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Abstract:

This project focuses on detecting various phase to ground faults in three phase power systems.
In this research, the faults are generated using a power distribution system simulator; and the three
phase voltage waveforms are analyzed using the discrete wavelet transform. Multi-layer feed forward
neural networks are employed for fault detection and classification. The effectiveness of this approach is
demonstrated by computer simulation results.

I. Introduction:

Power system fault detection has always been an area of importance in transmitting signals
across power distribution systems. The systems operate in the kV range, thus have significant current
flowing through the lines. This results in high power. A single fault, even lasting for a fraction of a
second, can cause huge losses and manufacturing downtime in industrial applications [1]. This creates
high demand for improvements in power fault detection systems and ways to reduce or avoid the
occurrence of problems with power distribution systems. Intensive studies are done in the area of
power system fault detection in order to avoid any economic losses caused by a power system fault.

The primary goal of this project is to find sufficient ways to detect fault conditions correctly as
quickly as possible so that action can be taken to minimize the damage caused by the fault. The process
begins with generating known faults at known times using the Simulink and SimPowerSystems MATLAB
add-ons. The discrete wavelet transform is used as the feature extraction technique for the project.
Once feature extraction is performed, the power residing in the decomposition is calculated, and input
and output files of the neural network are created. Training of the neural network is accomplished with
these files.

Comparisons were done on the feature extraction capabilities of different detail levels, as well
as the success of the two different mother wavelets. Different mother wavelets have different filter
coefficients, which result in different wavelet decompositions. A conclusion was made as to the best
mother wavelet and decomposition level for the feature extraction aspect of this project.

Two tests will be performed. The first test consists of changing the double phase faults to
double phase to ground faults with various ground resistances. The performance of the neural network
will be analyzed under the chosen ground resistances. The second test consists of analyzing the
performance of the neural network under different noise conditions. Different amounts of noise will be
added to the neutral line of the three-phase source in the Simulink diagram. Again, the performance of
three different neural networks will be analyzed under these different conditions.
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Il. Literature Review

[1] Settipalli, Praveen. May 2007. “Automated Classification of Power Quality Disturbances Using Signal
Processing Techniques and Neural Networks.” University of Kentucky, 2007.

Praveen Settipalli was a graduate student at the University of Kentucky who wrote his master’s
thesis titled “Automated Classification of Power Quality Disturbances Using Signal Processing
Techniques and Neural Networks.” The paper was completed in 2007, and offers a recent synopsis of
power system fault detection techniques. One of the techniques used for feature extraction in the
project was the wavelet transform. The proposed general method for power system fault detection was
signal generation, feature extraction, neural network training, classification, and decision-making. For
the classification of fault conditions, many different approaches can be used. The most common are
fuzzy logic, adaptive fuzzy logic, and artificial neural networks. Fuzzy logic and adaptive fuzzy logic use
different combinations of wavelet transforms and Fourier transforms.

[2] Patel, Mamta. June 2012. “Fault Detection and Classification on A Transmission Line using Wavelet
Multi Resolution Analysis and Neural Network.”

Patel has a PhD from the Government Polytechnic Durg, in India, from the department of
Electrical Engineering. He pushes that multi-resolution analysis is a popular method for feature
extraction. The wavelet transform is a widely used for multi-resolution analysis. Patel describes how a
fault initiates a transient condition, which results in high frequency components in the voltage or
current fault signals. The various ways proposed to extract the important information in these high
frequency components include, but are not limited to, Fourier Transforms, Wavelet Transforms, Neural
networks, or fuzzy logic. Wavelets have been proven to be a phenomenal trade-off between time
accuracy and frequency resolution. The fact that the user has useful information about both time and
frequency simultaneously labels this method as a superior method for frequency extraction.

[3] Kasinathan, Karthikeyan. 2007. “Power System Fault Detection and Classification by Wavelet
Transforms and Adaptive Resonance Theory Neural Networks.” University of Kentucky, 2007.

Karthikeyan Kasinathan has a master’s degree from the University of Kentucky and wrote the
thesis on power system fault detection using wavelet transforms and neural networks in 2006.
Kasinathan uses two different unsupervised adaptive resonance theory neural networks for the
classification stage of the system. The two neural networks used were back propagation neural network
and fuzzy logic classification. The faults in this thesis are classified via 3 different characteristics: fault
type, fault location, and fault resistance. In the project in this paper, faults will only be classified via the
type of fault that has occurred. In the thesis, Kasinathan highlights that self-organizing neural networks
can train and learn independently from external feedback. This is an attractive property for the
classification stage of the design. A general description of the operation of fuzzy logic is also offered in
the paper. An entire data set is processed once, forming unstable clusters, and the unstable clusters are
iteratively processed until all clusters are stable. The means of association is the Euclidean distance
between past and present input data.
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[4] Sathiya priya, K. Geethanjali, M. “Combined Wavelet Transforms and Neural Network (WNN) Based
Fault Detection and Classification in Transmission Lines.” 2006.

Priya and Geethanjali use MATLAB and Simulink to simulate many different types of faults,
where this project only utilized one type of fault, specifically single (and double) phase to ground faults.
Each phase fault was simulated by a fault to ground. They also simulate single phase to ground fault,
line-to-line fault, double line to ground, three-phase short circuit, and capacitor switching and breaker
operation. The classification scheme is a three layer neural network utilizing the back-propagation
learning algorithm. The training and testing of the neural network is done using the Discrete Wavelet
Transform. This is the process understood in this project to create the input files to the feed-forward
neural network for training. Sathiya and Geethanjali highlight HTL (High Voltage Transmission Line) fault
detection and classify this detection process into three different methods: circuit theory, travelling
theory, and intelligent systems.

[5] Lampley, Glenn C. “Fault Detection and Location on Electrical Distribution System.” IEEE. Carolina
Power & Light. 2002.

Lampley offers the detection of faults and the fault location in the electrical distribution system.
In this project, fault conditions are intentionally generated, and thus known, at a specific point along a
transmission line. As a result, the location of the fault occurrences in this project is fixed. Lampley
implemented a different approach for fault detection and location detection. Lampley used a Feeder
Monitoring System, an Automated Outage Management System, and a Distribution SCADA system in
order to detect faults and their locations. Using these systems provided a graphical display of possible
locations for faults that have locked out feeder circuit breakers [5].

[6] Xiaohua, Yang. Yadong, Zhang. Zhongmei, Xi. “Wavelet Neural Network Based Fault Detection
Method in Power System.” IEEE. 2003.

Yang, Lai Wu, and Zhang talk about fault detection methods in a power system using the
wavelet transform. They state that wavelet analysis is a significant mathematical tool that has gained a
lot of momentum in recent years and is being more widely used for certain applications such as neural
networks. Applications of the wavelet transform are used in signal analysis containing fault conditions,
and detecting faults and harmonics. The project uses the wavelet transform and artificial neural
networks together. The wavelet transform requires significant construction and storage space for large-
scale applications, and neural networks are strong at handling large data sets and problems. The wavelet
neural network used in the project combines the properties of the two components, both with good
time and frequency localization, in order to detect faults in a power system. It is shown in the paper that
wavelet neural networks have faster convergence rates (smaller training times) than a regular artificial
neural network.

[7] Blumenstein, Michael, Xin Yu Liu, and Brijesh Verma. "Investigation of the Modified Direction Feature
for Cursive Character Recognition." ScienceDirect. Elsevier, 14 May 2006. Web. 20 Oct. 2013.
<http://dl.acm.org/citation.cfm?id=1221195>
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Blumenstein, Liu, and Verma published this paper on efficient techniques of character
recognition on ScienceDirect. It describes a feature extraction technique for the recognition of not plain
block letters, but letters more in the style of handwriting, i.e. segmented or cursive characters. The
feature extraction technique is a form of a modified direction feature technique that is used for
extracting general attributes from characters written in a cursive style. They use local vectors alongside
global information to provide integrated features to a neural network for training in pattern recognition.
The directional vectors are obtained by a character outline tracing technique, while the global
information is obtained by comparing the location of background to foreground pixel transitions [7]. The
paper offers an additional use and application of neural networks, and lays a solid foundation for the
idea of feature extraction, as in this project feature extraction techniques were also used (namely, the
discrete wavelet transform).

[8] Huang, Shyh-Jier, and Cheng-Tao Hsieh. "High-Impedance Fault Detection Utilizing A Morlet Wavelet
Transform Approach." IEEE. N.p., Oct. 1999. Web. 14 Nov. 2013.

Huang and Hsieh analyze the application of specific types of wavelets: the Morlet wavelets. The
Morlet wavelets are used to analyze high-impedance fault generated signals. The wavelet transform is
used to distinguish these high-impedance faults from normal switching events. Normal switching events
are events that may also happen under normal system conditions such as transient conditions or arcs. It
is important to distinguish between faults and these cases. The current most common detection
technique for high impedance faults involves overcurrent protective devices. However, this causes
unexpected service interruptions, because the current variations are not significantly different than that
of harmless events during operation. A brief background of the wavelet transform and its properties is
presented. The wavelet transform is a powerful tool that allows for knowledge of both time and
frequency simultaneously. This time localization proposes it as a superior method for knowledge of time
varying signals than the fast Fourier transform, as the Fourier transform offers no knowledge of time
domain characteristics.

[9] Kennedy, James, and Russell Eberhart. "Particle Swarm Optimization." IEEE. 1995. Web.

Kennedy and Eberhart introduce a method known as particle swarm optimization for optimizing
non-linear functions that are continuous. They suggest that particle swarm optimization has ties to
common artificial intelligence methodologies such as bird flocking, fish schooling, and swarming theory
[9]. The paper highlights the simplicity of such methodologies, stating that particle swarm optimization
can be implemented cheaply, quickly, and with trivial mathematical operations. Another application that
served as a motive for developing swarm optimization was human social behavior. It is more abstract
than the previously mentioned examples, which have largely predictable factors. Humans do not usually
turn in unison, as a flock of birds may. Swarm optimization also has ties in evolutionary computation,
and more specifically genetic algorithms. The approach used in this paper uses the particle swarm
optimization algorithm to train the weight functions within an artificial neural network. It offers a
possible alternative training method to that used in this project: the back-propagation training
algorithm.
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[10] Narendra, Kumpati S., and Kannan Parthasarathy. "Identification and Control of Dynamical Systems
Using Neural Networks." IEEE. N.p., Mar. 1990. Web. 5 Nov. 2013.

Narendra and Parthasarathy offer another application for artificial neural networks. The
application for neural networks used in this paper was for the identification and control of nonlinear
dynamical systems. Similar training techniques were used in this paper as were used in this project. They
implemented both static and dynamic back propagation training techniques for parameter adjustment.
The paper highlights two popular types of artificial neural networks, multilayer neural networks and
recurrent networks. Multilayer neural networks have been commonly applied with high success in
pattern recognition applications, along with static nonlinear maps. Recurrent networks have been
successfully applied to optimization problems and embody dynamic feedback systems. The primary goal
of the paper is to use neural networks to suggest identification and control of nonlinear dynamical
systems. Most advancements in this area have only been made in the design of controllers for linear
systems, not nonlinear systems. This paper offers an alternate application for neural networks, utilizing
a highly desirable property of the neural network: the ability to adapt and deal with highly nonlinear
mathematical functions.

[11] Tayeb, Eisa Bashier M. "Faults Detection in Power Systems Using Artificial Neural Network."
American Journal of Engineering Research 2320-0847 02.06 (2013): 69-75. Web. 30 Dec. 2013.

Tayeb writes about using artificial neural networks to detect faults in electrical systems. The
faults that occur in electrical systems directly cause discontinuities in the supply of electricity. Fault
detection techniques employed by artificial neural networks offer a protection system that detects and
isolates faults as quickly as possible in order minimize the damage caused to the power distribution
system. This is ultimately one of the goals of the fault detection techniques also used in this project. A
three phase power distribution system is created with known fault conditions in order to train a neural
network to detect the fault conditions as soon as possible. The paper points out that various different
types of faults can occur anywhere along the transmission lines in the electrical system. The paper
classifies faults into two main areas: active and passive. The majority of short-circuit faults tend to occur
on overhead lines [11]. The faults considered in the paper were single phase-to-ground, double phase
and double phase-to-ground faults.

[12] Poungponsri, Suranai, and Xiao-Hua Yu. "Electrocardiogram (ECG) Signal Modeling and Noise
Reduction Using Wavelet Neural Networks." Proceedings of the IEEE International Conference on
Automation and Logistics, Aug. 2009. Web. Nov. 2013.

Poungponsri and Yu wrote this paper about accomplishing electrocardiogram signal modeling
and noise reduction through the use of the wavelet transform and neural networks. The feature
extraction technique used in this project is also the discrete wavelet transform, which is used to
determine the inputs to the artificial neural network. The Electrocardiogram signal has been used in
cardiac pathology quite frequently as a means to reveal heart disease. It does so through a process
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similar to the process used in this project: feature extraction and neural network training and validation.
This paper offers insight into applications and diversity of the wavelet transform, and a different
learning algorithm was used for the neural network than was used in this project. Because the wavelet
transform offers both information in time and frequency, it has a multi-resolution property. The
approach used in the paper combines this property of wavelets along with training the neural network
using Adaptive Diversity Learning Particle Swarm Optimization. The method of training used in this
project was the Levenberg-Marquardt back-propagation training algorithm. The swarm optimization
technique known as Gradient Descent Optimization was also used in training of the neural network. This
optimization technique is used to find local minimums by stepping in the direction of the steepest
descent.

[13] Wang, Xiao-bin, Guang-yuan Yang, Yi-chao Li, and Dan Liu. "Review on the Application of Artificial
Intelligence in Antivirus Detection System." University of Electronic Science and Technology of China.
IEEE. 2008.

Wang, Yang, Li, and Liu offer another application for artificial intelligence techniques. Artificial
intelligence continues to play an expanding role in anti-virus detection. Artificial intelligence will
improve the performance of such detection systems and promote the growth of new algorithms to be
implemented in anti-virus detection techniques. The paper briefly talks about five main artificial
intelligence techniques applied in the field of anti-virus detection: Heuristic technique, data mining,
Agent technique, artificial immune, and artificial neural networks [13]. The paper illustrates that artificial
neural networks is the most prominent method, because it solves a problem with lack of associative
memory and the capacity of real-time calculation. The paper highlights properties of the neural network
that give it the ability to deal with these problems. The artificial neural network has parallel storage and
processing, the ability to self organize, adaptive capabilities, and self-learning abilities. Neural networks
used in this paper contained one hidden layer. In this project, one and two layer hidden layer
configurations were analyzed.

[14] Lyons, Richard. "Understanding Cascaded-Integrator Comb Filters" Embedded. 31 March. 2005. 30
March. 2014 <http://www.embedded.com/design/configurable-systems/4006446/Understanding-
cascaded-integrator-comb-filters>

Cascaded-integrator-comb (CIC) filters were used in the Simulink model for the neural network
processing after training of the neural network. The purpose of the CIC filters is to take each of the detail
level 4 coefficients and provide a moving average as a way to track the occurrence of a fault. CIC filters
are efficient implementations of low pass filters used for interpolation or decimation. In this project, the
CIC filter will be used for decimation to decrease the data rate input to the neural network and provide
more efficient computations. Because the magnitude response is that of a sinc function, the phase is
non-linear. To compensate for this, an FIR filter is placed either before or after the CIC filter to flatten
the pass band and provide a more linear phase response. CIC filters are also used for anti-imaging
filtering for interpolated signals. With an increase in beneficial applications for the CIC filter, the interest
for the CIC filter in wireless communications and signal processing has increased substantially.
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lll. Approach/Algorithm:

As mentioned in [1] and [2], there are many types of faults in a power distribution system,
including single phase to ground faults, line-to-line faults, double line to ground faults, and three-phase
short circuit faults. A particular fault was chosen to be the focus of this project: phase to ground faults
(both single and double phase). A fault occurs when the signal momentarily connects to a component of
the power distribution system other than where it should be. In the case of a phase to ground fault, a
certain phase of the power distribution network is connected directly to ground, unless there is some
small amount of ground resistance. All of the single phase-to-ground faults were chosen (A faults, B
faults, and C faults). Only one double phase to ground fault was chosen: the AC fault. A “no” fault was
also simulated as a reference point. This makes for five different conditions. The top-level block diagram
of the approach is shown in Figure 1. This is similar to that proposed in [1].

A A A, D& » Feed-
: Forward

Power A
rower B | Ground B Wavelet | 8,04 Power Neural

Distribution . ' ' . ?

Fault Sim Transform Calculation Network

System c 7l ¢ C,D4
Faults: A B C

Figure 1: Top-Level Block Diagram
Simulink Diagram:

The first two blocks of figure 1 are accomplished by the Simulink design. The 3-phase power
distribution system has been created and the phase to ground faults have been simulated and recorded.
Simulink and the SimPowerSystems Matlab toolbox were used to generate 20 phase to ground faults
from each of five different phase-to-ground faults: A-Phase, B-Phase, C-Phase, AC-Phase, and no phase
faults. This creates a data set of 100 faults in total. By extending the simulation time, more faults can be
simulated and obtained. Figure 2 shows a picture of the complete system designed in Simulink to both
create and capture these faults.

The Three-Phase Source generates a sinusoidal signal with a frequency of 50 Hz. It is a balanced
source, so each phase is 120 degrees out of phase with each other. The phase-to-phase voltage of the
sinusoidal signal generated by this source is 10,000 Vgys. The internal connection is a ‘Yn’ connection,
meaning the three voltage sources are connected in a ‘Y’ configuration and the neutral line is an input to
the three phase source that can be manually controlled. If no noise is to be introduced to the system,
the neutral line is connected to the Simulink constant ‘0’, emulating ground.

The controlled voltage source labeled ‘Control’ is an interface that allows a Simulink block to
control the three-phase power source, which is from SimPowerSystems. Blocks from SimPowerSystems
all need an input and output interface to other Simulink blocks. This controlled voltage source allows the
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introduction of noise from the band-limited white noise source to the neutral line of the three-phase
power source. The manual switch allows a choice between the Simulink constant ‘0’ (for no noise) and
the white noise source. To observe the neutral line, and thus the noise applied to the source, a
SimPowerSystems Voltage Measurement block is required to interface to a scope.

The powergui block specifies a sampling time of 61.035us for the system. This corresponds to a
sample rate of 16384 Hz (2"*). There are other analysis functions in the powergui that are unused,
however it is a required block to implement the functions within the SimPowerSystems toolbox.

The first distribution parameter line is representing a long transmission line from the three-
phase source to the point where the phase-to-ground faults are being created. This section of the
transmission line is 150km long. It is a 3-phase transmission line with 50 Hz used for RLC specifications of
the line, in order to match-up with the 3-phase source parameters. Positive, negative, and zero
sequence impedances are specified because the line consists of symmetrical components. This is a very
important property for the power lines to have to allow one to analyze the operation of the power
system during unbalanced states, such as the occurrence of faults. For reference, the positive and zero
sequence impedances of the transmission lines used in the Simulink model are given below. This
transmission line is continually transposed, meaning the positive and negative sequences are equal.

The second distribution line in the system is representing a transmission line 50 km long, and is
also a 3-phase transmission line with 50 Hz used for RLC specifications of the line. The resistance,
capacitance, and inductance per unit length for the positive, negative, and zero sequences of both
transmission lines are also those described in table 1. These are the standard parameter values used in
the Simulink model, and are used during this simulation. All of these parameters can be varied upon
user’s choice.

Parameter Positive Sequence Zero Sequence
Resistance per unit length (Ohms/km) 0.01273 0.3864
Capacitance per unit length (H/km) 12.74x10° 7.751x107
Inductance per unit length (F/km) 0.9337x10° 4.1264x10°
Line Length (km) 150, 50

Table 1: Parameters of Transmission Lines.

There are six blocks that are creating a fault 150 km down the transmission line (between
transmission lines 1 & 2). One block simulates a fault on the transmission line for each of the 6 different
faults being considered: A, B, C, AB, BC, and AC faults. There is no block simulating no faults, as this
condition is the condition of the system when no fault is present. The fault simulator labeled ‘A Phase
Fault’ is set to provide a phase to ground fault in the A phase of the 3-phase system upon an external
fault control input to the fourth port of the block. The fault simulators for each single phase fault are
programmed to provide the corresponding phase to ground fault via an external triggering source. In
order to properly simulate a fault to ground, the user must input a small non-zero ground resistance Rg.
In the case of this Simulink model, the ground resistance was 0.001Q. The double phase faults are phase
to phase faults and not faults to ground. For instance, the AB fault is a fault between phases A and B.
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Each fault simulator has a fault generator that is labeled ‘Pulse Generator 1-6" on the Simulink
Diagram of figure 2. Each generator corresponds to the simulator that takes the pulse as its fourth input
port, via the diagram. All six pulses share parameters specified below in table 2. The period is 7.002
seconds, and the pulse width is 0.5% of the period. At the sampling rate of 16.384 kHz, the fault occurs
for 574 samples (0.005x7.002x16.384k). Each fault is generated when the pulse from these fault
generators is high. The phase delays for the six pulse generators are 1 second apart from each other.
This specifies when the fault will occur. The period is 7 seconds to allow 1 more second for the
occurrence of the no fault condition. Thus, each type of fault occurs at 7-second intervals for 140
seconds. This creates 20 faults of each type of fault, or 140 faults, as the sample size. The phase delays
were arbitrarily chosen to be 0.29 seconds into each 1-second interval, and in order to make sure the
fault began and ended within that 1-second interval, the pulse width (duration of the fault) was chosen
to be 0.5% of the period. Another reason the pulse width was arbitrarily chosen as 0.5% is because it is a
small duration of occurrence, and the smaller the fault duration the harder the fault is to detect.

Amplitude 1
Period [seconds] 7.002
Pulse Width (% of period) 0.5
Phase Delay (Pulse Generator 1) [sec] 0.29
Phase Delay (Pulse Generator 2) [sec] 1.29
Phase Delay (Pulse Generator 3) [sec] 2.29
Phase Delay (Pulse Generator 4) [sec] 3.29
Phase Delay (Pulse Generator 5) [sec] 4.29
Phase Delay (Pulse Generator 6) [sec] 5.29

Table 2: Parameters for Fault Generators
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At the end of the second transmission line, there is a line termination that functions as the

measurement interface. This block allows voltage and current measurements of all three phases to be

taken simultaneously. The block is needed to take measurements from a SimPowerSystems block. The

three inputs to the block are the three phases of the transmission line, and the output of interest is the

1x3 vector of voltages Vagc. Data of the simulated faults on these voltages will be recorded. This signal,

Vage, is processed by two subsystems. The first is the data-gathering block, labeled ‘Enable NN data

gathering’ in figure 2. This subsystem provides known fault data for training the neural network. It is

enabled by a second input to allow for disabling during long neural network processing intervals. This

reduces the amount of data written to the workspace and makes the simulation run faster. The second

block labeled ‘Neural Network Processing’ in figure 2, which takes the signal Vapc and processes the data

using the discrete wavelet transforms for feature extraction and neural networks to provide fault

detection.
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Figure 3: Enable NN Data Gathering

The subsystem for data gathering is shown in
figure 3. The sample memories are blocks that record data
on the faults created by the fault simulators and save this
data to the workspace. Each of the seven different phase
faults (including the no-fault condition) requires a sample
memory to save the data recorded to the workspace. Each
block is also externally controlled by a pulse generator
that acts as the enable for the data capture. The seven
structures created were used as inputs to the wavelet
network. Each structure characterizes each phase of the
power system. Take the first structure as an example. This
represents the A, B, and C phases of the system during an
A fault. Thus, it is in a matrix of 3 columns: one for the A
phase, B phase, and C phase respectively, representing the
20 phase faults for each fault type. These 7 sample
memory blocks capture known errors and fault conditions
that can be used to train the neural network.

The ‘Pulse Generators 1-7’ on the subsystem
diagram (figure 3) are the enable signals to allow the
sample memories to record data during a specific fault.
The period of the pulse is 7 seconds, and the duration of
the pulse is 1 second (1/7 of the period, or 100/7%). The
data gathering for the fault lasts for 1 second, or 16384
samples per fault. The phase delays for these enable
signals are 0 to have the observation time be the full
second the fault condition will occur, ensuring the entire
fault is captured.
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Note that the period of the fault generators is 7.002 seconds, while the periods of the sample
memory enable signals is 7 seconds. The difference in these periods was intentional to cause each of the
faults to occur at different times, or different phases, within the sample period. The transmission line
parameter values are held constant throughout all of the faults. To illustrate the difference between
some of the faults, 4 different A-phase faults spread throughout the 20 A-phase faults were captured
and are displayed in figures 4-7.

The A-phase is the blue sinusoid in figures 4-7. It can be seen that the behavior of phases A, B,
and C after the occurrence of the A fault largely depends upon the angular phase of the A-phase when
the fault occurs. An interesting observation is that the amount of distortion in all three phases as a
result of the fault is greater the larger the amplitude of the A-phase signal (for an A-fault). The amount
of distortion in the 3 phases also has a proportional correlation with the amplitude of the phase where

the fault occurs at the point of the fault.

A Phase-to-Ground Fault

Amplitude

i | | | | |
500 1000 1500 2000 2500 3000

Time

Figure 4: Sample A-fault #1
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Figure 6: Sample A-fault #3
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A Phase-to-Ground Fault
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Figure 7: Sample A-fault #4

Figure 8 shows the Neural Network Processing subsystem. This subsystem provides the fault
detection and classification. The input is fed into the demultiplexor (Simulink Demux). The demux
separates the A, B, and C phase signals of the transmission line, which provides a phase of the
transmission line to each one of the DWT blocks through a buffer. The buffer is a serial to parallel
interface that takes a time series and converts it to a 1 second block of data to be processed by each
DWT block. Each DWT block has parameters for the filter type, the mother wavelet, and the
decomposition level to be applied. The discrete wavelet employed uses mother wavelet DB4,
decomposition level 6, and Debauchee filter types. A setting of the block can enable access to each of
the decomposition levels, as well as the resulting approximation level. The diagram shows that the
further processing will be done on detail level 4, as the outputs coincide top to bottom with detail levels
1-6, and finally approximation 6.

The detail level 4 outputs for each of the DWT blocks has length 1024, since there are 16384
samples per second and detail level four divides that number of samples by 2*. For more information,
refer to figure 18. This frame of data is serialized by the unbuffer blocks at the outputs to each of the 3
DWT blocks. The serialized data is fed into 1 block for each phase that squares the input, giving a metric
proportional to power. The power estimate is input into a cascaded integrator-comb filter (CIC), 1 for
each phase, that develops a moving average of the power. Details of the CIC filter will be discussed later.
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The outputs of the three CIC filters are multiplexed into a single vector as the input to the neural
network. Three different Neural Networks are shown, each using the same input but providing different
classification techniques. The first neural network labeled ‘0-6 classification’ classifies a no-fault
condition as a ‘0’ and then 1-6 are the classification for A fault, B fault, C fault, AB fault, BC fault, and AC
fault, respectively. An example is shown in figure 9a. The second neural network labeled ‘-3 to 3
classification’ still classifies a no-fault condition as ‘0’. 1 to 3 classifies A faults, B faults, and C faults
respectively, while -1 classifies AB faults, -2 classifies BC faults, and -3 classifies AC faults. An example is
shown in figure 9b. The third neural network labeled ‘+/-(1,1,1) classification’ classifies a fault condition
for each of the three phases. A 1 signifies a fault condition while a -1 signifies no fault condition. An
example is shown in figure 9c. For clarity, the three phases have been offset by +3, 0, -3. All three neural
network outputs are rounded to the nearest integer, and the last one is also saturated to +/- 1. The last
one appears to achieve the best performance so further analysis will only be done on that neural
network. All three neural networks were trained on the same set of input data and target data.
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Figure 9a: Neural Network #1: 0-6 Fault Classification
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There are three CIC filters shown in figure 8. A CIC filter operates on the power estimate from
the DWT from each phase. The details of the CIC are shown in figure 10. The comb portion of the CIC
filter (left half) indicates that the moving average filter is 256 samples in length. The integrator follows
the comb portion of the CIC filter. The classic down-sampled CIC filter has a configuration in which the
integrator is followed by a down sampler and then a comb filter. The input is a square function, and any
integrator that follows this function will eventually saturate, thus the integrator must be placed after the
comb filter. The input rate is 1024 samples/sec, as mentioned before, and the down sampler causes the
output rate to be 16 samples/sec (1024/64). This is the input rate for the neural network, so the neural
network operates on 16 samples/second. By referencing figures 9a-c, the time of the fault occurrence
can be inferred to 1/16 of a second, since the DWT preserves time information.

oD & » e

n1 Outt
Downsample

—p 256 N

Delay Delay 1

Figure 10: Cascaded Integrator-Comb Filter (1 each phase)

SimPowerSystems and Simulink were used to create the 3-phase power distribution system
previously described. This simulation was used to intentionally create A faults, B faults, C faults, AB
faults, BC faults, AC faults, and no faults. The generated signals were 50 Hertz sampled at 16384 Hertz
for 1 second. The 1-second covers the duration of the fault. A fault occurred at 1-second intervals,
cycling through the types of faults. Thus, each type of fault occurred at 7-second intervals for 140
seconds. This creates 20 faults (this number is increased later for further training trials) of each type of
fault, or 140 faults, as our sample size. It is important for later to note that according to Nyquist’s
Sampling theorem, with a 16.384 kHz sampling rate, the highest frequency signal that can be
constructed without loss of information is 8192 Hz.

Wavelet Transform Block

The output of the power distribution system is 7 structures used as inputs to the wavelet
network. Each file characterizes each phase of the power system. Take the first structure (for A-faults) as
an example. This represents the A, B, and C phases of the system during an A fault. Thus, it is in a matrix
of 3 columns: one for the A phase, B phase, and C phase respectively. In order to analyze single faults, an
arbitrary fault was analyzed before and after the wavelet network, as well as comparing each type of
fault in each phase. This was done for comprehension and demonstrational purposes.
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The next step is analyzing a particular fault. An arbitrary fault of each type was chosen and
graphed for observation. This resulted in seven graphs. Each graph depicts the A phase, B phase, and C
phase of a given fault condition. Through all graphs, phase A is illustrated in blue, phase B is illustrated in
red, and phase Cis illustrated in green. The graphs clearly illustrate what happens when a fault occurs.
Looking at figure 11 below, the fault clearly occurs in the A phase, when the voltage shorts (grounds)
during samples 750-1750. Phases B and C are only slightly altered because the fault occurring in the A
phase was at about 0 volts, thus the distortion in the other two phases is not significant. When the fault
is removed, there is a large step in voltage and thus a large spike in current. This causes a transient
condition that causes distortion in the A, B, and C phases before returning to the no-fault condition.
Similar events are evident in figures 12 and 13, representing B and C faults. Looking at the AC fault
(figure 16), both the A and C phases exhibit the same behavior characteristic of a fault. Finally, looking at
figure 17, this is the no fault condition. It is quite evident why this is the case. The figure depicts a
balanced three-phase system with each phase 120° out of phase of each other, with no faults at either

stage, showing three unharmed sinusoids.
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Figure 11: A single Phase A Fault, Phases ABC = “BRG”
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Figure 12: A single Phase B Fault, Phases ABC = “BRG”
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Figure 13: A single Phase C Fault, Phases ABC = “BRG”
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Figure 14: A single Phase AB Fault, Phases ABC = “BRG”
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Figure 15: A single Phase BC Fault, Phases ABC = “BRG”
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Figure 16: A single Phase AC Fault, Phases ABC = “BRG”
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Figure 17: A single No Fault, Phases ABC = “BRG”
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The discrete wavelet transform is an extremely powerful decomposition tool that provides a
trade-off between time accuracy and frequency resolution. As mentioned before, this transform allows
for knowledge of both time and frequency simultaneously. The well-known Fourier Transform provides
only frequency information, with no time discrimination at all. At the top level of the decomposition, the
time accuracy is at a maximum, thus the frequency resolution is at a minimum. As more wavelet
decomposition levels are performed, the elements span the same time frame with less time accuracy.
Figure 18 shows an intuitive illustration of the first levels of wavelet decomposition.

Decorsposition:

CAa
C: | CA3 | C03 | C02 CD|
3 3 h 3
. crgthof |\length of Vergth of |lengthof | length
L chAy | ""cls [ e, | ep, | of X

Figure 18: Wavelet Decomposition: *MATLAB Wavedec Help

Every time decomposition is performed, there are less data points represented for the same
duration of time, thus less time accuracy. This is because the decomposition effectively performs
decimation on the time scale by a factor of 2. However, the frequency band of a particular element gets
smaller so greater frequency discrimination has been obtained. Each level further down spans half as
much frequency, but also half the time. This is in effect pinpoints the frequency because if it occursin a
certain bin (a bin is referred to as a box on the diagram), the span of frequency is known. The more
decompositions, the smaller the frequency span of a particular bin, thus the more the frequency is
known if the fault occurs in that frequency band. To reiterate, each decomposition decreases the
frequency span of a bin so the frequency is known more accurately, but has less data points so there is
an increase in time ambiguity. However, the time of occurrence is still known because of where in the
span it occurs.

For further clarification on the frequency span, let fs be the sampling frequency. By Nyquist’s
Sampling theorem, the frequency span of the bin labeled “X” in the diagram above is fs/2. The
decomposition is actually done by applying a low pass filter and a high pass filter at the center frequency
of the span to obtain Al and D1, respectively. As a result, the frequency span of the bins labeled Al and
D1 are 0- fs/4 and fs/4 - fs/2. D1 is now kept as information and Al goes through the same wavelet
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decomposition into A2 and D2. A2 spans frequencies of 0 - fs/8, and D2 spans frequencies fs/8 - fs/4. [2]
Provides a similar version of this explanation.

Throughout the project, it was determined that the best wavelet decomposition level was 4. It
provided the most power discrimination between the A, B, and C phases and corresponded the most
with the actual fault condition. For further detail about how the best mother wavelet and
decomposition level was chosen, see ‘Comparison Between Detail Levels and 2 Mother Wavelets.’
Because the decomposition level 4 was used, the frequency spans of interest were 0 - fs/32 for A4 and
fs/32 - fs/16. During the literature review, it was found that the wavelet that provided the best test
results was DBA4. This refers to the Debauchee level 4 wavelet. Debauchee was a brilliant mathematician
that determined the most widely used coefficients that elegantly satisfied the numerous mathematically
intensive requirements of a wavelet transform. These coefficients represent the filter coefficients
needed to decompose a signal into wavelets. Two mother wavelets were tested in this project: DB2, and
DB4. DB4 worked well as the mother wavelet for feature extraction.

The next block in the design is the wavelet network. The wavedec Matlab function mentioned
above in figure 18 was the function used to perform the discrete wavelet transform (DWT). For analysis
purposes, the same faults that were analyzed before the wavelet network will be analyzed after. After
the 4™ level wavelet decomposition was completed on each of the 140 faults, the same seven faults
were grabbed and plotted. Each phase of a given fault was plotted on the same graph for comparison
and realizing the classification of a fault condition. For each of the seven faults under analysis, A4 and D4
were plotted, as well as D4 alone. This is to analyze the detail information and compare the scales
between the two graphs. These figures are shown below in figures 17-32.

Analysis of figures 19 and 20 show A4 and D4 levels of a phase A fault. As depicted in the
diagram in figure 18, the first half of the graph is A4, and the second half is D4. Thus, figure 20 is the
right half of the graph in figure 19. The reason the two figures look so different is because of the scale.
The scale of figure 19 is 10 times larger than that of only D4. D4 has picked out the detail of the fault.
This is one of the 140 elements that will be outputted by the wavelet block of the design. These 140
elements are the D4 decompositions of each of the 140 faults. It is understood that the occurrence of a
fault causes a transient behavior, which directly causes high frequency components in the signal. Thus,
the high frequency components of the band must contain the information of the fault. This information
will show up eventually in a detail wavelet at some decomposition level. Here is an important note: A4
stands for “approximation” level 4. This is because the A4 section of this figure looks like figure 11. The
difference is the time axis is scaled down by a factor of 2* (2 for each decomposition). Now note figure
20. The figure is dominated by blue spikes. This is characteristic of a phase A fault. The power calculation
for the A phase in a phase A fault will be much higher than that in phases B and C. This is ultimately how
the desired output is determined and how the neural network is trained. Furthermore, the power
calculation in the B phase of a B fault will be much higher than the other two phases, and the power
calculation in the C phase of a C fault will be the largest. The 16 figures below support this argument;
the phases where the fault occurs dominate the 4™ level detail wavelets.
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Approximation Level 4 and Detail Level 4 of a Phase B Fault
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Figure 22: B Fault D4 Wavelet
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Approximation Level 4 and Detail Level 4 of a Phase C Fault
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Figure 28: BC Fault D4 Wavelet
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Figure 29: AC Fault A4 & D4 Wavelets
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Power Calculations

The next block of the design is the power calculations. This is an intuitive block that calculates
the power of the 140 input elements and outputs the 140 results. Because each input contains the
wavelet decomposition of the A, B, and C phases, the input of this block is three vectors representing
each phase of a fault. The entire input set is 140 sets of these three input vectors. The output of this
block is a 140x3 matrix containing the power calculated in each phase, of each fault. Note that a
particular element of the output matrix is the power calculation of one vector input. The calculations are
done by squaring each element of a vector input and summing the results. As mentioned before,
wherever a fault occurs, that phase will have a larger power calculation than the other phases. This was
also the basis by which the different decomposition levels were evaluated on which level best suits the
feature extraction for this project, as the power calculations are what determine the output of the
neural network. In the instance of a “no” fault, all three of the power calculations will be small.

For emphasis, there is a significant difference in power between when a fault occurs, and when a fault
does not occur. Table 3 illustrates this difference. It makes sense that the power calculation for a no
fault condition would be so low in comparison to the power calculations for when a fault occurs. The
calculations are being performed on the level 4 decomposition, because that is what contains the best
information of the fault. Since no fault is occurring, there is no high frequency content for the wavelet
decomposition to extract. The power is an integration over an interval of the detail level 4 DWT,
synchronized to the fault condition, not an instant.

Fault Type Phase A Power Phase B Power Phase C Power
AC 2.319001957832834e+09 | 1.049866242851910e+09 | 1.960353712468527e+09
A 2.263222746737017e+07 | 1.319521306549184e+07 | 1.312957736662839e+07
B 1.748454672943847e+09 | 2.859689416692212e+09 | 1.748329683589568e+09
C 1.632908627127061e+09 | 1.633098361043096e+09 | 2.722518342687527e+09
None 83.932510953162490 79.139887463154850 79.591765545812660

Table 3: Sample Power Calculations of Detail Level 4 in one of each Fault

Outputting all of the power calculations into a text file creates the input file for the neural
network used for training. The data size is of course 140 samples, and 70% of the samples were used for
training, 15% for validation, and the last 15% for testing of the neural network. The output file was
created by simultaneously writing a known fault condition to another file as each power calculation was
written to the input file. For example, during an A fault output, the power calculations were written to
the neural network input file, and the known fault conditions of [1,-1,-1] were written to the neural
network target output file. A 1 represents a fault is present, while a -1 represents that no fault has
occurred. The three elements of the vector represent the A, B, and C phases of the event respectively.

Neural Network Block

The last element of the block design is the neural network. The neural network fitting tool was
used to implement the network. This is a feed-forward neural network using a common back
propagation training algorithm known as Levenberg-Marquardt back propagation. There were
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advantages and disadvantages to this feature in the Matlab neural network toolbox. A script did not
have to be written; it could just be generated upon a successful training and validation process. Also, the
tool can automatically read in input and target files for the neural network to obtain a solution.
However, the fitting tool did not allow more than one hidden layer. In order to implement more than
one hidden layer, a script had to be generated using the neural network tool, and the hidden layer
configuration had to be modified accordingly in the script. As a result, the project simulations included 3
trials: one of 10, 15, and 20 hidden neurons in the hidden layer. Figures 33-35 highlight the results of the
trial implementing 10 hidden neurons.

Figure 33 plots the error, which is the difference between the outputs of the neural network and
the pre-determined target data set. The more data elements close to zero the better, because this
means the neural network converged to an accurate solution, and the neural network output is very
close to the target output. Figure 34 analyzes the MSE (mean square error) as the neural network is
being trained. The neural network stops training when the stop criterion is met and when the MSE for
the validation data stops decreasing. An epoch is an iteration of the neural network going through the
training, validation, and testing samples. Figure 34 shows that the mean square error continually
decreases at a quick rate as the neural network learns. The most important line on this graph is the red
line; this is how the network performed while undergoing testing, which is an indication of how well the
network generalizes to new data. The network performed even better under testing than it did under
training. That shows a high success rate. However, every time the neural network is trained, the
performance differs because the initial conditions of the network vary with every trial run. Trial and
error is the only approach to date that can determine an optimal configuration of the hidden layers and
the number of neurons in each layer in order to obtain the most efficient convergence to a solution.

Figure 35 plots the target data against the output of the neural network over all epochs. Ideally
the equation of this line should be output = target (y=x), because a one to one correlation between the
two is desired. Looking at figure 35, which contains the graphs of the target output versus testing,
validation, training, and the entire input data set, all of the equations are displayed on the left of each
graph. They are all extremely close to the desired relationship. The “R” value displayed on the chartis a
measurement that determines the amount of correlation between two variables. If this value is zero, the
two variables are said to be random and there is no way of predicting the value of one given another. If
the value is 1, the value of the other variable can be perfectly predicted. As the R-value is very close to 1,
this shows that the neural network can accurately predict the output given an input, with an extremely
high confidence rate. Overall, the neural network outputs showed high success.
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Figure 33: Error Histogram of Neural Network, 10 Hidden Neurons
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Figure 35: Regression Plot of Neural Network, 10 Hidden Neurons

IV. Results

Comparison Between Detail Levels and 2 Mother Wavelets

In the literature review, multiple sources mentioned that performing 4 levels of decomposition

using the mother wavelet DB4 (4™ order Debauchee filter) provided adequate power discrimination for

the feature extraction aspect of the project. This section attempts to analyze the different

decomposition levels from detail level 2 to detail level 6, along with using 2 different, popular mother

wavelets: DB2 and DB4. 6™ level decomposition was used because of the manner in which the wavedec

function stores the results. It can be seen clearly from figure 18 that performing decomposition with the

wavedec function also gives the previous decompositions. Hence, a 6™ level decomposition gives D1, D2,

D3, D4, D5, and D6 (as well as A6). As a side note, the frequency of the source is seen at higher

decomposition levels because the decomposition is accomplished with low pass and high pass filters.

When the source frequency becomes too obvious, it contributes significant energy to the power

calculations. This occurs as early as decomposition level 5.
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The functions power_arrays.m and powercalculation.m (shown in Matlab scripts in the
Appendix) were used to calculate the powers in each phase, of each fault simulated, for detail levels 2-6.
Once this was done, the power calculations for each phase, of each fault, were plotted against the fault.
Faults 21-49 were taken as observation points. Thus, 4 faults of each type are in each of figures 36-45.
The fault types are repeating every 5 faults. So, faults 21, 28, 35, and 42 are A faults, thus a blue dot
should show the largest power calculation for each A fault. Faults 22, 29, 36, and 43 are B faults, so a red
dot should show the largest power calculation for each B fault. For the C faults (Faults 23, 30, 37, 44),
the largest power calculation should be green for each C fault. For the AC fault, the largest should be
both blue and green. For the AB fault, the largest should be both blue and red. For the BC fault, the
largest should be both red and green. Based on discussion of figures 4-7, | anticipate the difference
between these for the AC faults is directly correlated with the amplitude of the signal when the fault
occurred: i.e. the phase with the larger power calculation had larger amplitude when the fault occurred.
For the no fault condition, all 3 dots should be small. This is the basis used to analyze figures 36-45 and
determine which mother wavelet and decomposition level is best for feature extraction of the faults.

By quick inspection of the figures, it can be determined that D2, D3, and D6 decomposition
levels do not match up with the expected outcomes at all. The D5 decomposition level matches up with
most of them. It is particularly good at distinguishing AC Faults. However, some single-phase faults come
very close in power calculations between phases. The DWT and neural network was able to distinguish
between the single-phase fault and a double phase fault. The best detail level, for both mother
wavelets, is clearly D4. Now consider figures 38 and 43. These figures are the detail level 4
decompositions for DB2 and DB4, respectively. Both of these outcomes match the expected phase-to-
ground fault conditions. Either one accomplishes feature extraction.

It is important to note that double phase-faults caused too much of a transient effect in the
third phase, making it indistinguishable from a 3-phase fault. To compensate for this, the double phase
faults were made to be phase-to-phase faults and not double phase-to-ground faults.
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Testing Neural Network Capabilities

Now that the neural network is trained to classify faults correctly, a larger data set was sent
through the neural network to see how the neural network would perform on more known fault
conditions. First, a 2100 second (35 minute) data set was created and input to the neural network with
no noise added to the system, in order for comparison purposes after creating data sets with noise
added. This 2100-second data set becomes the truth reference by which the noisy data will be
compared to assess performance. This will be called the good set in the following. Two tests were
performed. The first test was adding noise to the system. The second test was changing the double
phase faults to double phase to ground faults with different ground resistances. Two ground resistances
were chosen and analyzed: 50 Q and 100 Q. In the multiphase test to ground, the neural network would
detect multi phase to ground faults but could not discern which 2 phases were being faulted very
successfully. The test for both of the ground resistances were successful in determining that faults
occur, but not successful in determining which phases were faulted. Therefore, the remainder of the
testing focused on single phase to ground faults and multi phase-to-phase faults under noise conditions.

The first test done was to assess the capabilities of the neural network without multi-phase to
ground faults. This was accomplished by adding noise to the neutral of the three-phase source. Three
different noise powers were added to the system for comparison against a known good set. The three
noise powers used were 0.5, 1, and 2. Examples of how much white noise was being added to the
system for each of the three different noise powers are shown in figures 46-48. Since it is unclear in
Simulink the units this noise power corresponds to, 30 seconds of the noise was generated and the
standard deviation was calculated on that 30-second interval in order to give an RMS value for the noise
levels. The three corresponding RMS values for each noise level can be seen in table 4. An example plot
of the three-phase system with noise added is shown in figure 49. For comparison, a plot of the same
time frame with no noise added to the three-phase system is also shown in figure 50. Note that since
the phase-to-phase RMS value of the Simulink source is 10,000V, this is equivalent to a phase-to-ground
voltage of approximately 5800V.

Noise Level RMS Value (Vgrus)
0.5 90.5745
1 128.0917
2 181.1490

Table 4: RMS Values of each Noise Power Level Tested

After the three 2100 second data sets were created and pushed through the neural networks —
one for each noise level — each of these 3 data sets were compared to the good set. The comparison
showed that the performance of the neural network was not adequate as many faults were being
missed and too many faults that were not actually faults were being detected. The neural network was
trained with the 140-sample data set, which is 20 faults of each condition (A, B, C, AB, BC, AC, no fault),
which is the same neural network as the one used in figure 8 labeled +/-(1,1,1) fault classification.
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Three Phase Signal Without Noise During an A fault
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Figure 50: Three-Phase Signal Without Noise Added

Because the neural network trained with 140 faults had too many incorrect fault classifications,
the neural network was retrained with a larger data set. The data set was expanded to 350 faults, or in
other words 50 faults per fault condition analyzed. Two neural networks were created from this data
set. The first neural network was one with 1 hidden layer of 10 neurons. The second neural network was
one with 2 hidden layers of 10 neurons each. These two neural networks were inserted into the Simulink
Diagram illustrated in figure 8 in place of the top 2 neural networks, because the previous 2 neural
networks were deemed insufficient at fault classification with no noise applied to the system. The
performance of the 2 neural networks created with the data set of 350 faults both had better
performance parameters than the third neural network, which is kept as the third neural network for
comparison purposes. As shown in figures 51 and 52, the MSE of the performance converges to values
on the order of 10° and 10°®, respectively. These are both smaller MSE by at least two orders of
magnitude compared to figure 34, the neural network trained with the data set of 140 faults.
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Tests were run on three different neural networks. As a result, one good set for each neural
network, for a total of 3, had to be created with no noise applied for comparison. The comparison with
respect to the good sets is with respect to two parameters. The first parameter is false alarms, where a
fault was detected when a fault did not actually occur. The second parameter is a missed fault, where a
fault occurred but was not detected. Each phase was compared for each neural network on each noise
level, resulting in 27 different comparisons. False alarms and missed faults were counted and assembled
into the three tables below.

The first neural network was trained using 350 faults and the network contained a single hidden
layer with 10 neurons. The performance with respect to the two parameters described in the previous
paragraph, when compared with the good set for the three power levels, is shown in table 5.

Noise Level Phase Missed Faults | False Alarms
0.5 A 8 8
0.5 B 1 9
0.5 C 11 11

1 A 11 17
1 B 7 32
1 C 15 41
2 A 18 62
2 B 7 110
2 C 14 103
Total 92 393

Table 5: Performance of Neural Network with 1 Hidden Layer Trained with 350 Faults

The second neural network was trained using 350 faults and the network contained 2 hidden
layers with 10 neurons each. The performance with respect to the two parameters described above,
when compared with the good set for the three power levels, is shown in table 6.

Noise Level Phase Missed Faults | False Alarms
0.5 A 0 87
0.5 B 0 7
0.5 C 34 0
1 A 0 167
1 B 1 19
1 C 48 0
2 A 1 296
2 B 4 62
2 C 72 7
Total 160 645

Table 6: Performance of Neural Network with 2 Hidden Layers Trained with 350 Faults
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The third neural network was trained using 140 faults and the network contained a single
hidden layer with 10 neurons. The performance with respect to the two parameters described above,
when compared with the good set for the three power levels, is shown in table 7.

Noise Level Phase Missed Faults | False Alarms
0.5 A 15 11
0.5 B
0.5 C 3

1 A 14 30
1 B 4 17
1 C 11 8
2 A 17 105
2 B 7 80
2 C 23 19
Total 94 279

Table 7: Performance of Neural Network with 1 Hidden Layer Trained with 140 Faults

Of the two parameters being measured, false alarms are much worse than miss detections. This
is because, if the neural network outputs a false alarm, unnecessary resources will be engaged to take
action to address a fault that did not occur. A missed detection is less severe because there would be
many chances to detect a true fault and thus very little chance to miss the fault. Thus, in the aggregate,
very little chance to miss the fault.

By quick analysis of tables 5-7, noise level 2 is difficult for all neural networks, because there are
too many false alarms being detected. A reasonable comparison will not include noise level 2, because
all three neural networks do not operate sufficiently under that much noise. This amount of noise being
introduced to the system provides enough high frequency content to skew the DWT calculations and
provide significant amounts of miss-classifications. The worst performance in the noise level 2 was the 2
hidden layer neural network. By further looking at two lesser noise levels for the 2 hidden layer neural
network, it can also be seen that there are many more false alarms.

Since the performance of all three neural networks was insufficient at noise level 2, in order to
compare the two neural networks with one hidden layer, the missed detections and false alarms
occurring at noise level 2 was subtracted from the total. This leaves the neural network described by
table 5 with 53 missed detections and 118 false alarms during noise levels % and 1. The neural network
described by table 7 contained 47 missed detections and 75 false alarms in noise levels % and 1. By
comparing these numbers, the neural network trained with less data performed the best.

After comparing the results of the three neural networks at the three different noise levels, it is
interesting to note that the neural network trained with the most data and with the most complicated
hidden layer configuration performed the worst at all three noise levels. It is also interesting to note that
although the two neural networks with single hidden layers had the same amount of missed detections,
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the neural network trained with less data had the least false alarms. This makes it the best performing
neural network of the three. The two neural networks with 1 hidden layer operate sufficiently under
noise levels % and 1. All three neural networks perform unacceptably at noise level 2.

An interesting point to note is that all the false alarms are single point events, so by eliminating
these single point events, all false alarms would be eliminated. However, this increases the number of
missed detections because some of the fault detections were also single events in noise cases. In the
noiseless case, a fault occurred for a longer period of time, so it is reasonable to increase the number of
missed events while simultaneously eliminating all false alarms. This is because false alarms are
significantly more resource costly than a missed event. Figure 53 illustrates a missed detection, a single
point correct detection, and a false alarm. The blue is a graph of the good set for the corresponding
neural network offset by +3, the red plot is the output of the same neural network with noise applied,
and the green is the two multiplied together offset by -3. Thus, -1 indicates differences (-4 on the plot).
The missed detection is at time 347, the false alarm is at time 317, and the single point correct detection
is seen at time 340.

A phase comparison good set to 1 layer 20 fault NN Noise power 1/2

2 i i \ | I i i | I i i i I I i [
315 17 818 621 6% 825 327 50 1 388 35 @7 ®@0 B4 Gl3 645 GA7348
Time (seconds)

Figure 53: Example of False Alarm and Missed Detection
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V. Conclusion and Future Works:

The training of the neural network with no noise was successful. There was high correlation
between the power calculations of the detail level 4 wavelet coefficients and the faults in which a fault
condition occurred. The neural network converged to a solution that produced proper classifications of
all fault conditions generated when the multi-phase faults were phase-to-phase faults. When the multi-
phase faults were phase-to-ground, the neural network had a problem distinguishing between double
phase-to-ground faults and a fault in all three phases. It was determined that the neural network
classifies faults adequately when noise levels of 90.5 Vgys and 128.1 Vgys are applied to the neutral line
of the three phase source. The highest performing neural network contained 1 hidden layer with 10
neurons and training set of 140 faults. This neural network performed more successfully than the neural
network of equivalent hidden layer configurations and a larger training set of 350 faults, which was not
expected.

The Wavelet Transform is a mathematically intensive operation that requires complex and
advanced linear algebra techniques to meet fundamental requirements. For instance, the mathematical
operation called the wavelet transform must consist of a basis of vectors that are all orthonormal to
each other. This requirement ensures that any signal decomposition using the transform can be
reversed and the signal can be completely reconstructed. In other words, an inverse operation exists. In
linear algebra terms, the matrix of coefficients given by the operation is invertible. With an orthonormal
basis, this can be accomplished instantly by transposing the matrix. The mathematical details behind the
operation are not yet understood. For future works, | will use my knowledge of linear algebra to further
understand the mathematics behind the wavelet transform.

As far as the neural network implementation goes, | plan on further studying the different
algorithms and network topologies to see if they converge to solutions faster and more effectively than
the feed-forward neural network using back propagation weight updates accomplished throughout this
project. Even more so, | would like to execute trial and error to obtain a better-hidden layer
configuration that converges to an optimal solution the quickest. It was mentioned in the literature
review that there are many different kinds of power line system faults, and | chose to simulate two of
them: single phase-to-ground and double phase-to-phase faults. The more common power system faults
are line to ground and line-to-line faults. A common example of a line-to-line fault is a bird landing on
the transmission line and causing two of them to touch. This can occur very frequently. As a result, | plan
on investigating the other types of power distribution system faults mentioned here.

The results for changing the multi-phase-to-phase faults into multi-phase-to-ground faults were
unsuccessful. As another test, the neural network could be trained with both multiphase-to-phase faults
and multiphase-to-ground faults to see if training to classify both faults at the same time provides
sufficient discrimination between the two types of faults for the neural network to provide proper
classification. Another interesting result to investigate would be to apply a single point eliminator to the
outputs of the neural network under noise conditions to assess the impact of improved false alarm
performance at the penalty of increased missed detections.
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Appendix A — Analysis of Senior Project Design

Power System Fault Detection with the Discrete Wavelet Transform and Artificial Neural
Networks

Kevin Keegan
Advisor: Xiao-Hua Yu

1) Summary of Functional Requirements
a) Describe the overall capabilities or functions of your project or design. Describe what
your project does.

i) The three-phase power distribution system generates various fault conditions to
train a feed-forward artificial neural network using back propagation algorithm.
Computer simulation results show this neural network based approach can
successfully detect various fault conditions.

2) Primary Constraints
a) Describe significant challenges or difficulties associated with your project or
implementation. For example, what were limiting factors, or other issues that impacted
your approach?

i) Itis difficult to determine which mother wavelet allows for best feature extraction of
the fault as well as which decomposition level accomplishes the best feature
extraction. Knowledge of Matlab and Simulink impacted the design approach. As
more knowledge about Matlab and Simulink was attained, more and more
components of the design were implemented in Simulink. A Simulink Matlab
function could not be used because | could not integrate the XCode compiler with
Simulink.

3) Economic
a) What Economic Impacts will result?

i) Human Capital

(1) The implementation of the neural network design would be a convenience for
employees of power distribution companies. The neural network accomplishes
one of many tasks that these employees have and with striking efficiency.

ii) Financial Capital
(1) The primary purpose of the implementation of the neural network is that it is a

solution to a problem. That problem is not being able to detect fault conditions
in a 3-phase power system. When a fault occurs, a lot of money and
manufacturing time is lost. Neural networks offer a way to detect the fault
before a power outage and all that time and money is lost.

iii) Manufactured Capital

Power System Fault Detection Using Wavelet Transforms and Neural Networks Page 56



(1) The neural network design implementation will ultimately reduce the amount of
time lost to power outages caused by fault conditions in the transmission line. As
a result, this will increase the overall time the power is on and increase the
manufactured capital.

iv) Natural Capital

(1) Benefits occur indirectly. The neural network provides a solution to the problem
of losing power, time, and money because of a fault in the transmission line. By
detecting the fault before it happens, the benefit is a reduction of resources lost
because of the fault.

4) Costs
a) This project is solely simulation-based project.
b) MATLAB and Simulink Student Suite - $99.00
c) Neural Network Toolbox - $29.00
d) Wavelet Toolbox - $29.00
e) SimPowerSystems - $29.00
f) SimScape - $29.00
5) Environmental
a) Because faults cause a loss of power, many industries would benefit from knowing that
a power failure was imminent. For example, chemical plants and sewage treatment
plants could have dire consequences should they lose power even for a few seconds.
Any industry that may release toxic agents into the environment if safety mechanisms
were disabled because of loss of power will benefit from the neural network design.
6) Manufacturability
a) The neural network implementation helps minimize or eliminate manufacturing
downtime as a result of a fault condition in the three-phase system. Also, manufacturing
of the device will be limited, as only power distribution companies need them. Since the
risk of unpredictable faults creates such huge potential losses for these companies, the
demand for the neural network system will be strong enough to allow for significantly
high prices.
7) Sustainability

a)

Describe any issues or challenged associated with maintaining the completed device, or

system.

i) Sustainability problems will mostly be due to external physical apparatus. The
implementation of the design must be done across transmission lines many
kilometers long. These transmission lines exposed to weather, animals, and time. As
transmission lines lose their integrity, more external forces will have more profound
effect upon voltages and/or currents flowing through the transmission lines allowing
for possible skewed readings. To compensate for this, when any significant changes
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8)

9)

b)

in integrity or condition of the transmission lines occur, the neural network should
be retrained for optimal fault detection.

Describe any upgrades that would improve the design of the project.

i) One property of neural networks is that any configuration of hidden layers and
neurons has the possibility of converging to a solution faster and better than one
currently used. To improve the design could be as simple as finding a better hidden
layer configuration. There can also be a more effective way of distinguishing the
different fault conditions from each other.

Describe any issues or challenges associated with upgrading the design.

i) Because one possible upgrade to the design is finding a hidden layer configuration,
the search can be endless. Also, depending on the data size used to train the neural
network, it could take an extensive amount of time to train the network.

Ethical

a)

b)

According to IEEE code of ethics part 3, an engineer is required "to be honest and
realistic in stating claims or estimates based on available data." This is particularly
crucial concerning the development of the neural network to classify fault conditions in
a three-phase power system. The validity of neural network classification of fault
conditions must be well known to all users of the system. If a wrong classification is
made, the safety of power distribution company employees can be put at risk.
According to Utilitarian ethics, decisions are based upon the decision that brings about
the highest good for all. The implementation of the neural network for fault
management has the ability to minimize power grid failures. This maximizes the
availability of power to the greatest number of people.

Health and Safety

a)

The environmental issues associated with the neural network design pose health and
safety problems. If a chemical plant or sewage treatment facility experiences a power
failure, safety mechanisms may lose the ability to keep toxic agents from entering the
environment. Furthermore, hospitals depend on power. Any emergency facility is
affected if a power grid failure occurs. Traffic lights are another example that would
affect a lot of people if the power grid fails.

10) Social and Political

a)

Describe social and political issues associated with design, manufacture, and use.

i) Power distribution companies provide power to everyone; hence it is a public utility.
Being a public utility, it is political by nature, and has a significant impact on society.
The power grid is widely regulated, and anything that would improve its availability
would improve its stature in this political structure.
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11) Development
a) Describe any new tools or techniques, used for either development or analysis that was
learned independently during the course of your project.

i) CIC filters: Cascaded Integrator Comb filters were used to calculate the moving
average power that allows me to apply the neural network to entire data sets of
fault conditions in real time.

ii) DWT: The Discrete Wavelet Transform was used as the technique for feature
extraction throughout the design. The DWT is a mathematical operation that
involves applying high pass and low pass filters to a signal in order to extract higher
frequency components. This method was used to extract the higher frequency
components that fault conditions cause on the power line.

iii) Simulink: Simulink is the simulation program used for the design. In the diagram,
known fault conditions are generated at known times. It has the functionality to
change types of faults to generate and change the amount of band-limited white
noise in the simulation.
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Appendix B - Matlab Scripts

The inputs to this function are the three phases of the output of the DWT blocks from the Simulink
diagram, as well as the level of decomposition being performed. The function outputs the powers
calculated for each fault in each of the decomposition levels D2, D3, D4, and D5. The mother wavelet
used was DB4 for this function. This also generates figures 36-45.

function [ PA,PB,PC ] = power arrays(dwt outputl,level)
dwt = squeeze(dwt_ outputl.signals.values);

% Separating the three phases because they were multi-plexed together in
% the Simulink diagram prior to being output to the Workspace

dwt A = dwt(1:16384,:);

dwt B = dwt(16385:32769,:);

= dwt(32770+2:49152,:);

Q.

5

| (a3
(@]

|

% dwt A = squeeze(dwt_ A);
squeeze(dwt_B);
squeeze(dwt_C);

o0 o
Q. Q
g 5
t
Qw
[l

num of faults = size(dwt A,2);

PA = zeros(l,level);
PB = zeros(l,level);
PC = zeros(l,level);
for j = 2:num of faults
[P_A,P B,P C]=powercalculation(dwt A(:,j),dwt B(:,j),dwt C(:,]),level);
PA = [PA; P A];
PB = [PB; P B];
PC = [PC; P_C];
end

PA(l,:) = [1:
PA(:,level) = [];
PB(1l,:) = [1;
PB(:,level) = [];
PC(1l,:) = 1[1:
PC(:,level) = [];

axn = 1:140;

for k = 1:5
figure (k)
hold on
plot(axn(21:49),PA(21:49,k), '--ob')
plot(axn(21:49),PB(21:49,k), '--or')
plot(axn(21:49),PC(21:49,k), '--og')

hold off

set(gca, 'XLim',[21 49]);
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set(gca, 'XTick',[21:1:49], 'XGrid', 'on');

xlabel( 'Fault Number', 'Fontsize',b24)
ylabel( 'Power', 'Fontsize',b24)

end
end

This function takes as inputs the discrete wavelet transforms of phases A, B, and C. It calculates the
power in each of the decomposition levels by summing the squares of the values in each detail level by
the indices determined directly from plotting a DWT of any arbitrary fault, and observing where the fault
occurs.

function [ P A,P B,P C ] = powercalculation( DWT A,DWT B,DWT C,level )

oo

These indices give the range where the fault information is occuring in
each detail level - starting from level 2 at the first index, and ending
with level 6.

oo

oo

sndx
endx

[9408, 12890, 14638, 15520, 15936];
[9728, 13120, 14976, 15696, 16016];

level = length(endx);

sndx(level+l) 0;
endx(level+l) 0;
P A = zeros(l,level+l);
P B zeros(1l,level+l);
P C zeros(1l,level+l);

for i = l:level

P A(i) = sum(DWT A(sndx(i):endx(i))."2);
P B(i) = sum(DWT B(sndx(i):endx(i))."2);
P C(i) = sum(DWT C(sndx(i):endx(i))."2);
end
end

This script is an analysis script used for testing the Neural Network Capabilities under noise
conditions, more specifically the three noise levels of %5, 1, and 2 described in the results
section. It generated figure 53.

% Noise power 1/2

x1 = NN _Output 50faultsllayer2l00powerhalf.signals.values;
x2 = NN _Output 50faults2layer2l100powerhalf.signals.values;
x3 = NN _Output 20faultsllayer2l00powerhalf.signals.values;

yl = NN _Output 50faultsllayer2l00powerl.signals.values;
y2 NN_Output 50faults2layer2l00powerl.signals.values;
y3 = NN _Output 20faultsllayer2l00powerl.signals.values;

z1l = NN _Output 50faultsllayer2l100power2.signals.values;
z2 NN _Output 50faults2layer2l100power2.signals.values;
z3 = NN_Output 20faultsllayer2l100power2.signals.values;
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t = NN_Output 50faultsllayer2l00powerhalf.time;

GoodSetlr = GoodSetl.signals.values; % GoodSet for NN1
GoodSet2r = GoodSet2.signals.values; % NN2
GoodSet3r = GoodSet3.signals.values; % NN3

errorsxl = GoodSetlr.*x1l;

errorsx2 = GoodSet2r.*x2;
errorsx3 = GoodSet3r.*x3;
errorsyl = GoodSetlr.*yl;
errorsy2 = GoodSet2r.*y2;
errorsy3 = GoodSet3r.*y3;
errorszl = GoodSetlr.*zl;
errorsz2 = GoodSet2r.*z2;
errorsz3 = GoodSet3r.*z3;

99090000000000000000000000000000000000000

$Noise power 1/2

% x1

errorNDXa = find(errorsxl(:,1l) == -1);
errorNDXb = find(errorsxl(:,2) == -1);
errorNDXc = find(errorsxl(:,3) == -1);

terrorA = t(errorNDXa);
terrorB = t(errorNDXb);
terrorC t(errorNDXc);

deltatimeA = diff(terrord);
deltatimeB = diff(terrorB);
deltatimeC = diff(terrorC);

terrorA(1l) =
terrorB(1)
terrorC(1l) =

]
—_——
— e
~e ~e =~

figure(1l)
plot(terrorA,deltatimeAd, 'b');
figure(2)
plot(terrorB,deltatimeB, 'r');
figure(3)
plot(terrorC,deltatimeC, 'g');

figure(28)

title('A phase comparison good set to 1 layer 50 fault NN Noise power 1/2')
hold on

plot(t,GoodSetlr(:,1)+3,'b")

plot(t,x1(:,1), '’

plot(t,errorsxl(:,1)-3,"'g")

hold off

figure(29)

title('B phase comparison good set to 1 layer 50 fault NN Noise power 1/2')
hold on

plot(t,GoodSetlr(:,2)+3,'b")

plot(t,x1(:,2),'r")
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plot(t,errorsxl(:,2)-3,'g")
hold off

figure(30)

title('C phase comparison good set to 1 layer 50 fault NN Noise power 1/2')
hold on

plot(t,GoodSetlr(:,3)+3,'b")

plot(t,x1(:,3),'r")

plot(t,errorsxl(:,3)-3,'g")

hold off

% X2

errorNDXa = find(errorsx2(:,1l) == -1);
errorNDXb = find(errorsx2(:,2) == -1);
errorNDXc = find(errorsx2(:,3) == -1);

terrorA = t(errorNDXa);
terrorB t (errorNDXb);
terrorC t(errorNDXc);

deltatimeA = diff(terrord);
deltatimeB diff(terrorB);
deltatimeC = diff(terrorC);

terrorA(1l) =
terrorB(1)
terrorC(1l) =

]
—_——
— e
~e ~e =~

figure(4)
plot(terrorA,deltatimeAd, 'b');
figure(5)
plot(terrorB,deltatimeB, 'r');
figure(6)
plot(terrorC,deltatimeC, 'g');

figure(31)

title('A phase comparison good set to 2 layer 50 fault NN Noise power 1/2')
hold on

plot(t,GoodSet2r(:,1)+3,'b")

plot(t,x2(:,1),'r")

plot(t,errorsx2(:,1)-3,"'g")

hold off

figure(32)

title('B phase comparison good set to 2 layer 50 fault NN Noise power 1/2')
hold on

plot(t,GoodSet2r(:,2)+3,'b")

plot(t,x2(:,2),'r")

plot(t,errorsx2(:,2)-3,'g")

hold off

figure(33)

title('C phase comparison good set to 2 layer 50 fault NN Noise power 1/2')
hold on

plot(t,GoodSet2r(:,3)+3,'b")

plot(t,x2(:,3),'r")
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plot(t,errorsx2(:,3)-3,'g")

hold off

% x3

errorNDXa = find(errorsx3(:,1l) == -1);
errorNDXb = find(errorsx3(:,2) == -1);
errorNDXc = find(errorsx3(:,3) == -1);

terrorA = t(errorNDXa);
terrorB t (errorNDXb) ;
terrorC t(errorNDXc);

deltatimeA = diff(terrord);
deltatimeB = diff(terrorB);
deltatimeC = diff(terrorC);

terrorA(1l) =
terrorB(1)
terrorC(1l) =

]
—_——
— e
~e ~e =~

figure(7)
plot(terrorA,deltatimeA, 'b');
figure(8)
plot(terrorB,deltatimeB, 'r');
figure(9)
plot(terrorC,deltatimeC, 'g');

figure(34)

title('A phase comparison good set to 1 layer 20 fault NN Noise power 1/2')
xlabel('Time (seconds)')

hold on

plot(t,GoodSet3r(:,1)+3,'b")

plot(t,x3(:,1),'r")

plot(t,errorsx3(:,1)-3,"'g")

hold off

figure(35)

title('B phase comparison good set to 1 layer 20 fault NN Noise power 1/2')
hold on

plot(t,GoodSet3r(:,2)+3,'b")

plot(t,x3(:,2),'r")

plot(t,errorsx3(:,2)-3,'g")

hold off

figure(36)

title('C phase comparison good set to 1 layer 20 fault NN Noise power 1/2')
hold on

plot(t,GoodSet3r(:,3)+3,'b")

plot(t,x3(:,3),'r")

plot(t,errorsx3(:,3)-3,'g")

hold off

20000202022222220020222000000000Q0Q
555325325355 3%%53%53%53%%3%%53%%3%%3%%53%53%%3%%3%%53%%3%%3%%3%%%5%%%%%

S 22222222222222232222222222222222222222222222223222222222222222222222222%3%
% Noise power 1
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% vyl

errorNDXa = find(errorsyl(:,1l) == -1);
errorNDXb = find(errorsyl(:,2) == -1);
errorNDXc = find(errorsyl(:,3) == -1);

terrorA = t(errorNDXa);
terrorB t (errorNDXb) ;
terrorC = t(errorNDXc);

deltatimeA = diff(terrord);
deltatimeB diff(terrorB);
deltatimeC = diff(terrorC);

terrorA(1l) =
terrorB(1)
terrorC(1l) =

]
—_——
— e e
~e ~e =~

figure(10)
plot(terrorA,deltatimeAd, 'b');
figure(1ll)
plot(terrorB,deltatimeB, 'r');
figure(12)
plot(terrorC,deltatimeC, 'g');

figure(37)

title('A phase comparison good set to 1 layer 50 fault NN Noise power 1')
hold on

plot(t,GoodSetlr(:,1)+3,'b")

plot(t,yl(:,1),'r’

plot(t,errorsyl(:,1)-3,"'g")

hold off

figure(38)

title('B phase comparison good set to 1 layer 50 fault NN Noise power 1')
hold on

plot(t,GoodSetlr(:,2)+3,'b")

plot(t,yl(:,2),'r")

plot(t,errorsyl(:,2)-3,'g")

hold off

figure(39)

title('C phase comparison good set to 1 layer 50 fault NN Noise power 1')
hold on

plot(t,GoodSetlr(:,3)+3,'b")

plot(t,y1l(:,3),'r")

plot(t,errorsyl(:,3)-3,'g")

hold off

% y2

errorNDXa = find(errorsy2(:,1l) == -1);
errorNDXb = find(errorsy2(:,2) == -1);
errorNDXc = find(errorsy2(:,3) == -1);

terrorA = t(errorNDXa);
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terrorB = t(errorNDXb)
terrorC t (errorNDXc)

.
4
.
4

deltatimeA = diff(terrord);
deltatimeB diff(terrorB);
deltatimeC = diff(terrorC);

terrorA(1l) =
terrorB(1)
terrorC(1l) =

]
—_——
— e e
~e ~e =~

figure(13)
plot(terrorA,deltatimeAd, 'b');
figure(14)
plot(terrorB,deltatimeB, 'r');
figure(15)
plot(terrorC,deltatimeC, 'g');

figure(40)

title('A phase comparison good set to 2 layer 50 fault NN Noise power 1')
hold on

plot(t,GoodSet2r(:,1)+3,'b")

plot(t,y2(:,1),'r")

plot(t,errorsy2(:,1)-3,"'g")

hold off

figure(41)

title('B phase comparison good set to 2 layer 50 fault NN Noise power 1')
hold on

plot(t,GoodSet2r(:,2)+3,'b")

plot(t,y2(:,2),'r")

plot(t,errorsy2(:,2)-3,'g")

hold off

figure(42)

title('C phase comparison good set to 2 layer 50 fault NN Noise power 1')
hold on

plot(t,GoodSet2r(:,3)+3,'b")

plot(t,y2(:,3),'r")

plot(t,errorsy2(:,3)-3,'g")

hold off

% v3

errorNDXa = find(errorsy3(:,1l) == -1);
errorNDXb = find(errorsy3(:,2) == -1);
errorNDXc = find(errorsy3(:,3) == -1);

terrorA = t(errorNDXa);
terrorB t (errorNDXb);
terrorC t (errorNDXc);

deltatimeA = diff(terrord);
deltatimeB = diff(terrorB);
deltatimeC = diff(terrorC);
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terrorA(1l)
terrorB(1)
terrorC(1)

—_, r—.—.
—_— i —
~e ~eo ~o

figure(16)
plot(terrorA,deltatimeA, 'b');
figure(17)
plot(terrorB,deltatimeB, 'r');
figure(18)
plot(terrorC,deltatimeC, 'g');

figure(43)

title('A phase comparison good set to 1 layer 20 fault NN Noise power 1')
hold on

plot(t,GoodSet3r(:,1)+3,'b")

plot(t,y3(:,1),'r")

plot(t,errorsy3(:,1)-3,"'g")

hold off

figure(44)

title('B phase comparison good set to 1 layer 20 fault NN Noise power 1')
hold on

plot(t,GoodSet3r(:,2)+3,'b")

plot(t,y3(:,2),'r")

plot(t,errorsy3(:,2)-3,'g")

hold off

figure(45)

title('C phase comparison good set to 1 layer 20 fault NN Noise power 1')
hold on

plot(t,GoodSet3r(:,3)+3,'b")

plot(t,y3(:,3),'r")

plot(t,errorsy3(:,3)-3,'g")

200000002222222222222222222222222222202222202222222022202000000200000Q0Q0Q
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999000000000000000000000000000000000000

o0 o

Noise power 2

% zl

errorNDXa = find(errorszl(:,1l) == -1);
errorNDXb = find(errorszl(:,2) == -1);
errorNDXc = find(errorszl(:,3) == -1);

terrorA = t(errorNDXa);
terrorB t (errorNDXb) ;
terrorC = t(errorNDXc);

deltatimeA = diff(terrord);
deltatimeB diff(terrorB);
deltatimeC diff (terrorC);

terrorA(l) =
terrorB(1l) =

—_ —
[S—py—
~e ~eo
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terrorC(l) = [];

figure(19)
plot(terrorA,deltatimeA, 'b');
figure(20)
plot(terrorB,deltatimeB, 'r');
figure(21)
plot(terrorC,deltatimeC, 'g');

figure(46)

title('A phase comparison good set to 1 layer 50 fault NN Noise power 2')
hold on

plot(t,GoodSetlr(:,1)+3,'b")

plot(t,zl(:,1),'r")

plot(t,errorszl(:,1)-3,"'g")

hold off

figure(47)

title('B phase comparison good set to 1 layer 50 fault NN Noise power 2')
hold on

plot(t,GoodSetlr(:,2)+3,'b")

plot(t,zl(:,2),'r")

plot(t,errorszl(:,2)-3,'g")

hold off

figure(48)

title('C phase comparison good set to 1 layer 50 fault NN Noise power 2')
hold on

plot(t,GoodSetlr(:,3)+3,'b")

plot(t,z1(:,3),'r")

plot(t,errorszl(:,3)-3,'g")

hold off

% z2

errorNDXa = find(errorsz2(:,1l) == -1);
errorNDXb = find(errorsz2(:,2) == -1);
errorNDXc = find(errorsz2(:,3) == -1);

terrorA = t(errorNDXa);
terrorB t (errorNDXb) ;
terrorC = t(errorNDXc);

deltatimeA = diff(terrord);
deltatimeB diff(terrorB);
deltatimeC = diff(terrorC);

terrorA(1l) =
terrorB(1)
terrorC(1l) =

]
—_——
— e
~e ~e =~

figure(22)
plot(terrorA,deltatimeA, 'b');
figure(23)
plot(terrorB,deltatimeB, 'r');
figure(24)
plot(terrorC,deltatimeC, 'g');
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figure(49)

title('A phase comparison good set to 2 layer 50 fault NN Noise power 2')
hold on

plot(t,GoodSet2r(:,1)+3,'b")

plot(t,z2(:,1),'r")

plot(t,errorsz2(:,1)-3,"'g")

hold off

figure(50)

title('B phase comparison good set to 2 layer 50 fault NN Noise power 2')
hold on

plot(t,GoodSet2r(:,2)+3,'b")

plot(t,z2(:,2),'r")

plot(t,errorsz2(:,2)-3,'g")

hold off

figure(51)

title('C phase comparison good set to 2 layer 50 fault NN Noise power 2')
hold on

plot(t,GoodSet2r(:,3)+3,'b")

plot(t,z2(:,3),'r")

plot(t,errorsz2(:,3)-3,'g")

hold off

% z3

errorNDXa = find(errorsz3(:,1l) == -1);
errorNDXb = find(errorsz3(:,2) == -1);
errorNDXc = find(errorsz3(:,3) == -1);

terrorA = t(errorNDXa);
terrorB = t(errorNDXb);
terrorC t(errorNDXc);

deltatimeA = diff(terrord);
deltatimeB diff(terrorB);
deltatimeC = diff(terrorC);

terrorA(1l) =
terrorB(1)
terrorC(1l) =

]
—_——
— e
~e ~e =~

figure(25)
plot(terrorA,deltatimeA, 'b');
figure(26)
plot(terrorB,deltatimeB, 'r');
figure(27)
plot(terrorC,deltatimeC, 'g');

figure(52)

title('A phase comparison good set to 1 layer 20 fault NN Noise power 2')
hold on

plot(t,GoodSet3r(:,1)+3,'b")

plot(t,z3(:,1),'r")

plot(t,errorsz3(:,1)-3,"'g")

hold off
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figure(53)

title('B phase comparison good set to 1 layer 20 fault NN Noise power 2')
hold on

plot(t,GoodSet3r(:,2)+3,'b")

plot(t,z3(:,2),'r")

plot(t,errorsz3(:,2)-3,"'g")

hold off

figure(54)

title('C phase comparison good set to 1 layer 20 fault NN Noise power 2')
hold on

plot(t,GoodSet3r(:,3)+3,'b")

plot(t,z3(:,3),'r")

plot(t,errorsz3(:,3)-3,'g")

hold off

This testing script generated figures 46-50.

figure(1l)

plot (NoiseScopehalf.time,NoiseScopehalf.signals.values)
title('30 Seconds of Noise for Noise Power 1/2')
ylabel( 'Volts')

xlabel('Time (seconds)')

figure(2)

plot (NoiseScopeone.time,NoiseScopeone.signals.values)
title('30 Seconds of Noise for Noise Power 1')
ylabel('Volts')

xlabel('Time (seconds)')

figure(3)

plot (NoiseScopetwo.time,NoiseScopetwo.signals.values)
title('30 Seconds of Noise for Noise Power 2')
ylabel('Volts')

xlabel('Time (seconds) ')

figure(4)

hold on

plot (phaseswithnoise.time,phaseswithnoise.signals.values(:,1),'b")
plot (phaseswithnoise.time,phaseswithnoise.signals.values(:,2), 'r")
plot (phaseswithnoise.time,phaseswithnoise.signals.values(:,3), 'g")
hold off

title('Three Phase Signal With Noise During an A fault')
ylabel('Volts')

xlabel('Time (seconds)')

figure(5)

hold on

plot (phaseswithnonoise.time,phaseswithnonoise.signals.values(:,1),'b")
plot (phaseswithnonoise.time,phaseswithnonoise.signals.values(:,2),'r")
plot (phaseswithnonoise.time,phaseswithnonoise.signals.values(:,3),'g")
hold off

title('Three Phase Signal Without Noise During an A fault')
ylabel('Volts')

xlabel('Time (seconds)')
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This script is used to create the input and output files for the Neural Networks. By changing the
range of the for loop variable NDX, the user can accommodate different data sizes. The largest

value of NDX should be the number of faults of each fault condition being generated. This script
also generates figures 11-17 and 19-32, by capturing the 11" fault and plotting before and after

wavelet decomposition.

in = fopen('nnInputnew.txt', 'w'); % input to NN

outl = fopen( 'nnTargetsnewl.txt',6'w'); % expected Output from NN
out2 = fopen( 'nnTargetsnew2.txt','w');

out3 = fopen( 'nnTargetsnew3.txt',6'w');

% grabbing fault content from simulink model for each fault type
AF = afault.signals.values;

BF = bfault.signals.values;

CF cfault.signals.values;

ABF = abfault.signals.values;

BCF bcfault.signals.values;

ACF acfault.signals.values;

NF = nofault.signals.values;

Q

% choosing indices to capture information for power calculations

I1 = 1034;
I2 = 1260;
X1l = 'Time';

yl = 'Amplitude’;
for NDX = 1:50;

N1 = (NDX-1)*16384+1;
N2 = NDX*16384;

PR S

AFA = AF(N1l: N2,1);
AFB = AF(N1l: N2,2);
AFC = AF(N1l: N2,3);

[}

% Extract Detail level 4 from wavelet
[CAFA, LAFA] = wavedec(AFA, 4, 'dbd');
[CAFB, LAFB] = wavedec(AFB, 4, 'db4');
[CAFC, LAFC] = wavedec(AFC, 4, 'dbd');

% Capture the 11th fault for analysis
if (NDX == 11)
figure (NDX+25)
hold on
plot (AFA(4800:7500))
plot (AFB(4800:7500), 'r')
plot (AFC(4800:7500), 'g')
hold off
title('A Phase-to-Ground Fault', 'Fontsize',6 24)
xlabel(x1l, 'Fontsize', 24)
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Fault',

end

[}

ylabel(yl, 'Fontsize', 24)

interimA = [CAFA(300:450); CAFA(1024+300:1024+450)];
interimB = [CAFB(300:450); CAFB(1024+300:1024+450)];
interimC = [CAFC(300:450); CAFC(1024+300:1024+450)];

figure (NDX+26)
hold on
plot(interimA)
plot(interimB, 'r
plot(interimC, 'g
hold off

title( 'Approximation Level 4 and Detail Level 4 of a Phase A
'Fontsize', 24)

xlabel(x1l, 'Fontsize', 24)

ylabel(yl, 'Fontsize', 24)

[

)
")

figure (NDX+27)

hold on

plot (CAFA(1024+300:1024+450))

plot (CAFB(1024+300:1024+450), 'r')

plot (CAFC(1024+300:1024+450), 'g')

hold off

title('Detail Level 4 of a Phase A Fault',6 'Fontsize', 24)
xlabel(x1l, 'Fontsize', 24)

ylabel(yl, 'Fontsize', 24)

% Calculate power
powerAFA

sum(CAFA(I1:I2)."2);

powerAFB = sum(CAFB(Il:I2)."2);
powerAFC = sum(CAFC(Il:I2)."2);
pAfault = [powerAFA powerAFB powerAFC];

fpr
fpr
fpr
fpr

intf(in, '%f %f %f \n',pAfault);
intf(outl,'l \n');

intf(out2,'l \n');

intf(out3,'l -1 -1 \n');

= BF(Nl: N2,1);
BF(N1l: N2,2);
BF(N1l: N2,3);

% Extract Detail level 4 from wavelet
[CBFA, LBFA] = wavedec(BFA, 4, 'dbd');

[CBFB, LBFB]
[CBFC, LBFC]

[}

if

wavedec (BFB, 4, 'db4');
wavedec (BFC, 4, 'db4');

% Capture the 11th fault for analysis

(NDX == 11)

figure (NDX+28)

hold on

plot (BFA(4800:7500))

Power System Fault Detection Using Wavelet Transforms and Neural Networks

Page 72



plot (BFB(4800:7500), 'r')

plot (BFC(4800:7500), 'g')

hold off

title('B Phase-to-Ground Fault', 'Fontsize',6 24)
xlabel(x1l, 'Fontsize', 24)

ylabel(yl, 'Fontsize', 24)

interimA = [CBFA(300:450); CBFA(1024+300:1024+450)]
interimB = [CBFB(300:450); CBFB(1024+300:1024+450)]
interimC = [CBFC(300:450); CBFC(1024+300:1024+450)]

.
14
.
14
.
14

figure (NDX+29)
hold on
plot(interimA)
plot(interimB, 'r
plot(interimC, 'g
hold off

[

)
")

title( 'Approximation Level 4 and Detail Level 4 of a Phase B

Fault', 'Fontsize', 24)
xlabel(x1l, 'Fontsize', 24)
ylabel(yl, 'Fontsize', 24)

figure (NDX+30)
hold on
plot (CBFA(1024+300:1024+450))
plot (CBFB(1024+300:1024+450), 'r')
plot (CBFC(1024+300:1024+450), 'g')
hold off
title('Detail Level 4 of a Phase B Fault',6 'Fontsize',
xlabel(x1l, 'Fontsize', 24)
ylabel(yl, 'Fontsize', 24)
end

[}

% Calculate power

powerBFA = sum(CBFA(Il:I2)."2);
powerBFB = sum(CBFB(Il:I2)."2);
powerBFC sum(CBFC(I1:I2)."2);

pBfault = [powerBFA powerBFB powerBFC];

fprintf(in, '3f %f %f \n',pBfault);
fprintf(outl,'2 \n');
fprintf(out2,'2 \n');
fprintf(out3,'-1 1 -1 \n');

o

CFA = CF(N1l: N2,1);
= CF(N1l: N2,2);
= CF(N1l: N2,3);

QN

|

Qw
(]

[}

% Extract Detail level 4 from wavelet
[CCFA, LCFA] = wavedec(CFA, 4, 'dbd');
[CCFB, LCFB] = wavedec(CFB, 4, 'db4');
[CCFC, LCFC] = wavedec(CFC, 4, 'dbd');
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% Capture the 11th fault for analysis
if (NDX == 11)
figure (NDX+31)
hold on
plot (CFA(4800:7500))
plot (CFB(4800:7500), 'r')
plot (CFC(4800:7500), 'g')
hold off
title('C Phase-to-Ground Fault', 'Fontsize',6 24)
xlabel(x1l, 'Fontsize', 24)
ylabel(yl, 'Fontsize', 24)

[

interimA = [CCFA(300:450); CCFA(1024+300:1024+450)];
interimB = [CCFB(300:450); CCFB(1024+300:1024+450)];
interimC = [CCFC(300:450); CCFC(1024+300:1024+450)];

figure (NDX+32)
hold on
plot(interimA)
plot(interimB, 'r
plot(interimC, 'g
hold off

[

)
")

title( 'Approximation Level 4 and Detail Level 4 of a Phase C

Fault', 'Fontsize', 24)
xlabel(x1l, 'Fontsize', 24)
ylabel(yl, 'Fontsize', 24)

figure (NDX+33)
hold on
plot (CCFA(1024+300:1024+450))
plot (CCFB(1024+300:1024+450), 'r')
plot (CCFC(1024+300:1024+450), 'g')
hold off
title('Detail Level 4 of a Phase C Fault',6 'Fontsize',
xlabel(x1l, 'Fontsize', 24)
ylabel(yl, 'Fontsize', 24)
end

[}

% Calculate power

powerCFA = sum(CCFA(Il:I2)."2);
powerCFB = sum(CCFB(Il:I2)."2);
powerCFC sum(CCFC(I1:I2)."2);

pCfault = [powerCFA powerCFB powerCFC];

fprintf(in, '$f %f %f \n',pCfault);
fprintf(outl, '3 \n');
fprintf(out2,'3 \n');
fprintf(out3,'-1 -1 1 \n');

ABFA = ABF(N1l: N2,1);
ABFB = ABF(N1l: N2,2);
ABF(N1l: N2,3);

>
w
|
a

I

% Extract Detail level 4 from wavelet

24)
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[CABFA, LABFA] = wavedec (ABFA, 4, 'db4');
[CABFB, LABFB] = wavedec (ABFB, 4, 'db4');
[CABFC, LABFC] = wavedec (ABFC, 4, 'db4');

% Capture the 11th fault for analysis
if (NDX == 11)
figure (NDX+34)
hold on
plot (ABFA(4800:7500))
plot (ABFB(4800:7500), 'r')
plot (ABFC(4800:7500), 'g')
hold off
title('AB Phase Fault',6 'Fontsize',6 24)
xlabel(x1l, 'Fontsize', 24)
ylabel(yl, 'Fontsize', 24)

interimA = [CABFA(300:450); CABFA(1024+300:1024+450)];
interimB = [CABFB(300:450); CABFB(1024+300:1024+450)];
interimC = [CABFC(300:450); CABFC(1024+300:1024+450)];

figure (NDX+35)

hold on

plot(interimA)

plot(interimB, 'r

plot(interimC, 'g

hold off

title( 'Approximation Level 4 and Detail Level 4 of a Phase AB
Fault', 'Fontsize', 24)

xlabel(x1l, 'Fontsize', 24)

ylabel(yl, 'Fontsize', 24)

[

)
")

figure (NDX+36)
hold on
plot (CABFA(1024+300:1024+450))
plot (CABFB(1024+300:1024+450), 'r")
plot (CABFC(1024+300:1024+450),'g")
hold off
title('Detail Level 4 of a Phase AB Fault',6 'Fontsize',6 24)
xlabel(x1l, 'Fontsize', 24)
ylabel(yl, 'Fontsize', 24)
end

[}

% Calculate power

powerABFA = sum(CABFA(Il1:I2)."2);

powerABFB = sum(CABFB(I1:I2)."2);

powerABFC = sum(CABFC(Il1:I2)."2);

pABfault = [powerABFA powerABFB powerABFC];

fprintf(in, '$f %f %f \n',pABfault);
fprintf(outl,'4 \n');
fprintf(out2,'-1 \n');
fprintf(out3, 'l 1 -1 \n');

BCFA = BCF(N1l: N2,1);
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BCFB

BCF(Nl: N2,2);
BCFC ;

BCF(N1: N2,3)

[}

% Extract Detail level 4 from wavelet

[CBCFA, LBCFA] = wavedec(BCFA, 4, 'db4');
[CBCFB, LBCFB] wavedec (BCFB, 4, 'dbd');
[CBCFC, LBCFC] wavedec (BCFC, 4, 'db4');

% Capture the 11th fault for analysis
if (NDX == 11)
figure (NDX+37)
hold on
plot (BCFA(4800:7500))
plot (BCFB(4800:7500), 'r')
plot (BCFC(4800:7500), 'g')
hold off
title('BC Phase Fault', 'Fontsize',6 24)
xlabel(x1l, 'Fontsize', 24)
ylabel(yl, 'Fontsize', 24)

[

interimA = [CBCFA(300:450); CBCFA(1024+300:1024+450)];
interimB = [CBCFB(300:450); CBCFB(1024+300:1024+450)];
interimC = [CBCFC(300:450); CBCFC(1024+300:1024+450)];

figure (NDX+38)

hold on

plot(interimA)

plot(interimB, 'r

plot(interimC, 'g

hold off

title( 'Approximation Level 4 and Detail Level 4 of a Phase BC
Fault', 'Fontsize', 24)

xlabel(x1l, 'Fontsize', 24)

ylabel(yl, 'Fontsize', 24)

[

)
")

figure (NDX+39)
hold on
plot (CBCFA(1024+300:1024+450))
plot (CBCFB(1024+300:1024+450), 'r")
plot (CBCFC(1024+300:1024+450),'g")
hold off
title('Detail Level 4 of a Phase BC Fault', 'Fontsize',6 24)
xlabel(x1l, 'Fontsize', 24)
ylabel(yl, 'Fontsize', 24)
end

[}

% Calculate power

powerBCFA = sum(CBCFA(Il1:I2)."2);

powerBCFB = sum(CBCFB(Il1:I2)."2);

powerBCFC sum(CBCFC(I1:I2)."2);

pBCfault = [powerBCFA powerBCFB powerBCFC];

fprintf(in, '$f %f %f \n',pBCfault);
fprintf(outl,'5 \n');
fprintf(out2,'-2 \n');
fprintf(out3,'-1 1 1 \n');
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ACFA = ACF(N1l: N2,1);
= ACF(N1l: N2,2);
ACF(N1l: N2,3);

>
QN
o
Qw

o

[}

% Extract Detail level 4 from wavelet

[CACFA, LACFA] = wavedec(ACFA, 4, 'db4');
[CACFB, LACFB] wavedec (ACFB, 4, 'dbd');
[CACFC, LACFC] wavedec (ACFC, 4, 'dbd');

% Capture the 11th fault for analysis
if (NDX == 11)
figure (NDX+40)
hold on
plot (ACFA(4800:7500))
plot (ACFB(4800:7500), 'r')
plot (ACFC(4800:7500), 'g')
hold off
title('AC Phase Fault', 'Fontsize',6 24)
xlabel(x1l, 'Fontsize', 24)
ylabel(yl, 'Fontsize', 24)

interimA = [CACFA(300:450); CACFA(1024+300:1024+450)];
interimB = [CACFB(300:450); CACFB(1024+300:1024+450)];
interimC = [CACFC(300:450); CACFC(1024+300:1024+450)];

figure (NDX+41)

hold on

plot(interimA)

plot(interimB, 'r

plot(interimC, 'g

hold off

title( 'Approximation Level 4 and Detail Level 4 of a Phase AC
Fault', 'Fontsize', 24)

xlabel(x1l, 'Fontsize', 24)

ylabel(yl, 'Fontsize', 24)

[

)
")

figure (NDX+42)
hold on
plot (CACFA(1024+300:1024+450))
plot (CACFB(1024+300:1024+450),'r")
plot (CACFC(1024+300:1024+450),'g")
hold off
title('Detail Level 4 of a Phase AC Fault', 'Fontsize', 24)
xlabel(x1l, 'Fontsize', 24)
ylabel(yl, 'Fontsize', 24)
end

[}

% Calculate power

powerACFA = sum(CACFA(Il1:I2)."2);

powerACFB = sum(CACFB(Il1:I2)."2);

powerACFC = sum(CACFC(Il1:I2)."2);

pACfault = [powerACFA powerACFB powerACFC];

fprintf(in, '$f %f %f \n',pACfault);
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fprintf(outl,'6 \n');
fprintf(out2,'-3 \n');
fprintf(out3,'l -1 1 \n');

NOFA = NF(N1l: N2,1);
NOFB = NF(N1l: N2,2);
NF(N1l: N2,3);

=2
@]
|
a

I

% Extract Detail level 4 from wavelet

[CNOFA, LNOFA] = wavedec(NOFA, 4, 'db4');
[CNOFB, LNOFB] wavedec (NOFB, 4, 'dbd');
[CNOFC, LNOFC] wavedec (NOFC, 4, 'dbd');

% Capture the 11th fault for analysis
if (NDX == 11)
figure (NDX+43)
hold on
plot (NOFA(4800:7500))
plot (NOFB(4800:7500), 'r')
plot (NOFC(4800:7500), 'g')
hold off
title('No Phase Fault', 'Fontsize',6 24)
xlabel(x1l, 'Fontsize', 24)
ylabel(yl, 'Fontsize', 24)

[

interimA = [CNOFA(300:450); CNOFA(1024+300:1024+450)];
interimB = [CNOFB(300:450); CNOFB(1024+300:1024+450)];
interimC = [CNOFC(300:450); CNOFC(1024+300:1024+450)];

figure (NDX+44)

hold on

plot(interimA)

plot(interimB, 'r

plot(interimC, 'g

hold off

title('Approximation Level 4 and Detail Level 4 of a NO
Fault', 'Fontsize', 24)

xlabel(x1l, 'Fontsize', 24)

ylabel(yl, 'Fontsize', 24)

[

)
")

figure (NDX+45)
hold on
plot (CNOFA(1024+300:1024+450))
plot (CNOFB(1024+300:1024+450), 'r")
plot (CNOFC(1024+300:1024+450),'g")
hold off
title('Detail Level 4 of a NO Fault', 'Fontsize',6 24)
xlabel(x1l, 'Fontsize', 24)
ylabel(yl, 'Fontsize', 24)
end

% Calculate power
powerNOFA = sum(CNOFA(I1l:I2)."2);
powerNOFB sum(CNOFB(I1l:I2)."2);
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powerNOFC = sum(CNOFC(I1:I2)."2);
pNOfault = [powerNOFA powerNOFB powerNOFC];

fprintf(in, '$f %f %f \n',pNOfault);
fprintf(outl,'0 \n');
fprintf(out2,'0 \n');
fprintf(out3,'-1 -1 -1 \n');

o

end;

fclose(in);

fclose(outl);
fclose(out2);
fclose(out3);
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