 

D2       0mA       0mA       0mW  RLSENSE1 1294mA 4022mA       3mW 

D3   762mA 3463mA   116mW  RLSENSE2 1314mA 4021mA       3mW 

D4 1362mA 3655mA   339mW  ROUT1 3302mA 3469mA   294mW 

D5     52mA   308mA       8mW  ROUT2 3302mA 3466mA   294mW 

D6       0mA       0mA       0mW  ROV1       0mA       0mA       9mW 



142 

 

Ref.       Irms     Ipeak  Dissipation 

ROV2       0mA       0mA   541µW 

ROV3       0mA       0mA       9mW 

ROV4       0mA       0mA   541µW 

RSHORT1       0mA       0mA       0µW 

RSHORT2       0mA       0mA       0µW 

RSS1       0mA       0mA       1µW 

RSS2       0mA       0mA       1µW 

RT1       0mA       0mA     17µW 

RT2       0mA       0mA     17µW 

RVC1       0mA       0mA       0µW 

RVC2       0mA       0mA       0µW 

U1   104mA   933mA 1078mW 

U2   104mA   933mA 1089mW 
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G. IXTH180N10T Characterization Data 

Table 17-17: VGS vs. RDS 

VD = 10V 

VGS 
[V] RDS [¢] 

2 4.00E+09 

2.12 3.86E+07 

2.4 4.47E+06 

2.8 5.00E+06 

3.2 6.16E+06 

3.4 6.10E+06 

3.5 5.37E+06 

3.6 3.77E+06 

3.7 1.50E+06 

3.8 4.30E+03 

3.9 3.80E+03 

4 2.80E+03 

4.1 2.30E+03 

4.3 1.77E+03 

4.5 1.45E+03 

4.8 1.20E+03 

5 1.03E+03 

6 6.50E+02 

7 4.50E+02 
 

Table 17-18: VGS vs. ID 

VD = 0V 

VGS [V] ID [A] 

1 7.00E-07 

2 1.30E-06 

3 1.30E-06 

3.5 2.00E-05 

3.7 9.00E-05 

3.9 4.00E-04 

4 7.61E-04 

4.1 1.14E-03 

4.2 1.40E-03 

4.3 1.56E-03 

4.5 1.70E-03 

4.7 1.85E-03 

4.9 1.94E-03 

5 1.98E-03 

6 2.25E-03 
 

Table 17-19: VGS vs. ID 

VD = 6V 

VGS [V] ID [A] 

1 2.80E-08 

2 3.30E-08 

3 1.20E-06 

3.3 5.00E-06 

3.5 2.00E-05 

3.6 4.70E-05 

3.7 1.00E-04 

3.8 2.30E-04 

3.9 5.00E-04 

4 1.26E-03 

4.1 2.85E-03 

4.2 6.40E-03 

4.3 1.40E-02 

4.4 3.40E-02 

4.5 5.20E-02 

5 5.30E-02 

6 5.30E-02 
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H. Testing Oscilloscope Captures 

 
Figure 17-2: Hardware Testing, Primary SHORT Pin, Pin 5, 30V Case 

 
Figure 17-3: Hardware Testing, Primary FB Pin, Pin 37, 30V Case 
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Figure 17-4: Hardware Testing, Primary SNSP Pin, Pin 27, 30V Case 

 
Figure 17-5: Hardware Testing, Primary CLKOUT Pin, Pin 33, 30V Case 
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Figure 17-6: Hardware Testing, Secondary CLKOUT Pin, Pin 33, 30V Case 

 
Figure 17-7: Hardware Testing, Primary TG1 Pin, Pin 14, 30V Case 
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Figure 17-8: Hardware Testing, Primary BG1 Pin, Pin 18, 30V Case 

 
Figure 17-9: Hardware Testing, Primary BG2 Pin, Pin 19, 30V Case 
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Figure 17-10: Hardware Testing, Primary TG2 Pin, Pin 24, 30V Case 

 
Figure 17-11: Hardware Testing, Primary SW1, Pin 16, 30V Case 
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Figure 17-12: Hardware Testing, Primary SW2 Pin, Pin 21, 30V Case 

 
Figure 17-13: Hardware Testing, Primary BST1 Pin, Pin 15, 30V Case 
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Figure 17-14: Hardware Testing, Primary BS2 Pin, Pin 22, 30V Case 
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I. Analysis of Senior Project Design 

Project Title: EHFEM Buck-Boost DC/DC Converter Using LT3791-1 with Input Protection 
System 

Student’s Name: Sheldon Chu, Byung-Jae David Yoo   Student Signatures: 

Advisor’s Name: David Braun             Advisor’s Initials:                       Date:  
 
 Summary of Functional Requirements 

 Cal Poly’s Energy Harvesting from Exercise Machines (EHFEM) project 

comprises of multiple subprojects seeking to effectively create a sustainable energy 

source through harvesting electrical energy generated from physical exercise machines.  

This project designs and implements a Buck-Boost DC-DC converter using a LT3791-1 

4-Switch Buck-Boost Controller, replacing the previous SEPIC design. The DC-DC 

converter must operate within limits set by the maximum input range of the LT3791-1 

controller. An input protection system prevents inputs higher than rated values, which 

may adversely damage the Buck-Boost DC-DC converter. These inputs include 

overvoltage transients, average voltage, and current output by the Precor EFX 561i 

elliptical generator. Therefore, integrating a modified version of Ryan Turner and Zack 

Weiler’s DC-DC Converter Input Protection System prevents system damage if generator 

outputs stray beyond safe operational range. This system also provides charge 

accumulation protection generated during an open-load phase during start-up of the 

Enphase M175 Micro-Inverter. Additionally, the DC-DC converter’s output must provide 

a voltage within the micro-inverter’s input voltage range to apply 240VRMS power back to 

the electrical grid. 
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Primary Constraints  

 The EHFEM project’s existing components, namely the Precor EFX 561i 

elliptical’s generator and Enphase M175 Micro-Inverter place limitations on the buck-

boost DC-DC converter design. Ryan Turner and Zack Weiler’s DC-DC Converter Input 

Protection System project details output characteristics of the elliptical’s generator. on 

average, the elliptical generates 6V to 65V and 0.6A to 6.5A through minimum and 

maximum exercise resistance levels (1-20) and speeds (100 SPM - 230+ SPM). 

Overvoltage transient measure up to 150V, generating current spikes of up to 15A. 

Additionally, the Enphase M175 Micro-Inverter accepts a maximum input current of 8A 

with 36V as the nominal input voltage to provide an output of 240VRMS. Therefore, up to 

288W of power feeds to the inverter. Further limitations spawn from the LT3791-1 IC’s 

characteristics. for example, the LT3791-1’s input voltage may range from 4.7V to 60V. 

 In summary, the generator and inverter place various electrical limitations upon 

the designed system. The input protection system must not only protect the DC-DC 

converter from overvoltage transients of up to 150V, but must also limit its maximum 

input voltage to 60V. The output of the DC-DC converter must also nominally output 

36V with a maximum current output of 8A to the inverter. 

 Additionally, the final physical design must fit into the Precor EFX 561i 

elliptical’s enclosure. The equivalent input impedance of the design must also equal 10Ω 

to preserve the physical exercise experience of the user. 

 Simulating a working design proved challenging and added more project difficult 

than expected. Specifically, no suitable approach limited simulated input power to the 
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converter. Simulations using ideal voltage source inputs indicated high input power 

transients due to MOSFET switching. Simulation design alterations attempted input 

power problem amendment, including adding a series input parasitic resistance, snubber 

cells, and a declining input resistance. Although these additional components did mitigate 

input power transients, they did not limit input power to the system.  

 Furthermore, selecting parts based on LT3791-1’s datasheet equations and 

parameters proved challenging. Ambiguous datasheet parameters produced confusion 

when selecting inductor and current sense resistor sizes. Specifically, certain variables 

such as %Ripple remained ambiguous  within LT3791-1’s datasheet. Datasheet 

ambiguity required exterior research to select proper components.  

Additionally, selecting improper MOSFETs generated numerous problems. Simulations 

indicated high current and power dissipation during MOSFET switching.  Various 

snubber circuits were considered and tested to reduce the excessive power dissipated on 

MOSFETs. However, results concluded a new MOSFET with better parameters proved a 

better and easier option. 

The newly selected MOSFETs, however, did not have a public spice model to accurately 

simulate its behavior.  A model was constructed based upon a preliminary datasheet but 

with questionable reliability and accuracy.  Every simulation results held potential 

abnormalities with unknown variables. MOSFETs did not switch correctly during the 

hardware testing.  Characterization of these MOSFETs was conducted but there were too 

many variables to deduce the problem’s root cause.  
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Designing the PCB layout was especially difficult due to lack of PCB design knowledge 

and experience. The PCB design underwent multiple revisions. A majority of signal 

traces and power traces were redrawn multiple times due to lacking understanding of the 

relationship between high frequency traces and return ground path. A 4-layer PCB layout 

was selected instead of 2-layer board to reduce the difficulty of tracing paths. Drawing 

proper trace thickness to handle high current was exceptionally difficult due to lack of 

space. 

Economic 

Human Capital 

 Production requires the time of skilled laborers to assemble and solder 

components onto a PCB. Each component involved also requires the time of skilled 

workers to be designed, manufactured, and shipped by the various companies that supply 

them. Furthermore, the assembled product requires the time of skilled laborers to install 

the product into the enclosure of the elliptical machine.  

Financial Capital 

 The production process requires the necessary monetary funds to pay skilled 

workers to assemble, transport, and install the system into the elliptical machines. The 

product’s production also requires the necessary monetary funds to buy the components 

necessary for the design. Systems modified with the final project reduce the operating 

electricity costs of exercise facilities during and after its fulfillment of its zero cost 

lifecycle. 
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Manufactured or Real Capital 

 The product requires numerous components generated by the efforts of various 

companies and individuals including ICs, resistors, capacitors, inductors, PCBs, solder, 

heat sinks, and shipping materials. 

Natural Capital 

 The production of this project requires the use of Earth’s resources in the 

production of its components. This includes rare earth metals like silicon, copper, 

aluminum, oil (plastic and gasoline/diesel), and wood (cardboard). Harvesting and 

producing these resources result in toxic emissions and numerous other byproducts of 

industrial production that negatively impact Earth. 

• When and where do costs and benefits accrue throughout the project’s lifecycle?  

 Costs accrue during the production of the finalized product. Such costs include 

the cost to manufacture each component and to ship the component(s) to the place of 

final assembly, in addition to the cost of final assembly, shipping, and installation.  Cost 

benefits start to accrue during the operational use of the elliptical machines outfitted with 

the EHFEM system which feeds generated electricity back to the power grid and reduces 

the energy bought from power companies. 

• What inputs does the experiment require? How much does the project cost? Who 

pays? 

 This experiment requires various component inputs for the design and testing of 

the system, including the components required for the initial design and final design. This 
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project’s cost estimates $3866.67 as projected in Table D1. Cal Poly: San Luis Obispo 

pays the final cost for the project in order to outfit existing Precor EFX 561i elliptical 

trainers with energy generating systems. by doing so, it cuts operational electrical costs of 

its recreational center. Table A displays estimated project costs. 

Table A: Estimated Project Cost 

Costs Optimistic Most Likely Pessimistic Estimated 
Total Component (Fixed) 

Component Cost 
LT 3791 $ 22.50 

LT 4356 $ 8.49 

Input Protection System 
and  
DC-DC converter circuit 
components 

$ 70-90 

Converter PCB $ 100-300 

Protection Circuit PCB $ 5-80 

Controllers for LT 3791 $ 10-20 

Total Component Cost Min = $ 
215.99 
Max = $ 
520.56 

 

$215.00 $300 $520.00 $272.50 

Total Labor (Variable) 
$16 per hour 

$2,400.00 
150 Hrs 

$3,200.00 
200 Hrs 

$6,400.00 
400 Hrs 

$3600.00 

Total Cost 
 

 $3,872.50 

 

 



 

 

Table B: Final Project Cost 

Type Schematic Name Value Component $/unit QTY Sum P/N Description Company 

Inductor Inductor 22u Inductor $7.83 2 $15.66 AIRD-03-270K INDUCTOR PWR DRUM CORE 27UH Abracon 

Resistors RLSENSE 12m R1 $1.17 2 $2.34 ERJ-8BWFR012V RES 0.012 OHM 1W 1% 1206 SMD Panasonic 

REN1 200k R2 $0.10 2 $0.20 RC2012F204CS RES 200K OHM 1/8W 1% 0805 Samsung 

REN2 62k R3 $0.10 2 $0.20 ERJ-6ENF6202V RES 62K OHM 1/8W 1% 0805 SMD Panasonic 

Rcomp 51 R4 $0.10 2 $0.20 ERJ-6ENF51R0V RES 51 OHM 1/8W 1% 0805 SMD Panasonic 

ROVLO1 200k R5 $0.10 2 $0.20 ERJ-6ENF2003V RES 200K OHM 1/8W 1% 0805 SMD Panasonic 

ROVLO2 12.4k R6 $0.10 2 $0.20 ERJ-6ENF1242V RES 12.4K OHM 1/8W 1% 0805 SMD Panasonic 

RT 59k R7 $0.10 2 $0.20 ERJ-6ENF5902V RES 59K OHM 1/8W 1% 0805 SMD Panasonic 

Rsense 1.5m R8 $1.11 2 $2.22 ERJ-M1WTF1M5U RES 0.0015 OHM 1W 1% 2512 SMD Panasonic 

RFB1 196k R9 $0.10 2 $0.20 ERJ-6ENF1963V RES 196K OHM 1/8W 1% 0805 SMD Panasonic 

RFB2 6.81k R10 $0.10 2 $0.20 ERJ-6ENF6811V RES 6.81K OHM 1/8W 1% 0805 SMD Panasonic 

ROUT 27m R11 $1.17 2 $2.34 ERJ-8BWFR027V RES 0.027 OHM 1W 1% 1206 SMD Panasonic 

RSHORT 200k R12 $0.10 2 $0.20 ERJ-6ENF2003V RES 200K OHM 1/8W 1% 0805 SMD Panasonic 

RC/10 100k R13 $0.10 2 $0.20 ERJ-6ENF1003V RES 100K OHM 1/8W 1% 0805 SMD Panasonic 

RSS 100k R14 $0.10 2 $0.20 ERJ-6ENF1003V RES 100K OHM 1/8W 1% 0805 SMD Panasonic 

RVC 3k R15 $0.10 2 $0.20 ERJ-6ENF3001V RES 3K OHM 1/8W 1% 0805 SMD Panasonic 

Switches Q1-Q8 $4.03 8 $32.20 IXTH180N10T MOSFET N-CH 100V 180A TO-247 IXYS 

Capacitors CSS 33nF C1 $0.24 2 $0.48 C0603C333K8RACTU CAP CER 0.033UF 10V 10% X7R 0603 Kemet 

CVC 33nF C2 $0.24 2 $0.48 C0603C333K8RACTU CAP CER 0.033UF 10V 10% X7R 0603 Kemet 

Ccomp 470n C3 $0.41 2 $0.82 C0603C474K8RACTU CAP CER 0.47UF 10V 10% X7R 0603 Kemet 

CINTVCC 4.7u C4 $1.40 2 $2.80 C3225X7S2A475M200AB CAP CER 4.7UF 100V 20% X7S 1210 TDK 

CVREF 0.1uF C5 $0.10 2 $0.20 C1608X7R1E104K080AA CAP CER 0.1UF 25V 10% X7R 0603 TDK 

CBS 0.1uF C6 and C7 $0.10 4 $0.40 C1608X7R1E104K080AA CAP CER 0.1UF 25V 10% X7R 0603 TDK 

COUT 4.7u COUT $1.23 8 $9.84 C3225X7S2A475K200AB CAP CER 4.7UF 100V 10% X7S 1210 TDK 

CIN 4.7u CIN $1.23 8 $9.84 C3225X7S2A475K200AB CAP CER 4.7UF 100V 10% X7S 1210 TDK 

Schottky D1, D2 D1,D2,D5,D6 $0.44 4 $1.76 
BAT46WJ,115 

DIODE SCHOTKY 100V 0.25A 
SOD323F NXP Semicond. 

D3, D4 D3,D4,D7,D8 $1.23 4 $4.92 MBR20100CTTU DIODE SCHOTTKY 100V 10A TO220 Fairchild Semi 
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Controller LT3791-1 Controller $11.21  3 $33.63  LT3791IFE-1#PBF IC REG CTRLR BUCK BST 38TSSOP Linear Tech 

Heat Sink $3.09  8 $24.72  C247-025-1AE HEATSINK FOR TO-247 WITH 1 CLIP Ohmite 

Header 
Pins $0.13  18 $2.30  961102-6404-AR 

CONN HEADER VERT SGL 2POS 
GOLD 3M 

POSTS RED $4.05  4 $16.20  111-0702-001 Emerson 

BLACK $4.05  6 $24.30  111-0703-001 Emerson 

PCB 4-Layer PCB $32.67  2 $65.33  ExpressPCB 

TOTAL $255.19 

TAX $275.60 



 

 

• How much does the project earn? Who profits? 

 The EHFEM project indirectly profits Cal Poly by reducing its operating 

electricity costs at its recreational center. The EHFEM projects to achieve a zero system 

lifecycle cost after 10 years of use as outline in Martin Kou’s thesis [9]. The estimated 

profit per year of the EHFEM project of $39.26/year provided a nominal 100W generated 

from exercise at a power degradation of 0.5% at 12 hours per day for 41 weeks at $0.12 

per kWh of electricity. Any electricity generated after the ten year period generates profit 

to Cal Poly with respect to the cost required to implement the EHFEM system. 

• Timing  

 Products emerge after the final design of the product, in addition to the 

manufacturable final design of its individual components. The product final product has a 

lifecycle of approximately ten years to reach zero system lifecycle cost. Therefore, each 

component in the product must sustain proper operation for at least ten years without 

maintenance or replacement.  

Figure A displays the original initial estimated development time of this project while 

Figure B displays actual project development time. 
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Figure A: Initial Estimated Project Plan Gantt Chart 
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Figure B: Actual Project Plan Gantt Chart 
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Commercial Manufacture  

 This project considers devices sold primarily to middle and large sized 

recreational centers, not individual consumers. Considering a sale of 25 devices per 

recreational facility at a per-unit cost of $325.00 with an estimated manufacturing cost of 

$266.67, each facility generates $1458.25. These values do not take into account 

significant labor costs or taxes. Considering that an average of 20 facilities/year, or 500 

units/year, purchase the product, total profit estimates to $29,165 per year. Theoretically, 

operation incurs no fees to the owner for the first ten years due to its design for a zero 

system lifecycle cost of 10 years. During the event of component failure, replacement 

parts should cost under 5% of the product cost, or $16.25. This value covers individual 

component costs outside of PCB printing. 

Environmental  

 This project generates negative environmental impacts during its production. Such 

negative impacts include the generation of carbon dioxide, carbon monoxide, and other 

pollutants generated during manufacturing and shipping stages. Additionally, the 

components required by this product directly impacts earth’s natural resources and 

ecosystem services as they require harvesting Earth’s natural resources. Such resources 

include copper, aluminum, silicon, and the drilling of oil. Mining and drilling requires 

energy to purify and transport materials and produces industrial byproducts which harm 

surrounding ecosystems. Harvesting methods also produce environmentally harmful toxic 

byproducts. Furthermore, disposal of its components after failure or replacement may 

negatively affect the environment. Components selected in this design fulfill RoHS 

compliance to ensure minimal environmental impact upon their disposal based. This 
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project has a positive impact acts as a source of renewable energy, thereby reducing 

power plant emissions in a wider prospective. in doing so, this project positively impacts 

other species by reducing the effects of harmful or toxic emissions. 

Manufacturability  

 Drawbacks of the scale of this project include difficulties in hand-soldering 

components to printed circuit boards. Inadvertent damage may occur during soldering 

process, especially to components such as SMT devices. Such devices require precision 

soldering using a magnifying glass. Such difficulties may result in the accumulation of 

damaged components. Additionally, the quality of testing equipment supplied by the 

Electrical Engineering department’s laboratories constrains system testing quality. 

Testing equipment often limits digits of resolution. for example, if current measurements 

in µA are limited to mA due to equipment supporting only mA. 

Sustainability 

 The system’s designed lifespan of at least ten years provides 65,700 operating 

hours with no additional required maintenance. Therefore, no further natural resources 

are required for ten years by each unit, thereby minimizing environmental impact in the 

process of harvesting and disposal of resources. in the event of components failure, 

individual components may be desoldered and replaced instead of requiring the 

manufacture of a new unit, further reducing environmental impact. Further upgrades to 

the design of this project that would improve sustainability include minimizing its PCB 

footprint and minimizing power dissipation by components. Minimizing the projects PCB 

footprint decreases the amount of copper and plastic required by the project, thereby 
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decreasing its ecological footprint. Minimizing the PCB footprint may prove difficult as 

components vary in size. 

Ethical  

 Based on the Utilitarian ethical framework, this project benefits a wide range of 

groups by generating renewable energy with zero emission as waste or byproduct. This 

results in an eco-friendly source of energy generation, thereby decreasing the overall 

environmental impact generated from non-renewable energy sources to produce similar 

quantities of energy. Although often seen in a positive light, green-energy may make 

some users feel uncomfortable with paying the same rates for gym memberships at gyms 

outfitted with EHFEM machines than those without. Users may feel disgruntled knowing 

that their fitness center pays less for their utilities but charging users the same amount in 

comparison to competitors without EHFEM machines. Additionally, users may feel 

disgruntled if left uninformed of EHFEM machines installed for solely for the profit 

margin benefit of the fitness center. 

 Numbers 1, 3, 7, and 9 of the IEEE Code of Ethics [11] most apply to this project. 

The safety and wellbeing of the user and laborers manufacturing the device apply 

statements 1 and 9. All aspects of the project that may pose a danger to the public must 

be properly noted or remedied, whether mechanical or electrical hazards. Additionally, 

statements 3 and 7 apply to the design and manufacturing of the product. Proper claims 

regarding the function and safety of the product must be issued and proper 

acknowledgement of groups who have contributed to the EHFEM project. It’s highly 

important to constructively criticize the development of the buck-boost DC-DC converter 

system promote an efficient and safe system. 
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Health and Safety  

 Overall, the implementation of the EHFEM system should not alter the user’s 

exercise experience or safety. The design and use of this product requires mechanical 

input by a user to operate the elliptical machine. Proper exercise safety practices prevent 

physical injury to the user. Additionally, the EHFEM system generates electrical energy. 

Proper precautions or implementations must prevent electrical shock to the user. A user’s 

safety should be maintained in the case water is spilled on the equipment. Accidental 

spillage of liquids onto the device must not jeopardize the safety of the user. Circuit 

components also dissipate heat during normal use, so proper implementation of heat 

dissipaters prevent component failure or physical harm to the user. Manufacturing and 

testing requires human labor to solder and test components. Soldering releases hazardous 

noxious fumes and involves using tools operating at high temperatures. Proper ventilation 

and equipment practices minimize hazards during the manufacturing process. 

Social and Political 

 This project may generate positive public social interest in renewable energy 

sources as it demonstrates to Cal Poly’s community that the university actively seeks 

ways to become a greener campus. Implementing the EHFEM project in the form of 

numerous elliptical machines, or other exercise machines, directly reduces Cal Poly’s 

spending on energy over a period of time, which indirectly reduces the consumption of 

Earth’s natural resources used to generate energy (i.e. coal, oil). The direct stakeholders 

of this project include Cal Poly. Its indirect stakeholders include power plants and power 

companies. Using elliptical machines modified using the EHFEM project equally benefits 

both stake holders as Cal Poly spends on electrical energy, correlating with less energy 



166 

 

demand from power plants. Cal Poly benefits more than power plants as Cal Poly pays 

less overall for electricity costs while the power not consumed from the power plant(s) is 

redirected and consumed elsewhere. Additionally, Cal Poly’s presence and reputation as 

a green campus improves which may foster innovations in green energy-producing 

technologies in the future. 

Development  

 The Monte-Carlo technique was learned to analyze circuit simulations taking into 

account component tolerance, temperature variations, and parasitic characteristics. 

Additionally, this project required learning to operate and design DC-DC converters and 

its protection system as designed by Turner and Weiler [2]. Furthermore, selection 

methods for proper heat sinking, MOSFET, and power inductor sizing were learned for 

low-power systems. Basic operational information about snubber circuits was also 

learned.  This project also provided an opportunity to learn about PCB layout and design 

considerations as well as hands-on soldering experience. 


