
1

Encryption on Microcontrollers

By

Chao Chen

June 2014

A Senior Project Presented to the

Electrical Engineering Department Faculty

 Of California Polytechnic State University

San Luis Obispo, California

In Partial Fulfillment

 Of the Requirements for the Degree

 Of Bachelors of Science

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@CalPoly

https://core.ac.uk/display/32412859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Abstract

 This project concentrates on the security of simple embedded systems that sends data

wirelessly. For example, a WIFI home security camera. The algorithm, Advanced Security

Standard (AES), is chosen since it is a common and efficient algorithm. The processor of a

simple embedded system has limited processing power and some applications are real time, so

reducing the usage of the processor and time efficiency are important. The goals are achieved by

minimizing processor memory usage and iteration of AES.

3

Table of Contents

List of Figures...4

Introduction..5

Background..5

Design Module..6

Software flow diagram..6

Sub Bytes..7

Shift Rows...9

Mix Columns..10

Add Round Key..12

AES Mix-Columns Transformation calculation...13

Sample inputs and outputs..15

Display and testing results..17

System integration...19

Conclusion..20

References...21

4

List of Figures

Figure 1: Traditional AES 128-bit Encryption Scheme.. 6

Figure 2: Example of the state..7

Figure 3: Sbox Values for all 256 Combinations in Hexadecimal Format...............................8

Figure 4: Shift row of the State...9

Figure 5: Example of mix columns...11

Figure 6: The process of Add Round Key...12

Figure 7: Example matrix...13

Figure 8: Example Input of State and Cipher Key.. 15

Figure 9: Round 2, 3, 4, 5, and 6 of the process..16

Figure 10: Round 7, 8, 9, and 10 of the process..16

Figure 11: Advanced Serial Port terminal program..18

Figure 12: System integration of the project...19

5

Introduction

 An FPGA could be used to minimize processor memory usage. However, an FPGA

holds an additional cost for the embedded system. FPGA can encrypt the data faster due to

parallel computing. However, encryption would be the last stage of the processing and after that

data is transferred through serial communication. Thus, time is not very critical here and

performing AES inside a microprocessor is a better option. Secure communication with sensitive

information is necessary for military and government institutions but also for business sectors

and private individuals [1]. The Rijndael algorithm was chosen by National Institute of Standards

and Technology (NIST) for the new Advanced Encryption Standard in conjunction with

scalability, security, simplicity, and strength. It is an iterative, symmetric block cipher operating

on 128-bit block sizes with key sizes of 128, 196, and 256 bits.

Background

 The 21
st
 century relies heavily on networked infrastructure. Steps must be taken to protect

data from intruders. Data encryption has the ability to defend unauthorized use of data. However,

cryptology has weaknesses such as security vulnerabilities such as sending encryption keys over

networks. Another weakness was found in the Data Encryption Standard (DES) 56-bit key

initially adopted in 1977. The Advanced Encryption Standard (AES) was designed in response

to the weak and slow DES algorithm [2]. The design methodology was for resilience against

known attacks (exhaustive key search, etc) and encryption speed on CPUs, while staying as

simplistic as possible [3].

6

Design Module

Hardware Software

Laptop Advanced port terminal

Atmega328 microcontroller C-code to implement the algorithm

USB cable C-code to display data on the screen

Software flow diagram:

Figure 1: Traditional AES 128-bit Encryption Scheme

7

Traditional AES uses a repetitive encryption process to diffuse the data as shown in

Figure 1. The input data will be passed through four types of stages: SubBytes, ShiftRows,

MixColumns, and AddRoundKey [4].

Sub Bytes

The first stage, called Sub Bytes, is a non-linear byte substitution that acts on every byte

of the state in isolation to produce a new byte value using anSbox substitution table shown in

Figure 1. The corresponding replacement byte is found by matching the first nibble of an input

byte to a look-up table row, and the second nibble for the look-up table column. This step helps

avoid attacks based on algebraic properties.

State is represented as in Figure 2:

Figure 2: Example of the state

Figure 3 shows the Sbox of the. The first 4 bits in the byte (the first hexadecimal value, hence)

individual the row, the last 4 bits individuate the column)

8

Figure 3: Sbox Values for all 256 Combinations in Hexadecimal Format

An array with all 256 hexadecimal values in C code:

uint8_t s[256] = {

 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE,

0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2,

0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34,

0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,

0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A,

0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC,

0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB,

0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40,

0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD,

0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,

9

0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B,

0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91,

0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4,

0xEA, 0x65, 0x7A, 0xAE, 0x08, 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8,

0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6,

0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9,

0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 0x8C, 0xA1, 0x89, 0x0D,

0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16

};

Shift Rows

The second technique, Shift Rows, circular left shift a number of bytes equal to the row

number. Figure 4 illustrates the process of shift rows. Sample code 1 shows the coded process.

Figure 4: Shift row of the State

10

C code:

//sub-byte and shift rows

(state_temp)=(s+*(state));

(state_temp+4)=(s+*(state+4));

(state_temp+8)=(s+*(state+8));

(state_temp+12)=(s+*(state+12));

(state_temp+1)=(s+*(state+5));

(state_temp+5)=(s+*(state+9));

(state_temp+9)=(s+*(state+13));

(state_temp+13)=(s+*(state+1));

(state_temp+2)=(s+*(state+10));

(state_temp+6)=(s+*(state+14));

(state_temp+10)=(s+*(state+2));

(state_temp+14)=(s+*(state+6));

(state_temp+3)=(s+*(state+15));

(state_temp+7)=(s+*(state+3));

(state_temp+11)=(s+*(state+7));

(state_temp+15)=(s+*(state+11));

Sample code 1: Shift row of the State

Mix Columns

The third, Mix Columns, takes a column of data, multiplies it by a matrix, and stores the

resulting column of data as shown in Figure 5. Each column of State is replaced by another

column obtained by multiplying that column with a matrix in a particular field. The “mixing”

helps diffuse the data. Sample code 2 shows the coded mixed columns.

11

Figure 5: example of mix columns

C code:

//mix column

if(round_cnt<9){

int column, row, element;

for(column =0; column <4; column++){

for(row =0; row <4; row++){

for(element =0; element <4; element ++){

(d_temp+element)=(((state_temp+element+4*column)<<

((*(column_val+element+4*row)>>1)&0x01))*

((*(column_val+element+4*row)>>1)&0x01))

^(((*(state_temp+element+4*column)>>7)&

(0x01)&(*(column_val+element+4*row)>>1))*(0x1B))

^(((*(column_val+element+4*row))&(0x01))*

(*(state_temp+element+4*column)));

}

*(state+row+column*4)=(*(d_temp))^(*(d_temp+1))^

(*(d_temp+2))^(*(d_temp+3))^(*(cypher+row+column*4));

}

}

}

Sample code 2: Mix Columns

12

Add Round Key

The last step, called Add Round Key, performs an XOR operation of the data with

corresponding values in the Round Key. Each block of input data is passed through the “main

round” nine times for 128-bit encryption. The cipher key is user generated and, in conjunction

with the Rijndael key schedule, generates the round keys. This process is shown in Figure 6 and

coded in Sample code 3 (adding key) and 4 (generating key).

Figure 6: The process of Add Round Key

C code:

//add initial round key

voidadd_initial_rkey(uint8_t *state, uint8_t *cypher){

inti;

for(i=0;i<16;i++){

(state+i)=(state+i)^*(cypher+i);

}

}

Sample code 3: Adding round key

13

voidrkey_gen(uint8_t *cypher, uint8_t *s, uint8_t *Rcon,

 uint8_t round_cnt){

int k,i;

for(k =0; k <16; k++){

if(k <4){

if(k ==3){

(d_temp+k)=((cypher+k))^(*(s+(*(cypher+12))))^(0x00);

}

elseif(k ==0){

(d_temp+k)=((cypher+k))^(*(s+(*(cypher+k+13))))^

(*(Rcon+round_cnt));

}

else{

(d_temp+k)=((cypher+k))^(*(s+(*(cypher+k+13))))^

(0x00);

}

}

else{

(d_temp+k)=((d_temp+k-4))^(*(cypher+k));

}

}

for(i=0;i<16;i++){

(cypher+i)=(d_temp+i);

}

}

Sample code 4: Round key generator

AES Mix-Columns Transformation calculation

Figure 7: example matrix

14

r1 = {01.d4} + {02.bf} + {03.5d} + {01.30}

1. {02.bf}

{bf} . {02} = 1011 1111 << 1

 = 0111 1110 XOR 0001 1011

 = 0110 0101

2. {03.5d}

{5d} . {03} = {0101 1101 . 02} XOR { 0101 1101}

 = 1011 1010 XOR 0101 1101

 = 1110 0111

Therefore,

r1 = {01.d4} + {02.bf} + {03.5d} + {01.30}

 = 1101 0100 XOR 0110 0101 XOR 1110 0111 XOR 0011 0000

 = 0110 0110

 = 66 (in Hex)

[5]

15

Sample inputs and outputs

Figure 8 illustrates an example data and cypher. In Figure 9 and 10, the 10 rounds of

processes are shown.

 Figure 8: example Input of State and Cipher Key

16

Figure 9: Round 2, 3, 4, 5, and 6 of the process

Figure 10: Round 7, 8, 9, and 10 of the process

17

 Therefore, 32, 43 f6, a8, 88, 5a, 30, 8d, 31, 31, 98, a2, e0, 37, 07, 34 is the data, 2b, 7e,

15, 16, 28, ae, d2, a6, ab, f7, 15, 88, 09, cf, 4f, 3c is the cypher, and 39, 25, 84, 1d, 02, dc, 09, fb,

dc, 11, 85, 97, 19, 6a, 0b, 32 is the expected ciphertext.

Display and testing results

A USART is used as an interface with a PC for display purposes. A USART (Universal

Synchronous Asynchronous Receiver Transmitter) available on the AVR ATmega 328 is widely

used for serial communication purposes. Sample code 5 shows the code used to initialize

USART’s send and receive features.

18

C code of USART initialization, send, and receive:

//initializing USART

voidusart_init(uint16_t baudin, uint32_t clk_speedin){

 uint32_t ubrr=(clk_speedin/16UL)/baudin-1;

 UBRR0H =(unsignedchar)(ubrr>>8);

 UBRR0L =(unsignedchar)ubrr;

/* Enable receiver and transmitter */

 UCSR0B =(1<<RXEN0)|(1<<TXEN0);

/* Set frame format: 8data, 1stop bit */

 UCSR0C =(1<<USBS0)|(3<<UCSZ00);

 UCSR0A &=~(1<<U2X0);

}

//send data through USART

voidusart_send(uint8_t data){

/* Wait for empty transmit buffer */

while(!(UCSR0A &(1<<UDRE0)));

/* Put data into buffer, sends the data */

 UDR0 = data;

}

//receive data from USART

uint8_t usart_recv(void){

/* Wait for data to be received */

while(!(UCSR0A &(1<<RXC0)))

;

/* Get and return received data from buffer */

return UDR0;

}

Sample code 5: USART initialization, send, and receive

Figure 11: Advanced Serial Port terminal program

19

By using advanced port terminal 6, verification in terms of data, cypher, and final results

are implemented. Figure 11 shows the final encrypted data which was 39, 25, 84, 1d, 02, dc, 09,

fb, dc, 11, 85, 97, 19, 6a, 0b, 32

System integration

Figure 12: System integration of the project

In Figure 12, the system integration is shown. It consists of a laptop with Advanced serial

port terminal program and an ATmega328 microcontroller.

20

Conclusion

The encryption was verified by using a terminal software to send data and cypher keys

from a computer. With combination of the steps in the algorithm, the iteration and register usage

were kept minimal. This project could be done by using an FPGA through VHDL. In the future,

the use of USART in FPGA could be used to accomplish the same task. It is ready to be used as

part of a large scale firmware to ensure data safety before transmitting. Overall, what was

understood was the difference between using an FPGA and a microcontroller to implement the

algorithm.

21

References

[1] Andrei Buruleanu, “Encryption Algorithm Implemented on FPGA”, Digilent Contest Fourth

Edition 2008. Web. 12 May 2014.

[2] Burr, W.E., "Selecting the Advanced Encryption Standard," Security & Privacy, IEEE , vol.1,

no.2, pp.43,52, Mar-Apr 2003. 12 May 2014.

[3] Yang Xiao; Bo Sun; Hsiao-Hwa Chen; Guizani, S.; Ruhai Wang, "NIS05-1: Performance

Analysis of Advanced Encryption Standard (AES)," Global Telecommunications Conference,

2006. GLOBECOM '06.IEEE , vol., no., pp.1,5, 27 November 2006. 12 May 2014.

[4] Bertoni, G.; Breveglieri, L.; Koren, I.; Maistri, P.; Piuri, V., "Detecting and locating faults in

VLSI implementations of the Advanced Encryption Standard," Defect and Fault Tolerance in

VLSI Systems, 2003. Proceedings. 18th IEEE International Symposium on , vol., no., pp.105,113,

3 November. 2003. 12 May 2014.

[5] Xintong, K. C. (n.d.). Understanding AES Mix-Columns Transformation Calculation.

Wollongong, New South Wales, Australia.

