ELECTRICAL ENGINEERING DEPARTMENT CALIFORNIA POLYTECHNIC STATE UNIVERSITY:

 SAN LUIS OBISPO

 SAN LUIS OBISPO}

BUCK-BOOST DC-DC CONVERTER with INPUT PROTECTION SYSTEM

FOR THE

ENERGY HARVESTING from EXERCISE MACHINES PROJECT
Ву

Byung-Jae David Yoo

Sheldon Chu
$2013-2014$

Table of Contents

List of Figures 5
List of Tables 10
Chapter 1 : Project Abstract 12
Chapter 2 : Introduction 13
Chapter 3 : Project Objectives 15
3.1. Requirements and Specifications 15
Chapter 4 : Functional Decomposition 18
4.1. Level Zero Block Diagram 18
4.2. Level One Block Diagram 18
Chapter 5 : Project Planning 20
5.1. Initial Gantt Chart 20
5.2. Predicted Cost Estimate 21
Chapter 6 : Previous Buck-Boost Converter Design Discussions 23
6.1. Alvin Hilario Four Switch Topology 23
6.2. Martin Kou SEPIC Topology 24
6.3. LT3791-1 Design Parameterization 25
Chapter 7 : LT3791-1 Topology Component Selection Overview. 25
7.1. Block Diagram 25
7.2. Programing Switching Frequency using RT Pin 26
7.3. Programming Output Current using Rout 27
7.4. Programming Output Voltage using FB Pin 28
7.5. Inductor Selection 29
7.6. $\mathrm{R}_{\text {SENSE }}$ and Maximum Output Current Selection 31
7.7. Programming $\mathrm{V}_{\text {IN }}$ Undervoltage and Overvoltage Limits 32
7.8. Programming Input Current Limit 34
7.9. Programming Soft-Start 35
7.10. Power MOSFET Consideration 36
7.11. Controller Syncing 39
Chapter 8 : LT3791-1 Operation Discussion 41
8.1. Power Switch Operation 41
8.2. CCM and DCM Operation 44
Chapter 9 : First Design Iteration 45
9.1. Initial Design 45
9.2. Initial Design Simulations. 47
9.3. Initial Design Errors 51
Chapter 10 : Second Design Iteration 59
10.1. New Power MOSFET Consideration 59
10.2. Further Design Alterations 62
10.3. Input Parasitic Resistance 64
10.4. Snubber Circuit Design 66
10.5. Decreasing Input Resistance 70
10.6. Heat Sink Selection. 71
Chapter 11 : Final Design 74
Chapter 12 : PCB Design and Assembly 78
12.1. First Iteration 78
12.2. Second Iteration 80
12.3. Third Iteration 82
12.4. Fourth Iteration 83
12.5. Fifth Iteration 84
12.6. Final Iteration 85
12.7. Solder Order and Assembly 86
Chapter 13 : Input Protection Circuit Design 89
13.1. Previous IPSC Design 89
13.2. Modified Input Protection System Design 90
Chapter 14 : Hardware Testing 92
14.1. Test Plan. 92
14.2. Test Results 94
14.3. IXTH180N10T MOSFET Characterization 102
Chapter 15 : Conclusion 106
Chapter 16 : References 108
Chapter 17 :Appendix 112
A. Excel Component Sizing Calculation Spreadsheet 112
B. Final Project Gantt Chart 114
C. Final Bill of Materials 115
D. LTspice Netlist 117
E. Initial Design Results 121
F. Finalized LTspice Simulation Results 131
G. IXTH180N10T Characterization Data 143
H. Testing Oscilloscope Captures 144
I. Analysis of Senior Project Design 151

List of Figures

Figure 4-1: Level Zero Block Diagram 18
Figure 4-2: Level One Block Diagram 19
Figure 5-1: Estimated Project Gantt Chart 20
Figure 5-2: Project Cost Estimates 22
Figure 6-1: Alvin Hilario’s Four-Switch Buck-Boost DC-DC Converter Design [26] 23
Figure 6-2: Martin Kou's SEPIC DC-DC Converter Design [3] 24
Figure 7-1: LT3791-1 Buck Boost 4-Switch Buck-Boost Controller Block Diagram [2] 26
Figure 7-2: Programmable LT3791-1 R_{T} resistor values and switching frequency plot 27
Figure 7-3: R_{T} vs. $\mathrm{f}_{\mathrm{OSC}}$, programmable switching frequency [4] 27
Figure 7-4: Output current selection, $\mathrm{V}_{\text {CTRL }}$ vs $\mathrm{V}_{\text {(ISP-ISN) }}$ [4] 28
Figure 7-5: FB Pin output voltage divider [4] 28
Figure 7-6: Undervoltage and overvoltage condition hysteresis windows 33
Figure 7-7: Overvoltage and undervoltage resistive voltage dividers [4] 34
Figure 7-8: Input Current Limit vs $\mathrm{R}_{\mathbb{I N}}$ [4]. 35
Figure 7-9: Normalized $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs. Temperature, [2] 37
Figure 7-10: Parallel LT3791-1 DC-DC converter output currents 40
Figure 8-1: Four output switches across power inductor [4] 41
Figure 8-2: Power MOSFET buck operation, modified switching pattern [4] 41
Figure 8-3: Buck operation waveform [2] 42
Figure 8-4: Power MOSFET buck-boost operation, modified switching pattern [2] 42
Figure 8-5: Buck-Boost operation waveform [2]. 43
Figure 8-6: Power MOSFET boost operation, modified switching pattern [2] 43
Figure 8-7: Boost operation waveform [2] 44
Figure 9-1: Parallel LT3791-1 Buck-Boost Converter Topology LTspice Schematic 45
Figure 9-2: Parallel LT3791-1 Buck-Boost Converter Power Efficiency vs. Viv. 48
Figure 9-3: Input Overvoltage Fault Condition 49
Figure 9-4: Input Overvoltage Safe Condition 49
Figure 9-5: Input Undervoltage Safe Condition 50
Figure 9-6: Input Undervoltage Fault Condition 50
Figure 9-7: Switching Power Transients, 50V Input 51
Figure 9-8: MOSFET switching current, 50 V input, buck mode 52
Figure 9-9: MOSFET switching currents, 50V input, buck mode 53
Figure 9-10: MOSFETS instantaneous power spikes, 50V input, buck 53
Figure 9-11: Closer inspection of $Q 1$ turn-on $V_{D S}$ versus I_{D} and resultant power spike 54
Figure 9-12: MOSFET switching current, 10V input, boost 55
Figure 9-13: 10V input, boost, MOSFET switching current 55
Figure 9-14: MOSFET instantaneous power spikes, 10V input, boost 56
Figure 9-15: Closer inspection of Q 4 turn-off V_{DS} versus I_{D} and resultant power spike 56
Figure 9-16: Simulated input capacitor power transients, 50 V input 57
Figure 9-17: Simulated Input capacitor current transients, 50V input. 57
Figure 10-1: TO-220, TO-262, and TO-247 Packages [Left, Center, Right] 60
Figure 10-2: Parallel LT3791-1 Buck-Boost Converter Topology with IXTH180N10T MOSFETS 50V, Inductor Current vs. Schottky Diode Current 63
Figure 10-3: Additional Schottky Diodes D3 and D4 across Drain-Source of Q2 and Q4 64
Figure 10-4: Parallel LT3791-1 Buck-Boost Converter Topology with IXTH180N10T MOSFETS 50 V , 250 W nominal input with 1Ω parasitic source resistance......................... 65

Figure 10-5: Simulated Parallel LT3791-1 Buck-Boost Converter Topology with IXTH180N10T MOSFETS 50V, 250W nominal input without parasitic source resistance 65

Figure 10-6: Martin Kou's Basic Turn-On Snubber Circuit Design [3]....................................... 67
Figure 10-7: Simple RC Snubber Circuit [17]... 67
Figure 10-8: Parallel LT3791-1 Buck-Boost Converter Topology with additional turn-on and
turn-off snubber cells.. 68
Figure 10-9: Parallel LT3791-1 Buck-Boost Converter Topology simulations, Q4 69
Figure 10-10: Parallel LT3791-1 Buck-Boost Converter Topology with IXTH180N10T MOSFETS decreasing input source resistance... 70
Figure 10-11: Parallel LT3791-1 Buck-Boost Converter Topology with IXTH180N10T MOSFETS Decreasing input resistance simulation, $50 \mathrm{~V}, 250 \mathrm{~W}$ input 71
Figure 10-12: Parallel LT3791-1 Buck-Boost Converter Topology with IXTH180N10T MOSFETS Without decreasing input resistance simulation, 50 V , 250 W input 71
Figure 11-1: Final Parallel LT3791-1 4-Switch Buck-Boost Configuration 74
Figure 11-2: Final Parallel LT3791-1 4-Switch Buck-Boost Configuration 50V case and 1Ω parasitic input resistance 76
Figure 11-3: Final Parallel LT3791-1 4-Switch Buck-Boost Configuration 10V case and 0.1Ω parasitic input resistance 76
Figure 11-4: Final Single Stage LT3791-1 Design Schematic with altered component names 77
Figure 12-1: First PCB Iteration 78
Figure 12-2: Second PCB Iteration. 80
Figure 12-3: Third PCB Design Iteration 82
Figure 12-4: Fourth PCB Design Iteration 83
Figure 12-5: Fifth PCB Design Iteration 84
Figure 12-6: Final PCB Design Iteration 85
Figure 12-7: Final PCB Schematic 86
Figure 12-8: Soldered and assembled PCB 88
Figure 13-1: Ryan Turner and Zack Weiler's Input Protection Circuit [2] 89
Figure 13-2: Cameron Kiddoo and Eric Funsten’s Protection System. 90
Figure 14-1: Parallel LT3791-1 4-Switch Buck-Boost Controller Test Configuration 92
Figure 14-2: Primary Board Q1 Gate Voltage, 6V Input. 95
Figure 14-3: Primary Board Q2 Gate Voltage, 6V Input 96
Figure 14-4: Primary Board Q3 Gate Voltage, 6V Input. 96
Figure 14-5: Primary Board Q4 Gate Voltage, 6V Input. 97
Figure 14-6: LTspice Simulation Confirming MOSFET Functionality, 30V, Q1 damaged 100
Figure 14-7: Q1 Gate Drive, TG1, Q1 damaged, 5V $\mathrm{VP}_{\mathrm{PP}} 400 \mathrm{kHz}$ 101
Figure 14-8: Q1 Gate Drive, TG2, Q1 damaged, $5 \mathrm{~V}_{\mathrm{PP}} 400 \mathrm{kHz}$ 101
Figure 14-9: Q1 Gate Voltage vs. Source Voltage 102
Figure 14-10: Q1 Gate Voltage vs. Drain Voltage 103
Figure 14-11: Drain-to-Source Resistance Characterization 104
Figure 14-12: Drain Current Characterization, $V_{D}=0 V$ 105
Figure 14-13: Drain Current Characterization, $V_{D}=6 \mathrm{~V}$ 105
Figure 17-1: Final Project Gantt Chart 114
Figure 17-2: Hardware Testing, Primary SHORT Pin, Pin 5, 30V Case 144
Figure 17-3: Hardware Testing, Primary FB Pin, Pin 37, 30V Case 144
Figure 17-4: Hardware Testing, Primary SNSP Pin, Pin 27, 30V Case 145
Figure 17-5: Hardware Testing, Primary CLKOUT Pin, Pin 33, 30V Case 145
Figure 17-6: Hardware Testing, Secondary CLKOUT Pin, Pin 33, 30V Case 146
Figure 17-7: Hardware Testing, Primary TG1 Pin, Pin 14, 30V Case 146
Figure 17-8: Hardware Testing, Primary BG1 Pin, Pin 18, 30V Case 147
Figure 17-9: Hardware Testing, Primary BG2 Pin, Pin 19, 30V Case 147
Figure 17-10: Hardware Testing, Primary TG2 Pin, Pin 24, 30V Case 148
Figure 17-11: Hardware Testing, Primary SW1, Pin 16, 30V Case 148
Figure 17-12: Hardware Testing, Primary SW2 Pin, Pin 21, 30V Case 149
Figure 17-13: Hardware Testing, Primary BST1 Pin, Pin 15, 30V Case 149
Figure 17-14: Hardware Testing, Primary BS2 Pin, Pin 22, 30V Case 150

List of Tables

Table 3-1: EHFEM DC/DC Converter with IPSC Requirements and Specifications 15
Table 3-2: EHFEM DC/DC Converter with IPSC Deliverables 17
Table 4-1 Level Zero Block Diagram Functional Analysis 18
Table 4-2: Level One Block Diagram Protection Circuit Functional Analysis 19
Table 4-3: Level One Block Diagram DC-DC Converter Circuit Functional Analysis 19
Table 7-1 Inductor selection base parameters 29
Table 7-2: Minimum inductance value calculations 31
Table 7-3: $\mathrm{R}_{\text {SENSE }}$ selection base parameters 32
Table 7-4: Maximum R Rense $^{\text {value calculations }}$ 32
Table 7-5: Undervoltage and overvoltage rising/falling hysteresis equations 33
Table 7-6: Power MOSFET selection base specifications. 37
Table 7-7: Maximum MOSFET power dissipation calculation 39
Table 9-1: Initial LT3791-1 Buck-Boost Converter Component list 46
Table 10-1: MOSFET Comparison Chart, $25^{\circ} \mathrm{C}$, [13] [14] [15]. 60
Table 10-2: IXTH180N10T LTspice Model. 60
Table 10-3: Heat Sink Comparison. 72
Table 11-1: Final Design Test Cases 75
Table 11-2: Section 17.F Steady State Efficiency Report Summary 75
Table 12-1: Component Soldering Order 86
Table 14-1: Expected Input and Output Test Cases. 93
Table 17-1: Power dissipation and efficiency, $V I N=6 V$ 121
Table 17-2: Power dissipation and efficiency, VIN $=10 \mathrm{~V}$ 122
Table 17-3: Power dissipation and efficiency, $V I N=15 \mathrm{~V}$ 122
Table 17-4: Power dissipation and efficiency, VIN $=20 \mathrm{~V}$ 123
Table 17-5: Power dissipation and efficiency, VIN $=25 \mathrm{~V}$ 124
Table 17-6: Power dissipation and efficiency, $V I N=30 \mathrm{~V}$ 125
Table 17-7: Power dissipation and efficiency, VIN $=36 \mathrm{~V}$ 126
Table 17-8: Power dissipation and efficiency, $V I N=40 \mathrm{~V}$ 127
Table 17-9: Power dissipation and efficiency, VIN $=45 \mathrm{~V}$ 128
Table 17-10: Power dissipation and efficiency, $V I N=50 \mathrm{~V}$ 130
Table 17-11: Power dissipation and efficiency, VIN $=6 \mathrm{~V}$ and 0.1Ω input parasitic 131
Table 17-12: Power dissipation and efficiency, VIN $=10 \mathrm{~V}$ and 0.5Ω input parasitic 133
Table 17-13: Power dissipation and efficiency, VIN $=20 \mathrm{~V}$ and 0.9Ω input parasitic 135
Table 17-14: Power dissipation and efficiency, VIN $=30 \mathrm{~V}$ and 0.9Ω input parasitic 137
Table 17-15: Power dissipation and efficiency, $V I N=40 \mathrm{~V}$ and 1Ω input parasitic 139
Table 17-16: Power dissipation and efficiency, VIN $=50 \mathrm{~V}$ and 1Ω input parasitic 141
Table 17-17: V_{GS} vs. R_{DS} 143
Table 17-18: V_{GS} vs. I_{D} 143
Table 17-19: V_{GS} vs. I_{D} 143

Chapter 1: Project Abstract

Cal Poly's Energy Harvesting from Exercise Machines (EHFEM) project comprises of multiple subprojects seeking to effectively create a sustainable energy source through harvesting electrical energy generated from physical exercise machines. This project designs and implements a Buck-Boost DC-DC converter using a LT3791-1 4-Switch Buck-Boost Controller, replacing the previous SEPIC design. The DC-DC converter must operate within limits set by the maximum input range of the LT3791-1 controller. An input protection system prevents inputs higher than rated values, which may adversely damage the Buck-Boost DC-DC converter. These inputs include overvoltage transients, average voltage, and current output by the Precor EFX 561i elliptical generator. Therefore, integrating a modified version of Ryan Turner and Zack Weiler's DC-DC Converter Input Protection System prevents system damage if generator outputs stray beyond safe operational range. This system also provides charge accumulation protection generated during an open-load phase during start-up of the Enphase M175 MicroInverter. Additionally, the DC-DC converter's output must provide a voltage within the microinverter's input voltage range to apply $240 \mathrm{~V}_{\text {RMS }}$ power back to the electrical grid.

Chapter 2: Introduction

California Poly San Luis Obispo's ongoing EHFEM project seeks to effectively harvest renewable energy from power generated by physical exercise machines at a low implementation cost. The EHFEM project seeks to convert exercise machines into energy generating units that attain a zero lifecycle cost after ten years. A team of mechanical and electrical engineering students first established the EHFEM project in 2007 while seeking to convert an exercise bike into a standalone DC and AC generating system [1]. Since then, the EHFEM project has progressed on to harvesting electrical energy from elliptical trainers. Overall, the EHFEM project consists of multiple subprojects focusing on converting different exercise machine types into power generators.

The EHFEM project currently focuses on converting a Precor EFX 561i elliptical machine into an effective power generating unit. Previous project teams developed a generator unit attached to the elliptical machine. This project scales the output voltage and current of the on-board generator using a DC-DC converter and feeds into an Enphase M175 Micro-Inverter to send AC power back to the electrical grid with minimum power conversion loss. An input protection system connects between the generator and DC-DC converter preventing transient voltage and current spikes from adversely damaging the DC-DC converter. This project seeks to implement an input protection scheme with a buck-boost DC-DC converter based on a LT3791-1 topology to improve upon the previously designed SEPIC topology and input protection system $[2,3]$.

The LT3791-1 accepts a maximum input voltage of 60V [4]. Any input exceeding this maximum threshold may adversely damage the controller. Therefore, an input protection system helps to prevent DC-DC converter damage during overvoltage transients exceeding 60 V . A
modified version of the previous input protection system should apply a maximum of 60 V to the DC-DC converter [2].

A previous SEPIC input protection system failure resulted in a catastrophic failure that damaged both the input protection circuit and SEPIC converter designed by Martin Kou [3]. The new input protection circuit must operate within 4.7 V to 60 V and protect against transient and sustained overvoltage events while allowing the DC-DC converter to remain operational.

Customer Needs Assessment

Overall, the EHFEM project targets users of Cal Poly's Recreational Center and aims to modify existing or newly installed elliptical machines with energy generating units. EHFEM altered elliptical machines effectively convert mechanical energy into electrical energy applied back to the electrical grid. The implementation of this project's Buck-Boost DC-DC converter and its input protection system must not alter the user's exercise experience or negatively impact their safety. It must also fit within the enclosure of the Precor EFX 561i elliptical machine in a way that resists damage resulting from vibration or water spilled on the enclosure. Additionally, the implemented system must properly function and connect, both physically and electrically, with the existing generator and Enphase M175 Micro-Inverter. The unit should also maintain a nominal life expectancy of at least 10 years with an average use of 18 hours per day and reach zero system lifecycle cost.

Chapter 3: Project Objectives

3.1. Requirements and Specifications

Subcomponent characteristics primarily influenced this project's overall requirements and specifications. Prior EHFEM subprojects and manufacturer-provided components defined design parameters. Previous converter design cost estimates aided in projecting this system's final cost. Required system inputs and outputs derive from output characteristics of the elliptical machine's generator and micro-inverter's input characteristics. Electrical specifications derive from Martin Kou's thesis, Ryan Turner's and Zack Weiler's senior projects, and component datasheets. Integrating banana-to-banana leads rather than soldered leads prevent potential broken contact points between the generator, converter, and micro-inverter. Marketing requirements derive from a customer needs assessment. Overall, the system must maintain a low cost, operate reliably and safely, and must couple with existing components while not altering the user's exercise experience when operating the elliptical machine. Table 3-1 summarizes project requirements and specifications.

Table 3-1: EHFEM DC/DC Converter with IPSC Requirements and Specifications

Marketing Requirements	Engineering Specifications	Justification
1	System and component costs must not exceed $\$ 300$ per unit.	The previous input protection system's cost approximated \$46.00. Furthermore, the previous SEPIC DC-DC converter design cost approximately \$365.00. A proposed 18\% cost reduction decreases total project expenses while maintaining or increasing functionality. [6] [7]

$\left.\begin{array}{|l|l|l|}\hline 2,3,7 & \begin{array}{l}\text { System must fulfill NEC, IEEE } \\ 1547, \text { and NEMA electrical safety } \\ \text { standards. }\end{array} & \begin{array}{l}\text { Must fulfill national standards for safe } \\ \text { electrical and mechanical operation. } \\ \text { National Electrical Code applies to } \\ \text { electrical wiring and installation safety } \\ \text { requirements. IEEE 1547 applies to inter- } \\ \text { connections between generators and the } \\ \text { power grid. NEMA applies to testing and } \\ \text { operational safety standards. [5] [6] [7] }\end{array} \\ \hline 2,3,6 & \begin{array}{l}\text { Must have an operational life of } \\ 65,700 \text { hours without need of repair } \\ \text { or replacement. }\end{array} & \begin{array}{l}\text { The system must operate a minimum of } \\ \text { 10 years under normal use (18 hour per } \\ \text { day), totaling approximately 33000 hours. }\end{array} \\ \hline 4 & \begin{array}{l}\text { Input protection system must } \\ \text { provide an overvoltage protection } \\ \text { up to 150V. }\end{array} & \begin{array}{l}\text { Prior tests demonstrate the Precor } \\ \text { elliptical trainer capable of generating } \\ \text { voltage spikes over 100V, far above the } \\ \text { maximum LT3791-1 input voltage [2]. }\end{array} \\ \text { Therefore implementing a protection } \\ \text { system prevents component damage. }\end{array}, \begin{array}{l}\text { LT3791-1 accepts nominal input voltages } \\ \text { ranging from 4.7V to 60V. Voltages } \\ \text { excess of 60V may cause significant } \\ \text { damage to the DC-DC converter [4]. }\end{array}\right\}$

Marketing Requirements

1. Low cost
2. Reliable
3. Structurally durable
4. Compatible and easy to implement with existing components
5. Does not change the user's exercise experience
6. Environmentally sustainable
7. Conform to safety standards

The requirements and specifications table format derives from [10], Chapter 3.
Table 3-2: EHFEM DC/DC Converter with IPSC Deliverables

Delivery Date	Deliverable Description
Feb. 20, 2014	Cal Poly EE Department Design Review
Mar. 14, 2014	EE463 Report
Mar. 14, 2014	EE463 Demo Device(s)
May 23, 2014	EE464 Report
May 23, 2014	EE464 Demo Device(s)
May 30, 2014	ABET Sr. Project Analysis
May 30, 2014	Sr. Project Expo Poster

Chapter 4: Functional Decomposition

4.1. Level Zero Block Diagram

The level zero functional decomposition block diagram, shown in Figure 4-1, depicts a one input and one output system. This block receives an input DC power from the elliptical trainer's generator and scales its voltage up or down to output power rated at 36 V to the Enphase Micro-Inverter.

Figure 4-1: Level Zero Block Diagram
Table 4-1 Level Zero Block Diagram Functional Analysis

Input	\bullet Generated DC power from EFX 546i Elliptical Trainer			
	\bullet 0V -60 V average depending on user's fitness and machine's resistance			
	\bullet 6A max input current at 10Ω input impedance	$	$	$\bullet 36 \mathrm{~V} \pm 5 \%$ Output Voltage for Enphase Micro-Inverter
:---				
Functionality		Converts generated DC power from EFX 546i Elliptical Trainer to rated		
:---				
36 V applied to Enphase Micro-Inverter				

4.2. Level One Block Diagram

The level one block diagram depicts three main system blocks with primary functionalities displayed in Figure 4-2. The DC-DC converter may require two controllers in parallel instead of one controller. Figure 4-2 also includes an input protection circuit, its feedback loop, and its system functionality.

Figure 4-2: Level One Block Diagram

Table 4-2: Level One Block Diagram Protection Circuit Functional Analysis

Module	LT4356 Protection Circuit
Inputs	\bullet Generated DC power from EFX 546i Elliptical Trainer \bullet \bullet VV -60 V average depending on user's fitness and machine's resistance
Outputs	\bullet Regulated 60V and 6A max current at 10Ω input impedance
Functionality	Surge stopper regulates system input voltage and current to 60V and 6.5A. Contains current sensing feedback loop from an input of Enphase Micro-Inverter to protection circuit to detect transient over-voltage events occurring at converter input. Also detects five minute start-up period of Enphase Micro-Inverter. When transient or five minute start-up period occurs, voltage builds up over the limit of the system and the protection circuit provides an alternate path for voltage and current to dissipate.

Table 4-3: Level One Block Diagram DC-DC Converter Circuit Functional Analysis

Module	LT3791-1 DC-DC Converter
Inputs	\bullet Regulated 60 V and 6 A max current at 10Ω input impedance
Outputs	$\bullet 36 \mathrm{~V} \pm 5 \%$ output voltage for Enphase Micro-Inverter
Functionality	Converts DC power provided from protection circuit to power rated at 36V that the Enphase Micro-Inverter can invert to 240 V RMS AC power. Controller regulates the output voltage and current output.

Chapter 5: Project Planning

5.1. Initial Gantt Chart

Figure 5-1: Estimated Project Gantt Chart

Figure 5-1Error! Reference source not found. depicts this project's estimated Gantt Chart during EE460, EE463, and EE464. Fall 2013 covers EE460 and lists course deliverables. Winter 2014 depicts an initial system design phase, not including an academic winter break. Initial system design occurs over five weeks with time allocated for revisions and faculty advisor design confirmation. Two further design and confirmation phases ensure proper circuit design before ordering, building, and testing a prototype. Parts selection occurs throughout the first two design processes with a two week buffer accommodating purchasing and shipping a finalized parts list. Three additional weeks provide adequate time for prototype construction. Prototype testing occurs during a period two weeks prior and two weeks after an academic spring break. Implementing further design revision and part purchasing stages over the course of five weeks prepare for the final circuit design. An initial Project Report V1 is due the last day of EE463 at the end of Winter Quarter. The final design and Project Report V2 are due on May $23^{\text {rd }}$, the end of Spring Quarter's $8^{\text {th }}$ week of instruction. Documentation occurs throughout design, prototype, and test phases.

5.2. Predicted Cost Estimate

Approximately 2 LT3791-1 ICs maintain the previous SEPIC DC-DC power output capacity of 288 W . Each IC costs approximately $\$ 7.50$, totaling a minimum of $\$ 22.50$. A modified version of Ryan Turner and Zach Weiler's DC-DC Converter Input Protection System project serves as the input protection system [2]. Their system cost $\$ 46.43$ including various components. Further appropriation of funds considers the cost of the converter and input protection circuit PCBs in addition to component costs for the DC-DC converter schema itself.

Optimistically, the full design, implementation, and testing of this project requires 150 hours in addition to best-case component costs.

Nominally, aside from the previously estimated costs of the LT3791-1 ICs and input protection system, the DC-DC converter and PCB manufacturing may cost higher than expected. An additional $\$ 85.00$ considers shipping and handling, not including component costs.

Nominally, the full design, implementation, and testing of this project requires 200 man hours.
Pessimistically, the full design, implementation, and testing of this project requires 400
hours in addition to the cost for additional misplaced or damaged parts. Our pessimistic estimation also considers multiple iterations of the project.

Costs		Optimistic	Most Likely	Pessimistic	Estimated
Total Component (Fixed)		\$215.00	\$300	\$520.00	\$272.50
Component	Cost				
LT 3791	\$ 22.50				
LT 4356	\$ 8.49				
IPSC and DC-DC converter hardware	\$ 70-90				
Converter PCB	\$ 100-300				
Protection Circuit PCB	\$ 5-80				
LT3791-1 Controller	\$ 10-20				
Total Component Cost	$\begin{aligned} & \operatorname{Min}=\$ 215.99 \\ & \operatorname{Max}=\$ 520.56 \end{aligned}$				
	Labor (Variable) $\$ 16$ per hour	$\begin{gathered} \$ 2,400.00 \\ 150 \mathrm{Hrs} \\ \hline \end{gathered}$	$\begin{gathered} \$ 3,200.00 \\ 200 \mathrm{Hrs} \end{gathered}$	$\begin{gathered} \$ 6,400.00 \\ 400 \mathrm{Hrs} \end{gathered}$	\$3600.00
	Total Cost				\$3,872.50

Figure 5-2: Project Cost Estimates

Chapter 6: Previous Buck-Boost Converter Design Discussions

6.1. Alvin Hilario Four Switch Topology

Figure 6-1: Alvin Hilario's Four-Switch Buck-Boost DC-DC Converter Design [9]
Alvin Hilario's Four-Switch Buck-Boost DC-DC converter design, Figure 6-1, utilizes two LT3780 High-Efficiency, Synchronous, 4-Switch Buck-Boost Controllers and an LTC4444 High Voltage Synchronous N-Channel MOSFET Driver. LT3780 PWM controls two LTC4444s, each of which control four NMOS switches connected to the power inductor. Hilario's design operates within a 5 V to 52 V input voltage range with 94.07% average power efficiency. Worstcase 68.84% power efficiency occurred at a 5 V converter input. The inverter's worst output voltage ripple reaches 380 mV , or 1.05%. His converter design cost roughly $\$ 80$ including a custom-made PCB board. Hilario noted that the microinverter's inability to mimic a constant resistance and tends to draw too much current from the converter, thereby deregulating its intended 36 V output.

6.2. Martin Kou SEPIC Topology

Figure 6-2: Martin Kou's SEPIC DC-DC Converter Design [3]

Martin Kou designed the Single Ended Primary Inductor Converter topology depicted in
Figure 6-2. A SEPIC design controls energy exchange between coupling capacitors and switching inductors using a NMOS switch. Kou's SEPIC design attained 78.3\% converter power efficiency at a 60 V input and accepts an input range of 8 V to 60 V . Kou's project obtained a maximum of 78.7% power efficiency at a 50 V input. Kou's SEPIC design does not feature a current limiter and uses fuses between the converter's output and inverter's input. Kou's SEPIC design cost $\$ 404.99$.

6.3. LT3791-1 Design Parameterization

Operational Enphase M175-24-240 Micro-Inverter's and elliptical machine's generator characteristics limit input and output characteristics of the proposed DC-DC converter. Alvin Hilario previously characterized the Enphase Micro-Inverter's maximum 87.10% operating power efficiency at a 36 V input voltage. Therefore, the converter's output voltage must regulate 36 V for maximum micro-inverter efficiency. Furthermore, the micro-inverter accepts an 8A maximum input current [8]. However, the DC-DC converter should limit the microinverter input current to 7.5 A or lower to prevent microinverter damage. The microinverter accepts 270 W maximum at a regulated 36 V and 7.5 A input current. Sections 7.3 and 7.4 describe output current and voltage programming.

The elliptical machine's generator supplies power across a 10Ω resistor and provides a maximum 360 W power output at 60 V . Assuming maximum efficiency, where $\mathrm{P}_{\mathrm{IN}}=\mathrm{P}_{\text {OUT }}$, the DC-DC Converter design handles up to 270 W with a 52 V input. Therefore, knowing $P=\frac{V^{2}}{R}$, the maximum input voltage to the system approximates 52 V . Setting an overvoltage limit using a resistive voltage divider at the OVLO pin as described in Section 7.7 ceases device operation above a 51 V input. Triggering an overvoltage event shuts off and resets the converter and ceases power MOSFET switching. An input protection system should divert converter input power when the converter is non-operational.

Chapter 7: LT3791-1 Topology Component Selection Overview

7.1. Block Diagram

Figure 7-1: LT3791-1 Buck Boost 4-Switch Buck-Boost Controller Block Diagram [4]
This controller provides an output voltage above,
IVINP and IVINN pins detect current through the

7.2. Programing Switching Frequency using RT Pin

The LT3791-1 controller features a programmable A resistor, R_{T}, connecting RT to ground

Figure 7-2 and
Figure 7-3 display the relationship between R_{T} and switching frequency values. Selecting a 400 kHz switching frequency and $59 \mathrm{k} \Omega \mathrm{R}_{\mathrm{T}}$ value provides an arbitrary median between power efficiency and component sizes offered by the LT3791-1 controller.

Figure 7-2: Programmable LT3791-1 R_{T} resistor values and switching frequency plot

Table 1. Switching Frequency vs R_{T} Value

$\mathbf{f}_{\mathbf{0 S C}} \mathbf{(k H z)}$	$\mathbf{R}_{\mathbf{T}} \mathbf{(k \Omega} \mathbf{)}$
200	147
300	84.5
400	59.0
500	45.3
600	35.7
700	29.4

Figure 7-3: R_{T} vs. $\mathrm{f}_{\text {OSC }}$, programmable switching frequency [4]

7.3. Programming Output Current using $\mathbf{R}_{\text {OUT }}$

Placing Rout in series with the output load programs the converter's maximum output current. ISP and ISN pins sense the voltage drop across $\mathrm{R}_{\text {OUT }}$ while $\mathrm{V}_{\text {CTRL }}$ sets a $\mathrm{V}_{\text {(ISP-ISN) }}$ threshold. Figure 7-4 lists typical $\mathrm{V}_{\text {(ISP-ISN) }}$ thresholds versus $\mathrm{V}_{\mathrm{CTRL}}$. When $\mathrm{V}_{\mathrm{CTRL}}>1.3 \mathrm{~V}$, the IOUT $=100 \mathrm{mVROUT}(7.3-2) . \mathrm{V}_{\mathrm{CTRL}}$ tied to $\mathrm{INTV}_{\mathrm{CC}}$ sets $\mathrm{V}_{(\text {ISP-ISN })}$ to 100 mV .

Two LT3791-1 controllers evenly split supplied output current. Therefore, each controller requires one $\mathrm{R}_{\text {out. }}$ Initially, a 7.5 A output load current resulted in a $0.0267 \Omega \mathrm{R}_{\text {Out }}$ value, thereby
outputting 3.75A per controller. However, an equivalent current sense resistor was not available, so $R_{\text {OUt }}$ was selected as the next-nearest value of 0.027Ω. Selecting $R_{\text {OUt }}$ as 0.027Ω sets the IOUT=100mVROUT (7.3-2). Each controller provides the load with 3.7A or a maximum 7.4A output current. Therefore, the load may receive a maximum power of 266.4 W provided a 7.4 A Iout and 36 V V

$\mathbf{V}_{\text {CTRL }}(\mathbf{V})$	$\mathbf{V}_{\text {(ISP-ISN) }} \mathbf{(m V)}$
1.1	90
1.15	94.5
1.2	98
1.25	99.5
1.3	100

Figure 7-4: Output current selection, $\mathrm{V}_{\text {CTRL }}$ vs $\mathrm{V}_{\text {(ISP-ISN) }}$ [4]

$$
\begin{align*}
I_{\text {OUT }} & =\frac{V_{\text {CTRL }}-200 \mathrm{mV}}{R_{\text {OUT }} * 10} \tag{7.3-1}\\
I_{\text {OUT }} & =\frac{100 \mathrm{mV}}{R_{\text {OUT }}} \tag{7.3-2}
\end{align*}
$$

Equation IOUT $=\frac{V_{C T R L}-200 \mathrm{mV}}{R_{O U T} * 10}$
(7.3-1) determines maximum output current of a single device when the CTRL pin voltage pulls less than 1 V . Equation $I O U T=\frac{100 \mathrm{mV}}{\text { Rout }^{\prime}}$) determines maximum output current when the CTRL pin voltage pulls above 1.3 V . Intermediate $\mathrm{V}_{\text {CTRL }}$ values noted in Figure $7-4$ replace the 100 mV in Equation $I O U T=\frac{100 \mathrm{mV}}{R_{\text {OUT }}}$
(7.3-2) with corresponding $\mathrm{V}_{(\text {ISP-ISN })}$ values.

7.4. Programming Output Voltage using FB Pin

Figure 7-5: FB Pin output voltage divider [4]

A resistive voltage divider provides a 1.2 V feedback to the FB pin when the output reaches the desired output voltage. Initially, R5 and R6 were selected as $200 \mathrm{k} \Omega$ and $6.9 \mathrm{k} \Omega$, thereby programming an 35.98 V output voltage. However, equivalent valued resistors lacked stock in Digikey and Mouser's databases, so R5 and R6 were selected as the next-nearest values of $196 \mathrm{k} \Omega$ and $6.81 \mathrm{k} \Omega$. These values program the output voltage to 35.73 V , well within the 5% tolerance of the 36 V design requirement, Equation $V O U T=1.2 \mathrm{~V} * \frac{196 \mathrm{k} \Omega+6.81 \mathrm{k} \Omega}{6.81 \mathrm{k} \Omega}=35.737 \mathrm{~V}$
(7.4-2).

$$
\begin{gather*}
V_{\text {OUT }}=1.2 * \frac{R_{5}+R_{6}}{R_{6}} \tag{7.4-1}\\
V_{\text {OUT }}=1.2 \mathrm{~V} * \frac{196 k \Omega+6.81 \mathrm{k} \Omega}{6.81 k \Omega}=35.737 \mathrm{~V} \tag{7.4-2}
\end{gather*}
$$

7.5. Inductor Selection

Equations LBUCK $>\frac{V_{\text {OUT }} *\left(V_{\text {IN }(\text { MAX })}-V_{\text {OUT }}\right) * 100}{f * I_{\text {OUT }(M A X)} * \% \text { Ripple } * V_{\text {IN }(M A X)}} \quad$ (7.5-1) and LBOOST $>$

$$
\begin{align*}
L_{\text {BUCK }} & >\frac{V_{\text {OUT }} *\left(V_{\text {IN }(M A X)}-V_{\text {OUT }}\right) * 100}{f * I O U T(M A X) * \text { Ripple } * V_{\text {IN }(M A X)}} \tag{7.5-1}\\
L_{\text {BOOST }} & >\frac{V_{I N(M I N)}^{2}\left(V_{\text {OUT }}-V_{\text {IN }(M I N)}\right) * 100}{f * I_{\text {OUT }(M A X)} * \% \text { Ripple } * V_{O U T}^{2}} \tag{7.5-2}
\end{align*}
$$

Inductor sizing depends upon variables including: output voltage $\mathrm{V}_{\text {OUT }}$, switching frequency f, allowable inductor current ripple \%Ripple, minimum input voltage $\mathrm{V}_{\text {IN(MIN) }}$, maximum input voltage $\mathrm{V}_{\text {IN(MAX) }}$, and maximum output load current $\mathrm{I}_{\mathrm{OUT}(\mathrm{MAX})}$. \%Ripple was estimated as 20% to 40% of the output current values as noted by Design Calculations for BuckBoost Converters by Michael Green of Texas Instruments [11].

Table 7-1 Inductor selection base parameters

$\mathrm{V}_{\text {IN(MIN) }}$ [V]	$\mathrm{V}_{\text {IN(MAX) }}$ [V]	$\mathrm{V}_{\text {OUT }}[\mathrm{V}]$	$\mathrm{f}[\mathrm{kHz}$	$\mathrm{I}_{\text {OUT(MAX) }}$ [A]	\% Ripple [\%]
5 V	51 V	36 V	400 kHz	3.7 A	30%

Programmable undervoltage and overvoltage limits set in Section 7.7 determine $\mathrm{V}_{\text {IN(MIN) }}$ and $\mathrm{V}_{\text {IN(MAX) }}$. A $36 \mathrm{~V} \mathrm{~V}_{\text {OUT }}$ is the optimal Enphase M175-24-240 Micro-Inverter input voltage as measured by previous project groups. Sections 7.2 and 7.3 indicate programming output current as 3.7A and switching frequency to 400 kHz . \% Ripple was arbitrarily selected as a 30% inductor ripple current in respect to $\mathrm{I}_{\mathrm{OUT}(\mathrm{MAX})}$. Table 7-2 calculates a minimum inductor value based on the values in Table 7-1 variables.

Table 7-2: Minimum inductance value calculations

Calculation of minimum $L_{B U C K}$	Calculation of minimum $L_{\text {BOOST }}$
$V_{\text {OUT }} *\left(V_{\text {IN }(\text { MAX })}-V_{\text {OUT }}\right) * 100$	$>\frac{V_{\text {IN(MIN })}^{2}\left(V_{\text {OUT }}-V_{\text {IN(MIN })}\right) * 100}{}$
$\begin{gathered} f * I_{\text {OUT }(M A X)} * \text { \%Ripple } * V_{\text {IN }(M A X)} \\ (36 \mathrm{~V}) *(51 \mathrm{~V}-36 \mathrm{~V}) * 100 \end{gathered}$	$\begin{gathered} f * I_{\text {OUT }(M A X)} * \% \text { Ripple } * V_{O U}^{2} \\ (5 \mathrm{~V})^{2}(36 \mathrm{~V}-5 \mathrm{~V}) * 100 \end{gathered}$
$>\overline{400,000 \mathrm{~Hz} * 3.7 \mathrm{~A} * 30 \% * 51 \mathrm{~V}}$	$>\overline{400,000 \mathrm{~Hz} * 3.7 \mathrm{~A} * 30 \% *(36 \mathrm{~V})^{2}}$
$L_{\text {BUCK }}>23.847 \mu \mathrm{H}$	$L_{\text {BOOST }}>1.35 \mu \mathrm{H}$

Table 7-2: Minimum inductance value provides calculations showing that inductor size must exceed $23.847 \mu H$. Selecting an Abracon AIRD-03-270K inductor rated at $27 \mu H$ with a $\pm 10 \%$ tolerance, 3.5 A current rating, 23 A saturation current, and a maximum $12 \mathrm{~m} \Omega$ DCR meets this requirement. The Abracon AIRD-03-270K was the only inductor available and in-stock at Digikey or Mouser with specifications closest to the minimum inductor value of $23.847 \mu \mathrm{H}$ and a high current saturation rating.

7.6. R $_{\text {SENSE }}$ and Maximum Output Current Selection

The required output current of the device determines inductor current sense resistor,
$\mathrm{R}_{\text {SENSE }}$, selection. Selecting an $\mathrm{R}_{\text {SENSE }}$ value determines maximum peak or valley current in boost or buck operation. LT3791-1's datasheet provides Equations

REF _Ref383771969 \h * MERGEFORMAT $L_{\text {BOoST }}>\frac{V_{I N(M I N)}^{2}\left(V_{O U T}-V_{\text {IN }(M I N)}\right) * 100}{f^{2} I_{\text {OUT }(M A X)} * \% \text { Ripple } * V_{O U T}^{2}}$ IOUT MAXBOOST $=51 \mathrm{mVRSENSE}-\triangle / L 2 * V I N M I N V O U T$
(7.6-1) and

IOUT MAXBUCK $=(47.5 \mathrm{mVRSENSE}+\triangle / L 2) \quad(7.6-2)$.

$$
\begin{gather*}
I_{\text {OUT }\left(M A X_{B O O S T}\right)}=\left(\frac{51 m V}{R_{S E N S E}}-\frac{\Delta I_{L}}{2}\right) *\left(\frac{V_{I N(M I N)}}{V_{\text {OUT }}}\right) \tag{7.6-1}\\
I_{\text {OUT }\left(M A X_{B U C K}\right)}=\left(\frac{47.5 m V}{R_{S E N S E}}+\frac{\Delta I_{L}}{2}\right) \tag{7.6-2}
\end{gather*}
$$

IOUT MAXBOOST $=51 m$ RRSENSE $-\triangle I L 2 * V I N M I N V O U T ~$
(7.6-1) and

IOUT MAXBUCK $=(47.5 m V R S E N S E+\Delta I L 2) \quad(7.6-2)$ equates to Equations
RSENSEMAXBOOST $=2 * 51 \mathrm{mV} * V I N M I N 2 * I O U T * V O U T+\triangle I L B O O S T * V I N M I N$

RSENSEMAXBUCK $=2 * 47.5 \mathrm{mV} 2 * I O U T-\triangle I L(B U C K) \quad$ (7.6-4) to solve for maximum $\mathrm{R}_{\text {SENSE }}$ values. $\mathrm{R}_{\text {SENSE }}$ ranges from 20% to 30% lower than the maximum calculated value as denoted by LT3791-1's datasheet.

$$
\begin{gather*}
R_{\text {SENSE }(M A X)_{B O O S T}}=\frac{2 * 51 m V * V_{I N(M I N)}}{2 * I O U T * V_{O U T}+\Delta I_{L(B O O S T)} * V_{I N(M I N)}} \tag{7.6-3}\\
R_{S E N S E(M A X)_{B U C K}}=\frac{2 * 47.5 m V}{2 * I O U T}-\Delta I_{L(B U C K)} \tag{7.6-4}
\end{gather*}
$$

Table 7-3: $\mathrm{R}_{\text {SENSE }}$ selection base parameters

$\mathbf{V}_{\text {IN(MIN) }}$ [V]	$\mathbf{V}_{\text {IN(MAX) }}$ [V]	$\mathbf{V}_{\text {OUT }}$ [V]	$\mathbf{f}[\mathbf{k H z}]$	$\mathbf{I}_{\text {OUT }}$ [A]	\% Ripple [\%]	$\Delta \boldsymbol{I}_{\boldsymbol{L}}$ [A]
5 V	51 V	36 V	400 kHz	3.7 A	30%	1.05 A

Table 7-4: Maximum $\mathrm{R}_{\text {SENSE }}$ value calculations

Calculation of $\boldsymbol{R}_{\text {SENSE }(\text { MAX })_{\text {Boost }}}$	Calculation of $\boldsymbol{R}_{\text {SENSE }(\boldsymbol{M A X})_{\text {BUCK }}}$
$<\frac{2 * 51 m V * V_{\text {IN }(M I N)}}{}$	
$<\frac{2 * 47.5 m V}{2 * I_{\text {OUT }} * V_{\text {OUT }}+\Delta I_{L(B O O S T)} * V_{\text {IN(MIN })}}$	
$<\frac{2 * 51 m V * 5 V}{2 * 3.7 A * 36 V * 1.05 \mathrm{~A} * 5 V}$	$<\frac{2 * 47.5 \mathrm{mV}}{2 * 3.7 A-1.05 \mathrm{~A}}$
$R_{\text {SENSE }}<0.001863 \Omega$	$R_{\text {SENSE }}<0.016 \Omega$

$\mathrm{R}_{\text {SENSE }}$ must equal less than $1.6 \mathrm{~m} \Omega$ as calculated in Table 7-4: Maximum RSENSE value.
Selecting a $1.5 \mathrm{~m} \Omega \mathrm{R}_{\text {SENSE }}$ satisfies these requirements. LT3791-1's datasheet recommends $\mathrm{R}_{\text {SENSE }} 20 \%$ to 30% lower than its maximum calculated $\mathrm{R}_{\text {SENSE }}$ value in either buck or boost mode, however $1 \mathrm{~m} \Omega$ is the next available lowest current sense resistor value.

7.7. Programming $V_{\text {IN }}$ Undervoltage and Overvoltage Limits

Figure 7-6: Undervoltage and overvoltage condition hysteresis windows
LT3791-1's EN/UVLO pin doubles as an enable control pin and undervoltage condition sensor. A resistor voltage divider sets a typical 1.2 V at the EN/UVLO pin. Input bias current to EN/UVLO remains sub $-\mu \mathrm{A}$ while above 1.2 V . Feedback below 1.2 V enables a $3 \mu \mathrm{~A}$ pull-down current so the user can define a rising hysteresis. Triggering an undervoltage condition resets the system's soft-start. A resistive divider on the OVLO pin sets an overvoltage condition.

Triggering an overvoltage condition causes the controller to cease switching and resets the system's soft-start.
$V I N U V L O-=1.2 * R 1+R 2 R 2$
(7.7-1) and
$\operatorname{VINUVLO}+=3 \mu A * R 1+1.215 * R 1+R 2 R 2$ (7.7-2) set undervoltage falling and rising edge
$\operatorname{VIN}(O V L O-)=3 * R 3+R 4 R 4 \quad(7.7-3)$ and $V I N O V L O+=2.925 * R 3+R 4 R 4$
set overvoltage falling and rising edge conditions. Figure 7-6: Undervoltage and overvoltage condition depicts undervoltage and overvoltage hysteresis windows.
$V_{I N\left(U V L O^{-}\right)}=1.2 * \frac{R_{1}+R_{2}}{R_{2}}$
$V_{I N\left(U V L O^{+}\right)}=3 \mu A * R_{1}+1.215 * \frac{R_{1}+R_{2}}{R_{2}}$

$$
\begin{array}{ll}
(7.7-1) & V_{I N\left(O V L O^{-}\right)}=3 * \frac{\left(R_{3}+R_{4}\right)}{R_{4}} \\
(7.7-2) & V_{I N\left(O V L O^{+}\right)}=2.925 * \frac{R_{3}+R_{4}}{R_{4}} \tag{7.7-3}
\end{array}
$$

Table 7-5: Undervoltage and overvoltage rising/falling hysteresis equations

$V_{I N\left(U V L O^{-}\right)}[\mathrm{V}]$	5.071 V
$V_{I N\left(U V L O^{+}\right)}[\mathrm{V}]$	5.734 V
$V_{I N\left(O V L O^{-}\right)}[\mathrm{V}]$	51.387 V

$V_{I N}\left(o V L O^{+}\right)$	
	$[V]$

Figure 7-7: Overvoltage and undervoltage resistive voltage dividers [4]

Selecting R_{1} and R_{3} as $200 k$, and $R 2$ and $R 4$ as $62 k$ and $12.4 k$, sets the falling and rising hysteresis conditions shown Table 7-5. Undervoltage and overvoltage limits set the maximum operating range to approximately 5.7 V to 51 V , well within the maximum 4.7 V to 60 V operating range of the LT3791-1 controller. A 51.4 V maximum voltage limit allows a 275.625 W maximum input power since the converter can output a maximum of 270 W to the inverter given 36 V and 7.5 A output specifications as described in Section 6.3.

7.8. Programming Input Current Limit

Placing an input current sense resistor, R_{IN}, between pins IVINN and IVINP programs an input current limit. Using Equation ($7.8-1$), a $10 \mathrm{~m} \Omega$ resistor programs the input current limit to 4.2A. Each device should accept less than 2.5 A knowing that a 50 V input supplies up to 5 A across a 10Ω resistance. The device switches from constant-voltage mode to constant-current mode when voltage across R_{IN} reaches 50 mV . If the voltage across R_{IN} exceeds 50 mV , then the
device decreases the amount of current delivered to the output, thereby regulating the current sense voltage to 50 mV .

$$
\begin{equation*}
I_{I N}=\frac{50 \mathrm{mV}}{R_{I N}} \tag{7.8-1}
\end{equation*}
$$

$\mathbf{R}_{\mathbf{I N}}(\mathbf{m} \mathbf{\Omega})$	$\mathbf{I}_{\text {LIMIT }}(\mathbf{A})$
20	2.5
15	3.3
12	4.2
10	5.0
6	8.3
5	10.0
4	12.5
3	16.7
2	25

Figure 7-8: Input Current Limit vs R_{IN} [4]

7.9. Programming Soft-Start

Programmable soft-start reduces input power current surges by gradually increasing the controller's input current limit. Defining a soft-start capacitor, C_{SS}, in Equation $t s s=\frac{1.2 \mathrm{~V}}{14 \mu \mathrm{~A}} * C_{S S}$ (7.9-1) sets soft-start time. A 33nF soft-start capacitor provides a soft-start interval of 2.8 ms . A $100 \mathrm{k} \Omega$ resistor placed in series between the soft-start capacitor and $\mathrm{V}_{\text {REF }}$ contributes extra softstart charging current. LT3791-1's datasheet recommends a minimum soft-start value of 22 nF .

$$
\begin{equation*}
t_{S S}=\frac{1.2 V}{14 \mu A} * C_{S S} \tag{7.9-1}
\end{equation*}
$$

7.10. Power MOSFET Consideration

Each LT3791-1 requires four external power NMOS devices to control the charging and discharging phases of the power inductor during converter operation. INTV $_{\text {CC }}$ limits gate drive voltage to 5 V , thus suggesting use of logic-level threshold MOSFET. Linear Technology's sample circuits in LT3791-1's datasheet specified Renesas RJK0651DPB NMOS devices as starting power MOSFETS. Initially MOSFET selection included the RJK0651DPB. However, distributors ran out of stock during the late-design phase, and Infineon's IPP230N06L3G NMOS was selected as an alternate [12].

Infineon's IPP230N06L3G features a 60V drain-source breakdown voltage, a typical 1.7V gate-threshold voltage, a low 16 pF reverse transfer capacitance, and a low $23 \mathrm{~m} \Omega$ onresistance. Specifically, low reverse capacitance, $C_{R S S}$, low on-resistance, $R_{D S(O N)}$, minimize switching losses.

The converter's design specifies a 400 kHz switching frequency or $2.5 \mu \mathrm{~s}$ switching period. IPP230N06L3G's datasheet specifies 9ns turn-on and 19ns turn-off delays. Therefore the RJK0651DPB switches fast enough and accommodates a 400 kHz switching frequency.

$$
\begin{gather*}
P_{M 1(B O O S T)}=\left(\frac{I_{O U T} * V_{O U T}}{V_{I N}}\right)^{2} * \rho_{T} * R_{D S(O N)} \tag{7.10-1}\\
P_{M 2(B U C K)}=\frac{V_{I N}-V_{\text {OUT }}}{V_{I N}} * I_{\text {OUT }}^{2} * \rho_{T} * R_{D S(O N)} \tag{7.10-2}\\
P_{M 3(B O O S T)}=\frac{\left(V_{O U T}-V_{I N}\right) * V_{O U T}}{V_{I N}^{2}} * I_{\text {OUT }}^{2} * \rho_{T} * R_{D S(O N)}+\frac{k * V_{O U T}^{3} * I_{O U T} * C_{R S S} * f}{V_{I N}} \tag{7.10-3}\\
P_{M 4(B O O S T)}=\frac{V_{I N}}{V_{\text {OUT }}} *\left(\frac{I_{O U T} * V_{O U T}}{V_{I N}}\right)^{2} * \rho_{T} * R_{D S(O N)} \tag{7.10-4}
\end{gather*}
$$

LT3791-1's datasheet specifies Equations PM1BOOST $=\left(\frac{I_{\text {OUT }} * V_{\text {OUT }}}{V_{I N}}\right)^{2} * \rho_{T} * R_{D S(O N)}$

PM4 (BOOST) $=$ VINVOUT $*$ IOUT $* V O U T V I N 2 * \rho T * R D S O N ~$ power dissipation at maximum output current. Normalization factor, ρ_{T}, accounts for varying $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ with temperature changes, as shown in Figure $7-9$, at a rate of $0.4 \% /^{\circ} \mathrm{C}$. A maximum
junction temperature of $125^{\circ} \mathrm{C}$ uses a ρ_{T} of 1.5 . The constant k accounts for losses caused by reverse-recovery current and has an empirical value of 1.7. Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ and $\mathrm{C}_{\text {RSS }}$ devices minimize maximum power dissipation per MOSFET.

Figure 7-9: Normalized $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs. Temperature, [4]
Table 7-6: Power MOSFET selection base specifications

$\mathbf{V}_{\text {IN }}$ [V]	$\mathbf{V}_{\text {OUT }}$ [V]	$\mathbf{f}[\mathbf{k H z}$	$\mathbf{I}_{\text {OUT }}$ [A]	$\left.\mathbf{R}_{\text {DS(ON) }} \mathbf{\Omega}\right]$	$\mathbf{C}_{\mathbf{R S S}}[\mathbf{p F}]$	$\boldsymbol{\rho}_{\boldsymbol{T}(\mathbf{M A X})}$	\mathbf{k}
$5 \mathrm{~V}-$	36 V	400	3.7 A	23	16 pF	1.5	1.7

REF _Ref384161742 \h $\backslash *$ MERGEFORMAT PM1BOOST $=\left(\frac{I_{\text {OUT }} * V_{O U T}}{V_{I N}}\right)^{2} * \rho_{T} * R_{D S(O N)}$

IN [V]	VOUT [V]	f [kHz$]$	IOUT [A]	$\mathbf{R D S}_{(\text {ON })}$ [$\left.\mathbf{\Omega}\right]$	CRSS [pF]	$\rho_{T(M A X)}$	k
5V-51.4	36 V	400	3.7 A	$23 \mathrm{~m} \Omega$	16 pF	1.5	1.7

Table 7-6's variables, calculates each switch's maximum power during buck and boost mode. Table 7-7: Maximum MOSFET power dissipation calculation displays calculated power dissipation results.

Table 7-7: Maximum MOSFET power dissipation calculation

	$\begin{aligned} P_{M 1(\text { BOOST })} & =\left(\frac{I_{\text {OUT }} * V_{\text {OUT }}}{V_{I N}}\right)^{2} * \rho_{T} * R_{D S(O N)} \\ P_{M 1(\text { BOOST })} & =\left(\frac{3.7 A * 36 V}{5 V}\right)^{2} * 1.5 * 23 \mathrm{~m} \Omega \\ \boldsymbol{P}_{\text {M1 }(\text { BOOST })} & =\mathbf{2 6 . 5 W} \end{aligned}$
	$\begin{aligned} & P_{M 2(B U C K)}=\frac{V_{I N}-V_{\text {OUT }}}{V_{I N}} * I_{\text {OUT }}^{2} * \rho_{T} * R_{D S(O N)} \\ & P_{M 2(B U C K)}=\frac{51.4 V-36 V}{51.4 V} *(3.7 A)^{2} * 1.5 * 23 \mathrm{~m} \Omega \\ & \boldsymbol{P}_{\text {M2 }(\text { BUCK })} \end{aligned}=\mathbf{0 . 1 6 4 W} .$
	$\begin{aligned} & P_{M 3(\text { BOOST })}=\frac{\left(V_{\text {OUT }}-V_{I N}\right) * V_{\text {OUT }}}{V_{I N}^{2}} * I_{\text {OUT }}^{2} * \rho_{T} * R_{D S(O N)}+\frac{k * V_{O U T}^{3} * I_{\text {OUT }} * C_{R S S} * f}{V_{I N}} \\ & P_{M 3(\text { BOOST })}=\frac{(36 V-5 V) * 36 V}{(5 V)^{2}} *(3.7 A)^{2} * 1.5 * 23 \mathrm{~m} \Omega+\frac{1.7 *(36 V)^{3} * 3.7 A * 16 p f * 400 \mathrm{kHz}}{5 V} \\ & \boldsymbol{P}_{\text {M3 }(\text { BOOST })}=\mathbf{2 3 . 2 1 9 W} \end{aligned}$
	$\begin{aligned} & P_{M 4(\text { BOOST })}=\frac{V_{I N}}{V_{\text {OUT }}} *\left(\frac{I_{\text {OUT }} * V_{\text {OUT }}}{V_{I N}}\right)^{2} * \rho_{T} * R_{D S(O N)} \\ & P_{M 4(\text { BOOST })}=\frac{5 V}{36 V} *\left(\frac{3.7 \mathrm{~A} * 36 \mathrm{~V}}{5 \mathrm{~V}}\right)^{2} * 1.5 * 23 \mathrm{~m} \Omega \\ & \boldsymbol{P}_{\text {M4 }(\text { BOOOST })}=\mathbf{3 . 6 8 2 W} \end{aligned}$

7.11. Controller Syncing

LT3791-1 features clock syncing operates two parallel devices using CLKOUT and SYNC pins. The CLKOUT pin provides a 180° out-of-phase square waveform at the switching frequency set by R_{T} in Section 7.2. The primary controller's CLKOUT connects to the secondary controller's SYNC pin with the primary controller's SYNC pin grounded. Connecting CLKOUT and SYNC generates a parallel two-phase converter, allowing each converter to split the total output load current while decreasing output ripple voltage. Two synchronized converters regulate 36 V at 3.7 A per device rather than one converter supplying 36 V and 7.4 A .

Figure 7-10: Parallel LT3791-1 DC-DC converter output currents Board 1 Current (Green), Board 2 Current (Blue), Output current (Red)

Figure 7-10 displays the output load current (red trace) and output currents of two synchronized LT3791-1 controllers (green and blue traces). Each LT3791-1 controller outputs an average of 1.8 A to supply a 3.6 A load current at a 36 V input and 36 V output in buck-boost mode.

Chapter 8: LT3791-1 Operation Discussion

8.1. Power Switch Operation

Each LT3791-1 chip controls four external switches, M1-M4, connected to the power inductor, $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$, and ground through a current sense resistor as shown in Figure 8-1: Four output switches across power inductor. The device operates in buck, buck-boost, or boost operation. The following discussion presents the operation of the four switches described in LT3791-1's datasheet.

Figure 8-1: Four output switches across power inductor [4]

Buck Operation

Figure 8-2: Power MOSFET buck operation, modified switching pattern [4]
Buck operation occurs when $V_{I N}>V_{\text {OUT }}$, during which switch M4 is always on and switch M3 is always off. Switch M2 turns on at the start of every cycle and $\mathrm{R}_{\text {SENSE }}$ sense inductor current whenever switch M2 is on. When the sensed inductor voltage falls below the
reference voltage, V_{C}, switch M2 turns off and switch M1 turns on. Switches M1 and M2 continue to synchronously operate as a typical synchronous buck regulator. Switch M1's duty cycle increases until the maximum duty cycle of the converter reaches 92%, or until the buckboost region is reached, where $\mathrm{V}_{\text {IN }}$ approaches $\mathrm{V}_{\text {Out }}$. Figure 8-2displays buck mode switch operation and Figure 8-3: Buck operation waveform displays buck operation switching waveform.

Figure 8-3: Buck operation waveform [4]

Buck-Boost Operation

Figure 8-4: Power MOSFET buck-boost operation, modified switching pattern [4] Buck-Boost operation occurs when $V_{I N} \approx V_{O U T}$ during which switches M2 and M4 turn on and M1 and M3 turn off at the start of every cycle. Then, switches M1 and M4 remain on until M1 and M3 turn on. Switches M1 and M4 then turn on for the rest of the cycle. BuckBoost mode operates at a 8% switching duty cycle. Figure 8-4 displays switching operation and Figure 8-5 displays buck-boost operating switching waveform.

Figure 8-5: Buck-Boost operation waveform [4]

Boost Operation

Figure 8-6: Power MOSFET boost operation, modified switching pattern [4]
Boost operation occurs when $V_{I N}<V_{O U T}$ during which switches M1 is always on and M2 is always off. Switch M3 turns on at the start of every cycle and $\mathrm{R}_{\text {SENSE }}$ sense inductor current whenever M3 switches. Switches M3 turns off and M4 turns on when the sensed inductor current exceeds V_{C}. Switches M3 and M4 continuously alternate in operation, thereby operating as a typical synchronous boost regulator. The switching duty cycle of M3 continues to decrease until reaching a minimum duty cycle of 8%. Figure 8-6 displays boost switching operation and Figure 8-7 displays boost operation switching waveform.

Figure 8-7: Boost operation waveform [4]

8.2. CCM and DCM Operation

The LT3791-1 controller operates in Continuous Conduction Mode (CCM) or Discontinuous Condition Mode (DCM). LT3791-1's datasheet recommends CCM for heavy loads and CCM activates when the CCM pin pulls higher than 1.5 V , allowing inductor current to flow negative. DCM is recommended for light loads and activates when the CCM pin pulls less than 0.3 V disallowing negative inductor current and allowing inductor current to remain at 0 A during switching periods.

Connecting pins CCM to $\overline{C / 10}$ with a $100 \mathrm{k} \Omega$ pull-up resistor to $\mathrm{INTV}_{\mathrm{CC}}$ programs DCM operation at light loads and CCM operation at heavy loads. A light-load detection pulls down $\overline{C / 10}$, which pulls up when FB exceeds 1.15 V and the voltage across the output current sense resistor, $\mathrm{V}_{\text {(ISP-ISN) }}$, senses less than 10 mV . Pulling down $\overline{C / 10}$ thus pulls down pin CCM and initiates DCM. Switch operations function as described in Section 8.1 for buck and boost operations in CCM mode. Switch operations in DCM function the same as in CCM but switch M4 turns off when inductor current flows negative.

Chapter 9: First Design Iteration

9.1. Initial Design

Figure 9-1: Parallel LT3791-1 Buck-Boost Converter Topology LTspice Schematic

Table 9-1: Initial LT3791-1 Buck-Boost Converter Component list

Type	Component	Value	Component	\$/unit	QTY	Sum	P/N	Description	Company
Inductor	Power Inductor	39u	Inductor	\$6.08	2	\$12.16	AIRD-03-270K	INDUCTOR PWR DRUM CORE 27UH	Abracon
Resistors	In-Curr Sense Res	12m	R1	\$1.17	2	\$2.34	ERJ-8BWFR012V	RES 0.012 OHM 1W 1\% 1206 SMD	Panasonic
	EN/UVLO	200k	R2	\$0.10	2	\$0.20	RC2012F204CS	RES 200K OHM 1/8W 1\% 0805	Samsung
	EN/UVLE	62k	R3	\$0.10	2	\$0.20	ERJ-6ENF6202V	RES 62K OHM 1/8W 1\% 0805 SMD	Panasonic
	Compensation	51	R4	\$0.89	2	\$1.78	CRCW080551R0FKEA	RES 51.0 OHM 1/8W $1 \% 0805$ SMD	Vishay Dale
	OVLO	200k	R5	\$0.10	2	\$0.20	ERJ-6ENF2003V	RES 200K OHM 1/8W 1\% 0805 SMD	Panasonic
	OVLO	12.4 k	R6	\$0.10	2	\$0.20	ERJ-6ENF1242V	RES 12.4K OHM 1/8W 1\% 0805 SMD	Panasonic
	RT	59k	R7	\$0.10	2	\$0.20	ERJ-6ENF5902V	RES 59K OHM 1/8W 1\% 0805 SMD	Panasonic
	Rsense	1 m	R8	\$0.67	2	\$1.34	CSR2512C0R001F	RES 0.001 OHM 3W 1\% 2512	Riedon
	FB1	196k	R9	\$0.10	2	\$0.20	ERJ-6ENF1963V	RES 196K OHM 1/8W 1\% 0805 SMD	Panasonic
	FB2	6.98k	R10	\$0.10	2	\$0.20	ERJ-6ENF1202V	RES 12K OHM 1/8W 1\% 0805 SMD	Panasonic
	ROUT	27m	R11	\$1.25	2	\$2.50	WSL2512R0270FEA18	RES . 027 OHM 2W 1\% 2512 SMD	Vishay Dale
	RSHORT	200k	R12	\$0.10	2	\$0.20	ERJ-6ENF2003V	RES 200K OHM 1/8W 1\% 0805 SMD	Panasonic
	C/10	100k	R13	\$0.10	2	\$0.20	ERJ-6ENF1003V	RES 100K OHM 1/8W 1\% 0805 SMD	Panasonic
	RSS	100k	R14	\$0.10	2	\$0.20	ERJ-6ENF1003V	RES 100K OHM 1/8W 1\% 0805 SMD	Panasonic
	RVC	3k	R15	\$0.10	2	\$0.20	ERJ-6ENF3001V	RES 3K OHM 1/8W 1\% 0805 SMD	Panasonic
Switches			Q1-Q8	\$1.06	8	\$8.48	IPP230N06L3 G	MOSFET N-CH 60V 30A TO220-3	Infineon
Capacitors	CSS	33 nF	C1	\$0.24	2	\$0.48	C0603C333K8RACTU	CAP CER 0.033UF 10V 10\% X7R 0603	Kemet
	VC	33 nF	C2	\$0.24	2	\$0.48	C0603C333K8RACTU	CAP CER 0.033UF 10V 10\% X7R 0603	Kemet
	IN	470n	C3	\$0.12	2	\$0.24	C1005X5R1A474K050BB	CAP CER 0.47UF 10V 10\% X5R 0402	TDK
	INTVCC	4.7u	C4	\$1.40	2	\$2.80	C3225X7S2A475M200AB	CAP CER 4.7UF 100V 20\% X7S 1210	TDK
	VREF	0.1 uF	C5	\$0.10	2	\$0.20	C1608X7R1E104K080AA	CAP CER 0.1UF 25V 10\% X7R 0603	TDK
	BST	0.1uF	C6 and C7	\$0.10	4	\$0.40	C1608X7R1E104K080AA	CAP CER 0.1UF 25V 10\% X7R 0603	TDK
	COUT	4.7u	C8	\$0.48	4	\$1.92	CL32B475KBUYNNE	CAP CER 4.7UF 50V 10\% X7R 1210	Samsung
	Cap_IN	4.7u	C11	\$0.45	2	\$0.90	CGA6M3X7S2A475K200AB	CAP CER 4.7UF 100V 10\% X7S 1210	TDK
Schottky			D1-D4	\$0.44	4	\$1.76	BAT46WJ,115	$\begin{aligned} & \text { DIODE SCHOTKY } 100 \mathrm{~V} 0.25 \mathrm{~A} \\ & \text { SOD323F } \end{aligned}$	NXP Semicond.
Controller	LT3791-1		Controller	\$11.21	2	\$22.42	LT3791IFE-1\#PBF	IC REG CTRLR BUCK BST 38TSSOP	Linear Tech
					TOTAL	\$62.40			
					W/ Tax	\$67.39			

Figure 9-1 displays the initial implementation of this project's Buck-Boost DC-DC
Converter based on an LT3791-1 4-Switch Buck-Boost Controller topology. Chapter 7 describes component selection. Table 9-1 outlines component cost and quantity before tax and shipping. Digikey.com's database provided a listing of all components. Section 17.D includes the initial design's SPICE Netlist.

9.2. Initial Design Simulations

Programmed overvoltage and undervoltage limits from Section 7.7 limit simulation voltage inputs between 5 V and 51 V . Simulated input power results from $P_{I N}=\frac{V_{I N}^{2}}{R_{I N}}$ where R_{IN} represents the nominal 10Ω elliptical machine resistance. $P_{I N}=P_{O U T}$ estimates output current knowing a regulated $36 \mathrm{~V} V_{\text {OUT }}$. Therefore, $P_{I N}=V_{I N}^{2} * 10 \Omega=P_{\text {OUT }}=V_{\text {OUT }} * I_{\text {OUT }}$. Calculations using a specific input power result in a specific current load. For example, a 50 V input yields a 6.94 A load current.

Section 17.E displays measured power efficiency measurements across a 6 V to 51 V input range while

Figure 9-2 summarizes measured efficiency data. The synchronized parallel LT3791-1 Buck-Boost converter design performs at 94.3% average power efficiency across the simulated 6 V to 51 V input range. Simulated average power efficiency performs higher than Alvin Hilario's 94.07\% power efficiency and Martin Kou's 78.3% power efficiency.

Figure 9-2: Parallel LT3791-1 Buck-Boost Converter Power Efficiency vs. $\mathrm{V}_{\text {IN }}$
Tests also observed overvoltage and undervoltage conditions. System input voltage increased to 50 V over 1 ms to allow the converter enough time to regulate the output to 36 V . Then, the output slowly increased to 54 V to determine the voltage input at which the converter shuts off due to an overvoltage fault. Section 7.7 set the programmable overvoltage condition to 51.387 V . Figure 9-3 displays an overvoltage event triggering at 51.389 V whereupon circuit operation ceases. Figure 9-4 displays an overvoltage event entering a safe operating range triggering at 50.54 V , resuming switch operation. Figure $9-5$ displays an undervoltage safety condition at approximately 6 V at which the converter initiates operation. Figure 9-6 displays an undervoltage fault which ceases converter switching at approximately 5.056 V .

Figure 9-3: Input Overvoltage Fault Condition
$\mathrm{V}_{\text {IN }}\left(\right.$ Blue), $\mathrm{V}_{\text {Out }}($ Green $)$, Inductor 1 Current (Red), Inductor 2 Current (Cyan)

Figure 9-4: Input Overvoltage Safe Condition
$\mathrm{V}_{\text {IN }}$ (Red), Inductor 1 Current (Green)

Figure 9-5: Input Undervoltage Safe Condition $\mathrm{V}_{\text {IN }}$ (Blue), $\mathrm{V}_{\text {OUT }}$ (Green), $\mathrm{G}_{\mathrm{Q} 1}$ (Red)

Figure 9-6: Input Undervoltage Fault Condition $\mathrm{V}_{\text {IN }}$ (Blue), $\mathrm{V}_{\text {OUT }}$ (Green), $\mathrm{G}_{\mathrm{Q} 1}$ (Red)

9.3. Initial Design Errors

Further inspection of the first design iteration noted numerous critical errors. High current and power transients generated unreasonable simulations throughout all voltage and power inputs. The following discussion considers a 50V/250W input to the DC-DC converter using Figure 9-1 simulations. LTspice's ideal voltage source models supply as much current desired by the circuit to properly operate and maintain a specified source output voltage. Figure 9-7 displays initial design results with 800 kHz input power spikes reaching 3.6 kW at a 50 V input. The measured 800 kHz power spikes correlate with the two LT3791-1 controllers synchronously operating at 400 kHz 180° degrees out of phase. The on-board EFX 546i Elliptical Trainer's generator does not supply 3.6 kW at 50 V ; the generator may supply a maximum 250 W across a 10Ω load. Therefore, further simulation design alterations must constrain and reduce input power transients.

Figure 9-7: Switching Power Transients, 50V Input Input Power (Green), Output Power (Blue)

Furthermore, power MOSFETs experienced large switching currents; far higher than their 30 A current rating. During buck mode operation at a 50 V input, switches Q1 and Q2 experience 67A switching current spikes. 67A exceeds IPP230N06L3's 30A rated current. Selecting higher
current and power rated MOSFETs may resolve the switching current spike issue displayed in Figure 9-8 and Figure 9-9. Figure 9-8 plots Q1 and Q2 switching currents while Figure 9-9 plots Q3 and Q4 switching currents. Figure 9-10 display power spikes correlating with switching current spikes. Switches Q1 and Q2 operate synchronously while in buck mode ($\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {OUT }}$) while Q3 remains off and Q 4 remains on. Figure $9-11$ closely inspects $I_{D}, V_{D S}$, and the power dissipation of Q1. $V_{D S}$ does not decrease to 0 V from 50 V before I_{D} reaches 67 A and thus a power spike of up to 3.3 kW occurs.

Figure 9-8: MOSFET switching current, 50 V input, buck mode
Q1 (Blue), Q2 (Green)

Figure 9-9: MOSFET switching currents, 50V input, buck mode Q3 (Cyan), Q4 (Red)

Figure 9-10: MOSFETS instantaneous power spikes, 50 V input, buck Q1 (Blue), Q2 (Green), Q3 (Red), Q4 (Cyan)

Figure 9-11: Closer inspection of Q 1 turn-on V_{DS} versus I_{D} and resultant power spike $\mathrm{P}_{\mathrm{DQ} 1}$ (Blue), $\mathrm{V}_{\mathrm{DSQ} 1}(\mathrm{Cyan}), \mathrm{I}_{\mathrm{DQ} 1}$ (Green)

During a 10V input boost mode operation, switches Q3 and Q4 experience 13A switching current spikes, shown in Figure 9-12 and Figure 9-13. Figure 9-12 plots Q1 and Q2's switching currents while Figure 9-13 plots Q3 and Q4's switching currents. These current spikes correlate with MOSFET power spikes shown in Figure 9-14. Switches Q3 and Q4 operate synchronously in boost mode ($\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {OUT }}$) while Q 2 remains off and Q 1 remains on. Figure $9-15$ closely inspects $\mathrm{I}_{\mathrm{D}}, \mathrm{V}_{\mathrm{DS}}$, and power dissipation of $\mathrm{Q} 4 . \mathrm{V}_{\mathrm{DS}}$ does not decrease to 0 V from 36 V before I_{D} reaches 67 A and thus a power spike of up to 3.3 kW occurs.

Figure 9-12: MOSFET switching current, 10 V input, boost Q1 (Blue), Q2 (Green)

Figure 9-13: 10 V input, boost, MOSFET switching current Q3 (Cyan), Q4 (Green)

Figure 9-14: MOSFET instantaneous power spikes, 10 V input, boost Q1 (Green), Q2 (Blue), Q3 (Red), Q4 (Cyan)

Figure 9-15: Closer inspection of Q4 turn-off $V_{D S}$ versus I_{D} and resultant power spike $\mathrm{P}_{\mathrm{DQ} 1}$ (Blue), $\mathrm{V}_{\mathrm{DSQ} 1}($ Cyan $), \mathrm{I}_{\mathrm{DQ} 1}($ Green $)$

Output and input capacitors also experienced large power transients due to MOSFET switching. Adequately sized output capacitors must handle output voltage ripple during boost operation due to discontinuous conduction mode. Furthermore, adequately sized input capacitors must filter the input square wave current resultant of buck operation. Multiple parallel input and
output capacitors increase effective capacitance, reduce effective capacitor ESR, and allow higher RMS current handling. The initial design incorporated one input and two output $4.7 \mu \mathrm{H}$ capacitors, which was simulated and unable to handle the RMS current flowing through each capacitor. Figure 9-17 displays 35A switching currents flowing through an input capacitor.

Figure 9-16: Simulated input capacitor power transients, 50 V input

Figure 9-17: Simulated Input capacitor current transients, 50 V input
Dr. Braun suggested three possible solutions to mitigate input power spikes aside from selecting a better power MOSFET. The first option introduced a parasitic series resistance to

LTspice's ideal voltage source to limit input current and power. The second option investigated the use of a snubber cell to reduce MOSFET current and voltage rises. The last option consisted of adding a parasitic input resistance at the input that decreased over time.

Chapter 10: Second Design Iteration

10.1. New Power MOSFET Consideration

The initial Infineon IPP230N06L3 MOSFET was ill-suited for the design because simulated switching drain current exceeded 30 A and power dissipation exceeded 2.9 kW . An Infineon IPI045N10N3 MOSFET rated at 100V drain-to-source voltage, 100A drain current, and a maximum $4.5 \mathrm{~m} \Omega$ drain-to-source on-resistance replaced the initial MOSFET.

However, fellow EHFEM project member, Matthew Wong, discovered a more suitable power MOSFET. He discovered IXYS's IXTH180N10T N-Channel MOSFET parameterized by a 100 V drain-to-source voltage, 180A drain current, and a maximum $6.4 \mathrm{~m} \Omega$ drain-to-source onresistance.

Table 10-1 compares Infineon's IPP230N06L3, IPI045N10N3, and IXYS' IXTH180N10T. IPP230N06L3 and IPI045N10N3 exhibit logic-level characteristics and are characterized by a low typical threshold voltage at 1.7 V and 2.7 V . While not considered a logiclevel device, IXTH180N10T's exhibits a typical 3.5V typical threshold voltage. LT3791-1's datasheet suggested the use of logic-level power MOSFETs; therefore, the LT3791-1 controller may experience difficulty driving four IXTH180N10T MOSFETs. Of the three MOSFETs, the IXTH180N10T features the highest drain current, drain pulse current, and maximum power dissipation. IXTH180N10T also exhibits the lowest junction-to-case thermal resistance at $0.31^{\circ} \mathrm{C} / \mathrm{W}$.

Figure 10-1: TO-220, TO-262, and TO-247 Packages [Left, Center, Right]

Table 10-1: MOSFET Comparison Chart, $25^{\circ} \mathrm{C}$, [13] [14] [15]

	IPP230N06L3 G	IPI045N10N3 G	IXTH180N10T
Package	TO-220	TO-263	TO-247
Operating Temp [${ }^{\circ} \mathrm{C}$]	$-55-175{ }^{\circ} \mathrm{C}$	$-55-175{ }^{\circ} \mathrm{C}$	$-55-175{ }^{\circ} \mathrm{C}$
$\mathbf{R}_{\text {THJU }}\left[{ }^{\circ} \mathrm{C} / \mathrm{W}\right.$]	$4.2{ }^{\circ} \mathrm{C} / \mathrm{W}$	$0.7^{\circ} \mathrm{C} / \mathrm{W}$	$0.31{ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathbf{R}_{\text {THJA }}\left[{ }^{\circ} \mathrm{C} / \mathrm{W}\right]$	$62^{\circ} \mathrm{C} / \mathrm{W}$	$62^{\circ} \mathrm{C} / \mathrm{W}$	N.A.
$\mathbf{V}_{\text {DS }}$ [V]	60 V	100 V	100 V
$\mathrm{V}_{\mathrm{GS} \text { (TH) }}$ [V], Typical	1.7 V	2.7 V	3.5 V
I_{D} [A]	30 A	100 A	180 A
$\mathrm{I}_{\text {DPULSE }}$ [A]	120 A	400 A	450 A
$\mathbf{R}_{\text {DSON(MAX) }}$ [ms]	$23 \mathrm{~m} \Omega$ @ 30A, 10V	$4.5 \mathrm{~m} \Omega$ @ 100A, 10V	$6.4 \mathrm{~m} \Omega$ @ 25A, 10V
Gate Charge (Q_{G}) [nC$]$	10 nC @ 4.5V	117 nC @ 10V	151 nC @ 10V
Input Capacitance [pF]	1600 pF	8410 pF	6900 pF
Maximum Power [W]	36W	214 W	480W

IXTH180N10T lacked a publically available VDMOS LTspice model for simulation use.
Therefore, requiring LTspice parameter extraction from IXYS IXTH180N10T's datasheet.
However, IXYS only provides IXTH180N10T's preliminary technical information [14]. As a
result, key characteristics including a power deration chart and typical junction-to-ambient thermal resistance remain unavailable. Table 10-2 displays the derived LTspice model.

Table 10-2: IXTH180N10T LTspice Model
.model IXTH180N10T_2 VDMOS(RG=3.3 Vto=4.5 Rd=6.4m Rs=0.0m Rb=2.8m
Cgdmax $=0.3 \mathrm{n}$ Cgdmin=0.15n Cgs=6n $\mathrm{Cjo}=0.8 \mathrm{n} \mathrm{mfg}=\mathrm{IXYS}$ Vds=100 Ron=6.5m
Qg=151n BV=100 IBV=250E-6 Vj=0.95 Kp=100.18)
R_{G}, or gate resistance, remained unspecified within listed characteristic values of the first three pages of IXYS's IXTH180N10T datasheet. However, a $3.3 \mathrm{~m} \Omega$ value gate resistance value
appears within Resistive Turn-On Time and Turn-Off/Turn-On Switching Time charts; therefore parameter $\mathrm{RG}=3.3$. VTO represents the threshold voltage of the MOSFET. VTO equates to IXTH180N10T's specified $\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}$, typically 3.5 V . The sum of parameters Rd and Rs should equal to $R_{\mathrm{DS}(\mathrm{ON})}$, or $6.4 \mathrm{~m} \Omega$. Maximum and minimum $\mathrm{C}_{\mathrm{RSS}}$ values, or 300 pF and 150 pF , characterize Cgdmax and Cgdmin. Cgs equates to $\left(\mathrm{C}_{\text {ISS }}-\mathrm{C}_{\text {OSS }}\right)$, or $(6900 \mathrm{pF}-900 \mathrm{pF})=6000 \mathrm{pF}$. Breakdown voltage, BV, occurs at 100 V . The datasheet specifies a 250 uA reverse breakdown current. Junction potential, VJ, equals $\mathrm{V}_{\text {SD }}$ or 0.95 V . Equation (10.1-1) calculates transconductance, Kp , using datasheet parameters. g represents forward transcondunctance, g_{fs}, defined on page 2 of IXTH180N10T's datasheet and I_{D} is 60 A at $25^{\circ} \mathrm{C}$ and 6 V V GS .

$$
\begin{equation*}
K p=\frac{g^{2}}{2 I_{D}}=\frac{\left(110 \frac{A}{\bar{V}}\right)^{2}}{2(60 A)}=100.83 \frac{A}{V^{2}} \tag{10.1-1}
\end{equation*}
$$

10.2. Further Design Alterations

The initial 27uH Abracon AIRD-03-270K unshielded inductor featured a 13.5 A current rating, 23 A saturation current, and $12 \mathrm{~m} \Omega$ max DC resistance. However, using an unshielded inductor near analog signal carrying traces may negatively affect critical signals. The unshielded inductor may form an inductive couple with nearby traces over an air-gap because the inductor's magnetic field escapes its package. A shielded inductor maintains most of its magnetic field within its package and thus mitigates inductive coupling to other components or traces [16]. Shielded inductors also maintain less wire turns than an unshielded equivalent and thus have a lower DCR and smaller physical profile.

No in stock approximate 27 uH shielded inductors were available within Digikey's catalog based on Section 7.5's inductor selection criteria. A 22 uH inductor fulfills requirements if the allowable ripple current increases to 40% from 30% in Section 7.5. Therefore, selecting Wurth Electronic Inc's 74435582200, WE-HCI series, 22 uH inductor fulfills requirements. The 74435582200 features a 15 A current rating, 18 A saturation current, and $7 \mathrm{~m} \Omega$ DCR. Wurth Electronic's 74435582200 benefits from shielding, a lower DCR, and higher current rating compared to the AIRD-03-270K. Using a shielded inductor minimizes the inductor's magnetic fields adverse electromagnetic effects on nearby components and traces.

Further additions include Schottky diodes connected across the Q2 and Q4's drain and source. Figure 10-3 displays the addition of Schottky diodes across Q2 and Q4. LT3791-1's datasheet suggests implementing Schottky diodes to conduct current during the dead time between power MOSFET switching [4]. The additional Schottky diodes intend to prevent the body diode of switches Q2 and Q4 from turning on and storing charge during dead time. They also reduce reverse-recovery current between switch M4's turn-off and switch M3's turn-on cycle. Selecting

Fairchild Semiconductor's MBR20100CT 100V 10A Schottky diode fulfills this application. The Schottky diode must handle current flowing through Q2 and Q4, equivalent to the inductor current. Figure 10-2 displays 3.6A inductor and Schottky diode currents for a 50 V input at maximum current output. Therefore, the MBR20100CT's 10A forward current rating suffices.

Figure 10-2: Parallel LT3791-1 Buck-Boost Converter Topology with IXTH180N10T MOSFETS 50V, Inductor Current vs. Schottky Diode Current Inductor Current (Purple), $\mathrm{I}_{\mathrm{D} 5}$ (Green), ID1

Figure 10-3: Additional Schottky Diodes D3 and D4 across Drain-Source of Q2 and Q4
Additional 100 V 4.7 uF output and input capacitors aid in filtering RMS output and input current. Initially, each controller had one input capacitor and two output capacitors. Input capacitors must filter square-wave current in buck mode due to Q 1 switching periodically allowing then stopping system current flow. Similarly, output capacitors must filter RMS current due to Q4 switching at a 36 V output.

10.3. Input Parasitic Resistance

Adding an input voltage source parasitic resistance reduced input power spikes. Dr. Braun suggested using parasitic resistance values under 1Ω. Although a series parasitic resistance decreased input power spikes, it also decreased system input voltage. Adding a series parasitic resistance did not completely limit input power, but it did significantly decrease power transients. Input power larger than nominal values were still apparent as the design charged up to a 36 V output. However, the additional parasitic resistance did limit input current power at steady state. Figure 10-4 and Figure 10-5 compare simulations with and without a parasitic input source resistance. The additional parasitic resistance noticeably reduced input power transients.

Figure 10-4: Parallel LT3791-1 Buck-Boost Converter Topology with IXTH180N10T MOSFETS $50 \mathrm{~V}, 250 \mathrm{~W}$ nominal input with 1Ω parasitic source resistance Input Voltage (Red), Output Voltage (Cyan), Input Power (Green), Output Power (Blue)

Figure 10-5: Simulated Parallel LT3791-1 Buck-Boost Converter Topology with IXTH180N10T MOSFETS 50V, 250W nominal input without parasitic source resistance Input Voltage (Blue), Output Voltage (Cyan), Input Power (Red), Output Power (Green)

Although adding a parasitic input source resistance significantly decreased input power transients, it also generated further problems testing the design. The additional parasitic input resistance causes an internal voltage source droop and thus input voltages fall below nominal values. For example, the 50 V input voltage case described in Figure $10-4$ droops to 44.3 V at
steady state. Parasitic source resistances cause problems at lower voltage inputs. At a 6 V input, a large parasitic source resistance decreases actual applied input voltage to less than 5 V . The converter then ceases operation due to an undervoltage detection fault. Therefore, parasitic input source resistance must decrease as input voltage decreases to prevent the device from ceasing operation.

10.4. Snubber Circuit Design

High MOSFET switching current and instantaneous power spikes throughout simulation scenarios indicate potential MOSFET damage during circuit operation. Therefore, implementing a snubber cell to reduce MOSFET switching current may mitigate potential damage.

MOSFET simulations indicated current spikes occurred during the turn-on phase of Q1 and Q2 when the system operated in buck mode at input voltages larger than 36V. Theoretically, adding a snubber cell onto MOSFETs delays current rise and reduces current peaks. Therefore, adding a snubber cell may achieve desired low switching current and reduce instantaneous power spikes.

Initial snubber circuit selected to obtain this goal was mentioned in Markin Kou's thesis which shows turn-on and turn-off snubber circuit design. This design is shown in Figure 10-6 and was added onto Q 1 to reduce current spikes at the maximum input and load.

Figure 10-6: Martin Kou's Basic Turn-On Snubber Circuit Design [3]
Another consideration was implementing a simple RC snubber circuit that contained an RC circuit connected to ground. Figure 10-7 displays a sample RC snubber. This design tip was stated in a Texas Instrument's article [17].

Figure 10-7: Simple RC Snubber Circuit [17]
Figure 10-7 was modified to be a turn-off RC snubber circuit for Q 4 current flow and power spikes. Figure 10-8 displays the converter an RDC and RC snubber design on Q1 and Q4.

Figure 10-8: Parallel LT3791-1 Buck-Boost Converter Topology with additional turn-on and turn-off snubber cells

Adding snubber circuits dramatically decreased current spikes, leading to a direct decrease in power spikes. As shown in Figure 10-9, the current spike of Q4 decreased by $1 / 4$, which reduced the MOSFET power spike from 2 kW to 300W. This reduction was effective in terms of overall power dissipation but it still required significant improvement. None of the considered MOSFETs aside from IXTH180N10T could handle instantaneous 300W power dissipation.

Figure 10-9: Parallel LT3791-1 Buck-Boost Converter Topology simulations, Q4 Drain Current (Red), $\mathrm{V}_{\text {DS }}$ (Green, Dissipated Power (Purple)

Various other snubber circuit designs were considered and tested including RCL, RCD, and RLD snubber. However, none of these circuits were able to completely reduce the power dissipation to operating level.

Equation (10.4-1) was used to find the value of the snubber capacitor.

$$
\begin{equation*}
C_{S N U B}=\frac{I_{L} * t_{f}}{2 * V S} \tag{10.44-1}
\end{equation*}
$$

Vs equates to 36 V , the output voltage or drain voltage of Q 4 . The simulated period of switching estimates 2.6 us as t_{f} 's value. A 0.96 pF snubber capacitance results from these parameters. The capacitor must discharge before the transistor turns on again. Equation (10.4-2) estimates the snubber resistance. Since $t_{o n}=t_{f}$, the value of $\mathrm{R}_{\text {SNUB }}$ estimates 5420Ω.

$$
\mathrm{R}_{\mathrm{SNUB}}<\frac{t_{o n}}{5 * C}
$$

The snubber circuit with these values, however, did not reduce the current spike nor delay the rise of current. Therefore, snubber capacitance and resistance were manipulated until suitable
switching current and instantaneous power dissipation simulations were obtained. Snubber circuits add two additional components per MOSFET to this design. In total, turn-on and turn off snubbers potentially add sixteen passive components to the system. Adding snubber cells was eliminated due to its complexity and its numerous component additions to the final PCB.

10.5. Decreasing Input Resistance

Figure 10-10: Parallel LT3791-1 Buck-Boost Converter Topology with IXTH180N10T MOSFETS decreasing input source resistance

Dr. Braun suggested implementing a decreasing input resistance to mitigate input power transients resultant of Q1 switching. The added input resistance shown in Figure 10-10 starts at 2Ω and decreases by 1Ω every millisecond because simulations generally range from 2 ms to 7 ms . Ideally, input resistance falls to 0.1Ω before output voltage reaches 36 V steady state.

Higher than nominal power peaks persisted despite the added input resistance. Figure 10-11 displays a 50 V input case using the declining input resistance from Figure 10-10. Input power represented by the gray trace peaks above 300 W near 1.5 ms . The elliptical generator's output does not provide more than 250 W at 50 V . Furthermore, input power transients appear during system steady-state. Figure 10-12 displays a comparative green input power trace with more noticeable
transients as the device $V_{\text {out }}$ charges up to 36V. Therefore, a declining input parasitic resistance was deemed not a suitable solution for limiting system input power.

Figure 10-11: Parallel LT3791-1 Buck-Boost Converter Topology with IXTH180N10T MOSFETS with decreasing input resistance simulation, $50 \mathrm{~V}, 250 \mathrm{~W}$ input

Figure 10-12: Parallel LT3791-1 Buck-Boost Converter Topology with IXTH180N10T MOSFETS without decreasing input resistance simulation, 50V, 250W input

10.6. Heat Sink Selection

Table 10-3 displays two heat sinks considered for this design. Power MOSFETs require adequate heat sinking to prevent thermal damage to the MSOFET package resulting from power dissipation. Each MOSFET requires a heat sink. Critical heat sink parameters include physical size and natural thermal resistance. Small heat sinks with low thermal resistance should are prioritized used because PCB space is limited to $2.5 "$ by $3.8^{\prime \prime}$ board size based on ExpressPCB's Miniboard service.

Table 10-3: Heat Sink Comparison

Heat Sink		
	Ohmite WA-T247-101E [18]	Ohmite C247-025-1AE-ND [19]
Size	$0.72^{\prime \prime} \times 0.63^{\prime \prime}$	$0.98^{\prime \prime} \times 0.785^{\prime \prime}$
$\mathbf{R}_{\text {S-A }}$ Natural	$11^{\circ} \mathrm{C} / \mathrm{W}$	Not Available
$\mathbf{R}_{\text {S-A }}$ Forced Air Flow	$8^{\circ} \mathrm{C} / \mathrm{W}$ @ 500 LFM	$6^{\circ} \mathrm{C} / \mathrm{W}$ @ 350 LFM
Cost per unit	$\$ 2.13$	$\$ 3.77$

Initially, selecting an Ohmite WA-T247-101E heat sink, featuring a 0.72 " by 0.63 "
footprint and $11^{\circ} \mathrm{C} / \mathrm{W}$ natural thermal resistance, fulfilled this design. At high loads, simulated IXTH180N10T power dissipation averages 8W. Therefore, the Ohmite WA-T247-101E should maintain MOSFET temperature at high loads to $88^{\circ} \mathrm{C}$, or $113^{\circ} \mathrm{C}$ considering an additional $25^{\circ} \mathrm{C}$ ambient room temperature. $113^{\circ} \mathrm{C}$ remains under IXTH180N10T's $175^{\circ} \mathrm{C}$ maximum operating temperature.

However, Digikey and Mouser stock ran out of the WA-T247-101E; therefore requiring the selection of a new in-stock replacement heat sinks. Heat sink reselection proved difficult because the PCB ordering occurred before ordering parts. Thus, MOSFET spacing was not ideal for heat sinks specified larger than WA-T247-101E's footprint. Selecting an Ohmite C247-025-1AE-ND as a suitable replacement fulfilled size constraints. The C247-025-1AE-ND compares larger than the WA-T247-101E, $0.98^{\prime \prime} \times 0.785 "$ compared to $0.72 "$ by 0.63 ". The newly selected heat sinks fit on the PCB layout tightly. Furthermore, the C247-025-1AE-ND's datasheet provides no natural thermal resistance rating, but lists a $6^{\circ} \mathrm{C} / \mathrm{W} \mathrm{R}_{\mathrm{SA}}$ at 350 LFM . Therefore, a fan was highly advised fan during testing stages.

Chapter 11: Final Design

Figure 11-1: Final Parallel LT3791-1 4-Switch Buck-Boost Configuration
Figure 11-1 displays the final parallel LT3791-1 Four-Switch Buck Boost controller design including Chapter 10 MOSFET, capacitor, and inductor alterations. Section 17.F displays LTspice's steady-state Efficiency Report $6 \mathrm{~V}, 10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}$, and 50 V input cases results. summarizes Efficiency Report results. Higher than nominal power inputs persisted despite circuit alterations and additional source parasitic resistance. Figure 11-2 displays a 50V, 250W input case with 270 W input power peaks as the system charges to regulate a 36 V output. Figure

11-3 displays a $10 \mathrm{~V}, 1 \mathrm{~W}$ case with 50 W input power peaks as the system charges. Neither input power cases are possible in a real world scenario because the elliptical machine's on-board generator limits converter input power. Therefore, this project heavily relies upon analyzing system's steady-state operation which operates within input power parameters at all input powers. Section 17.F includes all steady-state efficiency reports and the final design's SPICE Netlist. Specifically, simulated steady-state input power should approximately equal nominal input power.

Figure 11-4 presents an updated single stage schematic including updated component names for easier recognition. Future testing shall determine proper circuit operation compared to steady-state analysis reports.

Table 11-1: Final Design Test Cases

Nominal Input Cases				Expected Output Cases			
Input Voltage $[\mathbf{V}]$	Input Current $\mathbf{[A]}$	Input Power $\mathbf{[W]}$	Eff. $\mathbf{[\%}]$	Output Voltage [V]	Output Power $[\mathbf{W}]$	Output Current $[\mathbf{A}]$	Output Resistance $[\Omega]$
6	0.6	3.6	0.95	36	3.42	0.095	378.9
10	1	10	0.95	36	9.5	0.26	136.4
20	2	40	0.95	36	38	1.05	34.1
30	3	90	0.95	36	85.5	2.375	15.1
40	4	160	0.95	36	152	4.22	8.5
50	5	250	0.95	36	237.5	6.59	5.4

17.F Steady State Efficiency Report Summary

Nominal		Simulation					
Input Voltage $[\mathbf{V}]$	Input Power $[\mathbf{W}]$	Parasitic Resistance $[\mathbf{\Omega}]$	Input Voltage $[\mathbf{[V]}$	Input Power $[\mathbf{W}]$	Output Voltage [V]	Output Power [W]	Eff. $[\%]$
50	250	1	44.4	247	36.3	239	96.9
40	160	1	35.4	162	36.4	155	95.2
30	90	0.9	26.7	90.4	36.2	86.8	96
20	40	0.9	16.9	38.6	33.4	35.9	93
10	10	0.5	9.1	9.71	34.1	8.54	87.9
6	3.6	0.1	5.94	2.95	31.2	2.5	84.6

Figure 11-2: Final Parallel LT3791-1 4-Switch Buck-Boost Configuration 50 V case and 1Ω parasitic input resistance
Input Voltage (Red), Output Voltage (Cyan), Input Power (Green), Output Power (Blue)

Figure 11-3: Final Parallel LT3791-1 4-Switch Buck-Boost Configuration
10 V case and 0.1Ω parasitic input resistance
Input Voltage (Red), Output Voltage (Cyan), Input Power (Green), Output Power (Blue)

Figure 11-4: Final Single Stage LT3791-1 Design Schematic with altered component names

Chapter 12: PCB Design and Assembly

12.1. First Iteration

Figure 12-1: First PCB Iteration
ExpressPCB Miniboard PCB manufacturing service offers three 2-layer boards for $\$ 75.00$ or three 4-layer PCB boards for $\$ 98.00$ plus shipping and handling. The Miniboard option offers three identical $2.5^{\prime \prime} \times 3.8^{\prime \prime}$ boards designed using ExpressPCB's proprietary schematic and PCB design software. Initially selecting a two-layer design minimized PCB cost, although a costlier 4layer board provides top and bottom layers for copper traces and two inner power or ground planes.

Figure 12-1 displays the initial PCB design using a 2-layer board. Large input and output copper filled planes handle large input and output currents. Large input and output copper planes also provide ample power plane heat dissipation. This draft, however, had various functional flaws. For example, the initial design lacked additional input capacitor pads. Furthermore, undersized
drain and source traces connected to the power MOSFETs may inadequately handle expected current flow. Most MOSFET source and drain traces face potential damage under initial design conditions because traces inadequately sized to carry expected current.

Furthermore, the initial design phase did not consider MOSFET heat sink footprints. This design lacked adequate board spacing between each MOSFET accommodating additional heat sink components. Additionally, placing power MOSFETs close to each other degrades natural airflow and decreases the natural cooling of each power MOSFET. Pin 29, TEST1, lacked a SGND connection as prescribed in LT3791-1's datasheet. Ground return paths between output sensing resistor, R11, and Q3's source were not considered and would have generated noise on the output sensing resistor's copper trace. Q3's source should connect directly to the output sensing resistor to mitigate noise. Multiple traces between LT3791-1 and Q4 interfered with straightforward connections between Q3's source and the output current sensing resistor. Using back traces connected to vias solve interference problems. Additionally, critical sensing components spread widely with long traces throughout the board generate noise problems. Traces carrying analog signals, especially from sensing components, require minimal trace lengths to minimize noise

12.2. Second Iteration

Figure 12-2: Second PCB Iteration
Figure 12-2 displays Figure 12-1's revision. Considering a 4-layer PCB design increased available copper trace, ground, and power plane space. 4-layer PCBs include a top layer, power layer, ground layer, and bottom layer. Top layer traces connect most of the power components including MOSFETs, input and output planes, power inductor, and analog signal components. Bottom layer traces connect components when components could not connect on the top layer. All components requiring ground connections connected to ground plane using direct throughput vias. The 4-layer board's ground plane allowed elimination of previous multiple ground traces using traces and vias.

Despite board space efficiency improvements, certain traces remained undersized concerning current carrying capability. Specifically, traces connecting MOSFET sources, drains, and bootstrap capacitors, C 6 and C7, were too thin to handle the simulated current flowing through them. Improperly sized high-current carrying traces connected Q2 and Q3's additional Schottky diodes. Furthermore, the additional Schottky diodes interfered with connecting the inductor's traces on the top plane. However placing back-board high-current carrying traces poses may generate noise on components or traces above the inductor's traces. Relocating the MOSFETs farther apart accommodated space for potential heat sink additions. No heat sinks were selected at this point. Placing the MOSFETs farther apart to accommodate heat sinks also increased distance between LT3791-1's gate drivers and MOSFET gates. Minimal distance between the MOSFETs gates and LT3791-1's gate drivers reduces high frequency trace noise.

12.3. Third Iteration

Figure 12-3: Third PCB Design Iteration
Figure 12-3 displays Figure 12-2's revision. Modifications include two extra input capacitors, decreased spacing between output capacitors, and a banana jack testing connection. Matthew Wong added additional copper to high current traces to increase trace sizes between power MOSFET sources and drains, inductor, Schottky diodes, and sensing resistors. Furthermore, additional silkscreen heat sink outlines estimate MOSFET spacing. Two MOSFETs placed close to each other increases the thermal resistance of heat sinks and decreases nearby natural airflow thereby decreasing heat sink thermal effectiveness. Increasing empty air space between heat sinks increases effective natural air flow and aid cooling. Additional bottom trace copper increases thermal dissipation generated by high current flow. Appropriate through-hole vias
connected to pins 9, 33, 34 allow header pin connections for EN, CLKOUT, and SYNC signals. Relocating power components creates direct traces from the inductor to the MOSFETs. A throughhole via facilitates a direct connection between the output sensing resistor and Q3's source which experienced interference from other traces. A direct via connects pin 39, SGND, to an SGND plane.

12.4. Fourth Iteration

Figure 12-4: Fourth PCB Design Iteration
Figure 12-4 displays Figure 12-3's revision. Unnecessary bottom copper planes bottom layer were removed because current generally flows through the shortest path from source to destination. Relocating MOSFETs created air gaps which allow increased natural air flow with minimal heat sink contact. Moving the ground pin to the bottom right-hand side of the board
provides space for Q1. Moving Q4 higher on the board required reducing the outpour copper plane size. Q4's drain also connects directly to output capacitors C8 and C9.

12.5. Fifth Iteration

Figure 12-5: Fifth PCB Design Iteration
Figure 12-5 improves upon Figure 12-4's PCB design. A new shielded inductor prevents electromagnetic field influencing nearby traces and components. The new inductor features a low square surface mount profile. Placing traces outside of the silkscreened inductor boundaries minimizes inductive interference with traces. LT3791-1's ground through-hole via shifted below the controller to provide more pad contact.

12.6. Final Iteration

Figure 12-6: Final PCB Design Iteration
Figure 12-6 displays the final PCB design iteration. Four additional through-hole vias accommodate VREF, FB, inductor current sense, and Vcctest header pins. An additional via accommodates a header pin connected directly to SGND. Additional extra capacitors pads added to FB and output sensing resistor for future use. The final design iteration also features additional input and output capacitors pads. Since traces connecting power side of the board, mostly MOSFETs and inductor, carry a lot of current, 45 degree corners were added to every corner trace. An additional via to the bottom-left corner provides a PGND header test pin. Input and output grounds were also added adjacent to the copper input and output planes.

12.7. Solder Order and Assembly

Figure 12-7: Final PCB Schematic
Table 12-1: Component Soldering Order
Red components are optional

1.	LT3791-1	12. R2	23. C1	34. R9
2.	C 20	13. C4	24. D2	35. Inductor
3.	C 21	14. C5	25. R5	36. Q1
4.	C 11	$15 . \mathrm{C} 7$	26. R6	37. Q2
5.	C 12	$16 . \mathrm{R} 11$	27. C2	38. Q3
6.	C 13	17. C10	28. R15	39. Q4
7.	R 1	18. C9	29. R12	40. D5
8.	C 3	19. C8	30. R13	41. D6
9.	R 4	20. R8	31. D1	42. Header Pins
10. 66	21. R7	32. R10		
11. R 3	$22 . \mathrm{R} 14$	$33 . \mathrm{C} 30$		

Table 12-1 displays component soldering order corresponding with the ease of soldering components based on Figure 12-7. Red components feature optional capacitor pads for filtering
sense resistor noise. Generally, soldering small or complex components prioritizes over larger components. Therefore soldering through-hole components, such as MOSFETs and Schottky Diodes, yield lesser priority. Complex components containing many pins, like the LT3791-1 controller, should be soldered first due to its 38 -pin TFSOP design.

Prioritizing certain components increased the eased hand soldering, knowing that the soldering iron's tip would not fit certain directions. Soldering started on the left-hand side of the PCB. For example, soldering C11, C12, and C13 prioritized over R1 because soldering R1 first prohibits effectively soldering the C11, C12, and C13's top pads. Additionally, soldering R11, C11, C10, and C9 before R8 eases R11 and C11's soldered without interference from R8's package. The inductor mounted last because it was the biggest package and produced the largest soldering obstacle.

Through-hole mounted components mounted second-to-last. Q1, Q2, Q3, and Q4 mounted with their heat sinks attached. Mounting the MOSFETs without heat sinks attached proved a problem for Q3 and Q4 because their clips open or close when mounted due to conflicting and obtrusive orientation. Header pins were mounted last with their plastic bodies atop the PCB and soldered on the back board.

Soldering occurred procedurally. For example, LT3791-1's IC soldered first on all boards, then C 11 , then C 12 , then C 13 , etcetera until all components were mounted. Continuity checks occurred at each soldering phase. All soldered components passed continuity checks. Continuity checks involved testing for continuity between a target pin and all expected connecting pins or pads based on Figure 12-7. Figure 12-8 displays the finished PCB after soldering all components.

Figure 12-8: Soldered and assembled PCB

Chapter 13: Input Protection Circuit Design

13.1. Previous IPSC Design

Figure 13-1: Ryan Turner and Zack Weiler's Input Protection Circuit [2]
Ryan Turner and Zack Weiler's input protection circuit provides a baseline modifiable input protection scheme. Their testing indicated the Enphase Micro-inverter effectively operates as an open load during its initial five minute start-up phase, which leads the DC-DC converter to build up charge at its input. Their IPSC design prevents adverse converter damage by providing an alternate path to dissipate excessive generated power during the inverter's start-up.

Their design utilizes a LT6101 High Voltage, High-Side Current Sense Amplifier comparator to detect changing current flow through a current sensing resistor. This sensing resistor, placed in series with the converter output and inverter input, does not experience a voltage drop during an absence of current flow due to an the open load condition at the inverter. The comparator outputs a low signal when the current sense resistor detects no current flow. This signal inverts and amplifies to become a high signal which enables an alternate path to safely dissipate excessive power instead of damaging the converter.

However, this methodology only protects the system from built up charge due to an open inverter load during start-up phase and not necessarily from overvoltage situations. Their design included a capacitor array to filter input voltage and reduce hazardous voltage transients up to 150 V . Over the course of their testing they found that their capacitors innately smoothed input
voltage to approximately 60 V during peak elliptical power generation. Their circuit does not hardlimit a specific voltage applied to the converter.

13.2. Modified Input Protection System Design

Figure 13-2: Cameron Kiddoo and Eric Funsten's Protection System
Cameron Kiddoo and Eric Funston's senior project designed a current limiter and overvoltage input protection system. Their design includes Turner and Weiler's capacitive filtering array, C1 through C5, as shown in Figure 13-2, to filter out high frequency transient responses induced by the elliptical's generator. Kiddoo and Funston's design implements an additional current limiter to protect the micro-inverter from receiving more than 8 A input current from the converter. This discussion only includes their design characteristics relevant to the converter's input protection because their current limiter design diverts current away from the micro-inverter and does not directly influence converter functionality.

An LT1017 Micropower Dual Comparator controls the gate of a Fairchild Semiconductor FGA180N33ATD Insulated Gate Bipolar Transistor, or IGBT. The elliptical machine's on-board battery powers the LT1017 comparator. An input voltage divider, R3 and R4, tied to LT1017's V_{+} input pin, outputs 3.3 V at a 50 V input. The LT1017 compares the voltage divider's output to a 3.3 V reference supplied by the current limiter's microcontroller. The comparator then outputs a
high signal through a pull-up resistor, R 9 , when V_{+}surpasses the 3.3 V reference voltage.
Therefore, input voltages higher than 50 V causes the IBGT to turn on, thereby diverting current flow through R7 instead of the converter. The comparator outputs a low signal while input voltages remain below 50V, during which the converter functions properly. Kiddoo and Funston's design effectively filters input voltage transients and limits converter input voltage to 50 V .

Chapter 14: Hardware Testing

14.1. Test Plan

Figure 14-1: Parallel LT3791-1 4-Switch Buck-Boost Controller Test Configuration

Preemptive testing using a DC power source must occur before connecting the converter to the elliptical machine to prevent damage to the converter or other components. Figure 14-1 displays two parallel LT3791-1 4-Switch Buck Boost Controller PCBs with an input power supply and output electronic load. The following discussion outlines this project's test plan.

Setup

1. Jumper wires interconnect the following header pins:
a. EN
b. Grounds in center of boards
c. Primary board CLKOUT to secondary board SYNC
d. Primary board SYNC to SGND
2. Banana-to-spade leads interconnect:
a. Power supply to positive and negative terminals of VIN
b. Electronic load to positive and negative terminals of VOUT

Procedure

1. Connect pins, inputs, and outputs as described in Setup.
2. Table 14-1Error! Reference source not found. outlines tests cases where using a power source limiting input voltage and current 1 and electronic load configured for corresponding output voltage/currents.

Table 14-1: Expected Input and Output Test Cases

Input Voltage [V]	Input Current [A]	Input Power [W]	Estimated Efficiency [\%]	Output Voltage [V]	Output Current [A]
6	0.6	3.6	90	36	0.09
10	1	10	90	36	0.25
20	2	40	90	36	1
30	3	90	90	36	2.5
40	4	160	90	36	4
50	5	250	90	36	6.25

3. Configure the power source's output voltage and current limit according to Table 14-1.
4. Configure the electronic load in constant-current mode to desired load current from Table 14-1.
5. Enable the power source, then enable the electronic load.
6. Record Vin, Iin, Vout, and Iout.
7. Turn off the power source then the electronic load.
8. Alter power source and electronic load parameters based on provided test cases.
9. Readings using multimeters or oscilloscopes must reference proper grounds. Probes measuring analog signal ground to SGND. Probes measuring power signals ground to PGND.

14.2. Test Results

6V Constant Voltage Load

This project's buck-boost converter design did not function properly for all test cases. The converter did not demand enough current from the power source; drawing less than 1 A at all test cases. System output voltage measured 0 V by the electronic load with no current drawn, indicating a malfunctioning circuit operation. The converter partially functioned correctly when the electronic load operated in constant voltage mode. In this case, the system demanded the expected amount of current from the source. The system demanded 0.6 A at 6 V from the power source. However, the converter's output could not maintain 36V, but output 10.36 V . Setting the electronic load to constant voltage mode defeats the purpose of designing a converter to output 36 V since the electronic load sets the output voltage. Testing should occur using constant-current mode so the converter self-regulates output voltage.

Multiple abnormalities presented themselves during the 6 V test case under a constantvoltage load. Gate voltage of Q1, shown in Figure 14-2, suggests the system experiences
excessive MOSFET gate capacitance. High gate capacitance prohibits gate voltage from increasing to the necessary 5 V gate drive output by TG1 of the LT3791-1 controller. Therefore, high gate capacitance prohibits proper MOSFET switching.

Figure 14-2: Primary Board Q1 Gate Voltage, 6V Input
Q2's drain connects to Q1's source which experienced no drain voltage because Q1 fails to switch on. Additionally, this problem signifies voltage build up across the power inductor. Q2's gate experienced gate drive problems as shown in Figure 14-3. Although a 399.7 kHz driving signal is apparent, gate voltage does not rise to 5 V indicating proper gate drive from BG1 of the LT3791-1 controller.

Figure 14-3: Primary Board Q2 Gate Voltage, 6V Input
Figure 14-4 indicates Q3 switching at 399.8 kHz at a 94.9% duty cycle. Q3 and Q4's gate drives mirror duty cycles. Figure $14-5$ indicates Q4 switching at 399.8 kHz at a 7.6% duty cycle. This indicates that the two MOSFETs function properly.

Figure 14-4: Primary Board Q3 Gate Voltage, 6V Input

Figure 14-5: Primary Board Q4 Gate Voltage, 6V Input

30V Constant Current Load

Simulations indicate a 30 V input case functions better than a 6 V input case. Therefore, testing a 30 V or 90 W input case may yield better results than a 6 V case. Similar to the 6 V case, a 30 V input also experienced various unexpected errors. Multiple analog signal pins were probed to determine possible malfunction causes. The following discussion addresses possible explanations of circuit faults.

Multiple measured signals behaved differently than expected from simulations. First, the system output provided no voltage or current. Accordingly, the FB pin receives no feedback because no voltage forms across the FB's voltage divider, as shown in Figure 17-3. Furthermore, LT3791-1's SHORT pin remains always active because FB receives less than 400 mV . Therefore, the system operates in DCM. Voltages at SW1 and SW2 remain at 0 V due to no voltage build up across the inductor, as shown in Figure 17-11 and Figure 17-12. This problem results from switches Q1 through Q4 not switching and allowing current flow through the inductor. Damaged,
or poorly selected, MOSFETS or a non-ideal controlling CLKOUT signal may cause system abnormalities.

The first hypothesis assumes MOSFETs switching improperly. Q1's gate should experience a 33 V peak-to-peak gate drive with a 92% duty cycle from TG1. TG1 superimposes 5 V onto the voltage sensed at the inductor from SW1. Q1's gate, however, only received a 4.5 V peak-to-peak with a 20% duty cycle as shown in Figure 17-7. Q2's gate drive, connected to BG1, delivered a 76% duty cycle instead of 27% and as shown in Figure 17-8. Q3's gate also experienced similar behavior, providing a 67\% duty cycle instead of 28\%. Q2 and Q3 gate voltage measures 4.5 V while the simulation result expects 5V. Figure 17-8 and Figure 17-9 display proper gate drive voltages of Q2 and Q3. Q4's gate drive measures at a voltage and duty cycle dissimilar to simulation results. Figure 17-10 displays Q4's 5V peak-to-peak TG2 gate drive operating at a 30% duty cycle. Theoretically, TG2 should provide 41 V peak to peak with 70% duty cycle.

The second hypothesis assumes a malfunctioning CKLOUT signal causes circuit malfunctioning. A simulated CLKOUT signal expects a 5 V peak-to-peak output but measured CLKOUT provided a 2V peak-to-peak output shown in Figure 17-5. CLKOUT synchronizes the two boards to operate 180° out of phase and directly influence internal buck and boost logic of the LT3791-1 controller. Therefore, a non-ideal CLKOUT signal could negatively impact the secondary board's MOSFET switching. CLKOUT controls logic which control TG1, TG2, BG1, and BG2, the four gate drive pins. However, CLKOUT of secondary board operated correctly with 5V peak to peak shown in Figure 17-6. CLKOUT cannot fully explain abnormal circuit behavior because a single LT3791-1 board does not regulate 36 V .

Additional testing proved CLKOUT functions correctly at 5 V peak-to-peak at 400 kHz when a single board is tested instead of two parallel boards. This test indicated a potential loading
effect between the primary CLKOUT and secondary's SYNC pins. Pin function description of LT3791-1 in datasheet states that Pin 34, SYNC, contains an internal $90 k \Omega$ resistor terminated to ground. A loading effect insinuates that the primary's CLKOUT could only supply roughly 20 uA . An internal $90 k \Omega$ resistor loading CLKOUT is unlikely due because CLKOUT can supply more than 20uA. However, a loading theory describes the relation between master CLKOUT and slave SYNC most logically. Therefore, adding a buffer constructed using an op-amp inverter between primary and secondary boards could potentially increase the likelihood of proper operation.

Considering all other passive component selections could not cause system failure and all other passive components function as expected, another hypothesis proposes improper MOSFET operation as this problem's root cause. As described previously, improper MOSFET switching, or lack thereof, results in no inductor current and thus no functional or measureable converter output. Conducting the simulation shown in Figure 14-6 may provide an answer to improper MOSFET behavior.

Figure 14-6: LTspice Simulation Confirming MOSFET Functionality, 30V, Q1 damaged
According to data obtained from testing, all MOSFET gates experienced 5 V peak to peak with 400 kHz frequency. Also source of Q 1 , which supplies voltage to the inductor applies 0 V at all times. If Q1 appears damaged as an open-circuit in the simulation and each node of MOSFETs provides the same result as the experiment, the simulation would confirm the hypothesis of MOSFET malfunction.

Figure 14-7: Q1 Gate Drive, TG1, Q1 damaged, $5 \mathrm{~V}_{\mathrm{PP}} 400 \mathrm{kHz}$

Figure 14-8: Q1 Gate Drive, TG2, Q1 damaged, $5 \mathrm{~V}_{\mathrm{PP}} 400 \mathrm{kHz}$
Comparing
Figure 14-7 and Figure 17-7 indicate both tested and simulated circuits experience the same TG1 voltage waveforms operating at 400 kHz . Comparing simulated versus measured TG2 waveforms from Figure 14-8 and Figure 17-10 indicate similarities between experimental and simulated results. Similarities between simulated and measured results strongly support the idea of
a damaged MOSFET. Characterizing MOSFET Q1 may help determine if Q1 was inadvertently damaged.

14.3. IXTH180N10T MOSFET Characterization

Q1was desoldered from a PCB and tested to confirm proper MOSFET operation. Prior testing hypothesized that damaged MOSFETs operated as an open-circuit, despite proper gate drive voltage. A damaged MOSFET represents a probable cause of malfunctioning converter behavior. Of four switches, Q1 maintains the highest damage probability because its drain connects directly to the power source through a current sense resistor. A damaged Q1 switch prohibits voltage forming across the inductor, and thus directly inhibits circuit operation. Therefore, Q1 was tested to confirm proper operation using a Keithley 2400 Source-Meter, an Agilent 33120A Function Generator, and an Agilent MSO-X 2012A Mixed Signal Oscilloscope.

Figure 14-9: Q1 Gate Voltage vs. Source Voltage Gate (Yellow) Source (Green)

Gate drive voltage verifies proper Q1 turns on and turn off operation. Oscilloscope probes observe Q1's drain and source voltages with Q1's source functioning as a common ground. The Agilent 33120 A Function Generator applied a $5 \mathrm{~V}_{\mathrm{pp}}, 4.8 \mathrm{kHz}, 50 \%$ duty cycle square wave to Q 1 's gate while the Keithley 2400 Source-Meter supplied a 10V drain voltage. Figure 14-9's displays Q1 gate voltage and source voltage. Testing determined that Q1's gate and source appeared shorted together. Increasing or decreasing input V_{PP} of the gate directly increased observed source voltage. Figure 14-10 displays Q1 gate current (yellow trace) and drain voltage (green trace).

Drain voltage does not decrease to 0 V when Q 1 's drain is held at 5 V . Testing Q 2 using the same procedure observed similar results.

Figure 14-10: Q1 Gate Voltage vs. Drain Voltage Q2 Gate (Yellow) Drain (Green)

Further drain current and drain-to-source resistance tested proper operation of Q1's
MOSFET. Testing $R_{D S}$ and I_{D} determines the threshold voltage of IXTH180N10T. Theoretically,
R_{DS} measures within a magnitude of a few $\mathrm{M} \Omega$ when Q 1 switches off and approximately $6.3 \mathrm{~m} \Omega$ when Q1switches on during proper MOSFET operation. Similarly, drain current should start to flow as V_{GS} approaches specified $\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}$ but remains within a μA range until MOSFET turn on.

First, R_{DS} versus V_{GS} characteristics were tested. A Fluke Digital Multimeter measured drain-to-source resistance as the gate experienced a $5 \mathrm{~V}_{\mathrm{pp}}, 4.8 \mathrm{kHz}, 50 \%$ duty cycle square wave input. Q1's source functioned as a common ground. Gate voltage increased incrementally until sufficient data characterized a drain-to-source resistance versus V_{GS} curve with 0 V drain voltage. Figure 14-11 plots measured R_{DS} versus V_{GS}. The MOSFET turns on when VGS nears 3.75 V , a value within the 2.5 to 4.5 V range specified by IXTH180N10T's datasheet. R_{DS} decreases from $6 \mathrm{M} \Omega$ to $1 \mathrm{k} \Omega$ during turn-on at a 0 V drain voltage.

Figure 14-11: Drain-to-Source Resistance Characterization
I_{D} versus V_{GS} characteristics was also tested. Again, Q 1 's source functioned as a common ground. The Keithley Source-Meter set to 0.4 V and a 1 A current compliance at the drain. The function generator controlled Q1's gate with a $4.8 \mathrm{kHz}, 50 \%$ duty cycle square wave of varying magnitude. Initially with V_{GS} below its threshold value, μA measured drain current indicated an
off-state MOSFET. Gate voltage increased until drain current begins flowing. Figure 14-12 and Figure 14-13 display I_{D} vs V_{GS} tested at 0.4 V and 6 V drain voltage. I_{D} vs. V_{GS} tests indicate I_{D} starts to flow when V_{GS} nears 4 V . However, these characteristics may differ at higher drain voltages.

Figure 14-12: Drain Current Characterization, $V_{D}=0 \mathrm{~V}$

Figure 14-13: Drain Current Characterization, $V_{D}=6 \mathrm{~V}$

Chapter 15: Conclusion

The total cost for this project summed to $\$ 275.60$ which is significantly cheaper than that of Martin Kou's $\$ 404.99$ SEPIC topology. This cost reduction from results from the fewer components needed to build this project's design. Kou's SEPIC topology required 152 total components whereas this design required 117 components. This project, however, was significantly more expensive than that of Alvin Hilario who built working system under $\$ 80$. An LT3791-1 topology may be a viable converter design with ample cost effectiveness if mass produced because a majority of the building cost consisted of PCB manufacturing.

Redesigning the PCB layout to fit components properly is highly recommended for future use. The current PCB design uses a smaller heat sink than the model currently selected. Larger air gaps between adjacent MOSFETs and heat sinks increase natural air circulation and cooling. Increasing board dimensions may also help to alleviate component crowding and increases surface area thereby allowing larger high-current carrying power traces.

Multiple operational errors occurred during this design including possible malfunction of MOSFETs and improper operation of CLKOUT. Characterization of MOSFETs before assembling the board would be recommended to avoid confusion in determining the cause of faulty components. An additional recommendation involves adding a buffer or inverter between the CLKOUT and SYNC of primary and secondary boards to decrease CLKOUT loading and increase the likelihood of proper operation.

Overall, this project determined that a Buck-Boost DC-DC Converter based on a parallel LT3791-1 4-Switch Buck-Boost Controller topology is a viable converter design. Simulations indicated efficient circuit operation between 6 V and 50 V input voltages, signifying 3.6 W and 250 W inputs, with simulated efficiencies ranging from 84.6% at 6 V to 96.9% at 50 V . Overall
system efficiency averages to 92.28%. Thus, this design theoretically operates slightly more efficiently than Martin Kou's 92.4% overall efficient SEPIC converter at maximum load although not as efficiently as Alvin Hilario's 95\% overall efficient 4-Switch Buck Boost converter design.

Further project testing must occur to produce a fully functioning Paralleled LT3791-1 4-Switch Buck-Boost DC-DC Converter. Additional required testing should also verify converter compatibility with Cameron Kiddoo and Eric Funsten's input protection circuit and current limiter. Both the input protection and converter systems must function cohesively before attaching to the Precor EFX 546i Elliptical Trainer's generator and the Enphase M175 Micro-Inverter. Ensuring proper system functionality greatly increases the odds of a well-protected, highly efficient, exercise energy harvesting system.

Chapter 16: References

[1] R. Turner and Z. Weiler, "DC-DC Converter Input Protection System for Energy Harvseting from Exercise Machines (EHFEM) Project," Cal Poly State University, 2013. [Online]. Available: http://digitalcommons.calpoly.edu/eesp/214/.
[2] "60V 4-Switch Synchronous Buck-Boost Controller," Linear Technology Corporation, [Online]. Available: http://cds.linear.com/docs/en/datasheet/37911f.pdf. [Accessed September 2013].
[3] M. Kou, "Energy Harvesting from Elliptical Machines: DC-DC Converter Design Using SEPIC Topology," Cal Poly State University, June 2012. [Online]. Available: http://digitalcommons.calpoly.edu/eesp/753/.
[4] R. Ford and C. Coulston, Design for Electrical and Computer Engineers, McGraw-Hill, 2007.
[5] "Enphase Micro-Inverter Models M175 and M200," Enphase Energy, [Online]. Available: http://enphase.com/downloads/M200_M175_User_Manual_20081110.pdf. [Accessed September 2013].
[6] M. Green, "Design Calculations for Buck-Boost Converters," Texas Instruments, September 2012. [Online]. Available: www.ti.com/litv/pdf/slva535a. [Accessed 3 April 2014].
[7] Infineon Technologies, 19 December 2012. [Online]. Available: http://www.infineon.com/dgdl/IPP_B230N06L3_Rev2.0.pdf?folderId=db3a30431441fb5 d01148ca9f1be0e77\&fileId=db3a30431ddc9372011e2aab4a564d14. [Accessed 3 April 2014].
[8] "IPB230N06L3 G Power Transistor," 19 December 2012. [Online]. Available: http://www.infineon.com/dgdl?folderId=db3a30431441fb5d01148ca9f1be0e77\&fileId=d b3a30431ddc9372011e2aab4a564d14. [Accessed 30 January 2014].
[9] "IXTH180N10T Product Detail," IXYS Corporation, 20 November 2006. [Online]. Available: http://www.ixys.com/PartSearchResults.aspx?searchStr=IXTH180N10T\&SearchSubmit =Go. [Accessed 1 June 2014].
[10] "IPI045N10N3 G," Infineon Technologies, 13 January 2010. [Online]. Available:
http://www.infineon.com/cms/en/product/power/mosfet/power-mosfet/n-channel-optimos-tm-40v-
250v/IPI045N10N3+G/productType.html?productType=db3a304420896b4a012217e3fe 1b280f. [Accessed 2014 May 1 2014].
[11] Laird Technologies, "Understanding SMD Power Inductors," Laird Technologies, July 2011. [Online]. Available: www.lairdtech.com/downloadasset.aspx?id=2147483994. [Accessed 1 May 2014].
[12] Texas Instruments, "Snubber Circuit Design - Practical Tips," [Online]. Available:
http://www.ti.com/ww/en/analog/power_management/snubber_circuit_design.html. [Accessed 12 May 2014].
[13] Ohmite Manufacturing Company, "W Series Heatsinks," [Online]. Available: http://www.ohmite.com/cat/sink_w.pdf. [Accessed 1 June 2014].
[14] Ohmite Manufacturing Company, "C Series," [Online]. Available: http://www.ohmite.com/cat/sink_c.pdf. [Accessed 1 June 2014].
[15] V. Chau, J. Roecks, S. Spurr and D. Webb, Exercise, San Luis Obispo: Cal Poly: San Lus Obispo, 2007.
[16] Taufik and D. Dolan, "Non-Isolated DC-DC Converters," in Introduction to Power Electronics, San Luis Obispo, CA, Cal Poly State University, 2012, pp. 210-287.
[17] Taufik and D. Dolan, Advanced Power Electronics, San Luis Obispo, CA: Cal Poly State University, 2012.
[18] R. Strzelecki and et al, "Exercise bike powered electric generator for fitness club appliances," in 2007 European Conference on Power Electronics and Applications, Aarlborg, 2007.
[19] T. Gibson, "These Exercise Machines Turn Your Sweat Into Electrocity," IEEE Spectrum, 21 June 2011. [Online]. Available: http://spectrum.ieee.org/green-tech/conservation/these-exercise-machines-turn-your-sweat-into-electricity.
[20] E. Babaei and et al, "Operational Modes nad Output-Voltage-Ripple-Analysis and Design Condiserations of Buck-Boost DC-DC Converters," IEEE Trans. Ind. Electron, vol. 59, no. 1, pp. 381-391, Jan 2012.
[21] R. Flatness and X. Zhou, "Protection for Switched Step Up/Step Down Regulators". US Patent 7365 525, Apr 2008.
[22] "Standards and Publications," National Electrical Manufacturers Association, [Online]. Available: http://www.nema.org/Standards/pages/default.aspx.
[23] "NFPA 70: National Electrical Code," National Fire Protection Association, 2013. [Online]. Available: http://www.nfpa.org/codes-and-standards/document-informationpages?mode=code\&code=70.
[24] "1547-2003 - IEEE Standards for Interconnecting Distributed Resources with Electric Power," IEEE Standards Association, 2003. [Online]. Available: http://standards.ieee.org/findstds/standard/1547-2003.html.
[25] "EFX 546i Elliptical Fitness CrossTrainer Precor EFX 546i Product Page," Precor, 2012. [Online]. Available: http://www.precor.com/enus/home/products/catalog/product/view/id/33.
[26] E. Darie, C. Cepisca and E. Darie, "Modeling EMI Problems Association wieth DC-DC Converters," in International Conference on Modern Power Systems, Cluj-Napoca, Romania, 2008.
[27] G. W. Droppo, L. A. Schienbein, H. Brent Earle and J. Donald, "DC to DC Converter and

Power Management System". US Patent 6882 063, 19 April 2005.
[28] A. Hilario, "Energy Harvesting from Elliptical Machines using Four-Switch Buck-Boost Topology," Cal Poly Digital Commons, May 2011. [Online]. Available: http://digitalcommons.calpoly.edu/theses/511/.
[29] "LT4356-1 Surge Stopper Datasheet," Linear Technology, [Online]. Available: http://cds.linear.com/docs/en/datasheet/4356fa.pdf.
[30] Abracon Corporation, "AIRD-03," 12 July 2012. [Online]. Available: http://www.abracon.com/Magnetics/radial/AIRD03.pdf. [Accessed 3 April 2014].
[31] Panasonic Electronic Components, "ERJ Thick Film Chip Resistors / Low Resistance Types," 07 February 2014. [Online]. Available: http://industrial.panasonic.com/wwwdata/pdf/AOA0000/AOA0000CE3.pdf. [Accessed 4 April 2014].
[32] Samsung Electro-Mechanics, "Thick-Film Chip Resistor," June 2013. [Online]. Available: http://industrial.panasonic.com/www-data/pdf/AOA0000/AOA0000CE2.pdf. [Accessed 3 April 2014].
[33] Vishay Intertechnology, Inc., "Standard Thick Film Chip Resistors," 02 October 2012. [Online]. Available: http://www.vishay.com/doc?20035. [Accessed 3 April 2014].
[34] "Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)," 4 March 2014. [Online]. Available: http://www.kemet.com/datasheets\&C0603C333K8RACTU. [Accessed 03 June 2014].
[35] TDK Corporation, "TDK Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)," January 2014. [Online]. Available: http://product.tdk.com/capacitor/mlcc/en/documents/mlcc_commercial_general_en.pdf. [Accessed 3 April 2014].
[36] Samsung Electro-Mechanics, "Multi Layer Ceramic Capacitor (MLCC)," 10 September 2013. [Online]. Available:
http://www.samsungsem.com/servlet/FileDownload?type=data\&file=CL32B475KBUY NNE.pdf. [Accessed 3 April 2014].
[37] NXP Semiconductors, "BAT46WJ Single Schottky Barrier Diode," 8 November 2011. [Online]. Available: http://www.nxp.com/documents/data_sheet/BAT46WJ.pdf. [Accessed 3 April 2014].
[38] Linear Technology, "LTC3638 - High Efficiency, 140V 250mA Step-Down Regulator," Linear Technology, [Online]. Available: http://www.linear.com/product/LTC3638. [Accessed 20143 April].
[39] Linear Technology, "LTC3639 - High Efficiency, 150V 100mA Synchronous Step-Down Regulator," Linear Technology, [Online]. Available: http://www.linear.com/product/LTC3639. [Accessed 3 April 2014].
[40] R. Serverns, "DESIGN OF SNUBBERS FOR POWER CIRCUITS," [Online]. Available: www.cde.com/tech/design.pdf. [Accessed 1 April 2014].
[41] "RF Capacitor Current \& Power," Johanson Technology, 1 April 1999. [Online]. Available: http://www.johansontechnology.com/technical-notes/rf-capacitors-a-inductors/capacitor-rf-current-a-power.html\#.U4y9CSiiWAo. [Accessed 2 May 2014].

Chapter 17: Appendix

A. Excel Component Sizing Calculation Spreadsheet

A custom-made Microsoft Excel spreadsheet aided omponent selection for the LT3791-1 4-
Switch Buck-Boost Controller. LT3791-1's datasheet included numerous equations converted into
Excel formulas. Using an Excel spread sheet sped up calculations passive components such as resistor and inductor sizing without the need to hand-calculate component values.

B. Final Project Gantt Chart

Figure 17-1: Final Project Gantt Chart

C. Final Bill of Materials

Type	Schematic Name	Value	Component	\$/unit	QTY	Sum	P/N	Description	Company
Inductor	Inductor	22 u	Inductor	\$7.83	2	\$15.66	AIRD-03-270K	INDUCTOR PWR DRUM CORE 27UH	Abracon
Resistors	RLSENSE	12m	R1	\$1.17	2	\$2.34	ERJ-8BWFR012V	RES 0.012 OHM 1W 1\% 1206 SMD	Panasonic
	REN1	200k	R2	\$0.10	2	\$0.20	RC2012F204CS	RES 200K OHM 1/8W 1\% 0805	Samsung
	REN2	62k	R3	\$0.10	2	\$0.20	ERJ-6ENF6202V	RES 62K OHM 1/8W 1\% 0805 SMD	Panasonic
	Rcomp	51	R4	\$0.10	2	\$0.20	ERJ-6ENF51R0V	RES 51 OHM 1/8W 1\% 0805 SMD	Panasonic
	ROVLO1	200k	R5	\$0.10	2	\$0.20	ERJ-6ENF2003V	RES 200K OHM 1/8W 1\% 0805 SMD	Panasonic
	ROVLO2	12.4 k	R6	\$0.10	2	\$0.20	ERJ-6ENF1242V	RES 12.4K OHM 1/8W 1\% 0805 SMD	Panasonic
	RT	59k	R7	\$0.10	2	\$0.20	ERJ-6ENF5902V	RES 59K OHM 1/8W 1\% 0805 SMD	Panasonic
	Rsense	1.5 m	R8	\$1.11	2	\$2.22	ERJ-M1WTF1M5U	RES 0.0015 OHM 1W 1\% 2512 SMD	Panasonic
	RFB1	196k	R9	\$0.10	2	\$0.20	ERJ-6ENF1963V	RES 196K OHM 1/8W 1\% 0805 SMD	Panasonic
	RFB2	6.81 k	R10	\$0.10	2	\$0.20	ERJ-6ENF6811V	RES 6.81K OHM 1/8W 1\% 0805 SMD	Panasonic
	ROUT	27m	R11	\$1.17	2	\$2.34	ERJ-8BWFR027V	RES 0.027 OHM 1W 1\% 1206 SMD	Panasonic
	RSHORT	200k	R12	\$0.10	2	\$0.20	ERJ-6ENF2003V	RES 200K OHM 1/8W 1\% 0805 SMD	Panasonic
	RC/10	100k	R13	\$0.10	2	\$0.20	ERJ-6ENF1003V	RES 100K OHM 1/8W 1\% 0805 SMD	Panasonic
	RSS	100k	R14	\$0.10	2	\$0.20	ERJ-6ENF1003V	RES 100K OHM 1/8W 1\% 0805 SMD	Panasonic
	RVC	3 k	R15	\$0.10	2	\$0.20	ERJ-6ENF3001V	RES 3K OHM 1/8W 1\% 0805 SMD	Panasonic
Switches			Q1-Q8	\$4.03	8	\$32.20	IXTH180N10T	MOSFET N-CH 100V 180A TO-247	IXYS
Capacitors	CSS	33 nF	C1	\$0.24	2	\$0.48	C0603C333K8RACTU	CAP CER 0.033UF 10V 10\% X7R 0603	Kemet
	CVC	33 nF	C2	\$0.24	2	\$0.48	C0603C333K8RACTU	CAP CER 0.033UF 10V 10\% X7R 0603	Kemet
	Ccomp	470n	C3	\$0.41	2	\$0.82	C0603C474K8RACTU	CAP CER 0.47UF 10V 10\% X7R 0603	Kemet
	CINTVCC	4.7u	C4	\$1.40	2	\$2.80	C3225X7S2A475M200AB	CAP CER 4.7UF 100V 20\% X7S 1210	TDK
	CVREF	0.1 uF	C5	\$0.10	2	\$0.20	C1608X7R1E104K080AA	CAP CER 0.1UF 25V 10\% X7R 0603	TDK
	CBS	0.1 uF	C6 and C7	\$0.10	4	\$0.40	C1608X7R1E104K080AA	CAP CER 0.1UF 25V 10\% X7R 0603	TDK
	COUT	4.7 u	COUT	\$1.23	8	\$9.84	C3225X7S2A475K200AB	CAP CER 4.7UF 100V 10\% X7S 1210	TDK
	CIN	4.7u	CIN	\$1.23	8	\$9.84	C3225X7S2A475K200AB	CAP CER 4.7UF 100V 10\% X7S 1210	TDK
Schottky	D1, D2		D1,D2,D5,D6	\$0.44	4	\$1.76	BAT46WJ,115	$\begin{aligned} & \hline \text { DIODE SCHOTKY 100V 0.25A } \\ & \text { SOD323F } \end{aligned}$	NXP Semicond.

	D3, D4	D3,D4,D7,D8	\$1.23	4	\$4.92	MBR20100CTTU	DIODE SCHOTTKY 100V 10A TO220	Fairchild Semi
Controller	LT3791-1	Controller	\$11.21	3	\$33.63	LT3791IFE-1\#PBF	IC REG CTRLR BUCK BST 38TSSOP	Linear Tech
Heat Sink			\$3.09	8	\$24.72	C247-025-1AE	HEATSINK FOR TO-247 WITH 1 CLIP	Ohmite
Header Pins			\$0.13	18	\$2.30	961102-6404-AR	CONN HEADER VERT SGL 2POS GOLD	3M
POSTS	RED		\$4.05	4	\$16.20	111-0702-001		Emerson
	BLACK		\$4.05	6	\$24.30	111-0703-001		Emerson
PCB	4-Layer	PCB	\$32.67	2	\$65.33			ExpressPCB
				TOTAL	\$255.19			
				TAX	\$275.60			

D. LTspice Netlist

Initial Design Netlist

* C:\Users\Sheldon\Desktop\Senior Project\Final DC DC Design\Power Trace Cases\LT3791-1_Parallel_50V.asc C1 N050 0 33n V=10 Rser=. 01
R1 IN N026 12 m
R2 IN N005 200k tol=1
R3 N005 0 62k tol=1
R4 N028 N026 51 tol=1
C3 IN N028 470n
C4 N029 $04.7 \mu \mathrm{~V}=100$ Rser= $=001$
R5 IN N031 200k tol=1
R6 N031 0 12.4k tol=1
R7 N046 0 59k tol=1
C5 N045 $0.1 \mu \mathrm{~V}=25$ Rser=. 01
L2 N037 N038 27μ Rser $=.012$
C6 N032 N037 . $47 \mu \mathrm{~V}=25$ Rser $=.01$
D3 N029 N032 BAT46WJ
C7 N030 N038 . $47 \mu \mathrm{~V}=25$ Rser $=.01$
D4 N029 N030 BAT46WJ
R8 N043 01.5 m tol=1
R9 OUT N049 196k tol=1
R10 N049 0 6.81k tol=1
R11 N027 OUT 27 m tol=1
C8 N027 0 4.7 $\mu \mathrm{V}=50$ Irms=0 Rser=0.1 Lser=0
XU2 N045 N050 N045 N044 N042 N045 N039 N036 N005 IN N028 N026 N029 N034 N032 N037 0 N040 N041
MP_01 N038 N030 MP_02 N035 N027 OUT N043 0 MP_03 0 N048 N044 N033 N009 N046 N047 N049 N031
LT3791-1
R12 N029 N042 200K tol=1
R14 N045 N050 100K tol=1
C11 N026 $04.7 \mu \times 2 \mathrm{~V}=100$ Rser $=0.1$
C14 N025 0 33n V=10 Rser=. 01
C15 P001 0 33nF V=10 Rser=. 01
R17 IN N001 12 m tol=1
R18 IN N005 200k tol=1
R19 N005 0 62k tol=1
R20 N003 N001 51 tol=1
C16 IN N003 470n V=10 Rser=. 01
C17 N004 $04.7 \mu \mathrm{~V}=100$ Rser=. 01
R21 IN N007 200k tol=1
R22 N007 012.4 k tol=1
R23 N021 0 59k tol=1
C18 N020 $0.1 \mu \mathrm{~V}=25$ Rser $=.01$
M§Q1 N001 N010 N013 N013 IPI045N10N3
L1 N013 N014 27μ Rser $=.012$
C19 N008 N013 . $47 \mu \mathrm{~V}=25$ Rser= $=.01$
D1 N004 N008 BAT46WJ
C20 N006 N014 . $47 \mu \mathrm{~V}=25$ Rser $=.01$
D2 N004 N006 BAT46WJ
R24 N018 01.5 m tol=1
R25 OUT N024 196k
R26 N024 0 6.81k tol=1
R27 N002 OUT 27 m tol=1
C21 N002 0 4.7 μ V=50 Irms=0 Rser=0.1 Lser=0

XU1 N020 N025 N020 N019 N017 N020 NC_01 N012 N005 IN N003 N001 N004 N010 N008 N013 0 N015 N016 MP_04 N014 N006 MP_05 N011 N002 OUT N018 0 MP_06 0 N023 N019 N009 0 N021 N022 N024 N007
LT3791-1
R28 N004 N017 200K tol=1
R29 N020 N025 100K tol=1
C24 N001 $04.7 \mu \times 2 \mathrm{~V}=100$ Rser=. 1
V1 IN 0 PWL(0 00.5 m 50) Rser=. 2
R13 N022 P001 3k tol=1
C2 N051 0 33nF V=10 Rser=. 01
R15 N047 N051 3k tol=1
I§LOAD OUT 06.94
R16 N004 N019 100k
R30 N029 N044 100k
M§Q2 N013 N015 N018 N018 IPI045N10N3
M§Q3 N014 N016 N018 N018 IPI045N10N3
M§Q4 N002 N011 N014 N014 IPI045N10N3
M§Q5 N026 N034 N037 N037 IPI045N10N3
M§Q6 N037 N040 N043 N043 IPI045N10N3
M§Q7 N038 N041 N043 N043 IPI045N10N3
M§Q8 N027 N035 N038 N038 IPI045N10N3
C22 N001 $04.7 \mu \times 2$ V=100 Rser=. 1
C23 N001 $04.7 \mu \times 2$ V=100 Rser=. 1
C25 N001 $04.7 \mu \times 2$ V=100 Rser=. 1
C26 N026 $04.7 \mu \times 2 \mathrm{~V}=100$ Rser=0.1
C27 N026 $04.7 \mu \times 2 \mathrm{~V}=100$ Rser $=0.1$
C28 N026 $04.7 \mu \times 2 \mathrm{~V}=100$ Rser $=0.1$
C9 N002 $04.7 \mu \mathrm{~V}=50$ Irms=0 Rser=0.1 Lser=0
C10 N002 0 4.7 $\mu \mathrm{V}=50$ Irms=0 Rser=0.1 Lser=0
C12 N002 $04.7 \mu \mathrm{~V}=50$ Irms=0 Rser=0.1 Lser=0
C13 N027 $04.7 \mu \mathrm{~V}=50$ Irms=0 Rser=0.1 Lser=0
C29 N027 $04.7 \mu \mathrm{~V}=50$ Irms=0 Rser=0.1 Lser=0
C30 N027 $04.7 \mu \mathrm{~V}=50$ Irms=0 Rser=0.1 Lser=0
.model D D
.lib C: \Program Files (x86) \LTC\LTspiceIV \backslash lib\cmp\standard.dio .model NMOS NMOS
.model PMOS PMOS
.lib C:\Program Files (x86)\LTC\LTspiceIV\lib\cmp\standard.mos
.tran 03 m 02 u steady startup nodiscard
.lib LT3791-1.sub
.backanno
.end

Final Design Netlist

* C:\Users\Sheldon\Desktop\Senior ProjectlLTSpiceIIXTH180N10T_50V_22uH.asc

CSS2 N045 0 33n V=10 Rser=. 01
RIN2 IN N024 12m
REN3 IN N005 200k tol=1
REN4 N005 0 62k tol=1
R2 N026 N024 51 tol=1
C2 IN N026 470n V=10 Rser=0.01
CINTV2 N027 $04.7 \mu \mathrm{~V}=100$ Rser=. 001
ROV3 IN N029 200k tol=1
ROV4 N029 0 12.4k tol=1
RT2 N041 0 59k tol=1
CVREF2 N040 $0.1 \mu \mathrm{~V}=25$ Rser=. 01
L2 N033 N034 $22 \mu \mathrm{Ipk}=15$ Rser=0.007
CBS3 N030 N033 0.1 $\mu \mathrm{V}=25$ Rser=. 01
D5 N027 N030 BAT46WJ
CBS4 N028 N034 0.1 $\mu \mathrm{V}=25$ Rser=. 01
D6 N027 N028 BAT46WJ
RLSENSE2 N037 01.5 m tol=1
RFB3 OUT N044 196k tol=1
RFB4 N044 06.81 k tol=1
ROUT2 N025 OUT 27 m tol=1
XU2 N040 N045 N040 N039 N036 N040 E D N005 IN N026 N024 N027 N032 N030 N033 0 N035 N038 MP_01
N034 N028 MP_02 N031 N025 OUT N037 0 MP_03 0 N043 N039 C CLKOUT N041 N042 N044 N029 LT3791-1
RSHORT2 N027 N036 200K tol=1
RSS2 N040 N045 100K tol=1
CSS1 N023 0 33n V=10 Rser=. 01
CVC1 P001 0 33nF V=10 Rser=. 01
RIN1 IN N001 12 m tol=1
REN1 IN N005 200k tol=1
REN2 N005 0 62k tol=1
R1 N003 N001 51 tol=1
C1 IN N003 470n V=10 Rser=. 01
CINTV1 N004 $04.7 \mu \mathrm{~V}=100$ Rser=. 01
ROV1 IN N007 200k tol=1
ROV2 N007 0 12.4k tol=1
RT1 N019 0 59k tol=1
CVREF1 N018 $0.1 \mu \mathrm{~V}=25$ Rser=. 01
M§Q1 N001 N009 N011 N011 IXTH180N10T_2
L1 N012 N011 $22 \mu \mathrm{Ipk}=15$ Rser=0.007
CBS1 N008 N011 $0.1 \mu \mathrm{~V}=25$ Rser=. 01
D1 N004 N008 BAT46WJ
CBS2 N006 N012 $0.1 \mu \mathrm{~V}=25$ Rser=. 01
D2 N004 N006 BAT46WJ
RLSENSE1 N015 01.5 m tol=1
RFB1 OUT N022 196k
RFB2 N022 0 6.81k tol=1
ROUT1 N002 OUT 27 m tol $=1$
COUT4 N002 $04.7 \mu \mathrm{~V}=50$ Irms=0 Rser=0.1 Lser=0
XU1 N018 N023 N018 N017 N014 N018 B A N005 IN N003 N001 N004 N009 N008 N011 0 N013 N016 MP_04
N012 N006 MP_05 N010 N002 OUT N015 0 MP_06 0 N021 N017 CLKOUT 0 N019 N020 N022 N007 LT3791-1
RSHORT1 N004 N014 200K tol=1
RSS1 N018 N023 100K tol=1
V1 IN 0 PWL(0 0 1m 50) Rser=1
RVC1 N020 P001 3k tol=1
CVC2 N046 0 33nF V=10 Rser=. 01

RVC2 N042 N046 3k tol=1
RCCM1 N004 N017 100k
RCCM2 N027 N039 100k
M§Q2 N011 N013 N015 N015 IXTH180N10T_2
M§Q3 N012 N016 N015 N015 IXTH180N10T_2
M§Q4 N002 N010 N012 N012 IXTH180N10T_2
M§Q5 N024 N032 N033 N033 IXTH180N10T_2
M§Q6 N033 N035 N037 N037 IXTH180N10T_2
M§Q7 N034 N038 N037 N037 IXTH180N10T_2
M§Q8 N025 N031 N034 N034 IXTH180N10T_2
COUT3 N002 $04.7 \mu \mathrm{~V}=50 \mathrm{Irms}=0$ Rser=0.1 Lser=0
COUT1 N002 $04.7 \mu \mathrm{~V}=50$ Irms=0 Rser=0.1 Lser=0
D3 N015 N011 MBR20100CT
D7 N037 N033 MBR20100CT
D8 N034 N025 MBR20100CT
D4 N012 N002 MBR20100CT
R31 B 0 1G
R32 A 01 G
R33 D 0 1G
R34 C 01 G
R35 E 0 1G
I1 OUT 06.6 load
CIN3 N001 $04.7 \mu \mathrm{~V}=100$ Rser=0.1
CIN4 N001 $04.7 \mu \mathrm{~V}=100$ Rser=0.1
CIN7 N024 $04.7 \mu \mathrm{~V}=100$ Rser=0.1
CIN8 N024 $04.7 \mu \mathrm{~V}=100$ Rser=0.1
CIN1 N001 $04.7 \mu \mathrm{~V}=100$ Rser=0.1
CIN2 N001 $04.7 \mu \mathrm{~V}=100$ Rser=0.1
COUT2 N002 $04.7 \mu \mathrm{~V}=50$ Irms=0 Rser=0.1 Lser=0
CIN5 N024 $04.7 \mu \mathrm{~V}=100$ Rser=0.1
CIN6 N024 $04.7 \mu \mathrm{~V}=100$ Rser=0.1
COUT8 N025 $04.7 \mu \mathrm{~V}=50$ Irms=0 Rser=0.1 Lser=0
COUT7 N025 $04.7 \mu \mathrm{~V}=50$ Irms=0 Rser=0.1 Lser=0
COUT5 N025 $04.7 \mu \mathrm{~V}=50$ Irms=0 Rser=0.1 Lser=0
COUT6 N025 0 4.7 $\mu \mathrm{V}=50$ Irms=0 Rser=0.1 Lser=0
.model D D
.lib C:\Program Files (x86)\LTC\LTspiceIV\lib\cmp\standard.dio .model NMOS NMOS
.model PMOS PMOS
.lib C:\Program Files (x86)\LTC\LTspiceIV\lib\cmp\standard.mos
.tran 03 m 02 u steady startup nodiscard
.lib LT3791-1.sub
.backanno
.end

E. Initial Design Results

Based on (Figure 9-1) and Initial Design Netlist (Section D)
Table 17-1: Power dissipation and efficiency, $V_{I N}=6 \mathrm{~V}$

Efficiency: 83.0\%			
Input: 4.31W @ 6V			
Output: 3.57W @ 35.7V			
Ref.	Irms	Ipeak	Dissipation
C1	0 mA	0 mA	0mW
C2	0 mA	0 mA	0mW
C3	0 mA	0 mA	0mW
C4	37 mA	627 mA	0mW
C5	0 mA	0 mA	0mW
C6	0 mA	0 mA	0mW
C7	3 mA	198 mA	0mW
C8	270 mA	10284 mA	0mW
C11	13 mA	33 mA	0mW
C14	0 mA	0 mA	0mW
C15	0 mA	0 mA	0mW
C16	0 mA	0 mA	0mW
C17	37 mA	628 mA	0mW
C18	0 mA	0 mA	0mW
C19	0 mA	0 mA	0mW
C20	3 mA	198 mA	0mW
C21	267 mA	10212 mA	0mW
C24	13 mA	35 mA	0mW
D1	0 mA	0 mA	0mW
D2	3 mA	198 mA	0mW
D3	0 mA	0 mA	0mW
D4	3 mA	198 mA	0mW
L1	379 mA	610 mA	2mW
L2	381 mA	602 mA	2mW
Q1	379 mA	610 mA	4 mW
Q2	0 mA	26 mA	$-0 \mathrm{~mW}$
Q3	423 mA	10695 mA	276 mW
Q4	278 mA	10542 mA	36 mW
Q5	381 mA	602 mA	4 mW
Q6	0 mA	24 mA	0mW
Q7	425 mA	10423 mA	277 mW
Q8	279 mA	10277 mA	37 mW

Ref.	Irms	Ipeak	Dissipation
R1	383 mA	598 mA	$880 \mu \mathrm{~W}$
R2	0 mA	0 mA	$105 \mu \mathrm{~W}$
R3	0 mA	0 mA	$32 \mu \mathrm{~W}$
R4	0 mA	0 mA	$0 \mu \mathrm{~W}$
R5	0 mA	0 mA	$160 \mu \mathrm{~W}$
R6	0 mA	0 mA	$10 \mu \mathrm{~W}$
R7	0 mA	0 mA	$17 \mu \mathrm{~W}$
R8	434 mA	10898 mA	$282 \mu \mathrm{~W}$
R9	0 mA	0 mA	6 mW
R10	0 mA	0 mA	$212 \mu \mathrm{~W}$
R11	52 mA	432 mA	$72 \mu \mathrm{~W}$
R12	0 mA	0 mA	$0 \mu \mathrm{~W}$
R13	0 mA	0 mA	$0 \mu \mathrm{~W}$
R14	0 mA	0 mA	$0 \mu \mathrm{~W}$
R15	0 mA	0 mA	$0 \mu \mathrm{~W}$
R16	0 mA	0 mA	$245 \mu \mathrm{~W}$
R17	381 mA	607 mA	$872 \mu \mathrm{~W}$
R18	0 mA	0 mA	$105 \mu \mathrm{~W}$
R19	0 mA	0 mA	$32 \mu \mathrm{~W}$
R20	0 mA	0 mA	$0 \mu \mathrm{~W}$
R21	0 mA	0 mA	$160 \mu \mathrm{~W}$
R22	0 mA	0 mA	$10 \mu \mathrm{~W}$
R23	0 mA	0 mA	$17 \mu \mathrm{~W}$
R24	431 mA	11168 mA	$279 \mu \mathrm{~W}$
R25	0 mA	0 mA	6 mW
R26	0 mA	0 mA	$212 \mu \mathrm{~W}$
R27	51 mA	377 mA	$71 \mu \mathrm{~W}$
R28	0 mA	0 mA	$0 \mu \mathrm{~W}$
R29	0 mA	0 mA	$0 \mu \mathrm{~W}$
R30	0 mA	0 mA	$245 \mu \mathrm{~W}$
U1	788 mA	40 mW	
U2	789 mA	40 mW	

Table 17-2: Power dissipation and efficiency, $V_{I N}=10 \mathrm{~V}$

Efficiency: 90.9\%			
Input: 10.9W @ 10V			
Output: 9.94W @ 35.7V			
Ref.	Irms	Ipeak	Dissipation
C1	0 mA	0 mA	0mW
C2	0 mA	0 mA	0mW
C3	0 mA	0 mA	0mW
C4	36 mA	628 mA	0mW
C5	0 mA	0 mA	0mW
C6	0 mA	0 mA	0mW
C7	4 mA	207 mA	0mW
C8	371 mA	13020 mA	0mW
C11	31 mA	57 mA	0mW
C14	0 mA	0 mA	0mW
C15	0 mA	0 mA	0mW
C16	0 mA	0 mA	0mW
C17	36 mA	628 mA	0mW
C18	0 mA	0 mA	0mW
C19	0 mA	0 mA	0mW
C20	4 mA	207 mA	0mW
C21	365 mA	12852 mA	0mW
C24	32 mA	57 mA	0mW
D1	0 mA	0 mA	0mW
D2	4 mA	207 mA	0mW
D3	0 mA	0 mA	0mW
D4	4 mA	207 mA	0mW
L1	576 mA	902 mA	4 mW
L2	578 mA	896 mA	4 mW
Q1	576 mA	902 mA	8 mW
Q2	0 mA	37 mA	$-0 \mathrm{~mW}$
Q3	562 mA	13427 mA	314 mW
Q4	398 mA	13191 mA	102 mW
Q5	578 mA	896 mA	8 mW
Q6	0 mA	34 mA	-0mW
Q7	564 mA	13211 mA	315 mW
Q8	399 mA	12983 mA	102mW

Ref.	Irms	Ipeak	Dissipation
R1	580 mA	880 mA	4 mW
R2	0 mA	0 mA	$291 \mu \mathrm{~W}$
R3	0 mA	0 mA	90 $\mu \mathrm{W}$
R4	0 mA	0 mA	$0 \mu \mathrm{~W}$
R5	0 mA	0 mA	$443 \mu \mathrm{~W}$
R6	0 mA	0 mA	$27 \mu \mathrm{~W}$
R7	0 mA	0 mA	$17 \mu \mathrm{~W}$
R8	571 mA	13667 mA	$488 \mu \mathrm{~W}$
R9	0 mA	0 mA	6 mW
R10	0 mA	0 mA	$212 \mu \mathrm{~W}$
R11	140 mA	619 mA	$530 \mu \mathrm{~W}$
R12	0 mA	0 mA	$0 \mu \mathrm{~W}$
R13	0 mA	0 mA	$0 \mu \mathrm{~W}$
R14	0 mA	0 mA	$0 \mu \mathrm{~W}$
R15	0 mA	0 mA	$0 \mu \mathrm{~W}$
R16	0 mA	0 mA	$245 \mu \mathrm{~W}$
R17	578 mA	889 mA	4 mW
R18	0 mA	0 mA	$291 \mu \mathrm{~W}$
R19	0 mA	0 mA	$90 \mu \mathrm{~W}$
R20	0 mA	0 mA	$0 \mu \mathrm{~W}$
R21	0 mA	0 mA	$443 \mu \mathrm{~W}$
R22	0 mA	0 mA	$27 \mu \mathrm{~W}$
R23	0 mA	0 mA	$17 \mu \mathrm{~W}$
R24	568 mA	13883 mA	$484 \mu \mathrm{~W}$
R25	0 mA	0 mA	6 mW
R26	0 mA	0 mA	$212 \mu \mathrm{~W}$
R27	139 mA	555 mA	$525 \mu \mathrm{~W}$
R28	0 mA	0 mA	$0 \mu \mathrm{~W}$
R29	0 mA	0 mA	$0 \mu \mathrm{~W}$
R30	0 mA	0 mA	$245 \mu \mathrm{~W}$
U1	55 mA	791 mA	57 mW
U2	55 mA	791 mA	57 mW

Table 17-3: Power dissipation and efficiency, $V_{I N}=15 \mathrm{~V}$

Efficiency: 93.8\%			Dissipation	Ref.	Irms	Ipeak	
Input: 23.8W @ 15V							
Output: 22.3W @ 35.7V							
Ref.	Irms	Ipeak					
C1	0 mA	0 mA	0 mW	R1	5 mA	13 mA	$0 \mu \mathrm{~W}$
C2	0 mA	0 mA	0mW	R2	0 mA	0 mA	$656 \mu \mathrm{~W}$
C3	0 mA	0 mA	0mW	R3	0 mA	0 mA	$203 \mu \mathrm{~W}$
C4	36 mA	635 mA	0 mW	R4	0 mA	0 mA	$0 \mu \mathrm{~W}$
C5	0 mA	0 mA	0 mW	R5	0 mA	0 mA	1 mW
C6	0 mA	0 mA	0 mW	R6	0 mA	0 mA	$60 \mu \mathrm{~W}$
C7	4 mA	225 mA	0mW	R7	0 mA	0 mA	$17 \mu \mathrm{~W}$
C8	533 mA	17987 mA	1 mW	R8	728 mA	18564 mA	$795 \mu \mathrm{~W}$
C11	1 mA	10 mA	0mW	R9	0 mA	0 mA	6 mW
C14	0 mA	0 mA	0 mW	R10	0 mA	0 mA	$212 \mu \mathrm{~W}$
C15	0 mA	0 mA	0 mW	R11	314 mA	990 mA	3 mW
C16	0 mA	0 mA	0 mW	R12	0 mA	0 mA	$0 \mu \mathrm{~W}$
C17	36 mA	635 mA	0 mW	R13	0 mA	0 mA	$0 \mu \mathrm{~W}$
C18	0 mA	0 mA	0 mW	R14	0 mA	0 mA	$0 \mu \mathrm{~W}$
C19	0 mA	0 mA	0 mW	R15	0 mA	0 mA	$0 \mu \mathrm{~W}$
C20	4 mA	226 mA	0mW	R16	0mA	0 mA	$245 \mu \mathrm{~W}$
C21	525 mA	17706 mA	1 mW	R17	5 mA	14 mA	$0 \mu \mathrm{~W}$
C24	2 mA	13 mA	0 mW	R18	0 mA	0 mA	$656 \mu \mathrm{~W}$
D1	0 mA	0 mA	0 mW	R19	0 mA	0 mA	$203 \mu \mathrm{~W}$
D2	4 mA	226 mA	0 mW	R20	0 mA	0 mA	$0 \mu \mathrm{~W}$
D3	0 mA	0 mA	0 mW	R21	0 mA	0 mA	1 mW
D4	4 mA	225 mA	0mW	R22	0 mA	0 mA	$60 \mu \mathrm{~W}$
L1	823 mA	1226 mA	8 mW	R23	0 mA	0 mA	$17 \mu \mathrm{~W}$
L2	827 mA	1217 mA	8 mW	R24	724 mA	18633 mA	$787 \mu \mathrm{~W}$
Q1	823 mA	1226 mA	17 mW	R25	0 mA	0 mA	6 mW
Q2	0 mA	59 mA	-0mW	R26	0 mA	0 mA	$212 \mu \mathrm{~W}$
Q3	719 mA	18207 mA	393 mW	R27	312 mA	912 mA	3 mW
Q4	618 mA	17804 mA	232 mW	R28	0 mA	0 mA	$0 \mu \mathrm{~W}$
Q5	827 mA	1217 mA	17 mW	R29	0 mA	0 mA	$0 \mu \mathrm{~W}$
Q6	0 mA	60 mA	0 mW	R30	0 mA	0 mA	$245 \mu \mathrm{~W}$
Q7	723 mA	18139 mA	395 mW	U1	55 mA	803 mA	79 mW
Q8	622 mA	17739 mA	233 mW	U2	55 mA	803 mA	79 mW

Table 17-4: Power dissipation and efficiency, $V_{I N}=20 \mathrm{~V}$
Efficiency: 96.5\%

Input: 40.8 W @ 20V			Dissipation	Ref.	Irms	Ipeak	Dissipation
Output: 39.3W @ 35.7V							
Ref.	Irms	Ipeak					
C1	0mA	0 mA	0mW	R1	1048 mA	1421 mA	13mW
C2	0 mA	0 mA	0mW	R2	0 mA	0 mA	1 mW
C3	0 mA	0 mA	0mW	R3	0 mA	0 mA	$361 \mu \mathrm{~W}$
C4	37 mA	647 mA	0mW	R4	0 mA	0 mA	$0 \mu \mathrm{~W}$
C5	0 mA	0 mA	0mW	R5	0 mA	0 mA	2mW
C6	0 mA	0 mA	0mW	R6	0 mA	0 mA	$110 \mu \mathrm{~W}$
C7	35 mA	648 mA	0mW	R7	0 mA	0 mA	$17 \mu \mathrm{~W}$
C8	658 mA	21021 mA	1 mW	R8	808 mA	21619 mA	$978 \mu \mathrm{~W}$
C11	35 mA	56 mA	0mW	R9	0 mA	0 mA	6 mW
C14	0 mA	0 mA	0mW	R10	0 mA	0 mA	$212 \mu \mathrm{~W}$
C15	0 mA	0 mA	0mW	R11	553 mA	1315 mA	8 mW
C16	0 mA	0 mA	0mW	R12	0 mA	0 mA	$0 \mu \mathrm{~W}$
C17	37 mA	647 mA	0mW	R13	0 mA	0 mA	$0 \mu \mathrm{~W}$
C18	0 mA	0 mA	0mW	R14	0 mA	0 mA	$0 \mu \mathrm{~W}$
C19	0 mA	0 mA	0mW	R15	0 mA	0 mA	$0 \mu \mathrm{~W}$
C20	35 mA	648 mA	0mW	R16	0 mA	0 mA	$0 \mu \mathrm{~W}$
C21	648 mA	20775 mA	1 mW	R17	1042mA	1423 mA	13 mW
C24	35 mA	65 mA	0mW	R18	0 mA	0 mA	1 mW
D1	0 mA	0 mA	0mW	R19	0 mA	0 mA	$361 \mu \mathrm{~W}$
D2	7 mA	244 mA	1 mW	R20	0 mA	0 mA	$0 \mu \mathrm{~W}$
D3	0 mA	0 mA	0mW	R21	0 mA	0 mA	2 mW
D4	7 mA	244 mA	1 mW	R22	0 mA	0 mA	$110 \mu \mathrm{~W}$
L1	1036 mA	1441 mA	13 mW	R23	0 mA	0 mA	$17 \mu \mathrm{~W}$
L2	1043 mA	1443 mA	13mW	R24	802 mA	21541 mA	$965 \mu \mathrm{~W}$
Q1	1036 mA	1441 mA	26 mW	R25	0 mA	0 mA	6 mW
Q2	0 mA	70 mA	$-0 \mathrm{~mW}$	R26	0 mA	0 mA	$212 \mu \mathrm{~W}$
Q3	797 mA	21134 mA	450 mW	R27	549 mA	1223 mA	8 mW
Q4	855 mA	20513 mA	39 mW	R28	0 mA	0 mA	$0 \mu \mathrm{~W}$
Q5	1043 mA	1443 mA	27 mW	R29	0 mA	0 mA	$0 \mu \mathrm{~W}$
Q6	0 mA	69 mA	$-0 \mathrm{~mW}$	R30	0 mA	0 mA	$0 \mu \mathrm{~W}$
Q7	802 mA	21212 mA	453 mW	U1	55 mA	817 mA	153mW
Q8	861 mA	20587 mA	40 mW	U2	55 mA	817 mA	153 mW

Table 17-5: Power dissipation and efficiency, $V_{I N}=25 \mathrm{~V}$

Efficiency: 97.1%
Input: $63.7 \mathrm{~W} @ 25 \mathrm{~V}$
Output: $61.8 \mathrm{~W} @ 35.7 \mathrm{~V}$

Ref.	Irms	Ipeak	Dissipation	Ref.	Irms	Ipeak	Dissipation
C1	0 mA	0 mA	0 mW	R1	1294 mA	1655 mA	20 mW
C2	0 mA	0 mA	0mW	R2	0 mA	0 mA	2 mW
C3	0 mA	0 mA	0mW	R3	0 mA	0 mA	$564 \mu \mathrm{~W}$
C4	37 mA	651 mA	0mW	R4	0 mA	0 mA	$0 \mu \mathrm{~W}$
C5	0 mA	0 mA	0 mW	R5	0 mA	0 mA	3 mW
C6	0 mA	0 mA	0mW	R6	0 mA	0 mA	$172 \mu \mathrm{~W}$
C7	34 mA	637 mA	0mW	R7	0 mA	0 mA	$17 \mu \mathrm{~W}$
C8	780 mA	27308 mA	1 mW	R8	879 mA	27782 mA	1 mW
C11	32 mA	56 mA	0mW	R9	0 mA	0 mA	6 mW
C14	0 mA	0 mA	0 mW	R10	0 mA	0 mA	$212 \mu \mathrm{~W}$
C15	0 mA	0 mA	0mW	R11	868 mA	1859 mA	20 mW
C16	0 mA	0 mA	0mW	R12	0 mA	0 mA	$0 \mu \mathrm{~W}$
C17	37 mA	652 mA	0 mW	R13	0 mA	0 mA	$0 \mu \mathrm{~W}$
C18	0 mA	0 mA	0 mW	R14	0 mA	0 mA	$0 \mu \mathrm{~W}$
C19	0 mA	0 mA	0mW	R15	0 mA	0 mA	$0 \mu \mathrm{~W}$
C20	34 mA	636 mA	0mW	R16	0 mA	0 mA	$0 \mu \mathrm{~W}$
C21	768 mA	27218 mA	1 mW	R17	1286 mA	1655 mA	20 mW
C24	33 mA	88 mA	0mW	R18	0 mA	0 mA	2 mW
D1	0 mA	0 mA	0 mW	R19	0 mA	0 mA	$564 \mu \mathrm{~W}$
D2	7 mA	268 mA	1 mW	R20	0 mA	0 mA	$0 \mu \mathrm{~W}$
D3	0 mA	0 mA	0 mW	R21	0 mA	0 mA	3 mW
D4	7 mA	268 mA	1 mW	R22	0 mA	0 mA	$172 \mu \mathrm{~W}$
L1	1280 mA	1672 mA	20 mW	R23	0 mA	0 mA	$17 \mu \mathrm{~W}$
L2	1288 mA	1676 mA	20 mW	R24	874 mA	27872 mA	1 mW
Q1	1280 mA	1673 mA	40 mW	R25	0 mA	0 mA	6 mW
Q2	0 mA	105 mA	-0mW	R26	0 mA	0 mA	$212 \mu \mathrm{~W}$
Q3	868 mA	27501 mA	570 mW	R27	863 mA	1738 mA	20 mW
Q4	1163 mA	26528 mA	60 mW	R28	0 mA	0 mA	$0 \mu \mathrm{~W}$
Q5	1288 mA	1676 mA	41 mW	R29	0 mA	0 mA	$0 \mu \mathrm{~W}$
Q6	0 mA	99 mA	0mW	R30	0 mA	0 mA	$0 \mu \mathrm{~W}$
Q7	873 mA	27412 mA	573 mW	U1	55 mA	836 mA	187 mW
Q8	1170 mA	26446 mA	61 mW	U2	55 mA	837 mA	186 mW

Table 17-6: Power dissipation and efficiency, $V_{I N}=30 \mathrm{~V}$

Efficiency: 95.1%							
Input: 94W @ 30V							
Output: 89.4W @ 35.7V							
Ref.	Irms	Ipeak	Dissipation	Ref.	Irms	Ipeak	Dissipation

C1	0 mA	0 mA	0mW
C2	0 mA	0 mA	0mW
C3	0 mA	3 mA	0mW
C4	55 mA	1058 mA	0mW
C5	0 mA	0 mA	0mW
C6	39 mA	1339 mA	0 mW
C7	33 mA	615 mA	0mW
C8	1546 mA	51367 mA	5 mW
C11	968 mA	45318 mA	4 mW
C14	0 mA	0 mA	0mW
C15	0 mA	0 mA	0 mW
C16	0 mA	0 mA	0mW
C17	36 mA	652 mA	0mW
C18	0 mA	0 mA	0mW
C19	1 mA	37 mA	0 mW
C20	25 mA	586 mA	0mW
C21	542 mA	7970 mA	1 mW
C24	2 mA	14 mA	0mW
D1	1 mA	37 mA	0mW
D2	5 mA	193 mA	0mW
D3	18 mA	1024 mA	2 mW
D4	8 mA	381 mA	1 mW
L1	78 mA	187 mA	0mW
L2	3384 mA	4034 mA	137 mW
Q1	0 mA	0 mA	0 mW
Q2	72 mA	186 mA	15 mW
Q3	157 mA	8013 mA	67 mW
Q4	147 mA	7725 mA	78 mW
Q5	3452 mA	61885 mA	1471 mW
Q6	1490 mA	58246 mA	118 mW
Q7	2026 mA	53766 mA	1474mW
Q8	3105 mA	50420 mA	326 mW

R1	3229 mA	16597 mA	125 mW
R2	0 mA	0 mA	3 mW
R3	0 mA	0 mA	$812 \mu \mathrm{~W}$
R4	0 mA	3 mA	$2 \mu \mathrm{~W}$
R5	0 mA	0 mA	4 mW
R6	0 mA	0 mA	$247 \mu \mathrm{~W}$
R7	0mA	0 mA	$17 \mu \mathrm{~W}$
R8	2518 mA	58161 mA	10 mW
R9	0 mA	0 mA	6 mW
R10	0 mA	0 mA	$212 \mu \mathrm{~W}$
R11	2560 mA	3074 mA	177 mW
R12	0 mA	0 mA	$0 \mu \mathrm{~W}$
R13	0 mA	0 mA	$0 \mu \mathrm{~W}$
R14	0 mA	0 mA	$0 \mu \mathrm{~W}$
R15	0 mA	0 mA	$0 \mu \mathrm{~W}$
R16	0 mA	0 mA	$205 \mu \mathrm{~W}$
R17	7 mA	18 mA	$1 \mu \mathrm{~W}$
R18	0 mA	0 mA	3 mW
R19	0 mA	0 mA	$812 \mu \mathrm{~W}$
R20	0 mA	0 mA	$0 \mu \mathrm{~W}$
R21	0 mA	0 mA	4 mW
R22	0 mA	0 mA	$247 \mu \mathrm{~W}$
R23	0 mA	0 mA	$17 \mu \mathrm{~W}$
R24	162 mA	8459 mA	$39 \mu \mathrm{~W}$
R25	0 mA	0 mA	6 mW
R26	0 mA	0 mA	$212 \mu \mathrm{~W}$
R27	524 mA	1643 mA	7 mW
R28	0 mA	0 mA	$0 \mu \mathrm{~W}$
R29	0 mA	0 mA	$1 \mu \mathrm{~W}$
R30	0 mA	0 mA	$0 \mu \mathrm{~W}$
U1	53 mA	788 mA	181 mW
U2	58 mA	976 mA	420 mW

Table 17-7: Power dissipation and efficiency, $V_{I N}=36 \mathrm{~V}$

Efficiency: 95.4%		
Input: 135 W @ 36 V		
Output: 129 W @ 35.8 V		
Ref.	Irms	Ipeak
Dissipation		
C1	0 mA	0 mA
C 2	0 mA	0 mA
0 mW		

Ref.	Irms	Ipeak	Dissipation
R1	1974 mA	13657 mA	47 mW
R2	0 mA	0 mA	4 mW

C3	0 mA	3 mA	0 mW
C4	57 mA	944 mA	0 mW
C5	0 mA	0 mA	0 mW
C6	39 mA	1277 mA	0mW
C7	32 mA	714 mA	0mW
C8	1064 mA	47973 mA	2 mW
C11	642 mA	37853 mA	2 mW
C14	0 mA	0 mA	0mW
C15	0 mA	0 mA	0 mW
C16	0 mA	0 mA	0 mW
C17	57 mA	975 mA	0mW
C18	0 mA	0 mA	0 mW
C19	39 mA	1298 mA	0mW
C20	32 mA	714 mA	0mW
C21	1051 mA	47576 mA	2 mW
C24	837 mA	50162 mA	0mW
D1	18 mA	940 mA	2 mW
D2	11 mA	350 mA	1 mW
D3	18 mA	910 mA	2 mW
D4	11 mA	351 mA	1 mW
L1	2048 mA	2795 mA	50 mW
L2	2055 mA	2802 mA	51 mW
Q1	2123 mA	51346 mA	1005 mW
Q2	954 mA	48810 mA	55 mW
Q3	1020 mA	49057 mA	956 mW
Q4	2091 mA	46643 mA	356mW
Q5	2131 mA	51480 mA	1007 mW
Q6	957 mA	48938 mA	55 mW
Q7	1024 mA	49212 mA	959 mW
Q8	2099 mA	46789 mA	358 mW

R3	0 mA	0 mA	1 mW
R4	0 mA	3 mA	$1 \mu \mathrm{~W}$
R5	0 mA	0 mA	6 mW
R6	0 mA	0 mA	$356 \mu \mathrm{~W}$
R7	0 mA	0 mA	$17 \mu \mathrm{~W}$
R8	1407 mA	49458 mA	3 mW
R9	0 mA	0 mA	6 mW
R10	0 mA	0 mA	$212 \mu \mathrm{~W}$
R11	1804 mA	3622 mA	88 mW
R12	0 mA	0 mA	$0 \mu \mathrm{~W}$
R13	0 mA	0 mA	$0 \mu \mathrm{~W}$
R14	0 mA	0 mA	$0 \mu \mathrm{~W}$
R15	0 mA	0 mA	$0 \mu \mathrm{~W}$
R16	0 mA	0 mA	$0 \mu \mathrm{~W}$
R17	1962 mA	2805 mA	46 mW
R18	0 mA	0 mA	4 mW
R19	0 mA	0 mA	1 mW
R20	0 mA	0 mA	$1 \mu \mathrm{~W}$
R21	0 mA	0 mA	6 mW
R22	0 mA	0 mA	$356 \mu \mathrm{~W}$
R23	0 mA	0 mA	$17 \mu \mathrm{~W}$
R24	1402 mA	49302 mA	3 mW
R25	0 mA	0 mA	6 mW
R26	0 mA	0 mA	$212 \mu \mathrm{~W}$
R27	1797 mA	3333 mA	87 mW
R28	0 mA	0 mA	$0 \mu \mathrm{~W}$
R29	0 mA	0 mA	$0 \mu \mathrm{~W}$
R30	0 mA	0 mA	$0 \mu \mathrm{~W}$
U1	58 mA	946 mA	486 mW
U2	58 mA	947 mA	485 mW

Table 17-8: Power dissipation and efficiency, $V_{I N}=40 \mathrm{~V}$

Efficiency: 95.5%				
Output: 157 W @ 35.8 V				
Ref.		Irms	Ipeak	Dissipation
C1	0 mA	0 mA	0 mW	
C2	0 mA	0 mA	0 mW	
C3	0 mA	2 mA	0 mW	
C 4	58 mA	944 mA	0 mW	

Ref.	Irms	Ipeak	Dissipation
R1	2178 mA	12646 mA	57 mW
R2	0 mA	0 mA	5 mW
R3	0 mA	0 mA	1 mW
R4	0 mA	2 mA	$1 \mu \mathrm{~W}$

C5	0 mA	0 mA	0 mW
C6	39 mA	1294 mA	0 mW
C7	32 mA	711 mA	0 mW
C8	1023 mA	47456 mA	2 mW
C11	707 mA	35560 mA	2 mW
C14	0 mA	0 mA	0 mW
C15	0 mA	0 mA	0 mW
C16	0 mA	1 mA	0 mW
C17	58 mA	941 mA	0 mW
C18	0 mA	0 mA	0 mW
C19	39 mA	1292 mA	0 mW
C20	32 mA	707 mA	0 mW
C21	1011 mA	47546 mA	2 mW
C24	919 mA	46655 mA	0 mW
D1	18 mA	914 mA	2 mW
D2	13 mA	341 mA	1 mW
D3	18 mA	918 mA	2 mW
D4	13 mA	341 mA	1 mW
L1	2333 mA	2654 mA	65 mW
L2	2336 mA	2657 mA	66 mW
Q1	2348 mA	47622 mA	1243 mW
Q2	1177 mA	45429 mA	73 mW
Q3	1036 mA	47614 mA	1097 mW
Q4	2430 mA	45344 mA	430 mW
Q5	2351 mA	48183 mA	1242 mW
Q6	1178 mA	45952 mA	73 mW
Q7	1037 mA	47519 mA	1099 mW
Q8	2433 mA	45257 mA	430 mW

R5	0 mA	0 mA	7 mW
R6	0 mA	0 mA	$440 \mu \mathrm{~W}$
R7	0 mA	0 mA	$17 \mu \mathrm{~W}$
R8	1575 mA	47773 mA	4 mW
R9	0 mA	0 mA	6 mW
R10	0 mA	0 mA	$212 \mu \mathrm{~W}$
R11	2202 mA	3955 mA	131 mW
R12	0 mA	0 mA	$0 \mu \mathrm{~W}$
R13	0 mA	0 mA	$0 \mu \mathrm{~W}$
R14	0 mA	0 mA	$0 \mu \mathrm{~W}$
R15	0 mA	0 mA	$0 \mu \mathrm{~W}$
R16	0 mA	0 mA	$0 \mu \mathrm{~W}$
R17	2172 mA	2649 mA	57 mW
R18	0 mA	0 mA	5 mW
R19	0 mA	0 mA	1 mW
R20	0 mA	1 mA	$1 \mu \mathrm{~W}$
R21	0 mA	0 mA	7 mW
R22	0 mA	0 mA	$440 \mu \mathrm{~W}$
R23	0 mA	0 mA	$17 \mu \mathrm{~W}$
R24	1573 mA	47866 mA	4 mW
R25	0 mA	0 mA	6 mW
R26	0 mA	0 mA	$212 \mu \mathrm{~W}$
R27	2199 mA	3728 mA	131 mW
R28	0 mA	0 mA	$0 \mu \mathrm{~W}$
R29	0 mA	0 mA	$0 \mu \mathrm{~W}$
R30	0 mA	0 mA	$0 \mu \mathrm{~W}$
U1	58 mA	941 mA	541 mW
U2	58 mA	941 mA	540 mW

Table 17-9: Power dissipation and efficiency, $V_{I N}=45 \mathrm{~V}$

Efficiency: 96.8%			
Input: 207W @ 45 V			
Output: 200 W @ 35.8 V			
Ref.	Irms	Ipeak	Dissipation
C1	0 mA	0 mA	0 mW
C2	0 mA	0 mA	0 mW
C3	0 mA	3 mA	0 mW
C4	43 mA	963 mA	0 mW
C5	0 mA	0 mA	0 mW
C6	40 mA	1302 mA	0 mW

Ref.	Irms	Ipeak	Dissipation
R1	2512 mA	14082 mA	76 mW
R2	0 mA	0 mA	6 mW
R3	0 mA	0 mA	2 mW
R4	0 mA	3 mA	$3 \mu \mathrm{~W}$
R5	0 mA	0 mA	9 mW
R6	0 mA	0 mA	$556 \mu \mathrm{~W}$

C7	1 mA	711 mA	0 mW
C8	193 mA	1851 mA	0 mW
C11	815 mA	39583 mA	3 mW
C14	0 mA	0 mA	0 mW
C15	0 mA	0 mA	0 mW
C16	0 mA	1 mA	0 mW
C17	43 mA	961 mA	0 mW
C18	0 mA	0 mA	0 mW
C19	40 mA	1300 mA	0 mW
C20	1 mA	711 mA	0 mW
C21	190 mA	1797 mA	0 mW
C24	1056 mA	52643 mA	0 mW
D1	18 mA	941 mA	2 mW
D2	0 mA	25 mA	0 mW
D3	18 mA	943 mA	2 mW
D4	0 mA	25 mA	0 mW
L1	2807 mA	3246 mA	95 mW
L2	2807 mA	3238 mA	95 mW
Q1	2719 mA	53800 mA	1627 mW
Q2	1541 mA	51191 mA	106 mW
Q3	1 mA	1792 mA	-0 mW
Q4	2807 mA	4615 mA	812 mW
Q5	2720 mA	53649 mA	1626 mW
Q6	1542 mA	51050 mA	106 mW
Q7	1 mA	1859 mA	-0 mW
Q8	2807 mA	4672 mA	811 mW

R7	0 mA	0 mA	$17 \mu \mathrm{~W}$
R8	1540 mA	50966 mA	4 mW
R9	0 mA	0 mA	6 mW
R10	0 mA	0 mA	$212 \mu \mathrm{~W}$
R11	2800 mA	2834 mA	212 mW
R12	0 mA	0 mA	$0 \mu \mathrm{~W}$
R13	0 mA	0 mA	$0 \mu \mathrm{~W}$
R14	0 mA	0 mA	$1 \mu \mathrm{~W}$
R15	0 mA	0 mA	$0 \mu \mathrm{~W}$
R16	0 mA	0 mA	$0 \mu \mathrm{~W}$
R17	2510 mA	3228 mA	76 mW
R18	0 mA	0 mA	6 mW
R19	0 mA	0 mA	2 mW
R20	0 mA	1 mA	$3 \mu \mathrm{~W}$
R21	0 mA	0 mA	9 mW
R22	0 mA	0 mA	$556 \mu \mathrm{~W}$
R23	0 mA	0 mA	$17 \mu \mathrm{~W}$
R24	1539 mA	51107 mA	4 mW
R25	0 mA	0 mA	6 mW
R26	0 mA	0 mA	$212 \mu \mathrm{~W}$
R27	2800 mA	2827 mA	212 mW
R28	0 mA	0 mA	$0 \mu \mathrm{~W}$
R29	0 mA	0 mA	$1 \mu \mathrm{~W}$
R30	0 mA	0 mA	$0 \mu \mathrm{~W}$
U1	58 mA	962 mA	354 mW
U2	58 mA	962 mA	353 mW

Table 17-10: Power dissipation and efficiency, $V_{I N}=50 \mathrm{~V}$

Efficiency: 96.7\%			
Input: 256 W @ 50 V			
Output: 248W @ 35.8V			
Ref.	Irms	Ipeak	
C1	0 mA	0 mA	0mW
C2	0mA	0mA	0mW
C3	0 mA	3 mA	0mW
C4	43 mA	1075 mA	0mW
C5	0mA	0mA	0mW
C6	40 mA	1403 mA	0mW
C7	2 mA	721 mA	0mW
C8	271 mA	1826 mA	0mW
C11	961 mA	44736 mA	4 mW
C14	0mA	0mA	0mW
C15	0mA	0mA	0mW
C16	0 mA	1 mA	0mW
C17	43 mA	1079mA	0mW
C18	0 mA	0 mA	0mW
C19	40 mA	1407 mA	0mW
C20	2 mA	721 mA	0mW
C21	268 mA	1782 mA	0mW
C24	1242 mA	58819 mA	0mW
D1	19 mA	1063 mA	2 mW
D2	0mA	25 mA	0mW
D3	19 mA	1059 mA	2 mW
D4	0 mA	25 mA	0mW
L1	3480 mA	4029 mA	145 mW
L2	3482 mA	4043 mA	146 mW
Q1	3195 mA	60190 mA	2163 mW
Q2	2114 mA	57093mA	169 mW
Q3	1 mA	1810 mA	-0mW
Q4	3480 mA	5246 mA	826 mW
Q5	3197 mA	60706 mA	2160 mW
Q6	2116 mA	57573 mA	169 mW
Q7	1 mA	1862 mA	$-0 \mathrm{~mW}$
Q8	3482 mA	5302 mA	827 mW

Ref.	Irms	Ipeak	Dissipation
R1	2950 mA	15981 mA	104 mW
R2	0 mA	0 mA	7 mW
R3	0 mA	0 mA	2 mW
R4	0 mA	3 mA	$6 \mu \mathrm{~W}$
R5	0 mA	0 mA	11 mW
R6	0 mA	0 mA	$687 \mu \mathrm{~W}$
R7	0 mA	0 mA	$17 \mu \mathrm{~W}$
R8	2113 mA	57482 mA	7 mW
R9	0 mA	0 mA	6 mW
R10	0 mA	0 mA	$212 \mu \mathrm{~W}$
R11	3471 mA	3510 mA	325 mW
R12	0 mA	0 mA	$0 \mu \mathrm{~W}$
R13	0 mA	0 mA	$0 \mu \mathrm{~W}$
R14	0 mA	0 mA	$0 \mu \mathrm{~W}$
R15	0 mA	0 mA	$0 \mu \mathrm{~W}$
R16	0mA	0 mA	$0 \mu \mathrm{~W}$
R17	2947 mA	4000 mA	104 mW
R18	0 mA	0 mA	7 mW
R19	0 mA	0 mA	2 mW
R20	0 mA	1 mA	$6 \mu \mathrm{~W}$
R21	0 mA	0 mA	11 mW
R22	0 mA	0 mA	687 $\mu \mathrm{W}$
R23	0 mA	0 mA	$17 \mu \mathrm{~W}$
R24	2112 mA	57001 mA	7 mW
R25	0 mA	0 mA	6 mW
R26	0 mA	0 mA	$212 \mu \mathrm{~W}$
R27	3469 mA	3489 mA	325 mW
R28	0 mA	0 mA	$0 \mu \mathrm{~W}$
R29	0 mA	0 mA	$0 \mu \mathrm{~W}$
R30	0 mA	0 mA	$0 \mu \mathrm{~W}$
U1	59 mA	980 mA	399mW
U2	59 mA	981 mA	398mW

F. Finalized LTspice Simulation Results

Based on Figure 11-1 and Initial Design Netlist (Section D)
Table 17-11: Power dissipation and efficiency, $V_{I N}=6 \mathrm{~V}$ and 0.1Ω input parasitic
Efficiency: 84.6\%
Input: 2.95W @ 5.94 V
Output: 2.5W @ 31.2V

Ref.	Irms	Ipeak	Dissipation
C1	0 mA	0 mA	0 mW
C2	0 mA	0 mA	0 mW
CBS1	6 mA	605 mA	0 mW
CBS2	1 mA	27 mA	0 mW
CBS3	7 mA	604 mA	0 mW
CBS4	1 mA	27 mA	0 mW
CIN1	19 mA	116 mA	0 mW
CIN2	19 mA	116 mA	0 mW
CIN3	19 mA	116 mA	0 mW
CIN4	19 mA	116 mA	0 mW
CIN5	19 mA	118 mA	0 mW
CIN6	19 mA	118 mA	0 mW
CIN7	19 mA	118 mA	0 mW
CIN8	19 mA	118 mA	0 mW
CINTV1	58 mA	682 mA	0 mW
CINTV2	61 mA	716 mA	0 mW
COUT1	52 mA	531 mA	0 mW
COUT2	52 mA	531 mA	0 mW
COUT3	52 mA	531 mA	0 mW
COUT4	52 mA	531 mA	0 mW
COUT5	51 mA	525 mA	0 mW
COUT6	51 mA	525 mA	0 mW
COUT7	51 mA	525 mA	0 mW
COUT8	51 mA	525 mA	0 mW
CSS1	0 mA	0 mA	0 mW
CSS2	0 mA	0 mA	0 mW
CVC1	0 mA	0 mA	0 mW
CVC2	0 mA	0 mA	0 mW
CVREF1	0 mA	0 mA	0 mW
CVREF2	0 mA	0 mA	0 mW
D1	3 mA	373 mA	0 mW
D2	1 mA	27 mA	-0 mW
D3	0 mA	5 mA	0 mW

Ref.	Irms	Ipeak	Dissipation
D4	265 mA	2782 mA	28 mW
D5	5 mA	376 mA	0 mW
D6	1 mA	27 mA	0 mW
D7	0 mA	5 mA	0 mW
D8	261 mA	2757 mA	28 mW
L1	686 mA	2827 mA	3 mW
L2	685 mA	2802 mA	3 mW
Q1	686 mA	2828 mA	7 mW
Q2	6 mA	911 mA	0 mW
Q3	631 mA	3275 mA	125 mW
Q4	48 mA	2025 mA	1 mW
Q5	685 mA	2802 mA	7 mW
Q6	8 mA	930 mA	0 mW
Q7	631 mA	3254 mA	123 mW
Q8	48 mA	2027 mA	1 mW
R1	0 mA	0 mA	$0 \mu \mathrm{~W}$
R2	0 mA	0 mA	$0 \mu \mathrm{~W}$
R31	0 mA	0 mA	$0 \mu \mathrm{~W}$
R32	0 mA	0 mA	$0 \mu \mathrm{~W}$
R33	0 mA	0 mA	$0 \mu \mathrm{~W}$
R34	0 mA	0 mA	$0 \mu \mathrm{~W}$
R35	0 mA	0 mA	$0 \mu \mathrm{~W}$
RCCM1	0 mA	0 mA	$0 \mu \mathrm{~W}$
RCCM2	0 mA	0 mA	$0 \mu \mathrm{~W}$
REN1	0 mA	0 mA	$103 \mu \mathrm{~W}$
REN2	0 mA	0 mA	$32 \mu \mathrm{~W}$
REN3	0 mA	0 mA	$103 \mu \mathrm{~W}$
REN4	0 mA	0 mA	$32 \mu \mathrm{~W}$
RFB1	0 mA	0 mA	5 mW
RFB2	0 mA	0 mA	$161 \mu \mathrm{~W}$
RFB3	0 mA	0 mA	5 mW
RFB4	0 mA	0 mA	$161 \mu \mathrm{~W}$
RIN1	648 mA	2632 mA	5 mW

Ref.	Irms	Ipeak	Dissipation
RIN2	646 mA	2604 mA	5 mW
RLSENSE1	634 mA	3481 mA	$603 \mu \mathrm{~W}$
RLSENSE2	635 mA	3461 mA	$604 \mu \mathrm{~W}$
ROUT1	110 mA	778 mA	$329 \mu \mathrm{~W}$
ROUT2	110 mA	772 mA	$328 \mu \mathrm{~W}$
ROV1	0 mA	0 mA	$156 \mu \mathrm{~W}$
ROV2	0 mA	0 mA	$10 \mu \mathrm{~W}$
ROV3	0 mA	0 mA	$156 \mu \mathrm{~W}$
ROV4	0 mA	0 mA	$10 \mu \mathrm{~W}$
RSHORT1	0 mA	0 mA	$0 \mu \mathrm{~W}$
RSHORT2	0 mA	0 mA	$0 \mu \mathrm{~W}$

Ref.	Irms	Ipeak	Dissipation
RSS1	0 mA	0 mA	$16 \mu \mathrm{~W}$
RSS2	0 mA	0 mA	$16 \mu \mathrm{~W}$
RT1	0 mA	0 mA	$17 \mu \mathrm{~W}$
RT2	0 mA	0 mA	$17 \mu \mathrm{~W}$
RVC1	0 mA	0 mA	$0 \mu \mathrm{~W}$
RVC2	0 mA	0 mA	$0 \mu \mathrm{~W}$
U1	98 mA	812 mA	51 mW
U2	98 mA	813 mA	52 mW

Table 17-12: Power dissipation and efficiency, $V_{I N}=10 \mathrm{~V}$ and 0.5Ω input parasitic

Efficiency: 87.9%			
Input: 9.71W@ 9.1V			
Output: 8.54W @ 34.1V			
Ref.	Irms	Ipeak	Dissipation
C1	0 mA	1 mA	0mW
C2	0 mA	1 mA	0mW
CBS1	0 mA	0 mA	0mW
CBS2	2 mA	147 mA	0 mW
CBS3	1 mA	526 mA	0 mW
CBS4	2 mA	146 mA	0mW
CIN1	98 mA	1004 mA	1 mW
CIN2	98 mA	1004 mA	1 mW
CIN3	98 mA	1004 mA	1 mW
CIN4	98 mA	1004 mA	1 mW
CIN5	98 mA	1030 mA	1 mW
CIN6	98 mA	1030 mA	1 mW
CIN7	98 mA	1030 mA	1 mW
CIN8	98 mA	1030 mA	1 mW
CINTV1	57 mA	706 mA	0mW
CINTV2	64 mA	729 mA	0mW
COUT1	127 mA	1346 mA	2 mW
COUT2	127 mA	1346 mA	2 mW
COUT3	127 mA	1346 mA	2 mW
COUT4	127 mA	1346 mA	2 mW
COUT5	115 mA	1324 mA	1 mW
COUT6	115 mA	1324 mA	1 mW
COUT7	115 mA	1324 mA	1 mW
COUT8	115 mA	1324 mA	1 mW
CSS1	0 mA	0 mA	0mW
CSS2	0 mA	0 mA	0 mW
CVC1	0 mA	0 mA	0mW
CVC2	0 mA	0 mA	0mW
CVREF1	0 mA	0 mA	0mW
CVREF2	0 mA	0mA	0mW
D1	0 mA	0 mA	0 mW
D2	2 mA	147 mA	0mW
D3	0 mA	0mA	0mW
D4	700 mA	5928 mA	150 mW
D5	1 mA	184 mA	0mW
D6	2 mA	146 mA	0mW

Ref.	Irms	Ipeak	Dissipation
D7	2 mA	527 mA	0 mW
D8	609 mA	5850 mA	94 mW
L1	1487 mA	5980 mA	15 mW
L2	1316 mA	5900 mA	12 mW
Q1	1487 mA	5980 mA	32 mW
Q2	0 mA	4 mA	0 mW
Q3	1311 mA	6402 mA	394 mW
Q4	80 mA	3203 mA	1 mW
Q5	1316 mA	5901 mA	25 mW
Q6	1 mA	665 mA	0mW
Q7	1164 mA	6365 mA	173 mW
Q8	59 mA	3156 mA	1 mW
R1	0 mA	0 mA	$0 \mu \mathrm{~W}$
R2	0 mA	0 mA	$0 \mu \mathrm{~W}$
R31	0 mA	0 mA	$0 \mu \mathrm{~W}$
R32	0 mA	0 mA	$0 \mu \mathrm{~W}$
R33	0 mA	0 mA	$0 \mu \mathrm{~W}$
R34	0 mA	0 mA	$0 \mu \mathrm{~W}$
R35	0 mA	0 mA	$0 \mu \mathrm{~W}$
RCCM1	0 mA	0 mA	$196 \mu \mathrm{~W}$
RCCM2	0 mA	0 mA	$196 \mu \mathrm{~W}$
REN1	0 mA	0 mA	$244 \mu \mathrm{~W}$
REN2	0 mA	0 mA	$76 \mu \mathrm{~W}$
REN3	0 mA	0 mA	$244 \mu \mathrm{~W}$
REN4	0 mA	0 mA	$76 \mu \mathrm{~W}$
RFB1	0 mA	0 mA	6 mW
RFB2	0 mA	0 mA	$198 \mu \mathrm{~W}$
RFB3	0 mA	0 mA	6 mW
RFB4	0 mA	0 mA	$198 \mu \mathrm{~W}$
RIN1	1438 mA	6317 mA	25 mW
RIN2	1251 mA	6196 mA	19 mW
RLSENSE1	1313 mA	6590 mA	3 mW
RLSENSE2	1165 mA	6553 mA	2 mW
ROUT1	315 mA	1867 mA	3 mW
ROUT2	268 mA	1893 mA	2 mW
ROV1	0 mA	0 mA	$371 \mu \mathrm{~W}$

Ref.	Irms	Ipeak	Dissipation
ROV2	0 mA	0 mA	$23 \mu \mathrm{~W}$
ROV3	0 mA	0 mA	$371 \mu \mathrm{~W}$
ROV4	0 mA	0 mA	$23 \mu \mathrm{~W}$
RSHORT1	0 mA	0 mA	$0 \mu \mathrm{~W}$
RSHORT2	0 mA	0 mA	$0 \mu \mathrm{~W}$
RSS1	0 mA	0 mA	$1 \mu \mathrm{~W}$
RSS2	0 mA	0 mA	$1 \mu \mathrm{~W}$
RT1	0 mA	0 mA	$17 \mu \mathrm{~W}$
RT2	0 mA	0 mA	$17 \mu \mathrm{~W}$
RVC1	0 mA	0 mA	$0 \mu \mathrm{~W}$
RVC2	0 mA	0 mA	$0 \mu \mathrm{~W}$
U1	102 mA	813 mA	99 mW
U2	102 mA	813 mA	95 mW

Table 17-13: Power dissipation and efficiency, $V_{I N}=20 \mathrm{~V}$ and 0.9Ω input parasitic

Efficiency: 93.1%			
Input: 38.6W @ 16.9V			
Output: 35.9W @ 33.4V			
Ref.	Irms	Ipeak	Dissipation
C1	0 mA	0 mA	0mW
C2	0 mA	0 mA	0mW
CBS1	6 mA	543 mA	0mW
CBS2	2 mA	31 mA	0mW
CBS3	6 mA	540 mA	0mW
CBS4	4 mA	685 mA	0mW
CIN1	85 mA	465 mA	1 mW
CIN2	85 mA	465 mA	1 mW
CIN3	85 mA	465 mA	1 mW
CIN4	85 mA	465 mA	1 mW
CIN5	85 mA	465 mA	1 mW
CIN6	85 mA	465 mA	1 mW
CIN7	85 mA	465 mA	1 mW
CIN8	85 mA	465 mA	1 mW
CINTV1	57 mA	859 mA	0mW
CINTV2	62 mA	879 mA	0mW
COUT1	185 mA	716 mA	3 mW
COUT2	185 mA	716 mA	3 mW
COUT3	185 mA	716 mA	3 mW
COUT4	185 mA	716 mA	3 mW
COUT5	184 mA	710 mA	3 mW
COUT6	184 mA	710 mA	3 mW
COUT7	184 mA	710 mA	3 mW
COUT8	184 mA	710 mA	3 mW
CSS1	0 mA	0 mA	0mW
CSS2	0 mA	0 mA	0mW
CVC1	0 mA	0 mA	0mW
CVC2	0 mA	0 mA	0mW
CVREF1	0mA	0mA	0mW
CVREF2	0 mA	0 mA	0mW
D1	4 mA	262 mA	0mW
D2	2 mA	31 mA	0mW
D3	34 mA	1445 mA	1 mW
D4	1316 mA	4068 mA	467 mW
D5	4 mA	261 mA	0mW
D6	2 mA	31 mA	0mW

Ref.	Irms	Ipeak	Dissipation
D7	31 mA	1436 mA	1 mW
D8	1325 mA	4070 mA	472 mW
L1	1887 mA	4109 mA	25 mW
L2	1899 mA	4111 mA	25 mW
Q1	1887 mA	4109 mA	52 mW
Q2	26 mA	1633 mA	0mW
Q3	1351 mA	4102 mA	481 mW
Q4	91 mA	2829 mA	1 mW
Q5	1898 mA	4111 mA	52 mW
Q6	26 mA	1623 mA	0 mW
Q7	1359 mA	4104 mA	484 mW
Q8	95 mA	2838 mA	1 mW
R1	0 mA	0 mA	$0 \mu \mathrm{~W}$
R2	0 mA	0 mA	$0 \mu \mathrm{~W}$
R31	0 mA	0 mA	$0 \mu \mathrm{~W}$
R32	0 mA	0 mA	$0 \mu \mathrm{~W}$
R33	0 mA	0 mA	$0 \mu \mathrm{~W}$
R34	0 mA	0 mA	$0 \mu \mathrm{~W}$
R35	0 mA	0 mA	$0 \mu \mathrm{~W}$
RCCM1	0 mA	0 mA	$0 \mu \mathrm{~W}$
RCCM2	0 mA	0 mA	$0 \mu \mathrm{~W}$
REN1	0 mA	0 mA	$837 \mu \mathrm{~W}$
REN2	0 mA	0 mA	$259 \mu \mathrm{~W}$
REN3	0 mA	0 mA	$837 \mu \mathrm{~W}$
REN4	0 mA	0 mA	$259 \mu \mathrm{~W}$
RFB1	0 mA	0 mA	5 mW
RFB2	0 mA	0 mA	$188 \mu \mathrm{~W}$
RFB3	0 mA	0 mA	5 mW
RFB4	0 mA	0 mA	$188 \mu \mathrm{~W}$
RIN1	1862 mA	3711 mA	42 mW
RIN2	1873 mA	3711 mA	42 mW
RLSENSE1	1353 mA	4250 mA	3 mW
RLSENSE2	1361 mA	4254 mA	3 mW
ROUT1	734 mA	1738 mA	15 mW
ROUT2	741 mA	1748 mA	15 mW
ROV1	0 mA	0 mA	1 mW

Ref.	Irms	Ipeak	Dissipation
ROV2	0 mA	0 mA	$79 \mu \mathrm{~W}$
ROV3	0 mA	0 mA	1 mW
ROV4	0 mA	0 mA	$79 \mu \mathrm{~W}$
RSHORT1	0 mA	0 mA	$0 \mu \mathrm{~W}$
RSHORT2	0 mA	0 mA	$0 \mu \mathrm{~W}$
RSS1	0 mA	0 mA	$3 \mu \mathrm{~W}$
RSS2	0 mA	0 mA	$3 \mu \mathrm{~W}$
RT1	0 mA	0 mA	$17 \mu \mathrm{~W}$
RT2	0 mA	0 mA	$17 \mu \mathrm{~W}$
RVC1	0 mA	0 mA	$0 \mu \mathrm{~W}$
RVC2	0 mA	0 mA	$0 \mu \mathrm{~W}$
U1	103 mA	813 mA	208 mW
U2	103 mA	813 mA	207 mW

Table 17-14: Power dissipation and efficiency, $V_{I N}=30 \mathrm{~V}$ and 0.9Ω input parasitic

Efficiency: 96.0\%			
Input: 90.4W @ 26.7V			
Output: 86.8W @ 36.2V			
Ref.	Irms	Ipeak	Dissipation
C1	0 mA	0 mA	0mW
C2	0 mA	0 mA	0 mW
CBS1	4 mA	542 mA	0mW
CBS2	23 mA	802 mA	0 mW
CBS3	3 mA	541 mA	0mW
CBS4	23 mA	763 mA	0mW
CIN1	73 mA	384 mA	1 mW
CIN2	73 mA	384 mA	1 mW
CIN3	73 mA	384 mA	1 mW
CIN4	73 mA	384 mA	1 mW
CIN5	73 mA	386 mA	1 mW
CIN6	73 mA	386 mA	1 mW
CIN7	73 mA	386 mA	1 mW
CIN8	73 mA	386 mA	1 mW
CINTV1	58 mA	882 mA	0mW
CINTV2	63 mA	898 mA	0 mW
COUT1	170 mA	831 mA	3 mW
COUT2	170 mA	831 mA	3 mW
COUT3	170 mA	831 mA	3 mW
COUT4	170 mA	831 mA	3 mW
COUT5	169 mA	834 mA	3 mW
COUT6	169 mA	834 mA	3 mW
COUT7	169 mA	834 mA	3 mW
COUT8	169 mA	834 mA	3 mW
CSS1	0 mA	0 mA	0 mW
CSS2	0 mA	0 mA	0 mW
CVC1	0 mA	0 mA	0 mW
CVC2	0 mA	0 mA	0 mW
CVREF1	0mA	0 mA	0 mW
CVREF2	0 mA	0 mA	0 mW
D1	3 mA	274 mA	0 mW
D2	9 mA	138 mA	0mW
D3	41 mA	2686 mA	2 mW
D4	1528 mA	4205 mA	654 mW
D5	2 mA	275 mA	0 mW
D6	9 mA	140 mA	0mW

Ref.	Irms	Ipeak	Dissipation
D7	33 mA	2690 mA	2 mW
D8	1530 mA	4269 mA	653 mW
L1	1880 mA	4229 mA	25 mW
L2	1882 mA	4293 mA	25 mW
Q1	1880 mA	4230 mA	52 mW
Q2	26 mA	2852 mA	0 mW
Q3	1008 mA	4353 mA	581 mW
Q4	442 mA	2885 mA	8 mW
Q5	1882 mA	4295 mA	50 mW
Q6	26 mA	2857 mA	0 mW
Q7	1010 mA	4427 mA	580 mW
Q8	441 mA	2909 mA	7 mW
R1	0 mA	0 mA	$0 \mu \mathrm{~W}$
R2	0 mA	0 mA	$0 \mu \mathrm{~W}$
R31	0 mA	0 mA	$0 \mu \mathrm{~W}$
R32	0 mA	0 mA	$0 \mu \mathrm{~W}$
R33	0 mA	0 mA	$0 \mu \mathrm{~W}$
R34	0 mA	0 mA	$0 \mu \mathrm{~W}$
R35	0 mA	0 mA	$0 \mu \mathrm{~W}$
RCCM1	0 mA	0 mA	$0 \mu \mathrm{~W}$
RCCM2	0 mA	0 mA	$0 \mu \mathrm{~W}$
REN1	0 mA	0 mA	2 mW
REN2	0 mA	0 mA	$643 \mu \mathrm{~W}$
REN3	0 mA	0 mA	2 mW
REN4	0 mA	0 mA	$643 \mu \mathrm{~W}$
RFB1	0 mA	0 mA	6 mW
RFB2	0 mA	0 mA	$217 \mu \mathrm{~W}$
RFB3	0 mA	0 mA	6 mW
RFB4	0 mA	0 mA	$217 \mu \mathrm{~W}$
RIN1	1888 mA	3581 mA	43 mW
RIN2	1888 mA	3585 mA	43 mW
RLSENSE1	1013 mA	4553 mA	2 mW
RLSENSE2	1014 mA	4626 mA	2 mW
ROUT1	1273 mA	2502 mA	44 mW
ROUT2	1272 mA	2542 mA	44 mW
ROV1	0 mA	0 mA	3 mW

Ref.	Irms	Ipeak	Dissipation
ROV2	0 mA	0 mA	$196 \mu \mathrm{~W}$
ROV3	0 mA	0 mA	3 mW
ROV4	0 mA	0 mA	$196 \mu \mathrm{~W}$
RSHORT1	0 mA	0 mA	$0 \mu \mathrm{~W}$
RSHORT2	0 mA	0 mA	$0 \mu \mathrm{~W}$
RSS1	0 mA	0 mA	$2 \mu \mathrm{~W}$
RSS2	0 mA	0 mA	$2 \mu \mathrm{~W}$
RT1	0 mA	0 mA	$17 \mu \mathrm{~W}$
RT2	0 mA	0 mA	$17 \mu \mathrm{~W}$
RVC1	0 mA	0 mA	$0 \mu \mathrm{~W}$
RVC2	0 mA	0 mA	$0 \mu \mathrm{~W}$
U1	104 mA	844 mA	368 mW
U2	104 mA	846 mA	367 mW

Table 17-15: Power dissipation and efficiency, $V_{I N}=40 \mathrm{~V}$ and 1Ω input parasitic

Efficiency: 95.2\%			
Input: 162W @ 35.4V			
Output: 155W @ 36.4V			
Ref.	Irms	Ipeak	Dissipation
C1	0 mA	0 mA	0mW
C2	0 mA	0 mA	0mW
CBS1	64 mA	540 mA	0mW
CBS2	73 mA	804 mA	0 mW
CBS3	64 mA	537 mA	0mW
CBS4	73 mA	771 mA	0mW
CIN1	136 mA	399 mA	2 mW
CIN2	136 mA	399 mA	2 mW
CIN3	136 mA	399 mA	2 mW
CIN4	136 mA	399 mA	2 mW
CIN5	137 mA	402 mA	2 mW
CIN6	137 mA	402 mA	2 mW
CIN7	137 mA	402 mA	2 mW
CIN8	137 mA	402 mA	2 mW
CINTV1	115 mA	922 mA	0mW
CINTV2	119 mA	930 mA	0mW
COUT1	172 mA	546 mA	3 mW
COUT2	172 mA	546 mA	3 mW
COUT3	172 mA	546 mA	3 mW
COUT4	172 mA	546 mA	3 mW
COUT5	172 mA	547 mA	3 mW
COUT6	172 mA	547 mA	3 mW
COUT7	172 mA	547 mA	3 mW
COUT8	172 mA	547 mA	3 mW
CSS1	0 mA	0 mA	0 mW
CSS2	0 mA	0 mA	0mW
CVC1	0 mA	0 mA	0mW
CVC2	0 mA	0 mA	0mW
CVREF1	0 mA	0 mA	0 mW
CVREF2	0 mA	0 mA	0mW
D1	49 mA	289 mA	8 mW
D2	34 mA	180 mA	5 mW
D3	577 mA	2552 mA	85 mW
D4	669 mA	2892 mA	105 mW
D5	49 mA	290 mA	8 mW
D6	34 mA	181 mA	5 mW

Ref.	Irms	Ipeak	Dissipation
D7	579 mA	2549 mA	86 mW
D8	671 mA	2889 mA	104 mW
L1	2497 mA	2902 mA	44 mW
L2	2496 mA	2899 mA	44 mW
Q1	2376 mA	3301 mA	896 mW
Q2	453 mA	2723 mA	39 mW
Q3	980 mA	3257 mA	807 mW
Q4	2208 mA	2900 mA	122 mW
Q5	2373 mA	3305 mA	896 mW
Q6	458 mA	2720 mA	38 mW
Q7	979 mA	3252 mA	792 mW
Q8	2207 mA	2896 mA	121 mW
R1	0 mA	0 mA	$0 \mu \mathrm{~W}$
R2	0 mA	0 mA	$0 \mu \mathrm{~W}$
R31	0 mA	0 mA	$0 \mu \mathrm{~W}$
R32	0 mA	0 mA	$0 \mu \mathrm{~W}$
R33	0 mA	0 mA	$0 \mu \mathrm{~W}$
R34	0 mA	0 mA	$0 \mu \mathrm{~W}$
R35	0 mA	0 mA	$0 \mu \mathrm{~W}$
RCCM1	0 mA	0 mA	$0 \mu \mathrm{~W}$
RCCM2	0 mA	0 mA	$0 \mu \mathrm{~W}$
REN1	0 mA	0 mA	4 mW
REN2	0 mA	0 mA	1 mW
REN3	0 mA	0 mA	4 mW
REN4	0 mA	0 mA	1 mW
RFB1	0 mA	0 mA	6 mW
RFB2	0 mA	0 mA	$219 \mu \mathrm{~W}$
RFB3	0 mA	0 mA	6 mW
RFB4	0 mA	0 mA	$219 \mu \mathrm{~W}$
RIN1	2335 mA	3265 mA	65 mW
RIN2	2332 mA	3237 mA	65 mW
RLSENSE1	1232 mA	3464 mA	2 mW
RLSENSE2	1233 mA	3459 mA	2 mW
ROUT1	2158 mA	2987 mA	126 mW
ROUT2	2156 mA	2994mA	126 mW
ROV1	0 mA	0 mA	6 mW

Ref.	Irms	Ipeak	Dissipation
ROV2	0 mA	0 mA	$344 \mu \mathrm{~W}$
ROV3	0 mA	0 mA	6 mW
ROV4	0 mA	0 mA	$344 \mu \mathrm{~W}$
RSHORT1	0 mA	0 mA	$0 \mu \mathrm{~W}$
RSHORT2	0 mA	0 mA	$0 \mu \mathrm{~W}$
RSS1	0 mA	0 mA	$0 \mu \mathrm{~W}$
RSS2	0 mA	0 mA	$0 \mu \mathrm{~W}$
RT1	0 mA	0 mA	$17 \mu \mathrm{~W}$
RT2	0 mA	0 mA	$17 \mu \mathrm{~W}$
RVC1	0 mA	0 mA	$0 \mu \mathrm{~W}$
RVC2	0 mA	0 mA	$0 \mu \mathrm{~W}$
U1	104 mA	864 mA	1557 mW
U2	104 mA	862 mA	1558 mW

Table 17-16: Power dissipation and efficiency, $V_{I N}=50 \mathrm{~V}$ and 1Ω input parasitic
Efficiency: 96.9\%
Input: 247W @ 44.4V
Output: 239W @ 36.3V

Ref.	Irms	Ipeak	Dissipation
C1	0 mA	0 mA	0mW
C2	0 mA	0 mA	0mW
CBS1	66 mA	527 mA	0mW
CBS2	12 mA	651 mA	0mW
CBS3	66 mA	527 mA	0mW
CBS4	12 mA	659 mA	0mW
CIN1	202 mA	448 mA	4 mW
CIN2	202 mA	448 mA	4 mW
CIN3	202 mA	448 mA	4 mW
CIN4	202 mA	448 mA	4 mW
CIN5	204 mA	452 mA	4 mW
CIN6	204 mA	452 mA	4 mW
CIN7	204 mA	452 mA	4 mW
CIN8	204 mA	452 mA	4 mW
CINTV1	96 mA	942 mA	0mW
CINTV2	100 mA	956 mA	0mW
COUT1	34 mA	85 mA	0mW
COUT2	34 mA	85 mA	0mW
COUT3	34 mA	85 mA	0 mW
COUT4	34 mA	85 mA	0mW
COUT5	33 mA	85 mA	0mW
COUT6	33 mA	85 mA	0 mW
COUT7	33 mA	85 mA	0mW
COUT8	33 mA	85 mA	0 mW
CSS1	0 mA	0 mA	0mW
CSS2	0 mA	0mA	0mW
CVC1	0 mA	0 mA	0mW
CVC2	0 mA	0 mA	0mW
CVREF1	0 mA	0 mA	0mW
CVREF2	0 mA	0 mA	0mW
D1	51 mA	307 mA	8 mW
D2	0 mA	0 mA	0mW
D3	762 mA	3463 mA	116 mW
D4	1362 mA	3655 mA	339 mW
D5	52 mA	308 mA	8 mW
D6	0 mA	0 mA	0mW

Ref.	Irms	Ipeak	Dissipation
D7	769 mA	3456 mA	118 mW
D8	1380 mA	3650 mA	345 mW
L1	3318 mA	3780 mA	77 mW
L2	3318 mA	3774 mA	77 mW
Q1	3041 mA	3955 mA	1618 mW
Q2	1045 mA	3644 mA	54 mW
Q3	0 mA	11 mA	-0mW
Q4	3025 mA	3780mA	142 mW
Q5	3032 mA	3951 mA	1615 mW
Q6	1065 mA	3637 mA	57 mW
Q7	0mA	11 mA	-0mW
Q8	3017 mA	3774 mA	141 mW
R1	0 mA	0 mA	$1 \mu \mathrm{~W}$
R2	0 mA	0 mA	$1 \mu \mathrm{~W}$
R31	0 mA	0 mA	$0 \mu \mathrm{~W}$
R32	0 mA	0 mA	$0 \mu \mathrm{~W}$
R33	0 mA	0 mA	$0 \mu \mathrm{~W}$
R34	0 mA	0 mA	$0 \mu \mathrm{~W}$
R35	0 mA	0 mA	$0 \mu \mathrm{~W}$
RCCM1	0 mA	0 mA	$0 \mu \mathrm{~W}$
RCCM2	0 mA	0 mA	$0 \mu \mathrm{~W}$
REN1	0 mA	0 mA	6 mW
REN2	0 mA	0 mA	2 mW
REN3	0 mA	0 mA	6 mW
REN4	0 mA	0 mA	2 mW
RFB1	0 mA	0 mA	6 mW
RFB2	0 mA	0 mA	$218 \mu \mathrm{~W}$
RFB3	0 mA	0 mA	6 mW
RFB4	0 mA	0 mA	$218 \mu \mathrm{~W}$
RIN1	2899mA	4152 mA	101 mW
RIN2	2888 mA	4154 mA	100 mW
RLSENSE1	1294 mA	4022 mA	3 mW
RLSENSE2	1314 mA	4021 mA	3 mW
ROUT1	3302 mA	3469 mA	294 mW
ROUT2	3302 mA	3466 mA	294 mW
ROV1	0 mA	0 mA	9 mW

Ref.	Irms	Ipeak	Dissipation
ROV2	0 mA	0 mA	$541 \mu \mathrm{~W}$
ROV3	0 mA	0 mA	9 mW
ROV4	0 mA	0 mA	$541 \mu \mathrm{~W}$
RSHORT1	0 mA	0 mA	$0 \mu \mathrm{~W}$
RSHORT2	0 mA	0 mA	$0 \mu \mathrm{~W}$
RSS1	0 mA	0 mA	$1 \mu \mathrm{~W}$
RSS2	0 mA	0 mA	$1 \mu \mathrm{~W}$
RT1	0 mA	0 mA	$17 \mu \mathrm{~W}$
RT2	0 mA	0 mA	$17 \mu \mathrm{~W}$
RVC1	0 mA	0 mA	$0 \mu \mathrm{~W}$
RVC2	0 mA	0 mA	$0 \mu \mathrm{~W}$
U1	104 mA	933 mA	1078 mW
U2	104 mA	933 mA	1089 mW

G. IXTH180N10T Characterization Data

Table 17-17: V_{GS} vs. R_{DS}

VGS [V]	$\mathbf{R} \mathbf{R D S}[\Omega]$
2	$4.00 \mathrm{E}+09$
2.12	$3.86 \mathrm{E}+07$
2.4	$4.47 \mathrm{E}+06$
2.8	$5.00 \mathrm{E}+06$
3.2	$6.16 \mathrm{E}+06$
3.4	$6.10 \mathrm{E}+06$
3.5	$5.37 \mathrm{E}+06$
3.6	$3.77 \mathrm{E}+06$
3.7	$1.50 \mathrm{E}+06$
3.8	$4.30 \mathrm{E}+03$
3.9	$3.80 \mathrm{E}+03$
4	$2.80 \mathrm{E}+03$
4.1	$2.30 \mathrm{E}+03$
4.3	$1.77 \mathrm{E}+03$
4.5	$1.45 \mathrm{E}+03$
4.8	$1.20 \mathrm{E}+03$
5	$1.03 \mathrm{E}+03$
6	$6.50 \mathrm{E}+02$
7	$4.50 \mathrm{E}+02$

Table 17-18: V_{GS} vs. I_{D} $\mathrm{VD}=0 \mathrm{~V}$

$\mathbf{V}_{\mathbf{G S}}[\mathbf{V}]$	$\mathbf{I}_{\mathbf{D}}[\mathbf{A}]$
1	$7.00 \mathrm{E}-07$
2	$1.30 \mathrm{E}-06$
3	$1.30 \mathrm{E}-06$
3.5	$2.00 \mathrm{E}-05$
3.7	$9.00 \mathrm{E}-05$
3.9	$4.00 \mathrm{E}-04$
4	$7.61 \mathrm{E}-04$
4.1	$1.14 \mathrm{E}-03$
4.2	$1.40 \mathrm{E}-03$
4.3	$1.56 \mathrm{E}-03$
4.5	$1.70 \mathrm{E}-03$
4.7	$1.85 \mathrm{E}-03$
4.9	$1.94 \mathrm{E}-03$
5	$1.98 \mathrm{E}-03$
6	$2.25 \mathrm{E}-03$

Table 17-19: V_{GS} vs. I_{D}

$\mathbf{V}_{\mathrm{D}}=6 \mathrm{~V}$	
$\mathbf{V}_{\mathbf{G S}}[\mathbf{V}]$	$\mathbf{I}_{\mathbf{D}}[\mathbf{A}]$
1	$2.80 \mathrm{E}-08$
2	$3.30 \mathrm{E}-08$
3	$1.20 \mathrm{E}-06$
3.3	$5.00 \mathrm{E}-06$
3.5	$2.00 \mathrm{E}-05$
3.6	$4.70 \mathrm{E}-05$
3.7	$1.00 \mathrm{E}-04$
3.8	$2.30 \mathrm{E}-04$
3.9	$5.00 \mathrm{E}-04$
4	$1.26 \mathrm{E}-03$
4.1	$2.85 \mathrm{E}-03$
4.2	$6.40 \mathrm{E}-03$
4.3	$1.40 \mathrm{E}-02$
4.4	$3.40 \mathrm{E}-02$
4.5	$5.20 \mathrm{E}-02$
5	$5.30 \mathrm{E}-02$
6	$5.30 \mathrm{E}-02$

H. Testing Oscilloscope Captures

Figure 17-2: Hardware Testing, Primary SHORT Pin, Pin 5, 30V Case

Figure 17-3: Hardware Testing, Primary FB Pin, Pin 37, 30V Case

Figure 17-4: Hardware Testing, Primary SNSP Pin, Pin 27, 30V Case

Figure 17-5: Hardware Testing, Primary CLKOUT Pin, Pin 33, 30V Case

Figure 17-6: Hardware Testing, Secondary CLKOUT Pin, Pin 33, 30V Case

Figure 17-7: Hardware Testing, Primary TG1 Pin, Pin 14, 30V Case

Figure 17-8: Hardware Testing, Primary BG1 Pin, Pin 18, 30V Case

Figure 17-9: Hardware Testing, Primary BG2 Pin, Pin 19, 30V Case

Figure 17-10: Hardware Testing, Primary TG2 Pin, Pin 24, 30V Case

Figure 17-11: Hardware Testing, Primary SW1, Pin 16, 30V Case

Figure 17-12: Hardware Testing, Primary SW2 Pin, Pin 21, 30V Case

Figure 17-13: Hardware Testing, Primary BST1 Pin, Pin 15, 30V Case

Figure 17-14: Hardware Testing, Primary BS2 Pin, Pin 22, 30V Case

I. Analysis of Senior Project Design

Project Title: EHFEM Buck-Boost DC/DC Converter Using LT3791-1 with Input Protection System

Student's Name: Sheldon Chu, Byung-Jae David Yoo Student Signatures:
Advisor's Name: David Braun Advisor's Initials: Date:

Summary of Functional Requirements

Cal Poly's Energy Harvesting from Exercise Machines (EHFEM) project comprises of multiple subprojects seeking to effectively create a sustainable energy source through harvesting electrical energy generated from physical exercise machines. This project designs and implements a Buck-Boost DC-DC converter using a LT3791-1 4-Switch Buck-Boost Controller, replacing the previous SEPIC design. The DC-DC converter must operate within limits set by the maximum input range of the LT3791-1 controller. An input protection system prevents inputs higher than rated values, which may adversely damage the Buck-Boost DC-DC converter. These inputs include overvoltage transients, average voltage, and current output by the Precor EFX 561i elliptical generator. Therefore, integrating a modified version of Ryan Turner and Zack Weiler's DC-DC Converter Input Protection System prevents system damage if generator outputs stray beyond safe operational range. This system also provides charge accumulation protection generated during an open-load phase during start-up of the Enphase M175 Micro-Inverter. Additionally, the DC-DC converter's output must provide a voltage within the micro-inverter's input voltage range to apply $240 \mathrm{~V}_{\text {RMS }}$ power back to the electrical grid.

Primary Constraints

The EHFEM project's existing components, namely the Precor EFX 561i elliptical's generator and Enphase M175 Micro-Inverter place limitations on the buckboost DC-DC converter design. Ryan Turner and Zack Weiler's DC-DC Converter Input Protection System project details output characteristics of the elliptical's generator. on average, the elliptical generates 6 V to 65 V and 0.6 A to 6.5 A through minimum and maximum exercise resistance levels (1-20) and speeds (100 SPM - 230+ SPM). Overvoltage transient measure up to 150 V , generating current spikes of up to 15 A . Additionally, the Enphase M175 Micro-Inverter accepts a maximum input current of 8A with 36 V as the nominal input voltage to provide an output of $240 \mathrm{~V}_{\text {RMs }}$. Therefore, up to 288W of power feeds to the inverter. Further limitations spawn from the LT3791-1 IC's characteristics. for example, the LT3791-1's input voltage may range from 4.7 V to 60 V .

In summary, the generator and inverter place various electrical limitations upon the designed system. The input protection system must not only protect the DC-DC converter from overvoltage transients of up to 150 V , but must also limit its maximum input voltage to 60 V . The output of the DC-DC converter must also nominally output 36 V with a maximum current output of 8 A to the inverter.

Additionally, the final physical design must fit into the Precor EFX 561i elliptical's enclosure. The equivalent input impedance of the design must also equal 10Ω to preserve the physical exercise experience of the user.

Simulating a working design proved challenging and added more project difficult than expected. Specifically, no suitable approach limited simulated input power to the
converter. Simulations using ideal voltage source inputs indicated high input power transients due to MOSFET switching. Simulation design alterations attempted input power problem amendment, including adding a series input parasitic resistance, snubber cells, and a declining input resistance. Although these additional components did mitigate input power transients, they did not limit input power to the system.

Furthermore, selecting parts based on LT3791-1's datasheet equations and parameters proved challenging. Ambiguous datasheet parameters produced confusion when selecting inductor and current sense resistor sizes. Specifically, certain variables such as \%Ripple remained ambiguous within LT3791-1's datasheet. Datasheet ambiguity required exterior research to select proper components.

Additionally, selecting improper MOSFETs generated numerous problems. Simulations indicated high current and power dissipation during MOSFET switching. Various snubber circuits were considered and tested to reduce the excessive power dissipated on MOSFETs. However, results concluded a new MOSFET with better parameters proved a better and easier option.

The newly selected MOSFETs, however, did not have a public spice model to accurately simulate its behavior. A model was constructed based upon a preliminary datasheet but with questionable reliability and accuracy. Every simulation results held potential abnormalities with unknown variables. MOSFETs did not switch correctly during the hardware testing. Characterization of these MOSFETs was conducted but there were too many variables to deduce the problem's root cause.

Designing the PCB layout was especially difficult due to lack of PCB design knowledge and experience. The PCB design underwent multiple revisions. A majority of signal traces and power traces were redrawn multiple times due to lacking understanding of the relationship between high frequency traces and return ground path. A 4-layer PCB layout was selected instead of 2-layer board to reduce the difficulty of tracing paths. Drawing proper trace thickness to handle high current was exceptionally difficult due to lack of space.

Economic

Human Capital

Production requires the time of skilled laborers to assemble and solder components onto a PCB. Each component involved also requires the time of skilled workers to be designed, manufactured, and shipped by the various companies that supply them. Furthermore, the assembled product requires the time of skilled laborers to install the product into the enclosure of the elliptical machine.

Financial Capital

The production process requires the necessary monetary funds to pay skilled workers to assemble, transport, and install the system into the elliptical machines. The product's production also requires the necessary monetary funds to buy the components necessary for the design. Systems modified with the final project reduce the operating electricity costs of exercise facilities during and after its fulfillment of its zero cost lifecycle.

Manufactured or Real Capital

The product requires numerous components generated by the efforts of various companies and individuals including ICs, resistors, capacitors, inductors, PCBs, solder, heat sinks, and shipping materials.

Natural Capital

The production of this project requires the use of Earth's resources in the production of its components. This includes rare earth metals like silicon, copper, aluminum, oil (plastic and gasoline/diesel), and wood (cardboard). Harvesting and producing these resources result in toxic emissions and numerous other byproducts of industrial production that negatively impact Earth.

- When and where do costs and benefits accrue throughout the project's lifecycle?

Costs accrue during the production of the finalized product. Such costs include the cost to manufacture each component and to ship the component(s) to the place of final assembly, in addition to the cost of final assembly, shipping, and installation. Cost benefits start to accrue during the operational use of the elliptical machines outfitted with the EHFEM system which feeds generated electricity back to the power grid and reduces the energy bought from power companies.

- What inputs does the experiment require? How much does the project cost? Who pays?

This experiment requires various component inputs for the design and testing of the system, including the components required for the initial design and final design. This
project's cost estimates $\$ 3866.67$ as projected in Table D1. Cal Poly: San Luis Obispo pays the final cost for the project in order to outfit existing Precor EFX 561i elliptical trainers with energy generating systems. by doing so, it cuts operational electrical costs of its recreational center. Table A displays estimated project costs.

Table A: Estimated Project Cost

Costs		Optimistic	Most Likely	Pessimistic	Estimated
Total Component (Fixed)		\$215.00	\$300	\$520.00	\$272.50
Component	Cost				
LT 3791	\$ 22.50				
LT 4356	\$ 8.49				
Input Protection System and DC-DC converter circuit components	\$ 70-90				
Converter PCB	\$ 100-300				
Protection Circuit PCB	\$ 5-80				
Controllers for LT 3791	\$ 10-20				
Total Component Cost	$\begin{aligned} & \operatorname{Min}=\$ \\ & 215.99 \\ & \operatorname{Max}=\$ \\ & 520.56 \end{aligned}$				
Total Labor (Variable) $\$ 16$ per hour		$\begin{array}{\|l} \$ 2,400.00 \\ 150 \mathrm{Hrs} \\ \hline \end{array}$	$\begin{aligned} & \$ 3,200.00 \\ & 200 \text { Hrs } \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 6,400.00 \\ & 400 \mathrm{Hrs} \\ & \hline \end{aligned}$	\$3600.00
Total Cost					\$3,872.50

Table B: Final Project Cost

Type	Schematic Name	Value	Component	\$/unit	QTY	Sum	P/N	Description	Company
Inductor	Inductor	22 u	Inductor	\$7.83	2	\$15.66	AIRD-03-270K	INDUCTOR PWR DRUM CORE 27UH	Abracon
Resistors	RLSENSE	12m	R1	\$1.17	2	\$2.34	ERJ-8BWFR012V	RES 0.012 OHM 1W 1\% 1206 SMD	Panasonic
	REN1	200k	R2	\$0.10	2	\$0.20	RC2012F204CS	RES 200K OHM 1/8W 1\% 0805	Samsung
	REN2	62k	R3	\$0.10	2	\$0.20	ERJ-6ENF6202V	RES 62K OHM 1/8W 1\% 0805 SMD	Panasonic
	Rcomp	51	R4	\$0.10	2	\$0.20	ERJ-6ENF51R0V	RES 51 OHM 1/8W 1\% 0805 SMD	Panasonic
	ROVLO1	200k	R5	\$0.10	2	\$0.20	ERJ-6ENF2003V	RES 200K OHM 1/8W 1\% 0805 SMD	Panasonic
	ROVLO2	12.4 k	R6	\$0.10	2	\$0.20	ERJ-6ENF1242V	RES 12.4K OHM 1/8W 1\% 0805 SMD	Panasonic
	RT	59k	R7	\$0.10	2	\$0.20	ERJ-6ENF5902V	RES 59K OHM 1/8W 1\% 0805 SMD	Panasonic
	Rsense	1.5 m	R8	\$1.11	2	\$2.22	ERJ-M1WTF1M5U	RES 0.0015 OHM 1W 1\% 2512 SMD	Panasonic
	RFB1	196k	R9	\$0.10	2	\$0.20	ERJ-6ENF1963V	RES 196K OHM 1/8W 1\% 0805 SMD	Panasonic
	RFB2	6.81k	R10	\$0.10	2	\$0.20	ERJ-6ENF6811V	RES 6.81K OHM 1/8W 1\% 0805 SMD	Panasonic
	ROUT	27m	R11	\$1.17	2	\$2.34	ERJ-8BWFR027V	RES 0.027 OHM 1W 1\% 1206 SMD	Panasonic
	RSHORT	200k	R12	\$0.10	2	\$0.20	ERJ-6ENF2003V	RES 200K OHM 1/8W 1\% 0805 SMD	Panasonic
	RC/10	100k	R13	\$0.10	2	\$0.20	ERJ-6ENF1003V	RES 100K OHM 1/8W 1\% 0805 SMD	Panasonic
	RSS	100k	R14	\$0.10	2	\$0.20	ERJ-6ENF1003V	RES 100K OHM 1/8W 1\% 0805 SMD	Panasonic
	RVC	3 k	R15	\$0.10	2	\$0.20	ERJ-6ENF3001V	RES 3K OHM 1/8W 1\% 0805 SMD	Panasonic
Switches			Q1-Q8	\$4.03	8	\$32.20	IXTH180N10T	MOSFET N-CH 100V 180A TO-247	IXYS
Capacitors	CSS	33 nF	C1	\$0.24	2	\$0.48	C0603C333K8RACTU	CAP CER 0.033UF 10V 10\% X7R 0603	Kemet
	CVC	33 nF	C2	\$0.24	2	\$0.48	C0603C333K8RACTU	CAP CER 0.033UF 10V 10\% X7R 0603	Kemet
	Ccomp	470n	C3	\$0.41	2	\$0.82	C0603C474K8RACTU	CAP CER 0.47UF 10V 10\% X7R 0603	Kemet
	CINTVCC	4.7u	C4	\$1.40	2	\$2.80	C3225X7S2A475M200AB	CAP CER 4.7UF 100V 20\% X7S 1210	TDK
	CVREF	0.1 uF	C5	\$0.10	2	\$0.20	C1608X7R1E104K080AA	CAP CER 0.1UF 25V 10\% X7R 0603	TDK
	CBS	0.1 uF	C6 and C7	\$0.10	4	\$0.40	C1608X7R1E104K080AA	CAP CER 0.1UF 25V 10\% X7R 0603	TDK
	COUT	4.7 u	COUT	\$1.23	8	\$9.84	C3225X7S2A475K200AB	CAP CER 4.7UF 100V 10\% X7S 1210	TDK
	CIN	4.7 u	CIN	\$1.23	8	\$9.84	C3225X7S2A475K200AB	CAP CER 4.7UF 100V 10\% X7S 1210	TDK
Schottky	D1, D2		D1,D2,D5,D6	\$0.44	4	\$1.76	BAT46WJ,115	DIODE SCHOTKY 100 V 0.25 A SOD323F	NXP Semicond.
	D3, D4		D3,D4,D7,D8	\$1.23	4	\$4.92	MBR20100CTTU	DIODE SCHOTTKY 100V 10A TO220	Fairchild Semi

Controller	LT3791-1	Controller	\$11.21	3	\$33.63	LT3791IFE-1\#PBF	IC REG CTRLR BUCK BST 38TSSOP	Linear Tech
Heat Sink			\$3.09	8	\$24.72	C247-025-1AE	HEATSINK FOR TO-247 WITH 1 CLIP	Ohmite
Header Pins			\$0.13	18	\$2.30	961102-6404-AR	CONN HEADER VERT SGL 2POS GOLD	3M
POSTS	RED		\$4.05	4	\$16.20	111-0702-001		Emerson
	BLACK		\$4.05	6	\$24.30	111-0703-001		Emerson
PCB	4-Layer	PCB	\$32.67	2	\$65.33			ExpressPCB
				TOTAL	\$255.19			
				TAX	\$275.60			

- How much does the project earn? Who profits?

The EHFEM project indirectly profits Cal Poly by reducing its operating electricity costs at its recreational center. The EHFEM projects to achieve a zero system lifecycle cost after 10 years of use as outline in Martin Kou's thesis [9]. The estimated profit per year of the EHFEM project of $\$ 39.26 /$ year provided a nominal 100 W generated from exercise at a power degradation of 0.5% at 12 hours per day for 41 weeks at $\$ 0.12$ per kWh of electricity. Any electricity generated after the ten year period generates profit to Cal Poly with respect to the cost required to implement the EHFEM system.

- Timing

Products emerge after the final design of the product, in addition to the manufacturable final design of its individual components. The product final product has a lifecycle of approximately ten years to reach zero system lifecycle cost. Therefore, each component in the product must sustain proper operation for at least ten years without maintenance or replacement.

Figure A displays the original initial estimated development time of this project while Figure B displays actual project development time.

Figure A: Initial Estimated Project Plan Gantt Chart

Figure B: Actual Project Plan Gantt Chart

Commercial Manufacture

This project considers devices sold primarily to middle and large sized recreational centers, not individual consumers. Considering a sale of 25 devices per recreational facility at a per-unit cost of $\$ 325.00$ with an estimated manufacturing cost of $\$ 266.67$, each facility generates $\$ 1458.25$. These values do not take into account significant labor costs or taxes. Considering that an average of 20 facilities/year, or 500 units/year, purchase the product, total profit estimates to $\$ 29,165$ per year. Theoretically, operation incurs no fees to the owner for the first ten years due to its design for a zero system lifecycle cost of 10 years. During the event of component failure, replacement parts should cost under 5\% of the product cost, or $\$ 16.25$. This value covers individual component costs outside of PCB printing.

Environmental

This project generates negative environmental impacts during its production. Such negative impacts include the generation of carbon dioxide, carbon monoxide, and other pollutants generated during manufacturing and shipping stages. Additionally, the components required by this product directly impacts earth's natural resources and ecosystem services as they require harvesting Earth's natural resources. Such resources include copper, aluminum, silicon, and the drilling of oil. Mining and drilling requires energy to purify and transport materials and produces industrial byproducts which harm surrounding ecosystems. Harvesting methods also produce environmentally harmful toxic byproducts. Furthermore, disposal of its components after failure or replacement may negatively affect the environment. Components selected in this design fulfill RoHS compliance to ensure minimal environmental impact upon their disposal based. This
project has a positive impact acts as a source of renewable energy, thereby reducing power plant emissions in a wider prospective. in doing so, this project positively impacts other species by reducing the effects of harmful or toxic emissions.

Manufacturability

Drawbacks of the scale of this project include difficulties in hand-soldering components to printed circuit boards. Inadvertent damage may occur during soldering process, especially to components such as SMT devices. Such devices require precision soldering using a magnifying glass. Such difficulties may result in the accumulation of damaged components. Additionally, the quality of testing equipment supplied by the Electrical Engineering department's laboratories constrains system testing quality. Testing equipment often limits digits of resolution. for example, if current measurements in $\mu \mathrm{A}$ are limited to mA due to equipment supporting only mA .

Sustainability

The system's designed lifespan of at least ten years provides 65,700 operating hours with no additional required maintenance. Therefore, no further natural resources are required for ten years by each unit, thereby minimizing environmental impact in the process of harvesting and disposal of resources. in the event of components failure, individual components may be desoldered and replaced instead of requiring the manufacture of a new unit, further reducing environmental impact. Further upgrades to the design of this project that would improve sustainability include minimizing its PCB footprint and minimizing power dissipation by components. Minimizing the projects PCB footprint decreases the amount of copper and plastic required by the project, thereby
decreasing its ecological footprint. Minimizing the PCB footprint may prove difficult as components vary in size.

Ethical

Based on the Utilitarian ethical framework, this project benefits a wide range of groups by generating renewable energy with zero emission as waste or byproduct. This results in an eco-friendly source of energy generation, thereby decreasing the overall environmental impact generated from non-renewable energy sources to produce similar quantities of energy. Although often seen in a positive light, green-energy may make some users feel uncomfortable with paying the same rates for gym memberships at gyms outfitted with EHFEM machines than those without. Users may feel disgruntled knowing that their fitness center pays less for their utilities but charging users the same amount in comparison to competitors without EHFEM machines. Additionally, users may feel disgruntled if left uninformed of EHFEM machines installed for solely for the profit margin benefit of the fitness center.

Numbers 1, 3, 7, and 9 of the IEEE Code of Ethics [11] most apply to this project. The safety and wellbeing of the user and laborers manufacturing the device apply statements 1 and 9. All aspects of the project that may pose a danger to the public must be properly noted or remedied, whether mechanical or electrical hazards. Additionally, statements 3 and 7 apply to the design and manufacturing of the product. Proper claims regarding the function and safety of the product must be issued and proper acknowledgement of groups who have contributed to the EHFEM project. It's highly important to constructively criticize the development of the buck-boost DC-DC converter system promote an efficient and safe system.

Health and Safety

Overall, the implementation of the EHFEM system should not alter the user's exercise experience or safety. The design and use of this product requires mechanical input by a user to operate the elliptical machine. Proper exercise safety practices prevent physical injury to the user. Additionally, the EHFEM system generates electrical energy. Proper precautions or implementations must prevent electrical shock to the user. A user's safety should be maintained in the case water is spilled on the equipment. Accidental spillage of liquids onto the device must not jeopardize the safety of the user. Circuit components also dissipate heat during normal use, so proper implementation of heat dissipaters prevent component failure or physical harm to the user. Manufacturing and testing requires human labor to solder and test components. Soldering releases hazardous noxious fumes and involves using tools operating at high temperatures. Proper ventilation and equipment practices minimize hazards during the manufacturing process.

Social and Political

This project may generate positive public social interest in renewable energy sources as it demonstrates to Cal Poly's community that the university actively seeks ways to become a greener campus. Implementing the EHFEM project in the form of numerous elliptical machines, or other exercise machines, directly reduces Cal Poly's spending on energy over a period of time, which indirectly reduces the consumption of Earth's natural resources used to generate energy (i.e. coal, oil). The direct stakeholders of this project include Cal Poly. Its indirect stakeholders include power plants and power companies. Using elliptical machines modified using the EHFEM project equally benefits both stake holders as Cal Poly spends on electrical energy, correlating with less energy
demand from power plants. Cal Poly benefits more than power plants as Cal Poly pays less overall for electricity costs while the power not consumed from the power plant(s) is redirected and consumed elsewhere. Additionally, Cal Poly's presence and reputation as a green campus improves which may foster innovations in green energy-producing technologies in the future.

Development

The Monte-Carlo technique was learned to analyze circuit simulations taking into account component tolerance, temperature variations, and parasitic characteristics. Additionally, this project required learning to operate and design DC-DC converters and its protection system as designed by Turner and Weiler [2]. Furthermore, selection methods for proper heat sinking, MOSFET, and power inductor sizing were learned for low-power systems. Basic operational information about snubber circuits was also learned. This project also provided an opportunity to learn about PCB layout and design considerations as well as hands-on soldering experience.

