
1

Beehive Monitor

Tyler Lewis - Computer Engineering

June 2014

Project Advisor

John Oliver

Project Clients

Bill Lewis

Frank Czopek

Winter 2014 - Spring 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/32412834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Table of Contents

Introduction 3

 Project Overview 3

 Clients and Partners 3

 Stakeholders 4

 Need Statement 4

 Research Information 4

Project Definition 6

 Project Goals 6

 Project Objectives 6

 Project Deliverables 6

 Marketing Requirements 7

 Engineering Requirements 8

 System Constraints 9

 Testing Criteria 9

Project Planning and Design 10

 Overview 10

 Project Schedule 10

 Hardware Components and Justification 10

 Hardware Block Diagram 12

 Setting up the System 13

 Software Design and Justification 15

 System Test Plan 15

 System Testing Results 16

Closing Statements 18

 Sustainability Impact 18

 Health and Safety Impact 19

 Social and Political Impact 19

 Conclusion 19

Appendix A - Software Model 20

Appendix B - User's Guide 21

3

Introduction

Project Overview

The objective of this project is to develop and build a system that can gather weight data from a

managed honeybee colony and then transmit the data to the beekeeper so that the beekeeper can

access the data from anywhere with an internet connection. Currently, the only way for a

beekeeper to obtain information about their bee colonies is to physically be at the hive location

and examine their hives by hand. It is necessary for beekeepers to visit their beehives to harvest

honey because colonies that are oversupplied with stored honey tend to swarm, depleting the

hive of its current queen bee and roughly half of its worker bee workforce. However, these trips

are expensive and time consuming when the apiary is a long distance from the beekeeper's

current location. For example, my client beekeeper spends up to $500 in travel and labor costs,

in addition to a full day of work time, to make a trip to his beehive locations. This is very

detrimental to his business if there is not a significant amount of honey to harvest. With the data

the provided by the Beehive Monitor, a beekeeper will be able to remotely determine if they

need to harvest honey that day or not, as a colony that has greatly increased in weight over time

indicates a hive that is ready for honey harvesting. This will help the beekeeper to prevent

unnecessary trips to their apiary and to make more productive use of their time and resources.

Clients and Partners

For this project, I am working with Bill Lewis, a long time professional beekeeper and owner of

Bill's Bees, and his personal friend Frank Czopek, an engineer with Boeing Corporation, who

originally proposed this project to me. Bill Lewis originally started beekeeping as a teenager to

complete a Boy Scout merit badge. After obtaining his masters degree in mechanical

engineering, Bill Lewis worked at Northrop, through which he met Frank Czopek. After years

working as an engineer, Bill Lewis returned to his passion: beekeeping. Frank Czopek initially

proposed this idea to me to help Bill Lewis save time and money travelling to and from the

locations at which he keeps his bee colonies.

4

I made contact with Frank Czopek and received his notes detailing his ideas for the project as of

January 4, 2014. Following my contact with Frank Czopek, I contacted Bill Lewis to determine

what exactly he would like to see in this sort of system. During the communications, I made

plans to keep them both updated on my progress and future project plans on a weekly basis and

also to hand off the completed deliverable to Bill Lewis during the week of June 15
th

, 2014.

Stakeholders

Bill Lewis is a stakeholder for this project as the Beehive Monitor will directly benefit his

company's productivity. By extension, all beekeepers who wish to monitor their beehives from a

distance are also stakeholders for this project, as its completion would serve their interests as

well. Frank Czopek is also a stakeholder for this project, as it has been his interest to construct a

device such as this for several years.

Need Statement

Bill Lewis, owner and beekeeper of Bill's Bees, frequently moves his colonies to locations with

large numbers of nectar producing plants in bloom, so that his bees can collect the nectar and

deliver the largest honey crop possible. When his beehives are a long distance from his home, it

would be very useful to him to have some way of getting information regarding the amount of

honey stored in his colonies without having to go to the apiary himself. As a member of his

family and someone who has worked for Bill's Bees previously, I decided to take on this project

to use my computer engineering knowledge to benefit Bill's Bees.

Research Information

http://www.engadget.com/2012/09/04/raspberry-pi-getting-started-guide-how-to/

 As I had never used a Raspberry Pi before, I found this guide for properly setting up a

 Raspberry Pi to be very useful. It provided all the information I needed to know from

 setting up the SD card for use by the Raspberry Pi to configuring user settings on the

 Raspberry Pi.

5

http://www.cplusplus.com/reference/

 I used this website as a reference for C language library function calls and to confirm that I

 was setting the proper parameters and return types for every library function in my C

 program.

http://man7.org/linux/man-pages/man2/syscalls.2.html

 I utilized this website as a reference for UNIX system calls and to ensure that I was setting

 the proper parameters and return types for every system call in my C program.

http://www.wikihow.com/Make-a-Raspberry-Pi-Web-Server

 Having never set up an email server on any system, I found this guide to be very helpful in

 preparing the Raspberry Pi to send emails. The guide describes what files are necessary to

 install to prepare a Raspberry Pi to send emails.

http://www.nixtutor.com/linux/send-mail-with-gmail-and-ssmtp/

 As I decided to use a Gmail account for my system's email address, this tutorial aided me in

 setting the necessary parameters on my Raspberry Pi to be able to access Gmail servers.

http://www.php.net/manual/en/funcref.php

 Having never written any PHP code before this project, I needed documentation and

 examples to get started writing the PHP scripts to handle emails. This website provided

 documentation and examples for using all of the functions that I needed for the PHP scripts.

http://www.raspberrypi.org/forums/

 This is the official Raspberry Pi forum board. This website provided all sorts of information

 about Raspberry Pi, from initial setup, to troubleshooting information, to which programming

 languages are optimal for implementing a simple email server.

6

Project Definition

Project Goals

 Construct a system that can weigh a beehive and communicate with the beekeeper.

 Save beekeepers' time and money by reducing the number of trips they must make to their

apiaries and eliminating unnecessary trips altogether.

Project Objectives

 Use a scale with a capacity of at least 400lb with deviation lower than ±5lb to weigh a

beehive.

 Use a serial connection to communicate between a Raspberry Pi and an external scale.

 Write commands to and read data from the scale.

 Be able to send and receive emails with a Raspberry Pi at least once a day, or faster if

required.

 Send emails containing scale data to the user.

 Receive and parse emails containing commands from the user.

Project Deliverables

Upon completion of this project, I will have built a system consisting of a Raspberry Pi and a

scale to measure the weight of a beehive. I will also have written the code necessary to obtain

data from the scale either on a user specified interval or immediately upon user request, and then

relay that information to the user via email. I will hand these items off to my client during the

week of June 15
th

, 2014.

7

Marketing Requirements

1. The scale should have a maximum capacity greater than the weight of a beehive.

2. The system should be simple to set up and use.

3. The system settings should be customizable by the user, even when the program is running.

4. The system should be reliable to prevent unnecessary trips to restart it.

5. The system should have a fast response time when the beekeeper requests an update.

6. The system should not disturb the environment or the bees nearby while it is running.

8

Engineering Requirements

Category /

Corresponding

Marketing Requirement

Engineering Requirement Justification

Functionality / 1 The scale must have a capacity of

400lb or higher

A bee colony will produce a

maximum of 400lb of honey

per, but as honey is harvested

several times per year, the

weight of the beehive will

never exceed 400lb.

Usability / 2, 3 The system takes commands

formatted liked those used in a

Linux command line interface.

This type of interface is fairly

simple to learn to use while

passing all necessary

information to the system in a

concise manner.

Usability / 3 The system can change the base

measurement time and interval

measurement time while running.

Sometimes conditions vary

and fewer or more frequent

measurements would be more

convenient for the beekeeper.

Reliability / 4 The system needs to be able to

operate for a week straight

without crashing.

Bee hives need to be checked

for colony health reasons once

a week, so this is the

maximum amount of time the

beekeeper would spend away

from the apiary.

Usability, Reliability / 5 The system responds within 90

seconds to a request for an

unscheduled update.

Users do not want to be kept

waiting for data.

Environmental, Health and

Safety / 6

Components used in the system

must be Rosh compliant and

cause no damage to bee colonies.

The Beehive Monitor aims to

aid the beekeeper in

maintaining their bees;

harming the bees or the

environment directly conflicts

with this objective.

9

System Constraints

 The user must provide an internet connection to the Beehive Monitor for the program to

function.

 For the current system model, the user must also provide the Beehive Monitor with a 120V

AC power source.

 The system (except for the scale) must be able to fit inside of a beehive box so that it is

protected from the elements and can be moved with relative ease.

Testing Criteria

Category Description Justification

Accuracy This measures the deviation in the

output of the scale.

Though it is not important to know

exactly how much the beehive

weighs, deviating from the actual

weight of the beehive by a large

percentage would impact a

beekeeper's ability to make a good

decision based on the data.

Reliability This measures how long the

system functions properly without

being restarted.

If the Beehive Monitor program

crashes before the beekeeper needs

to make a weekly trip to their

apiary, it is not achieving its

original intention to save them time

and money.

Response Time This measures how quickly the

system responds to user emails.

Whether or not an error is detected

in emails sent by the user, a fast

response from the system makes

interacting with the device easier

and a more pleasant experience for

the user.

10

Project Planning and Design

Overview

At the start of this project, I met with my advisor, John Oliver, to plan out a timeline for the

project tasks. This helped me to determine how much time I should spend on research and

planning, code development, and debugging and testing. I also set up weekly meetings with

Professor Oliver for both winter quarter and spring quarter so that I could update him on my

progress, obtain guidance for my next steps, and get answers for questions I encountered.

Project Schedule

The planning phase of the project lasted from 1/7 until 3/21, during which time I composed the

project charter, completed the hardware and software block diagrams, and obtained the necessary

hardware components. The code development phase lasted from 3/22 until 4/24, during which

time I researched which programming languages and function libraries would be the most

efficient in my code and then implemented my solution. Finally, the debugging and testing

phase lasted from 4/25 until 5/24, during which time I performed stress tests (by sending

multiple emails to the system in a short period of time while it was also taking a measurement

from the scale) and long duration testing (running the device under normal operating conditions

for a week at a time to check for memory issues). After completing my own testing, I gave my

clients access to the system to allow them to evaluate and experiment with the system for

themselves.

Hardware Components and Justification

There are two main hardware components in the Beehive Monitor system: a computer that runs

Beehive Monitor software and a scale that obtains the weight of the beehive. For a visual

description of how the physical system is set up, see the Hardware Block Diagram on the next

page.

11

From the start of the project, I planned on using a Raspberry Pi for the system's computer. Its

small physical size makes the Raspberry Pi perfect for this project because it can easily fit inside

of a beehive box and leave plenty of room for other components. In addition, the Raspberry Pi

has a 700MHz processor, 512MB of RAM, and 8GB of memory space, which is more than

enough capacity for the Beehive Monitor. From the point of view of a computer, the Beehive

Monitor only creates, deletes, opens, closes, reads, and writes to files, none of which are very

demanding tasks. The Raspberry Pi is also compatible with both Ethernet and wireless internet

connection, allowing the user to choose whichever one best suits their needs. Finally, the

Raspberry Pi is very well documented and has an active FAQ board and forum, which was quite

useful to a first time user such as myself.

For the scale component of the system, I originally planned on using load cells to build my own

scale, because of their accuracy and weight capacity. However, upon determining their cost, I

decided they would be far too expensive for this project. When I relayed this information to my

client, he agreed and a Brecknell LPS400 postal scale was procured for the project instead. I

actually had no part in making the decision to use this scale, but as the purchase was already

made, I accepted the change in my project specifications and verified that the LPS400 would

meet the 400lb capacity requirement, and also that it would be possible for me to interface it with

the Raspberry Pi.

12

Hardware Block Diagram

13

Setting up the System

1) Start the system and all of its components.

Place all of the components except for the scale

in a protective box. Place the box containing the

system components in location desired for the

beehive. Center the scale on top of the box.

2) Center a bottom-board on top

of the scale.

Components Box

Scale

Bottom Board

14

3) Place a beehive on top of the

bottom-board.

4) This is the completed setup.

Shield the sides of the scale if

deemed necessary.

Beehive

15

Software Design and Justification

For the software portion of the Beehive Monitor, I decided on a highly modular approach,

breaking the software into three separate programs. This allowed for much easier debugging and

testing, as a component can be tested on its own before being added to the main program. In

addition, smaller pieces of code make it much faster and easier to track down errors; for the same

reason, it will be much more simple to modify the code in the future to improve or add to the

system. For a visual description of how the software is set up, see the Software Model in

Appendix A.

Initially, I planned on writing the entire project in the C programming language. C is a great

language for interfacing with hardware, as it is very memory efficient and runs much more

quickly in comparison to interpreted languages (such as Java) or scripting languages (such as

PHP). In addition, C is a personal comfort choice of mine because I have used it for the past five

years. Because writing my own program for sending and receiving emails would be very

unpleasant in C, I planned on using a prewritten email program such as 'mail' or 'mailx' to handle

this portion of the project. However, I experienced many difficulties in getting these programs to

behave exactly as I desired when sending and receiving emails, so I abandoned my attempts to

utilize them and decided to write my own code instead. This meant that I would need to choose

a different programming language to write this part of the code, as I did not want to write it in C.

After searching the Raspberry Pi forums to determine what programming languages would be

best for implementing a simple email server, I came up with two candidates: Python and PHP.

After doing some research into both languages, I chose to use PHP because its functions were all

very well documented and explained with examples. In addition, PHP syntax is similar to that of

my comfort programming language, C.

System Test Plan

1. While writing the code, perform sanity checks and functionality testing on each module

before adding it to the system.

16

2. Upon adding a new code module to the system, perform regression tests to verify that all

previous code still functions as expected.

3. Change the weight on the scale between measurements to verify that the scale does record

different weights.

4. Change the weight on the scale while it is taking a measurement to verify that the recorded

data is accurate.

5. Send email requests with incorrect parameters and formatting to verify that the system will

not crash.

6. Perform a short duration stress test during which many email requests are sent to the system

over a short period of time while the scale is also taking a measurement to simulate the

maximum burst amount of work the system will have to perform.

7. Perform a long duration test under normal operation conditions to verify that the system code

has no memory leaks. During this test, do not vary the weight on the scale so that it is

possible to notice deviations in the scale output.

System Testing Results

1. When writing new code modules, I added debugging statements to give me information

regarding how the code was running. Each of the three modules spent a large amount of time

in this step due to syntax errors and stability issues. 'beehive.c' spent the largest amount of

time in this step because of the large number of system calls that it uses; the output of each

system call must be checked before proceeding in the program's execution, otherwise it could

crash and would have to be manually restarted by the user. Though I checked both

'rcv_email.php' and 'send_email.php' for the same issues, they are not as important as the

stability of 'beehive.c', as 'beehive.c' will restart these programs as needed. Once I was

confident that a particular code module was causing no errors, I removed these statements

and added the module to the main system program.

2. When I added a new code module to the main system program, I would run the entire

program for several hours while periodically printing out debugging information to make

sure the addition of the new module did not cause any bugs. Once I was confident in the

17

functionality of the software, I disconnected the monitor from the Raspberry Pi and

proceeded to testing the functionality of the system.

3. When changing the weight on the scale between measurements, the next email did reflect the

change in weight.

4. When changing the weight on the scale during a measurement, the scale would wait for the

reading to stabilize before sending that data to the Raspberry Pi, resulting in the correct

weight being displayed in the email.

5. I sent emails containing misspelled and unknown commands for this current model of the

Beehive Monitor, which were ignored. I also sent commands with incorrect numbers of

parameters. If there were too few parameters or incorrectly formatted parameters, an error

message was sent back to me by email. If there were too many parameters, the system took

accepted the required number and ignored the remainder.

6. When performing the stress test, I sent many emails all within sixty seconds (the time that

'rcv_email.php' sleeps after checking the inbox) for each command, including some with

unknown commands and/or incorrect parameters, to check all possible forms of user error

and to see if the system could handle conditions much worse than the expected normal

operating conditions. When this test succeeded, I tried it again while 'beehive.c' was taking a

measurement from the scale to simulate the worst case scenario. This test also succeeded.

7. Finally, I tested the system under normal operating conditions for an entire week to simulate

how a beekeeper might actually use the device. The purpose of this test was to make sure the

'beehive.c' was not leaking memory, which would eventually cause the system to stop

functioning and require a manual restart. In addition, I used this time to note the deviation in

the scale's output, which ended up being ±2lb at the worst. A beehive typically weighs well

over 100lb, so this 2lb fluctuation will have no effect on a beekeeper's ability to make a

sound decision based on the data received from the Beehive Monitor.

8. Although not part of my original test plan, after completing my tests, I gave my clients access

to the system, along with a User's Guide (see Appendix C). My intention in doing this was

that they might find an error that I had overlooked or suggest some potential changes to make

the Beehive Monitor easier to use. They did not have any criticisms about how the system

functioned or the email updates they received, so at this point I concluded the testing phase.

18

Closing Statements

Sustainability Impact

The only maintenance that the Beehive Monitor requires is the removal of dust and other

contaminants. As most of the components of the Beehive Monitor are housed inside of a

protective box, they would only need to be checked for dust, which could be removed with

pressurized air. As the weight sensor of the scale is located directly under the beehive and is

more exposed than the other components, it is recommended that the sensor be wiped off with a

damp towel periodically. This system maintenance could be performed by the beekeeper when

they visit their apiary.

The Beehive Monitor indirectly affects the sustainability of fossil fuel resources by saving the

beekeeper trips to a distant apiary. The weight data that the system sends to the beekeeper lets

the beekeeper know if it is necessary to harvest honey that day. Any trip that they do not have to

make gives the beekeeper more time to accomplish something else, in addition to consuming no

fuel and producing no carbon emissions.

Some future upgrades to the Beehive Monitor include additional sensors such as a temperature

sensor internal to the hive (to help gauge colony health) or a bee counter at the entrance of the

hive (to track colony activity). Some upgrades to the user interface include additional commands

that could be sent to the system by email (to improve the user experience with the device).

Some challenges that will occur when upgrading the device include the lack of additional USB

ports; additional devices must be compatible with the general purpose input/output pins on the

Raspberry Pi. Each additional data sensor also requires additional code in the main program to

read data from that sensor. Adding new commands to the system requires that the program that

monitors the Beehive Monitor's email address be modified.

19

Health and Safety Impact

The Beehive Monitor does include small parts that could pose a choking hazard for small

children, as well as larger and heavier parts that could cause bodily harm if dropped on fragile

body parts.

Social and Political Impact

Using the Beehive Monitor with an email address that is not your own, particularly with a low

measurement interval, will cause that email address to receive a large number of emails from the

Beehive Monitor. Actions such as these that cause unwanted spam are subject to the email spam

legislation in the country of use.

Conclusion

When beginning this project, I had very detailed knowledge of most of the C programming

language, which I used to write the Beehive Monitor's main executable named "beehive".

However, though I was aware of its existence, I did not have much prior experience using the

<termios.h> library, which allows a program to interface with external devices (in this case the

scale). This project helped me to understand more about the use of this library.

Prior to this project, I had no knowledge of the PHP language. I am now comfortable with my

ability to research and use PHP in inter-process communication, as well as to send and receive

requests via email.

Finally and most importantly, I feel like I gave gained experience that will be useful in a future

career by working on a project from the planning phase, through the development and testing

phases, and finally to the deployment phase. In addition, I have developed and produced a

completed product that will be immediately applicable and beneficial to my client.

20

Appendix A - Software Model

beehive.c

// check user parameters

// fork and exec rcv_email.php

// open and configure connection to scale

// sleep until base measurement time

while(1) {

 if(rcv_email.php has terminated) {

 // fork and exec rcv_email.php

 }

 // request data from scale

 // read data

 // write data to out_email.txt

 // check in_email.txt for parameter changes

 // change parameters

 // delete in_email.txt

 // fork and exec send_email.php

 // sleep for interval time or until next SIGINT occurs

}

rcv_email.php

while(1) {

 // open connection to email inbox

 for(all emails) {

 if(email subject is recognized user command) {

 // write email body to in_email.txt

 }

 }

 // delete all emails

 // sleep for 60 seconds

}

send_email.php

// read data from out_email.txt

// send email containing data

// delete out_email.txt

21

Appendix B - User's Guide

Starting the System:

1. Navigate to the directory “Desktop/beehive_monitor”.

2. Enter any of the following commands:

 ./beehive

 ./beehive [0 - 23] [0 - 59] [0 - 24] [0 - 59]

 ./beehive [0 - 23] [0 - 59] [0 - 24] [0 - 59] [location]

If entering your own parameters, the first four parameters must be integer values in the ranges

specified above. The first and second parameters are the hour and minute values of the initial

measurement time. The third and fourth parameters are the hour and minute values of the

interval of time between measurements. The final parameter is an optional string of characters

consisting of one word to help identify the location of the device (if a person happens to have

more than one Beehive Monitor).

Communicating with the System:

email address of the device: **************@gmail.com [I gave the clients the actual email

address of the Beehive Monitor at that time, but I blocked it here for privacy reasons].

The subject field of the message should be one of the commands (listed below without the

double quotes). Some commands require additional data to be present in the body field of the

email. Commands that are spelled incorrectly currently produce absolutely no response.

commands:

 “measurenow” – This command will cause the device to send an email update on

demand. The delay on the return message can be up to 90 seconds. No message body is

necessary for this command.

 “changetime” – This command will cause the base time and interval time for data

measurement to change AFTER the next data measurement. It requires 4 parameters

separated by any number of spaces in the email body. The minimum interval for data

measurement is 0 hours, 5 minutes. The maximum interval for data measurement is 24

hours, 0 minutes. All parameters must begin with a numerical character, but may be

followed by any number of non-numerical characters, which will be ignored. There are

some examples listed below. Any invalid parameters will cause an email alert.

1. Parameter 1 should be an integer from 0 to 23. This represents the hour for the base

time of the first data measurement.

2. Parameter 2 should be an integer from 0 to 59. This represents the minute for the

base time of the first data measurement.

mailto:billsbees.bhm0@gmail.com

22

3. Parameter 3 should be an integer from 0 to 24. This represents the hours for the

interval between data measurements.

4. Parameter 4 should be an integer from 0 to 59. This represents the minutes for the

interval between data measurements.

“0 0 24 0” would take a measurement every 24 hours starting at midnight.

“f0 0 24 0” is invalid, but “0fhg 0 24a0 0fff” is exactly the same as “0 24 0 0”.

Example Beehive Monitor Email Message:

location - Wed May 21 01:40:00 2014

Weight: 16.2

Next Data Measurement: Thu May 22 01:40:00 2014

If you do not receive an email at that time, restart the device.

