
 1

Dynamically Adaptive Procedural Generation of Dungeons

Senior Project
Computer Engineering

California Polytechnic State University, San Luis Obispo

By
Cameron Thibodeaux

May 2014

Advisor
Foaad Khosmood

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/32412833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Table of Contents

Introduction 3

Background and Related Work 4
Design 5

Gameplay 5
User Experience 6
The Misfortune Parameter 6
Level Layout 7
Room Generation 8

Tools 10

Conclusion and Future Work 11
References 11

Appendix: Room Population Code 12

 3

Introduction

 Procedural content generation (PCG) is a technique utilized in many productions

that allows content to be created algorithmically in real time. PCG gives games an

element of probabilistic variability and replayability, allowing content such as level layout

and enemy spawning to vary between each playthrough. It is used in many game

genres, including roguelikes like Dungeons of Dredmor (Gaslamp Games, 2011) and

sandbox games like Minecraft (Mojang, 2011). PCG can also save time for designers

who would otherwise have to build all levels and content from scratch. Another popular

game mechanic is dynamic difficulty adjustment, which scales a game’s difficulty

depending on the player’s actions and the desired user experience. This makes a game

consistently challenging, but not impossible. One example of this is Left 4 Dead (Valve,

2008), which changes the frequency and location of enemy spawn points based on the

player’s performance.

However, when most games dynamically alter content, they only modify a few

simple parameters such as the number of health pickups or strength of enemies. This

makes the game generically easier or more difficult. One underutilized aspect of games

that can greatly increase the degree of customization is level design. Jennings-Teats et

al. (2010) created a 2D platformer game called Polymorph that utilized structural

adjustment instead of numerical adjustment to generate levels. They found that dynamic

levels generated in real time resulted in a strong correlation between difficulty and the

player’s skill while creating a unique gameplay experience. Similar to Polymorph, this

project focuses on the dynamically adaptive generation of dungeon levels in a roguelike

game named Pearl of the World, where the geometry and layout of individual rooms are

 4

influenced by the player’s actions throughout the game and are generated in session,

as seen in Figure 1. Specifically, the game adds elements the player finds difficult,

adding a challenge specific to them. By doing this, the entire dungeon is personalized

for each player, creating a new world and a unique experience each playthrough.

Figure 1: A procedurally generated room in Pearl of the World

Background and Related Work

 Procedural level generation has been the focus of many studies over the past

few years. Valtchanov and Brown (2012) have developed a method of dynamic

dungeon generation using an evolutionary approach, where each map segment, or

“chromosome,” is individually manipulated by crossover and mutation operators and is

selected to be added to the final map using a fitness score. The map is represented by

a tree, where each node contains a preset room shape and a door that connects it to its

parent. This method of level generation can create large, intricate 2D dungeon layouts

with the fitness score for some variation, but the individual rooms remain unpopulated.

 5

While the orientation of rooms is the first essential part of creating levels, it does not

include the extra personalization that the contents of a room add to the game, nor does

it take the player’s actions into account when determining room arrangement.

 In addition to procedural level generation, using metrics to determine the player’s

preferences can help personalize a game. Katavić (2013) explains an experiment

involving using a set of metrics to alter the layout of a first-person shooter level. These

metrics included enemies killed, checkpoints reached, items collected, and number of

deaths, and the combination of these metrics establishes a persona (soldier, athlete, or

puzzle solver) to determine how the next level should be arranged. The experiment

shows that the players reacted positively to the customized level design, demonstrating

that levels created from properly recorded metrics can strengthen the game and its

enjoyment. Roguelike games in particular could benefit because they have a wider

variety of metrics to collect and level features to change, creating many opportunities for

customization.

Design

Gameplay

 Pearl of the World is a roguelike game whose objective is to escape a dungeon.

The game is divided into multiple levels, each with a certain number of interconnected

rooms. In each level, the player fights fast enemies and strong enemies, collects items,

and explores the dungeon. Partway through the level, the player will encounter a pearl,

which is needed to get to the next level but will gradually increase the chance of

unpleasant events the longer the player holds it. This is meant to highlight the

 6

personalized level design and difficulty adjustment. After the player completes several

levels, the player is placed in a room with a pit and an exit and is given the option to

throw the pearl in the pit before leaving. The game will end if the player destroys the

pearl, but the player will be put back into the dungeon for another level if they try to

leave with the pearl.

User Experience

 The desired user experience is to make the player realize that holding the pearl

brings misfortune and hardship without telling them explicitly or being too obvious. This

is implied in each level with a gradual difficulty increase and the music slowly becoming

more frantic as the player is holding the pearl. The opposite effect will occur if the player

drops the pearl. On each new level, the amount of time holding the pearl in the previous

level will affect how much the level geometry changes in response to the player’s

weaknesses. Ideally, at the end of the game, the player should want to throw the pearl

in the pit and leave the dungeon without it. Otherwise, the player will have additional

levels to understand the pearl’s effect.

The Misfortune Parameter

 In order to achieve the desired user experience, a misfortune parameter is

needed to alter the difficulty of the current level. Misfortune does not affect the level’s

geometry, but it provides immediate difficulty adjustment to help the player more easily

understand the pearl’s effects.

 When the player picks up the pearl, misfortune slightly increases every second

until it reaches its maximum value. Similarly, when the player drops the pearl,

 7

misfortune decreases every second until it reaches its minimum value. A sample graph

of misfortune is shown in Figure 2. Misfortune is proportional to the magnitude of

changes, which include enemy sight radius, enemy and player accuracy, player attack

speed, the chance that a sword or shield will break on hit, and the chance that a killed

enemy will drop an item.

Figure 2: An example of misfortune over time

Level Layout

 Unlike misfortune, level layout is affected by the total time the pearl was held in

the previous level. It affects the minimum number of rooms in a level and the general

orientation of the rooms. These two factors influence difficulty. For instance, a higher

amount of rooms will make the player fight through more enemies while having several

adjacent rooms gives the player more opportunities to escape a group of enemies. More

 8

time holding the pearl results in more rooms and less doors per room, creating a more

linear dungeon and forcing the player to fight enemies in the way. The rooms are

configured in a 3D grid with adjacent rooms connected with doors or staircases, making

the dungeon cohesive and consistent. In addition, the percentage of staircases taken in

the previous level will inversely change the number of staircases in the current level,

causing the player to change the way they explore the dungeon.

Room Generation

 Room generation is the primary method of personalizing the dungeon for the

player. The dimensions, number of doors, wall density, items, and enemies in each

room vary depending on several metrics collected from the previous level. All room

attributes are affected by the amount of time the player held the pearl, but vary

otherwise. A flowchart of the room generation process is shown in Figure 3.

Figure 3: Room generation process

 9

 The room’s dimensions establish the flow of movement through the room. The

player has the freedom to walk around a large square room, whereas the player is

forced to go from end to end of a long narrow room. In general, bigger rooms with

similar height and width are easier than smaller rooms with a large height and width

difference. This adjustment is done by using the number of fast enemies killed in the

previous level to determine a minimum difference between height and width. Less fast

enemies killed results in a higher difference and a narrower room, making enemies

harder to avoid. Height and width values are repeatedly generated until their difference

is at least the minimum, enforcing a specific room shape.

 The number of doors in a room influences the amount of routes through the

dungeon and the ability to escape a challenging fight, so fewer doors results in a higher

difficulty. A room can have up to four doors (north, south, east, and west), which are

probabilistically determined. If the current number of doors exceeds the calculated

number of doors the room should have, doors are removed one by one until there are

the right amount. Extra tests ensure that there are not too many dead ends in the

dungeon.

 The wall density of a room determines how much space the player has to

navigate, which is influenced by the ratio of fast and strong enemies killed. A high

density creates more chokepoints and gives the player less room to move around. The

process of creating the walls starts with a temporary 2D array, which is populated by

walls and chests using the calculated density. To make sure that all exits are

accessible, the A* search algorithm is used to find paths from one exit to each of the

others. The room can use this configuration of walls and chests if there is a path to all

 10

exits. If a path is blocked, the array is reset and populated again, with the density

decreasing every five attempts to prevent infinite loops.

 After the geometry is established, the room is filled with items and enemies. Item

type and placement vary consistently, but the frequency, type, and strength of the

enemies are affected by the ratio of enemies killed in previous levels. If the player did

not kill many fast enemies, the current level will generate more fast enemies to make

them harder to avoid. If the player did not kill many strong enemies, the strong enemies

will have higher attack, defense, and health. The maximum number of enemies per

room is affected by both types of enemies killed.

Tools

 The game engine was created using the enchant.js framework, which is a

HTML5 and JavaScript based library. It is responsible for creating the game window,

loading assets, processing keyboard input, and more. It also features many helpful

classes for creating 2D game elements such as sprites, labels, maps, and scenes.

 The music is created by AUD.js, a JavaScript based procedural music generator

(Adam, 2014). The singleton object takes a stress and an energy value as inputs to

generate a chiptune loop with a specific mood. AUD.js fits very well with this project

because it can seamlessly change moods in the music without pausing, coinciding with

the level’s gradual difficulty change.

 Pathfinding was implemented using Easystar.js, a JavaScript library for an

asynchronous A* search algorithm. The A* search is used for enemy movement and for

ensuring paths between doors while populating rooms with walls and chests.

 11

Conclusion and Future Work

 This project was an excellent introduction to game development. While I had

previously worked on smaller games, creating Pearl of the World caused me to problem

solve frequently and pay great attention to detail, which are beneficial for all

programming projects. I feel like I have created a game that introduced a new feature to

the roguelike genre and I hope that it can influence other games as well.

 However, Pearl of the World still needs more work to be considered a successful

game. In the future, more metrics could be utilized in the probability calculations in order

to provide an even more personalized experience. Additionally, a story needs to be

implemented in order to convey the context of the game and to better create the desired

user experience. Finally, the game should be played in a user study to determine if the

game successfully fulfilled its purpose of dynamically adjusting the dungeon to the

player’s actions.

References

Adam, T. 2014. AUD.js. http://timotheyadam.com/AUD/

Gaslamp Games 2011. Dungeons of Dredmor.

Jennings-Teats, M., Smith, G., and Wardrip-Fruin, N. 2010. Polymorph: A Model For

Dynamic Level Generation. Proceedings of the 2010 Workshop on Procedural

Content Generation in Games (2010). http://sokath.com/main/files/jenningsteats-

aiide10.pdf

Katavić, T. 2013. Using Metrics to Create a Dynamic Level. University of Abertay

Dundee. http://www.tinkatavic.com/uploads/3/3/2/0/3320510/dissertation.doc

 12

Mojang 2011. Minecraft.

Valtchanov, V. and Brown, J. A. 2012. Evolving Dungeon Crawler Levels With Relative

Placement. Proceedings of the Fifth International C* Conference on Computer

Science and Software Engineering (2012).

http://www.uoguelph.ca/~jbrown16/Vvaltchanov_c3s2e12.pdf

Valve 2008. Left 4 Dead.

Appendix: Room Population Code

/*	 Fills	 the	 room	 with	 walls,	 chests,	 and	 items	 and	 sets	 collision	 accordingly	 */	 	 	

populateRoom:	 function()	 {	 	 	

	 	 	 var	 countRow,	 countCol;	 	 	

	 	 	 var	 isPath,	 startX,	 startY,	 endX,	 endY;	 	 	

	 	 	 var	 exitCoords	 =	 Array();	 	 	

	 	 	 var	 pathFinder	 =	 new	 EasyStar.js();	 	 	

	 	 	 var	 retry	 =	 {Value:	 false,	 Attempts:	 0};	 	 	

	 	 	 var	 tempTiles	 =	 Array(ROOM_HIG_MAX);	 	 	

	 	 	 var	 placeholder	 =	 3;	 //	 Arbitrary	 placeholder	 tile	 not	 used	 in	 rooms	 for	 chest	 placement	 	 	

	 	 	 	 	 	

	 	 	 var	 obstacleChance	 =	 metrics.getObstacleChance();	 	 	

	 	 	 var	 chestChance	 =	 metrics.getRoomChestChance();	 	 	

	 	 	 	 	 	

	 	 	 pathFinder.setAcceptableTiles([0,	 NEXT_LEVEL,	 NORTH,	 SOUTH,	 EAST,	 WEST,	 UP,	 DOWN]);	 	 	

	 	 	 do	 {	 	 	

	 	 	 	 	 	 retry.Value	 =	 false;	 	 	

	 	 	

	 	 	 	 	 	 /*	 Populate	 the	 map	 with	 walls	 and	 chests	 */	 	 	

	 	 	 	 	 	 for	 (countRow	 =	 0;	 countRow	 <	 ROOM_HIG_MAX;	 countRow++)	 {	 	 	

	 	 	 	 	 	 	 	 	 tempTiles[countRow]	 =	 Array(ROOM_WID_MAX);	 	 	

	 	 	 	 	 	 	 	 	 for	 (countCol	 =	 0;	 countCol	 <	 ROOM_WID_MAX;	 countCol++)	 {	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 tempTiles[countRow][countCol]	 =	 this.tiles[countRow][countCol];	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 if	 (tempTiles[countRow][countCol]	 ==	 0	 &&	 Math.random()	 <	 obstacleChance)	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 tempTiles[countRow][countCol]	 =	 2;	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 else	 if	 (tempTiles[countRow][countCol]	 ==	 0	 &&	 Math.random()	 <	 chestChance)	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 tempTiles[countRow][countCol]	 =	 placeholder;	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 if	 (countRow	 >	 0	 &&	 tempTiles[countRow-‐1][countCol]	 ==	 2	 &&	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (tempTiles[countRow][countCol]	 ==	 1	 ||	 tempTiles[countRow][countCol]	 ==	 2))	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 tempTiles[countRow-‐1][countCol]	 =	 1;	 	 	

	 	 	 	 	 	 	 	 	 }	 	 	

 13

	 	 	 	 	 	 }	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 pathFinder.setGrid(tempTiles);	 	 	

	 	 	

	 	 	 	 	 	 /*	 Establishing	 the	 tiles	 that	 can't	 be	 blocked*/	 	 	

	 	 	 	 	 	 if	 (this.North	 !=	 false)	 {	 	 	

	 	 	 	 	 	 	 	 	 exitCoords.push((ROOM_WID_MAX-‐1)/2);	 	 	

	 	 	 	 	 	 	 	 	 exitCoords.push(this.wallN);	 	 	

	 	 	 	 	 	 }	 	 	

	 	 	 	 	 	 if	 (this.South	 !=	 false)	 {	 	 	

	 	 	 	 	 	 	 	 	 exitCoords.push((ROOM_WID_MAX-‐1)/2);	 	 	

	 	 	 	 	 	 	 	 	 exitCoords.push(this.wallS);	 	 	

	 	 	 	 	 	 }	 	 	

	 	 	 	 	 	 if	 (this.East	 !=	 false)	 {	 	 	

	 	 	 	 	 	 	 	 	 exitCoords.push(this.wallE);	 	 	

	 	 	 	 	 	 	 	 	 exitCoords.push((ROOM_HIG_MAX-‐1)/2);	 	 	

	 	 	 	 	 	 }	 	 	

	 	 	 	 	 	 if	 (this.West	 !=	 false)	 {	 	 	

	 	 	 	 	 	 	 	 	 exitCoords.push(this.wallW);	 	 	

	 	 	 	 	 	 	 	 	 exitCoords.push((ROOM_HIG_MAX-‐1)/2);	 	 	

	 	 	 	 	 	 }	 	 	

	 	 	 	 	 	 if	 (this.Up	 !=	 false)	 {	 	 	

	 	 	 	 	 	 	 	 	 exitCoords.push((ROOM_WID_MAX-‐1)/2);	 	 	

	 	 	 	 	 	 	 	 	 exitCoords.push((ROOM_HIG_MAX-‐1)/2);	 	 	

	 	 	 	 	 	 	 	 	 exitCoords.push(this.wallE	 -‐	 1);	 	 	

	 	 	 	 	 	 	 	 	 exitCoords.push((ROOM_HIG_MAX-‐1)/2);	 	 	

	 	 	 	 	 	 }	 	 	

	 	 	 	 	 	 if	 (this.Down	 !=	 false)	 {	 	 	

	 	 	 	 	 	 	 	 	 exitCoords.push((ROOM_WID_MAX-‐1)/2);	 	 	

	 	 	 	 	 	 	 	 	 exitCoords.push((ROOM_HIG_MAX-‐1)/2);	 	 	

	 	 	 	 	 	 	 	 	 exitCoords.push(this.wallW	 +	 1);	 	 	

	 	 	 	 	 	 	 	 	 exitCoords.push((ROOM_HIG_MAX-‐1)/2);	 	 	

	 	 	 	 	 	 }	 	 	

	 	 	 	 	 	 if	 (exitCoords.length	 <=	 2	 ||	 sceneList.length	 ==	 minRooms	 ||	 sceneList.length	 ==	 0)	 {	 	 	

	 	 	 	 	 	 	 	 	 exitCoords.push((ROOM_WID_MAX-‐1)/2);	 	 	

	 	 	 	 	 	 	 	 	 exitCoords.push((ROOM_HIG_MAX-‐1)/2);	 	 	

	 	 	 	 	 	 }	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 /*	 Make	 sure	 there	 is	 a	 path	 to	 each	 exit	 */	 	 	

	 	 	 	 	 	 startX	 =	 exitCoords.shift();	 	 	

	 	 	 	 	 	 startY	 =	 exitCoords.shift();	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 while	 (exitCoords.length	 >	 0)	 {	 	 	

	 	 	 	 	 	 	 	 	 endX	 =	 exitCoords.shift();	 	 	

	 	 	 	 	 	 	 	 	 endY	 =	 exitCoords.shift();	 	 	

	 	 	 	 	 	 	 	 	 /*	 The	 callback	 makes	 the	 loop	 run	 again	 if	 the	 open	 paths	 weren't	 found	 */	 	 	

 14

	 	 	 	 	 	 	 	 	 pathFinder.findPath(startX,	 startY,	 endX,	 endY,	 function(path)	 {	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 if	 (path	 ==	 null)	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 retry.Value	 =	 true;	 	 	

	 	 	 	 	 	 	 	 	 });	 	 	

	 	 	 	 	 	 	 	 	 pathFinder.calculate();	 	 	

	 	 	 	 	 	 }	 	 	

	 	 	 	 	 	 exitCoords.length	 =	 0;	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 if	 (++retry.Attempts	 %	 5	 ==	 0)	 	 	

	 	 	 	 	 	 	 	 	 obstacleChance	 *=	 0.9;	 	 	

	 	 	 }	 while	 (retry.Value	 &&	 retry.Attempts	 <	 50);	 	 	

	 	 	 	 	 	

	 	 	 /*	 Only	 set	 the	 walls	 and	 chests	 if	 it	 didn't	 time	 out	 */	 	 	

	 	 	 if	 (retry.Attempts	 <	 50)	 	 	

	 	 	 	 	 	 this.tiles	 =	 tempTiles;	 	 	

	 	 	 	 	 	

	 	 	 /*	 Put	 chests,	 items,	 and	 collision	 in	 the	 room	 */	 	 	

	 	 	 for	 (countRow	 =	 this.wallN;	 countRow	 <=	 this.wallS;	 countRow++)	 {	 	 	

	 	 	 	 	 	 for	 (countCol	 =	 this.wallW;	 countCol	 <=	 this.wallE;	 countCol++)	 {	 	 	

	 	 	 	 	 	 	 	 	 this.tiles[countRow][countCol]	 =	 tempTiles[countRow][countCol];	 	 	

	 	 	 	 	 	 	 	 	 this.collision[countRow][countCol]	 =	 0;	 	 	

	 	 	 	 	 	 	 	 	 if	 (this.tiles[countRow][countCol]	 ==	 0	 &&	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 Math.random()	 <	 metrics.getRoomItemChance(player.seenOrb,	 player.numKeys))	 {	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 if	 (exitPlaced	 &&	 !player.seenOrb	 &&	 metrics.needEmergencyOrb())	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 this.items.tiles[countRow][countCol]	 =	 game.getRandomItem(true);	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 else	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 this.items.tiles[countRow][countCol]	 =	 game.getRandomItem(false);	 	 	

	 	 	 	 	 	 	 	 	 }	 	 	

	 	 	 	 	 	 	 	 	 else	 if	 (this.tiles[countRow][countCol]	 ==	 placeholder)	 {	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 this.tiles[countRow][countCol]	 =	 0;	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 this.chests.tiles[countRow][countCol]	 =	 CHEST_CLOSED;	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 this.collision[countRow][countCol]	 =	 1;	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 metrics.totalChests++;	 	 	

	 	 	 	 	 	 	 	 	 }	 	 	

	 	 	 	 	 	 	 	 	 else	 if	 (this.tiles[countRow][countCol]	 ==	 1	 ||	 this.tiles[countRow][countCol]	 ==	 2)	 	

	 	 	 	 	 	 	 	 	 	 	 	 this.collision[countRow][countCol]	 =	 1;	 	 	

	 	 	 	 	 	 }	 	 	

	 	 	 }	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 this.loadData(this.tiles);	 	 	

	 	 	 this.items.loadData(this.items.tiles);	 	 	

	 	 	 this.chests.loadData(this.chests.tiles);	 	 	

	 	 	 this.collisionData	 =	 this.collision;	 	 	

}	

