

1

COMPANION PASS PROGRAM

A Senior Project

Presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Industrial Engineering

by

Andrew Toney

June 2013

2

© 2013

Andrew Toney

ALL RIGHTS RESERVED

3

ABSTRACT

Companion PASS Program

Andrew Toney

At the end of each quarter the students of Cal Poly prepare to sign up for their

classes for next quarter. This process is more difficult for seniors who must meet

very specific requirements in order to graduate on time. Students can spend

hours trying to find the “perfect schedule”, that one schedule that fits their

personal schedule and their graduation requirements, while not over taxing

themselves during that quarter by having too much class work. This Cal Poly

explores the creation and implementation of an extra scheduling tool to address

the weaknesses of the current scheduling system, PASS, and help students reduce

the amount of time spent looking for that one “perfect schedule”.

The companion program makes use of MS Access and MS Excel, both common

Office Programs, to create a system that offers more optimization options in

choosing what classes a student would like to take for the next quarter. Working

with several queries in Access and then changing those queries into constraints

for Excel solver this Senior Project was able to create an ‘alpha’ level companion

program that is function, but not fully tested or edited for ease of use by senior

level industrial engineering students at Cal Poly.

4

Table of Contents

List of Figures……………………………………………………………………………………………………5

Chapter 1: introduction…………………………………………………………………………………….6

Chapter 2: Literature review……………………………………………………………………….…….8

Chapter 3: Current process……………………………………………………………………………….16

Chapter 4: Methodology……………………………………………………………………………………19

Chapter 5: Future Senior Project Opportunities and Conclusions…..………………….37

Bibliography………………………………………………………………………………………………….…..39

Appendices……………………………………………………………………………………………………….43

 A: Survey results……………………………………………………………………………………..43

 B: Form interface…………………………………………………………………………………….45

 C: Code for subroutines……………………………………………………………………………46

 D: Example Excel Sheet……………………………………………………………………………51

5

List of Figures

Figure1…………………………………………………………………………………16

Figure2…………………………………………………………………………………17

Figure3…………………………………………………………………………………18

Figure4…………………………………………………………………………………21

Figure5…………………………………………………………………………………22

Figure6…………………………………………………………………………………26

Figure7…………………………………………………………………………………32

6

Chapter 1: Introduction

 One of the struggles of being a student is planning out what classes will be

taken in what quarters. This not only relates to a student’s struggle to figure out

which classes can be taken, but if it is likely that those classes will be filled.

Essentially a student can plan out the perfect schedule for every quarter while

they are a student at Cal Poly, and it will still be possible that they will never be

able to use those schedules, due to a lack of class availability or a sudden need for

many students in a given year to need that particular class. Cal Poly’s PASS system

helps mitigate these problems by providing an easy to use software that helps

students make several schedules for their classes. The system Excels in a few

areas:

- PASS Creates multiple schedule options based on the number of classes

that it can fit.

- PASS allows users to optimize their choices based on a preference for

what time of day they would like to be at school

- PASS allows for students to optimize based on interactions between

other classes

- PASS allows students to optimize classes based on a given day or time

across all days.

While these are useful things for students to be able to optimize, PASS is truly at

its most effective when a user has a vast number of options. Having more classes,

with more times, and more sections means that pass can make more schedules

and narrow them down to the best choices based on the optimizations.

PASS does however have some weaknesses. The PASS system is most useful when

a student begins his/her career at Cal Poly, and when they are in the middle. This

is because at the start of a college career students have many more options in

what classes they can take, as most General education classes, and introductory

major classes are available. When a student is nearing the end of their sophomore

year, and the beginning of their junior year, they will then also have a lot of

potential choices as they will be open to more of the upper division classes in

7

their given major, while still having the option to take on a wide variety of General

Education courses as well. Therefore: PASS becomes least effective when a

student has very few choices or few options. Senior level students have limited

path options when choosing which classes to take as the class progression

becomes more and more linear the closer a student nears to graduation. At that

point, having a greater number of schedules becomes less important and having a

schedule that fits the needs of the users preferences for a select class become

more important. This is where PASS becomes less useful.

That is why this author has worked on building PASS Companion Program, to

address these weaknesses and help students find their “perfect” schedule faster.

The PASS companion program will address the issues with PASS by including the

following functions:

- Students will be able to select nine classes and assign preference values

to each class based on how much the student wants to see that class in

the optimization

- Students will be able to form groups amongst their chosen classes

Creating a companion program to meet these two points will allow students to

select more classes than they would with PASS and select form among the few

they need most, while filling the spare time with a class instantly, as opposed to

using PASS where a student would have to continually re-edit the classes in order

to look at different schedules with different classes.

This Senior Project will cover some prior literature on working with optimization

scheduling problems and other online software scheduling systems like PASS

before explaining the methodology on how to solve this problem.

8

Chapter 2: Literature Review

Overview

The difficulty students have in both getting classes and choosing which

classes are best for them has long been a topic of complaint and debate amongst

students and their peers. “I have to stay an extra quarter because I can’t get this

class!”, “Did you try everything?”, “Well I tried several different schedules with

the 7 or so classes I need, but none of them seem to work with the one class I

have to take.”

The problem with creating schedules for the university’s classes has been

the topic of a few senior projects already, but they have focused mostly on the

faculty side of things, helping professors gain preferable time slots for their

classes in the classrooms they’d most like to use.

There is still room for improvement on the student’s side of the scheduling

system.

The theory behind electronic scheduling for a university’s students has

been studied and documented in several pieces of literature, and can be broken

down by the methods used to solve this a scheduling problem like this one, better

known as a scheduling under hard constraints and having an NP degree of

complexity. The methods used are divided between optimization and heuristic

techniques.

Optimization:

 Integer Programming

 Dynamic Programming

 Goal Programming

Heuristic:

 Genetic algorithms (GA)

9

Local Search

Simulated Annealing

Evolutionary approach

The practice of making successful scheduling processes is a large field of

study that has been explored in many papers, particularly in discovering the use

of combining algorithms. Studies look into the efficacy of combining the uses of

the genetic algorithm or the Evolutionary algorithm combined with local search or

simulations [Abdullah and Turabieh (2008), Wang et al. (2008), Irene et al. (2009)]

 It is perhaps easiest to see the differences in the methodologies when

reading the paper “A comparison of Course Scheduling Methods” by Ojha and

Walker (2000). The authors compare four types of methodologies in attempting

to solve course scheduling problems. They reach more than a few conclusions on

each. Their findings were as follows:

Hill climbing – Flexible, and gives better results, but ultimately takes more

time to process

Linear programming - Able to generate good results based on some

samples data they authors used for their study, but proved rigid in its

structure, and was difficult for those not already trained in LP.

 Tabu search – is both flexible and produces the best results.

Research has covered a lot of the subject in other papers.

Related literature abstracts

 In “Linear programming, a concise introduction” by Thomas Ferguson

covers the basics of linear programming, a paper discussing several types of

potential problems linear programming can solve, things like transportation

10

problems where you are trying to find the minimal transportation costs when

trying to send a fixed amount of material to factory i through route j. More

importantly however, and something which is more applicable to the work in this

project it covers what is commonly called, the optimal assignment program.

The optimal assignment program basically says that I have x people for y jobs and

each worker x has a preference for job y. The essential issue in developing a

program to help students get the classes they want based on preference is exactly

the same. There are “x” classes a student can take, and the student has a

preference for each class, but the classes are restricted by their time slots “y”.

 In “Decision Support System for University Course Scheduling.” by Matthew

Pesesnti 2002. A former Cal Poly student goes over the methodologies in

developing a decision based aid system using Microsoft Access to help schedule

classes. The tool was, while designed to help the scheduler, it was not designed to

replace them. So it did not make schedules based on preference, but it did

instead create information in a tabular format to help the scheduler determine all

the effects of the schedule they were choosing. Pesesnti did not include an

automated scheduling feature, and in specific circumstances his paper highlighted

complications with the program where it wouldn’t detect scheduling conflicts.

The inability of his decision support system to detect these conflicts kept his final

product from being implemented by Cal Poly, and left it as a Senior Project. The

following conditions could occur in the system without error messages warning

the user that the change they just made was infeasible:

Multiple classes could have the same teacher teaching the classes at the

same time. One class can have multiple teachers

A single class can be taught in multiple lab rooms.

In a study done by Ghaemi et al. in 2007 researchers applied a modified

Genetic algorithm and Cooperative Genetic algorithm to help them solve the

University Time Table issue. In the study Ghaemi et al. work with two different

approaches to the problem of minimizing conflicts in the university’s time table.

The first approach is the use of a normal genetic algorithm, which is very

11

effective, but requires a large amount of time to complete. With that in mind the

researches tried to find a better way and noticed a trend. Those that integrate a

two-stage strategy that first evaluates the feasibility of the plan and then

optimizes the soft constraints of the problem using operators that restrict the

search function to feasible areas will typically outperform the algorithms that will

evaluate both sub-problems at the same time by using the weightings from the

evaluation functions. The study also points out that there are plenty of studies on

researching algorithms specializing in the optimization of soft constraints;

however, the validity of these studies is questioned because there has been very

little focus on producing algorithms that specialize in looking for the feasibility of

a system in the first place.

In “Interactive Timetabling System Using Knowledge- Based Genetic

Algorithms” by Hitoshi Kanoh and Yuusuke Sakamoto their research covers

proposing a new solution to the university timetabling problem based on using

genetic algorithms with an installed knowledge base, which would be, as

described by Ghaemi in the previously covered study “effective but slow”. Kanoh

and Sakamoto propose that the use of a predetermined knowledge base could

make the amount of time necessary to implement a genetic algorithm, lower by

using a series of partial solutions and the algorithm to make a full solution much

more quickly. The proposed method includes domain specific knowledge, but can

be applied to a variety of other real life large scale combination optimization

problems, thereby having applications outside the specific problem they work on.

In “University Course Scheduling Using Evolutionary Algorithms”

Mohammed aldasht et al work on a new heuristic based evolutionary algorithm

and apply it to what the paper calls “the university course scheduling problem,”

which is defined as the problem in finding a feasible and comfortable timetable

schedule for everyone. The research topic is unique because it uses an evolution

program algorithm, which the paper further describes as a “stochastic

optimization strategy similar to genetic algorithms.” The main difference between

the two is that while evolutionary programming insists on behavioral links

between parents and their offspring as opposed to trying to emulate specific

genetic operators that are observed in their environment. The paper defines the

12

problem and determining its constraints under which the solution should be

found. The paper then describes the problem model with a set of courses, rooms,

professors, and student groups. Lastly the proposed methodology is used on a

real set of data from one of four departments of the university (i.e. engineering,

math, english, computer science, etc.). The results from this paper show that the

methodology used grants a greater amount of search space for the problem,

which gives more options for optimization of the schedules than if done manually.

The schedules obtained from this method also show that several potential

complications in the scheduling process can be handled with ease under this new

system.

 In “Optimization Of University Course Scheduling Problem With A Hybrid

Artificial Bee Colony” Adalet Oner, Sel Ozcan, and Derya Dengi the researchers

address the course scheduling problem by using a hybrid algorithm comprised of

a heuristic graphic nod coloring algorithm and what is called an artificial bee

colony algorithm. The study performed is one of the few that uses the artificial

bee colony algorithm to solve discrete optimization problems, and as of the

studies date of completion, it is one of the first applications to use artificial bee

colony to solve the university course scheduling problem . The solution begins

with a basic heuristic algorithm of node coloring to develop feasible solutions for

the course scheduling problem. Those feasible solutions are then run through the

artificial bee colony model as food sources, where it is then used to improve the

feasible solutions. Within the model the employed and onlooker bees are

directed or controlled very specifically in order to avoid conflicts within the course

time table. The solution is tested using real data from a Turkish university. The

results from this experiment demonstrate that the proposed hybrid algorithm

yields excellent schedules.

 In “Course Scheduling System Design and Implementation Based on Genetic

Algorithm” by Hou Ming and Chen Qi the history of the course scheduling

problem is covered extensively and examined to find new methods of solving a

problem long covered in other papers read by the authors. The research details a

new method based on a new genetic algorithm designed based on the flaws of

past systems researched in the history of the problem. The researchers, after

13

many trials and tests was continually improved throughout the testing, making it

an improvement on the traditional genetic algorithm. This improved genetic

algorithm is designed solely to solve the course scheduling problem and the test

results from the researchers show that the designed system can meet the needs

of several actual colleges, hopefully this redesigned genetic algorithm can be used

in college scheduling systems everywhere.

Current software packages

Orologio

The Orologio class time tabling system is a software package dedicated to

creating class timetables for its customers. The software package provides a

unique product because unlike other scheduling software products that are

dedicated to class scheduling, their product will automatically build schedules for

you based on your choices. The program is treated like a linear analysis problem,

you tell it what resources it has to work with, number of days in the school year,

what days are holidays, how many hours you can fill each day(in Cal Poly’s case

this is between 7am and 9pm, as the earliest classes can start is 7am, and the

latest they can end is 9pm). Then you fill in how many classes there are, how

many sections there are, how long each section is, so a 4 unit class with 3 lectures

and 1 lab would have the inputs of lecture 3 times a week for an hour, lab once a

week for 3 hours. Finally you’d input the number of professors or teachers and

what classes they could teach, and tell the program to craft a schedule.

Unfortunately this process is NOT preference driven. So while it will come up with

a schedule that allows for no overlap between classes taught by the same

teacher, and will try to make as little overlap between classes as possible, so that

students won’t have too many conflicting choices, it doesn’t give the professors

the ability to specify when they’d like to work, or any other preference modifiers.

14

ScheduleWhiz
®

 Schedule whiz, an online scheduling program like Orologio, offers several

features useful to faculty in their methods of class scheduling and organization.

The program offers scheduling process for up to 1000 units of university courses,

as well as consulting on how best to use their software. The software has some

unique features, like the ability to follow a course flow, meaning students

shouldn’t be able to sign up for a class until its first prerequisite is met. It also

covers the basics of course scheduling software that all the software scheduling

programs seem to offer, things like teacher information, course times and days,

and matching specific teachers to classes. Unlike Orologio however, schedule whiz

takes into account the preferences of professors. Professors’ preferences can be

recorded in their profile in the program and the process takes these into account

when making a schedule.

Free online software programs

 The two programs mentioned above all scheduling programs for

universities to schedule their class listings for professors per quarter/university

and the algorithms, methods, and interfaces are useful for the purposes of this

senior project, as the goal of the project is to design a companion program with

an easy to use interface that will address the issues of the students trying to

register for classes; however, that is just the problem with the Orologio and

Schedule Whiz programs, they are targeted at universities class scheduling, but

not how the students will schedule the classes based on their preferences once

the college has chosen the times for each class. So while there may not be any

programs for sale that addresses the student needs, most universities will provide

something similar to Cal Poly’s PASS program, as well as several other online

sources that are free to use.

 While there are several free to use websites for scheduling classes at

universities, many of them are often unusable due to various small issues. Some

don’t have the university you are attending, some don’t update in time for you

15

registration rotation, some will list every class, but won’t tell you when a class is

offered making it a painstaking chore to look up every class you could take, and

then checking to see if it’s offered before registering for your courses.

 Since there are so many free online process that students can use of

varying strengths, but few of them have the quality, easy-to-use nature that

students want. Websites like www.koofers.com, which require a facebook

account to sign in, is not always up-to-date, and makes constant mistakes is not

the type of scheduling system this lit review is focusing on. One particular site

that has garnered a lot of attention from several UCs in the past few years, and is

a quality site, is courseninja.com. Started at UC Berkeley course ninja is very much

like Cal Poly’s PASS system, and suffers similar restrictions, but does what PASS

does for students at UC Berkeley, UC Davis, UC Merced, UC Santa Barbara,

and UCLA.

“It’s really been kind of a niche thing to develop, sure there are some programs

similar to us [ninja courses] for commercial use, but really not many quality

programs for students, and at UC Berkeley you have a lot of choices, so it’s useful

to have.” –William Li(Co-founder of ninja courses)

Ninja courses is the kind of scheduling program every student would like to have.

Like PASS it will only show you the classes you have offered that semester, and

will propose several viable schedules to take like PASS. Some disadvantages are

that the number of preference options are fewer than PASS, while PASS allows

you to schedule which days you would rather not have, whether you want more

or less time between classes, and many other options, Course ninja is limited to

only two potential preference modifiers:

1) Keep my classes in the evening

2) Keep my classes in the morning

While this is better than no options for preference optimization, it is not stellar

either, but it’s the best online free scheduling system for students this research

has found.

Chapter 3: Current Process

 The current process used by students to help schedule classes for quarters

is to use the online software PASS. PASS is very good at what it does, bust as

mentioned earlier in this Senior Project

in their freshman year, or students who are in their later sophomore, early junior

years, because it allows for a wider variety of schedules. When a student begins

to use PASS to sign up for classes

their senior year it will usually ta

much longer to find a viable

schedule as the student will have to

make sure that all of the classes

they are required to have

completed in order to meet

prerequisites for future classes,

graduate on time will have only one

or two sections and therefore be

much more difficult to work around

because PASS will only permit a

student to sign up for classes they

will take, and doesn’t identify the

classes that create time conflicts.

 For example: Figure 1

the first quarter as a senior at Cal

Poly from the most recent flow

chart. Classes highlighted in red are

classes that a student can sign up

for in their first quarter. If a student

signed up for all of those classes on

the hopes of forming a schedule,

PASS would see that there were 8

Figure 1

Current Process

The current process used by students to help schedule classes for quarters

is to use the online software PASS. PASS is very good at what it does, bust as

Senior Project, it often works best with students who are

in their freshman year, or students who are in their later sophomore, early junior

years, because it allows for a wider variety of schedules. When a student begins

to use PASS to sign up for classes in

ear it will usually take

much longer to find a viable

student will have to

make sure that all of the classes

to meet the

for future classes, or

graduate on time will have only one

or two sections and therefore be

much more difficult to work around

because PASS will only permit a

student to sign up for classes they

will take, and doesn’t identify the

classes that create time conflicts.

For example: Figure 1 details

arter as a senior at Cal

m the most recent flow

chart. Classes highlighted in red are

classes that a student can sign up

for in their first quarter. If a student

signed up for all of those classes on

the hopes of forming a schedule,

PASS would see that there were 8

16

The current process used by students to help schedule classes for quarters

is to use the online software PASS. PASS is very good at what it does, bust as

often works best with students who are

in their freshman year, or students who are in their later sophomore, early junior

years, because it allows for a wider variety of schedules. When a student begins

17 0 1 2 3 4 5 6 7 8 9 10

10 minutes or less

11-30 minutes

31-60 minutes

More than 60 minutes

Figure 2

classes and assume the user was trying to build a class schedule of 8 classes.

Making a schedule of those 8 classes without time conflicts is impossible.

PASS would return the error message that there are no schedules for those 8

classes that could make a time conflict free schedule, and would leave it up to the

scrutiny of the user to find out what class conflicts with what other class and

refine the search for a better class schedule. This means that a student who had 8

choices, and had to choose 5, they could make a total of 56 different schedules.

That’s a lot of schedules to scrutinize and check to see if they are even feasible.

It’s entirely possible that a student would have to take a class like IME 481, which

has one section, and find out that It conflicts with another class, and then the

student will have to figure out a replacement class, or just take fewer units that

quarter.

 The whole process start to finish can take a lot of time; students will, on

average look through 4 of these combinations and accept the first reasonable

schedule they come across, not even considering that the 5
th

 schedule might be

even better for them. Figure 2 and Figure 3 details two questions from a survey

given to senior level students on the experiences with PASS (See appendix A for

full survey results and details).

 The Survey not only revealed that students will only look through, on

average, 4 schedules, but will also spend a lot of time going through those

schedules. With almost 75% of students spending a half hour to an hour or more

18

0 1 2 3 4 5 6 7 8

1

3

5

7

9

11

13

15

17

19

2
0

 d
if

fe
re

n
t

S
tu

d
e

n
ts

Number of schedules looked through

Figure3

on their schedules, it’s not surprising that they do not go through more of the 56

options they have open to them.

 The survey speaks for itself. Students who use PASS only scratch the surface

of the schedules open to them, and most students spend a long time looking into

those schedules, and because of this designing an extra scheduling tool to help

students find their “perfect” schedule faster is an important project.

19

Chapter 4: Methodology

Methodology overview

 When looking at this problem, one of the first questions was what medium

should be used to design the companion program. It had to be a program that

would most likely be on every student’s computers, or at least be accessible by

most students, and would have to be able to detect scheduling conflicts, and then

form those conflicts into constraints for some optimization function to create the

“perfect” schedule. Using principles learned here at Cal Poly in IME 312 and IME

301 this author decided to use Microsoft Access, and Microsoft Excel in a two part

process to form the companion program. MS Access was chosen because it’s

Databasing capabilities are an excellent way to store, and quickly edit class data,

and it’s queries can find course time conflicts. MS Excel offers the solver Add-in,

an Add-in that allows for optimization given specific constraints, which will be

imported from MS Access, to identify the ideal solution. The methodology can

therefore be broken into two parts, the MS Access portion of the project, and the

MS Excel portion of the project. MS Access runs on a few programming sub

routines and purposes:

- Create the basic structure of a linear analysis problem by marking all

classes chosen by the user, including the sections for each one, and the

preference values for that class.

- Create Basic constraints: Lab constraints, section constraints, unit

constraints

- Utilize the queries in Access to find all time conflicts between the

chosen classes by the user and store them into the schedule table as

constraints.

After the above conditions are met through queries and sub routines in the VBA

programming of the database, a table is created and copied into MS Excel which:

- Is edited to fix translation issues from Access and Excel

- Has the solver add-in set up to work on the table

- Produces the “perfect“ schedule for the user

20

 Methodology: MS Access: User Interface(UI)

 Appendix B goes over the user interface in complete detail, explaining the

function of all pieces, and object names in the form, however there is a reason for

designing the UI the way it has been designed.

 When design on the UI was started the idea was to include 1 more class

than the maximum number of potential choice for a first quarter senior, as

sometimes students will skip classes along the flow chart, and allowing for 1 more

class assignment than most students would need. The grouping layout was placed

next to the preference numbers because the most important part of the UI is first

to choose the classes the user wants to see optimized into a schedule, the second

is the preference rating of the given classes so as to know which classes are the

most important, and the third is the group functionality, which unlike the other

two is completely optional. Students will only use the group function if they need

it for some purpose. Based on survey information from appendix A(Question 4) It

seemed most likely that the group function would serve students as a ‘find fill in

class’ option.

 For example, if a student is signing up for courses and has a schedule with 3

classes already in it that they would like to have no matter what, but are looking

for a fourth class, and do not care what class it is, they can select the three classes

they must have, give them all a value of 10, and then create a group of classes

that they do not care for and have the solver select one of those classes that

happens to fit with the three they know they want.

Methodology: MS Access: Finding Course Conflicts with 135 queries

 The greatest benefit to MS Access is the ability to use queries to sort

through data and find important information, like course conflicts. Doing this in

Access can be difficult and in this Senior Project works based on a compilation of

several queries. Figure 4 shows the logic progression between these queries.

21

The show class X* query is a query that stores all the values of a class whose

name is the same in combo box X e.g. If a student inputs IME 312 in Class Combo

1 then show class 1* will show all fields for the entry which has a class name of

IME 312, things like start time, end time, day the of the week the class takes

place, type of class, lecture or lab, see appendix B for more info on the database

fields.

 Union Query, which is a compilation of the show class X* queries, displays

all information for all sections of the classes selected by the user. Then the query

CourseConflictMClassCombo1Sec1 looks for time conflicts between the classes

chosen by the user, stored in union query, and saves and conflicts between these

other queries and the first section of the first class chosen by the user. This means

that if IME 312 is the first class selected the query

Show Class 1*

Union

Query

Show Class 4*

Show Class 3*

Show Class 5*

Show Class 6*

Show Class 8*

Show Class 7*

Show Class 9*

Show Class 2*

ClassCombo1Sec1

Logic for Query: CourseConflictMCombo1Sec1

Figure 4

22

CourseConflictMClassCombo1Sec1 will show all time conflicts between the first

section of IME 312 and any other sections that are on Monday and conflict with

section 1’s start and end time under the following qualifiers:

Only show a class from union query, if that class’ start time is less than or equal to

the end time of IME 312 sec1, and if that classes end time is greater than or equal

to the start time of IME 312 sec1.

This Query is then repeated twice more, once for section 2 of a class, and once for

the third section of a class. Those three queries are then repeated for each of the

user’s choices, combo boxes 1-9, making a total of 27 queries.

The query is then remade for each day of the week, Monday through Friday as

there are no classes on the weekends, giving a total of 135 queries to detect time

conflicts for every section of the 9 classes chosen by the user, on every day of the

week.

Methodology: MS Access: Subroutines NameClasses() and InputPrefVals()

 The companion PASS program uses 135 queries to locate time constraints

but it uses VBA programming in order to create the table to be transferred to

Excel’s solver function. The VBA coding populates the table trough a series of

subroutines beginning with the subroutines NameClasses() and InputPrefVals().

The purpose of these sub routines is to create the first line of the table, which

identifies which class and which section of each class is associated with what row,

and to insert the preference values given by the user into the table under each

respective class. So for example if a user inputs two classes, IME 405 and IME 417

with preference values of 8 and 6, the subroutines NameClasses(), and

inputPrefVal() would output a table that would look something like Figure 5.

Schedule

A B C D E F

IME 405 IME 417

Sec1 Sec2 Sec3 Sec1 Sec2 Sec3

8 6

Figure 5

23

The values highlighted in yellow represent the table values created by the

NameClasses() sun routine, and the table values highlighted in red were made by

the subroutine InputPrefVal().

To better explain how the NameClasses() sub routine works, there a snippet of

coding from appendix C copied below, anything with the single quote in front of it

is a comment to better understand the use of each line included here to explain

its purpose.

‘Checks to make sure the combobox isn’t null, then stores the name of the class if

it isn’t null

 If Not IsNull(ClassCombo9.Value) Then

 Y = ClassCombo9.Value

 End If

‘Inserts the name of the class in each combo box into its respective column

 CurrentDb.Execute "INSERT INTO Schedule (A, D, G, J, M, P, S, V, Y) VALUES

 ('" & A & "', '" & D & "', '" & G & "', '" & J & "', '" & M & "', '" & P & "', '" & S

 & "', '" & V & "', '" & Y & "')"

‘Inserts Sections 1, 2, and 3 into their respective columns to help the user identify

which classes the solver is choosing to find the optimal solution.

 CurrentDb.Execute "INSERT INTO Schedule (A, B, C, D, E, F, G, H, I, J, K, L, M,

 N, O, P, Q, R, S, T, U, V, W, X, Y, Z, AA) VALUES ('Sec1', 'Sec2', 'Sec3' , 'Sec1',

 'Sec2', 'Sec3' ,'Sec1', 'Sec2', 'Sec3' ,'Sec1', 'Sec2', 'Sec3' ,'Sec1', 'Sec2', 'Sec3',

 'Sec1', 'Sec2', 'Sec3', 'Sec1', 'Sec2', 'Sec3' ,'Sec1', 'Sec2', 'Sec3', 'Sec1', 'Sec2',

 'Sec3')"

‘Creates a blank row, which acts as the solver’s “edit” row

 CurrentDb.Execute "INSERT INTO Schedule (A) VALUES ('')"

24

To better explain how the InputPrefVal() sub routine works, there a snippet of

coding from appendix C copied below, anything with the single quote in front of it

is a comment to better understand the use of each line included here to explain

its purpose.

‘If the class chosen in ComboBoxZ is ES 241, or ES242, or ENGL333, which are all

classes with 2 sections of lecture, then store the preference value given to class

Z(that combo box is names PrefValZ, more details in appendix B) in two different

variables.

 if ClassCombo9.Value = "ES 241" Or ClassCombo9.Value = "ES 242" Or

 ClassCombo9.Value = "ENGL 333" Then

 CC9S1 = PrefVal9

 CC9S2 = PrefVal9

 CC9S3 = ""

‘Otherwise store the preference value for class Z in only one variable for use later.

 Else

 CC9S1 = PrefVal9

 CC9S2 = ""

 CC9S3 = ""

 End If

‘Then insert those variables into the tables respective columns , e.g. if classcombo

9 is ES 241 and the preference value is 3, then CC9S1, and CC9S2 are both equal

to 3, and that number will show up in the section 1 and section 2 column of the ES

241 TriColumns.

25

CurrentDb.Execute "INSERT INTO Schedule (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O,

P, Q, R, S, T, U, V, W, X, Y, Z, AA) VALUES ('" & CC1S1 & "', '" & CC1S2 & "', '" &

CC1S3 & "', '" & CC2S1 & "', '" & CC2S2 & "', '" & CC2S3 & "', '" & CC3S1 & "', '" &

CC3S2 & "', '" & CC3S3 & "', '" & CC4S1 & "', '" & CC4S2 & "', '" & CC4S3 & "', '" &

CC5S1 & "', '" & CC5S2 & "', '" & CC5S3 & "', '" & CC6S1 & "', '" & CC6S2 & "', '" &

CC6S3 & "', '" & CC7S1 & "', '" & CC7S2 & "', '" & CC7S3 & "', '" & CC8S1 & "', '" &

CC8S2 & "', '" & CC8S3 & "', '" & CC9S1 & "', '" & CC9S2 & "', '" & CC9S3 & "')"

One thing that can be noticed about the input preference value for this code, is

that it doesn’t include labs. The reason for this is that the labs have to be chosen

with lectures, which have their own preference values. What this means, is that if

a lab section is given a preference value, that value is added to the value of the

lecture, effectively doubling the value of any class. So if a student were to select

10 for their value of a class like 420 which has a lecture and a lab section, the

solver would know that selecting IME 420 would not just be worth the 10 points

for the lecture, but would be worth another 10 points for the lab value that it has

to sign up for when it picks 420, making it worth 20 points, twice what a class like

ENGL333 would be worth if a student wanted to take that class at a 10 value as

well.

Methodology: MS Access: Subroutines SecConstraint and UnitConstraint

 For the Companion PASS program to make a fully constrained table it needs

more than just the class name, and preference values. The table needs to also be

constrained by the units of each class, and by the sections of each class. A student

should not, for example, be able to have the companion program produce a

schedule that tells the student to take two lecture sections of IME 405. A student

should also not get a schedule from the companion program that requires a

student to sign up for more than 16 units, as it is impossible to do so until after

every student has gone through their rotation, and most schedules would be

obsolete by that point.

26

For that purpose the Companion Program uses two subroutines :

Secconstraint() - which ensures that a class is only signed up for once

UnitConstraint() – Makes sure 16 or fewer units are selected

Looking at figure 6 the add-ins from SecConstraint are highlighted in Yellow, and

the add-ins from UnitConstraint are highlighted in Red.

Schedule

A B C D E F

ENGL 333 IME 417

Sec1 Sec2 Sec3 Sec1 Sec2 Sec3

8 8 6

1 1

4 4 0 4 0 0

To better explain the way the Section constraint works there’s a snippet of the

code form appendix C written below with some comments to explain the logic the

function has to go through to pass:

‘If the class chosen is either ES 241, ES242, or ENGL 333 create a constraint that

only allows one of the classes to be selected, and this is done for every combo

box.

 If ClassCombo1.Value = "ES 241" Or ClassCombo1.Value = "ES 242" Or

 ClassCombo1.Value = "ENGL 333" Then

 CurrentDb.Execute "INSERT INTO Schedule (A, B, AC) VALUES ('1', '1', '1')"

 End If

Figure 6

27

To better explain the way the Unit constraint works there’s a snippet of the code

form appendix C written below with some comments to explain the logic the

function has to go through to pass:

‘Because the values stored in the user selections, the combo boxes, are string

values in Access they need to be examined by their length to see if the ‘exist’.

‘So in this first if statement the code checks to see that the combo box is not

empty and checking to see if it is the same as one of the 3 double lecture classes

in the database. If it is, it looks up the unit value for that particular class and

applies it to the appropriate column, twice In the case of the 3 double lecture

classes, once for each lecture section, and once for each other class.

 If Len(ClassCombo1 & vbNullString) <> 0 And ClassCombo1.Value = "ES

 241" Or ClassCombo1.Value = "ES 242" Or ClassCombo1.Value = "ENGL

 333" Then

 C1name = ClassCombo1.Value

 C1U = DLookup("Units", "ClassList", "Classnum = '" & C1name & "'")

 C1U2 = DLookup("Units", "ClassList", "Classnum = '" & C1name & "'")

 C1U3 = 0

 ElseIf Len(ClassCombo1 & vbNullString) <> 0 Then

 C1name = ClassCombo1.Value

 C1U = DLookup("Units", "ClassList", "Classnum = '" & C1name & "'")

 C1U2 = 0

 C1U3 = 0

28

‘if the box is blank, nothing happens, the VBA simply refreshes the page, a

harmless action.

 Else

 Me.Refresh

Methodology: MS Access: Subroutine Lab Constraint

 The last two subroutines are the most complicated by far and address the

biggest problem when scheduling classes. The first is the issue of making sure that

classes which should have a lecture and a lab will have only one lecture and one

lab section selected by the Excel solver and that the constraints are made

correctly In Access.

 When working in Excel solver, the solver can only read equations. This is an

issue, because the constraint for a lab requirement means that the class value

should be equal to the lab value, i.e if LecSec = 1 then LabSec = 1. But saying that

one cell must be equal to a Changing cell in the Excel solver breaks the solver, so

after much tinkering and experimentation, the author reached this conclusion.

Cij� class combo i, section j, where if j = 2,3 then class is a lab section.

C11*PrefValue – C12 – C13 =<0 and cannot be negative.

The next hurdle was making sure that this formula would remain consistent

throughout the table, as putting one constraint per row means that the row

number in the formula would change. To clarify this, there’s a snippet of code

from appendix C printed below with comments indicated by beginning with the

single quote symbol(‘) to better explain the logic to the code.

29

‘This code uses a unique tool called a counter, the counter(dubbed ‘cntr’ below) is

designed to keep track which row the lab constraints are in. Because of the way

the constraints are formed, namely, the section constraints come before the lab

constraints, the cntr starts at a negative 2 and is ticked up by one for every user

selection that has 2 sections, or is one of these lab sections. So every time it gets

called up the subroutine knows to add one to the cntr and to change the formula

Excel will be reading by moving it down one row.

If ClassCombo1.Value = "IME 416" And cntr = -2 Then

 CurrentDb.Execute "INSERT INTO Schedule (A, B, C, AB, AC) VALUES ('1', '1',

 '1', '=A3*A5-B3*B5-C3*C5', '0')"

 cntr = 1 + cntr

 ElseIf ClassCombo1.Value = "IME 443" And cntr = -2 Or ClassCombo1.Value

 = "IME 420" And cntr = -2 Or ClassCombo1.Value = "IME 410" And cntr = -2

 Or ClassCombo1.Value = "IME 405" And cntr = -2 Then

 CurrentDb.Execute "INSERT INTO Schedule (A, B, AB, AC) VALUES ('1', '1',

 '=A3*A5-B3*B5', '0')"

 cntr = 1 + cntr

 ElseIf ClassCombo1.Value = "IME 416" And cntr = -1 Then

 CurrentDb.Execute "INSERT INTO Schedule (A, B, C, AB, AC) VALUES ('1', '1',

 '1', '=A3*A6-B3*B6-C3*C6', '0')"

 cntr = 1 + cntr

30

ElseIf ClassCombo1.Value = "IME 443" And cntr = -1 Or ClassCombo1.Value = "IME

420" And cntr = -1 Or ClassCombo1.Value = "IME 410" And cntr = -1 Or

ClassCombo1.Value = "IME 405" And cntr = -1 Then

CurrentDb.Execute "INSERT INTO Schedule (A, B, AB, AC) VALUES ('1', '1',

'=A3*A6-B3*B6', '0')"

cntr = 1 + cntr

ElseIf ClassCombo1.Value = "IME 416" And cntr = 0 Then

CurrentDb.Execute "INSERT INTO Schedule (A, B, C, AB, AC) VALUES ('1', '1', '1',

'=A3*A7-B3*B7-C3*C7', '0')"

Methodology: MS Access: Subroutine Group Constraint

 The PASS Companion program allows for users to also make constraints In

the form of class groupings, allowing students to pick groups of classes and ask

that only one among the group be chosen, this is ideal if a user has three classes

they must have, and are simply looking for a class that can fit in with the time

constraints.

 To better understand how that works there is a small sample of the code

for the group constraint below with some explanations marked by a single

quote(‘)

‘ The first statement here checks to see if the yes/no box for class combo 1 is

group 1 is checked, and if it is stores that value to be later used as a constraint.

This step is repeated 8 more times with each of the yes/no boxes for a user

selection and turned into a constrain that must = 1 in order to get 1 class out of it

for the user, it stores two values for a class which has two lectures, and one

otherwise.

31

 If (G1C1.Value = -1 And ClassCombo1.Value = "ES 241") Or (G1C1.Value = -1

 And ClassCombo1.Value = "ES 242") Or (G1C1.Value = -1 And

 ClassCombo1.Value = "ENGL 333") Then

 c1 = 1

 c12 = 1

 ElseIf G1C1.Value = -1 Then

 c1 = 1

 End If

Methodology: MS Access: Subroutine TimeConstraint(Query)

The most important subroutine in the Access portion of the project is the time

constraints. The 135 queries explained on page 19 are crucial to this subroutine.

In simplest terms this subroutine has to have a query for its criteria, and then

reads that table for every possible entry that could in the table, so it looks for a

total of 27 values, the first selection and its first 3 sections, the second selection

and its 3 sections, …, and the ninth selection and its 3 sections. If it finds a value

the Sub routine will store that value and then when it is done looking at that

query it will insert what it has found as a constraint into the table. To make this

easier to understand there’s an example along with a piece of the code from the

subroutine located in appendix C.

If, for example, a student were to look at the conflicts between two classes, IME

416, and ES 241, that student could check the tables listed in appendex D and see

that both classes have conflicts on Monday in section 1 from 2:00-4:00pm. Here’s

the code and how it logics its way through the query to make the constraint:

32

‘First thing the code does is look to make sure the entries from the user are not

empty, and then if they are not empty the value gets stored as a variable, in this

case the variable are C1name, and C2name.

 If Len(ClassCombo1 & vbNullString) <> 0 Then

 C1name = ClassCombo1.Value

 End If

 If Len(ClassCombo2 & vbNullString) <> 0 Then

 C2name = ClassCombo2.Value

 End If

‘below in figure 7 is the results of the query this subroutine is running under in

this example, the query “CourseConflictMCombo1Sec1”, which shows all classes

that conflict with the first section of the user’s first selection, which in this case is

ES241.

CourseConflictMCombo1Sec1

ClassNum Section StartTime EndTime Monday Tuesday Wednesday Thursday Friday ClassType Units

ES 241 1 12:10:00 PM 2:00:00 PM -1 0 -1 0 0 Lec 4

IME 416 1 12:10:00 PM 2:00:00 PM -1 0 0 0 0 Lec 3

‘These classes are on the same day and start at the same time, so the subroutine

will find them, and it will find that ES 241 “conflicts” with itself, and that IME 416

conflicts with the entry for classcombo1sec1.

Figure 7

33

‘Now the subroutine looks for an entry in the table where the field Classnum is

the same as the value of the first combo box, and is in section1, in this case it will

of course “conflict” because that is the very same class we are looking for things

to compare to, so it will essentially conflict with itself. While this seems odd, it is

necessary because the constraint must show that ES241 cannot be chosen at the

same time as IME 416.

‘If the value is in the table, or in other words isn’t null, meaning it must be there, a

variable is changed to 1, indicating there is a class there, acting like a switch.

 If Not IsNull(DLookup("Classnum", "" & Qn & "", "Classnum = '" & C1name

 & "' And Section = '1'")) Then

 CC1S1 = 1

 End If

 If Not IsNull(DLookup("Classnum", "" & Qn & "", "Classnum = '" & C1name

 & "' And Section = '2'")) Then

 CC1S2 = 1

 End If

 If Not IsNull(DLookup("Classnum", "" & Qn & "", "Classnum = '" & C1name

 & "' And Section = '3'")) Then

 CC1S3 = 1

 End If

 If Not IsNull(DLookup("Classnum", "" & Qn & "", "Classnum = '" & C2name

 & "' And Section = '1'")) Then

34

 CC2S1 = 1

 End If

 If Not IsNull(DLookup("Classnum", "" & Qn & "", "Classnum = '" & C2name

 & "' And Section = '2'")) Then

 CC2S2 = 1

 End If

 If Not IsNull(DLookup("Classnum", "" & Qn & "", "Classnum = '" & C2name

 & "' And Section = '3'")) Then

 CC2S3 = 1

 End If

‘ This process of ‘switching on’ is continued through every section for each

selection for the query, and then the constraint is inserted into the table, after

being check to make sure there is anything to put in. If there was no such check,

and there was no conflicts with any of the classes and the first section of the first

selection then there would be a blank row, and there would be many more for

each query that revealed no conflicts. And with a potential for 135 blank lines,

that’s a lot of empty space.

 If Len(CC1S1 & vbNullString) = 0 And Len(CC1S2 & vbNullString) = 0 And

 Len(CC1S3 & vbNullString) = 0 And Len(CC2S1 & vbNullString) = 0 And

 Len(CC2S2 & vbNullString) = 0 And Len(CC2S3 & vbNullString) = 0 And

 Len(CC3S1 & vbNullString) = 0 And Len(CC3S2 & vbNullString) = 0 And

 Len(CC3S3 & vbNullString) = 0 And Len(CC4S1 & vbNullString) = 0 And

 Len(CC4S2 & vbNullString) = 0 And Len(CC4S3 & vbNullString) = 0 And

 Len(CC5S1 & vbNullString) = 0 And Len(CC5S2 & vbNullString) = 0 And

 Len(CC5S3 & vbNullString) = 0 And Len(CC6S1 & vbNullString) = 0 And

35

 Len(CC6S2 & vbNullString) = 0 And Len(CC6S3 & vbNullString) = 0 And

 Len(CC7S1 & vbNullString) = 0 And Len(CC7S2 & vbNullString) = 0 And

 Len(CC7S3 & vbNullString) = 0 And Len(CC8S1 & vbNullString) = 0 And

 Len(CC8S2 & vbNullString) = 0 And Len(CC8S3 & vbNullString) = 0 And

 Len(CC9S1 & vbNullString) = 0 And Len(CC9S2 & vbNullString) = 0 And

 Len(CC9S3 & vbNullString) = 0 Then

 Me.Refresh

 Else

 CurrentDb.Execute "INSERT INTO Schedule (A, B, C, D, E, F, G, H, I, J, K, L, M,

 N, O, P, Q, R, S, T, U, V, W, X, Y, Z, AA, AC) VALUES ('" & CC1S1 & "', '" &

 CC1S2 & "', '" & CC1S3 & "', '" & CC2S1 & "', '" & CC2S2 & "', '" & CC2S3 & "',

 '" & CC3S1 & "', '" & CC3S2 & "', '" & CC3S3 & "', '" & CC4S1 & "', '" & CC4S2

 & "', '" & CC4S3 & "', '" & CC5S1 & "', '" & CC5S2 & "', '" & CC5S3 & "', '" &

 CC6S1 & "', '" & CC6S2 & "', '" & CC6S3 & "', '" & CC7S1 & "', '" & CC7S2 & "',

 '" & CC7S3 & "', '" & CC8S1 & "', '" & CC8S2 & "', '" & CC8S3 & "', '" & CC9S1

 & "', '" & CC9S2 & "', '" & CC9S3 & "', '1')"

End If

This process is repeated many more times than is shown here, 27 times in total, 3

times for each combo box, and then once for each of the 135 queries. .

Methodology: MS Excel Solver

 For the Excel portion of the methodology flip to Appendix D to see an

example table from the PASS companion program with annotations, and

references from this section. The solver has to go through a few steps in order to

find the optimization for a user. Firstly the user needs to change all numeric

values in the tables to numbers, because they had to be stored as string values in

Access to avoid causing errors when the constraints were made or interacting,

because numbers in Access can be added or subtracted, but strings cannot.

36

 The next step is to make the product sum box, which will have be located in

cell AB4, and have the value “=SUMPRODUCT(A3:AA3,A4:AA4)”, this value

will be copied into the entire AB4 column until it reaches the last value in the AC

column, with the exception of the lab constraints, which will be easily noticed as

they will have formulae already written into the cell. The last two cells in Column

AB and AC are highlighted in green to represent them as group constraints, and

the lab constraint cells are highlighted in red. Now it is time to make the solver

function, the solver function will have a “target cell” which will serve as the cell

the solver is trying to maximize, it is highlighted in blue.

 The solver then needs to know 3 different constraints, the first is that the

changeable cells(the solver will change these cells to different numbers to try to

get the highest possible value in the target cells) need to be made binary, because

the classes can either be not take, meaning the value is 0, or taken, which means

the value is 1, these cells are highlighted in purple

 The second constraint will affect all but the two last rows of column AB,

making sure that whatever the solver decides the values in the column AB, except

for the last two, will be less than or equal to, the value in the cells directly to the

left of them, these cells are highlighted in orange, and their constraining cells are

highlighted in Teal.

The last four cells, representing the group constraints, must have the values in the

AB column be equal to the Values in the AC column.

Finally the solver options must be accessed, and the problem must be assumed

non negative and linear.

37

Chapter 5: Future Senior Project Opportunities &Conclusions

 The PASS companion Program, even after 10 weeks of work, is still far from

being “complete”, although it had made great strides in that direction. It has

room to grow and be more fully explored before being reliably used by the school

and that is where future students can chip in and work on this project as their

own senior projects. The project as of right now is constrained to the class list for

senior level classes in the fall of 2013, using the methodology established already

other students can alter the coding to allow for things like ‘class types’ and

implement a field in the table that would make it possible for teachers to add any

class, or edit any class without fear that I would create complication or difficulties

in the project. Along those lines, a senior project would also include making the

system easily edited en mass so that faculty can easily and efficiently update the

Companion Program for each quarter.

 One other issue is that the program is still in the Alpha phase of testing,

after working on the first two points, establishing a class type methodology to

make a class editing system viable, and then making said class editing system, the

same student can run beta testing for the program, getting feedback and statistics

on how long a student will use the companion program in order to optimize the

program to be more efficient and more user friendly, This will be the key to the

program’s success in the long run, being easy to use for someone who would not

normally know how to use it. Ideally this project would be carried over quarter

after quarter, adding new features, addressing issues in the program, expanding

to different classes of industrial engineers, not just seniors, and finally expanding

to other majors.

 After 10 weeks of working with this project, it’s clear that the PASS

companion program has a future for the students here at Cal Poly, so long as it

continues to be improved. The author is regretful that he did not have the time to

bring the project to a full completed state, but after working with it for so long, it

is obvious that the required amount of testing, coding, data basing skill, Excel

solver work, and consistent survey and focus group work would require the work

of at least 3 senior projects to bring to a reliable state. There’s a saying that the

38

first step towards change is awareness, This is problem that no senior has

approached in the past, and by making this a senior project that is open to more

students who want to work in data basing or operations research, there will be a

greater awareness of the problem, and as more students chose to work and

improve the PASS companion program, it is the authors opinion that the PASS

companion program will be used by the entire senior class of the industrial

engineering department in the near future.

39

Bibliography

Abdullah, Salwani, and Hamza Turabieh. “Generating University Course Timetable Using Genetic

Algorithms and Local Search.” Convergence and Hybrid Information Technology, 2008. . Busan , 2008.

254 - 260 .

<http://www.ieeexplore.ieee.org.ezproxy.lib.calpoly.edu:2048/stamp/stamp.jsp?tp=&arnumber=46820

35&isnumber=4681984>.

Hou Ming; Chen Qi, "Course scheduling system design and implementation based on genetic

algorithm,"Computer Design and Applications (ICCDA), 2010 International Conference on , vol.3, no.,

pp.V3-611,V3-614, 25-27 June 2010

doi: 10.1109/ICCDA.2010.5541391

Abdullah, Salwani , Edmund Burke, and Barry McCollum. “A Hybrid EvolutionaryApproach to the

University Course Timetabling Problem.” Proceedings of CEC.Singapore : IEEE Congress, 2007. 1764 -

1768 .

<http://www.ieeexplore.ieee.org.ezproxy.lib.calpoly.edu:2048/stamp/stamp.jsp?tp=&arnumber=44246

86&isnumber=4424446>.

Arous, Najet, Salah B. Abdallah, and Noureddine Ellouze. “Evolutionary PotentialTimetables

Optimization by Means of Genetic and Greedy Algorithms.”Information Intelligence and Systems, 1999.

Proceedings. Bethesda, MD : IEEE, 1999. 24 - 31.

<http://www.ieeexplore.ieee.org.ezproxy.lib.calpoly.edu:2048/stamp/stamp.jsp?tp=&arnumber=81022

0&isnumber=17541>.

Badri, Masood A. et al. “A Multi-Objective Course Scheduling Model: Combining FacultyPreferences for

Courses and Times .” Computers Ops Res 25.4 (1998): 303-316.

Oner, A.; Ozcan, S.; Dengi, D., "Optimization of university course scheduling problem with a hybrid

artificial bee colony algorithm," Evolutionary Computation (CEC), 2011 IEEE Congress on , vol., no.,

pp.339,346, 5-8 June 2011

doi: 10.1109/CEC.2011.5949638

40

Boronico, Jess. “Quantitative modeling and technology driven departmentalcourse scheduling.” Omega

28.3 (2000): 327-346 .69

Burke, E. K., and J. P. Newall. “A Multistage Evolutionary Algorithm for the TimetableProblem.” IEEE

Transactions on Evolutionary Computation. IEEE, 1999.

<http://www.ieeexplore.ieee.org.ezproxy.lib.calpoly.edu:2048/stamp/stamp.jsp?tp=&arnumber=75292

1&isnumber=16264>.

Carter, Michael, and Gilbert Laporte. “Recent developments in practical course timetabling.” Practice

and Theory of Automated Timetabling II. 1998. 3-19.

<http://dx.doi.org/10.1007/BFb0055878>.

Fang, Sueychyun (Roger). “University Course Scheduling System (UCSS) – A UML Application with

Database and Visual Programming.” Journal of Computing

Sciences in Colleges 20.6 (2005): 160-169.

Ghaemi, Sehraneh, Mohammad Taghi Vakili, and Ali Aghagolzadeh. “Using a Genetic Algorithm

Optimizer Tool to Solve University Timetable Scheduling Problem.”Signal Processing and Its Applications,

2007. ISSPA 2007. 9th International

Symposium. Sharjah , 2007. 1 - 4.

<http://www.ieeexplore.ieee.org.ezproxy.lib.calpoly.edu:2048/stamp/stamp.jsp?tp=&arnumber=45553

97&isnumber=4555273>.

Hertz, Alain, and Vincent Robert. “Constructing a course schedule by solving a series ofassignment type

problems.” European Journal of Operational Research 108.3(1998): 585-603.

Hinkin, Timothy, and Gary Thompson. “SchedulExpert: scheduling courses in the CornellUniversity

School of Hotel Administration..” Interfaces 32.6 (2002): 45-57.70

41

Irene, Sheau Fen Ho, Safaai Deris , and Siti Zaiton Mohd Hashim. “A Combination ofPSO and Local Search

in University Course Timetabling Problem.” Proceedingsof the 2009 International Conference on

Computer Engineering and Technology. IEEE Computer Society, 2009. 492-495 .

<http://www.ieeexplore.ieee.org.ezproxy.lib.calpoly.edu:2048/stamp/stamp.jsp?tp=&arnumber=47696

51&isnumber=4769538>.

Kanoh, Hitoshi, and Yuusuke Sakamoto. “Interactive Timetabling System UsingKnowledge-Based Genetic

Algorithms.” Systems, Man and Cybernetics, 2004 IEEE International Conference. 2004. 5852- 5857.

<http://www.ieeexplore.ieee.org.ezproxy.lib.calpoly.edu:2048/stamp/stamp.jsp?tp=&arnumber=14011

29&isnumber=30425>.

McClure, Richard H., and Charles E. Wells. “A Mathematical Programming Model forFaculty Course

Assignments.” Decision Sciences 15.3 (1984): 409-420.

Ojha, Prakash, and Abigail Walker. “A Comparison of Course Scheduling Methods.”REU2000 2000.

<http://www.cs.xu.edu/~lewandow/reu2000/paper/>.

“Orologio Class Timetabling System.” Antinoos - Orologio - Class Timetabling Software.

<http://www.antinoos.gr/en/orologio.htm>.

Parthiban, P et al. “Preferences Based Decision-making Model (PDM) for Faculty Course Assignment

Problem.” Engineering Management Conference, 2004. Proceedings. 2004 IEEE International . 2004.

1338 - 1341.

<http://www.ieeexplore.ieee.org.ezproxy.lib.calpoly.edu:2048/stamp/stamp.jsp?arnumber=1408912&is

number=30511>.

Pesenti, Matthew . “Decision Support System for University Course Scheduling.” 2002.

http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1339&context=theses

“ScheduleWhiz® Academic .” Thoughtimus (coourse scheduling software, timetabling

42

software). <http://www.thoughtimus.com/index_postsecondary.html>.

Thompson, Gary M. “Improving conferences through session scheduling.” The Cornell Hotel and

Restaurant Administration Quarterly 43.3 (2002): 71-76.

Thompson, Gary M. “Using information on unconstrained student demand to improveuniversity course

schedules.” Journal of Operations Management 23.2 (2005):197-208.

Wang, Yao-Te et al. “On the Application of Data Mining Technique andGenetic Algorithm to an

Automatic Course Scheduling System.” Cybernetics andIntelligent Systems, 2008 IEEE Conference.

Chengdu, 2008. 400 - 405.

<http://ieeexplore.ieee.org.ezproxy.lib.calpoly.edu:2048/stamp/stamp.jsp?arnumber=4670852&isnumb

er=4670728>.

Wang, Yen-Zen. “An Application of Genetic Algorithm Methods for Teacher AssignmentProblems.”

Expert Systems with Applications 22.4 (2002): 295-302.

Wang, Yen-Zen. “Using genetic algorithm methods to solve course schedulingproblems.” Expert Systems

with Applications. 2003. 39-50.

<http://www.sciencedirect.com.ezproxy.lib.calpoly.edu:2048/science?_ob=MImg&_imagekey=B6V03-

47YXTVK-1

25&_cdi=5635&_user=521828&_orig=search&_coverDate=07%2F31%2F2003&72_sk=999749998&view

=c&wchp=dGLbVtbzSkzV&md5=77f82fa754ee72af21e69739fefd0aba&ie=/sdarticle.pdf>.

“Ninja Courses” © 2013 William Li and Alex Sydell (Free Course scheduling website for select UCs)

<http://www.NinjaCourses.com/>

Aldasht, M.; Alsaheb, M.; Adi, S.; Qopita, M.A., "University Course Scheduling Using Evolutionary

Algorithms," Computing in the Global Information Technology, 2009. ICCGI '09. Fourth International

Multi-Conference on , vol., no., pp.47,51, 23-29 Aug. 2009

doi: 10.1109/ICCGI.2009.15

43

0 1 2 3 4 5 6 7 8 9 10

10 minutes or less

11-30 minutes

31-60 minutes

More than 60 minutes

Appendices

Appendix A: Survey Results

How many schedules do you look through when making a schedule for class?

How long do you spend finding the right schedule?

44

0 1 2 3 4 5 6 7

Everytime

Frequently

Sometimes

Rarely

Never

How effective would you say PASS is on a scale from 1 – 10?

Given an Access driven tool to complement PASS, how often do you think you

would use it?

0 2 4 6 8 10

1

3

5

7

9

11

13

15

17

19

20 Different

Students

45

Appendix B: Form UI

ClassComob1

ClassCombo2

ClassComob3

ClassCombo4

ClassComob5

ClassCombo6

ClassComob7

ClassCombo8

ClassComob9

Clears all table values, and combo boxes on the form

Groups 1 and 2, clicking a check box will

place a class in that group, online 1 class

will be chosen from each group

Sets the preference level for a given class,

the higher the level, the more likely the

solver will put that class in the schedule

Starts the Program, and makes the Table to be moved to Excel by running

the following Sub routines: NameClasses, InputPrefVals, SecConstraint,

LabConstraints, UnitConstraint, and:

TimeConstraint "CourseConflictMCombo1Sec1" to.

TimeConstraint "CourseConflictMCombo9Sec3

46

Appendix C: Subroutines

Sub timeconstraint

Sub TimeConstraint(Qn As String)

Dim CC1S1 As String

Dim CC1S2 As String

Dim CC1S3 As String

‘repeats to CC2S1 – CC3S3, meaning Class Combo i section j where i= 1,2,3,4,5,6,7,8,9 and j =1,2,3

If Len(ClassCombo1 & vbNullString) <> 0 Then

C1name = ClassCombo1.Value

End If

If Not IsNull(DLookup("Classnum", "" & Qn & "", "Classnum = '" & C1name & "' And Section = '1'")) Then

CC1S1 = 1

End If

‘Repeats for CclassComob1 to ClassCombo9 and stores their name, if they aren’t null, into a string variable for each

‘section of the ComboBox being checked, for example CC1S1 will get the name of the class For Class Combo 1 if it’s

‘not null, and if that Class Has multiple sections it will be stored in CC1S2 or CC1S3 if it has 2 or 3 sections

‘accordingly.

‘checks to see if all of the combo boxes are null, and does nothing if they are

‘inputs the 1’s into the table to represent time constraints, where time constraints exist.

End Sub

47

Sub UnitConstraint

Sub UnitConstraint()

Dim C1U As String

Dim C1U2 As String

Dim C1U3 As String

Dim C1name As String

‘String variables to store the name of a class for each of its given sections, repeats from C1U – C9U3, so for C9U3, it

means: Class 9 units for section 3.

If Len(ClassCombo1 & vbNullString) <> 0 And ClassCombo1.Value = "ES 241" Or ClassCombo1.Value = "ES 242" Or

ClassCombo1.Value = "ENGL 333" Then

C1name = ClassCombo1.Value

C1U = DLookup("Units", "ClassList", "Classnum = '" & C1name & "'")

C1U2 = DLookup("Units", "ClassList", "Classnum = '" & C1name & "'")

C1U3 = 0

ElseIf Len(ClassCombo1 & vbNullString) <> 0 Then

C1name = ClassCombo1.Value

C1U = DLookup("Units", "ClassList", "Classnum = '" & C1name & "'")

C1U2 = 0

C1U3 = 0

Else

Me.Refresh

End If

End Sub

‘First, checks to see if the combo box is not null, and a class with multiple lecture sections, then checks to see if

that class combo is not null, and not a class with multiple sections, then stores the unit values of that class for two

sections or 1 section, depending on which check it made first.

‘Inserts all of the Unit values for the classes found in the checks made above.

48

Name Classes

Sub NameClasses()

Dim A As String

 ‘creates 9 unique string variables

If Not IsNull(ClassCombo1.Value) Then

A = ClassCombo1.Value

End If

‘Stores the names of each Class Combo, given that they are not null

‘insert the name and the words ‘sec1, sec2, sec3, into a table.

End Sub

Sub LabConstraints

Sub LabConstraints()

Dim cntr As Integer

cntr = 0

cnt = 0

‘a integer variable that tells the program where to place lab constraint formulas based on previous lab checks, and

multiple lecture section classes.

If ClassCombo1.Value = "ES 241" Or ClassCombo1.Value = "ES 242" Or ClassCombo1.Value = "ENGL 333" Then

 cnt = cnt + 1

End If

‘Based on the number of multiple lecture classes that are in the class selections the cnt triggers the cntr, and the

cntr triggers how the lab constraints are placed in the excel sheet.

If cnt = 0 Then

 cntr = -2

End If

49

‘Based on the cntr and the class in a given combo box, the code places the lab constrains in very specific boxes to

make the excel solver function work properly.

If ClassCombo1.Value = "IME 416" And cntr = -2 Then

CurrentDb.Execute "INSERT INTO Schedule (A, B, C, AB, AC) VALUES ('1', '1', '1', '=A3*A5-B3*B5-C3*C5', '0')"

cntr = 1 + cntr

ElseIf ClassCombo1.Value = "IME 443" And cntr = -2 Or ClassCombo1.Value = "IME 420" And cntr = -2 Or

ClassCombo1.Value = "IME 410" And cntr = -2 Or ClassCombo1.Value = "IME 405" And cntr = -2 Then

CurrentDb.Execute "INSERT INTO Schedule (A, B, AB, AC) VALUES ('1', '1', '=A3*A5-B3*B5', '0')"

cntr = 1 + cntr

End If

End Sub

50

Sub InputPrefVal

Sub InputPrefVals()

If ClassCombo1.Value = "ES 241" Or ClassCombo1.Value = "ES 242" Or ClassCombo1.Value = "ENGL 333" Then

 CC1S1 = PrefVal1

 CC1S2 = PrefVal1

 CC1S3 = ""

Else

 CC1S1 = PrefVal1

 CC1S2 = ""

 CC1S3 = ""

End If

‘Takes the preference values chosen by the user for a given class and stores them into a string variable,

‘inserts the preference values into the table.

End Sub

51

Appendix D: Example Excel sheet

