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Abstract
Purification of active trypsin in the digestive process of insects is

essential for the development of potent protease inhibitors (PIs)

as an emerging pest control technology and research into insect

adaptations to dietary PIs. An important aspect is the presence

of proteolytic microorganisms, which contribute to host nutrition.

Here, we purified trypsins produced by bacteria Bacillus cereus, Ente-

rococcus mundtii, Enterococcus gallinarum, and Staphylococcus xylo-

sus isolated from the midgut of Anticarsia gemmatalis. The trypsins

had a molecular mass of approximately 25 kDa. The enzymes

showed increased activity at 40◦C, and they were active at pH

values 7.5–10. Aprotinin, bis-benzamidine, and soybean Kunitz

inhibitor (SKTI) significantly inhibited trypsin activity. The L-1-tosyl-

amido-2-phenylethylchloromethyl ketone (TPCK), pepstatinA, E-64,

ethylenediamine tetraacetic acid, and calcium ions did not affect

the enzyme activity at the concentrations tested. We infer the puri-

fied trypsins do not require calcium ions, by which they differ from

the trypsins of other microorganisms and the soluble and insoluble

trypsins characterized from A. gemmatalis. These data suggest the

existence of different isoforms of trypsin in the velvetbean caterpil-

lar midguts.
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1 INTRODUCTION

There is a growing interest in alternative pest control methods for agricultural use, and endogenous mechanisms of

plant resistance against herbivory are a major focus for possible application in integrated pest management (El-Latif,

2015; Huffaker, 2015; Jayachandran, Hussain, & Asgari, 2013; Khandelwal et al., 2016; Lombardo, Coppola, & Zelasco,

2016; Scott, Thaler, & Scott, 2010). Protease inhibitors (PIs) are biopesticides widely recognized for their potential

use in insect pest control, since the chronic ingestion of PIs affect the bioavailability of essential amino acids due to

inhibition of digestive proteases (Lawrence &Koundal, 2002).

Many studies have shown that PIs negatively affect the development, behavior, biochemistry, and physiology

of the velvet caterpillar Anticarsia gemmatalis, a key pest of soybean (Macedo, Freire, Kubo, & Parra, 2011; Mor-

eira, Campos, Ribeiro, Guedes, & Oliveira, 2011; Paixão et al., 2013; Pilon, Oliveira, & Guedes, 2006). However,

insects may adapt to PIs by an increase in protease production and synthesis of structurally different digestive

enzymes or insensitive to PIs (Bown, Wilkinson, & Gatehouse, 1997; Oliveira et al., 2013; Oppert, Morgan, Hartzer,

& Kramer, 2005; Souza et al., 2016; Tamaki & Terra, 2015). Furthermore, proteases secreted by bacterial from

the midgut of insects may improve herbivore adaptation to PIs and other mechanisms of plant resistance (Sethi

et al., 2011; Shinde et al., 2017; Visôtto, Oliveira, Guedes, Ribon, & Good-God, 2009a). In fact, there is strong evi-

dence that trypsin activity in the midgut of A. gemmatalis is benefited by the insect gut microbiota (Visôtto et al.,

2009a).

The successful useofPIs against insectsdependson the target species and its ruling classesof proteases (Ahn&Zhu-

Salzman, 2009;Moreira et al., 2011; Silva et al., 2015). Thus, the first steps toward understanding the adaptivemecha-

nisms ofA. gemmatalis to PIsmust be supported by structural and functional studies of all isoforms of serine proteases,

particularly trypsin,which is notoriously active in the insect gut. The trypsins (EC3.4.21.4) cleavepreferentially protein

chains at the carboxyl side of basic amino acids, such as arginine and lysine (Mares-Guia & Shaw, 1965). The enzyme-

kinetic characteristics and tertiary structure of these trypsins provide the understanding of the connection and affin-

ity between enzyme inhibitor (Cuccioloni et al., 2016; Joshi, Mishra, Suresh, Gupta, & Giri, 2013; Liu, Zhang, Zeng,

&Hu, 2017).

The characterization of unpurified enzymes of A. gemmatalis, such as trypsin linked to the peritrophic membrane

(Xavier, Oliveira, Guedes, Santos, & Simone, 2005), soluble trypsin and cysteine proteases present in the insect gut

(Mendonça, Oliveira, Visôtto, & Guedes, 2012; Oliveira, Simone, Xavier, & Guedes, 2005), and serine and cysteine pro-

teases produced by gut bacterial (Pilon, Visôtto, Guedes, &Oliveira, 2013) has been performed. Thus, as a step forward

for the development of pest control strategies, through the use of PIs, and for the elucidation of possible mechanisms

of adaptation of the velvetbean caterpillar to the inhibitors, the objective of this study was to purify and characterize

trypsins produced by bacteria isolated from the gut of A. gemmatalis.

2 MATERIALS AND METHODS

2.1 Microorganisms and culture condition

The bacteria Bacillus cereus, Staphylococcus xylosus, Enterococcus mundtii, and Enterococcus gallinarum, used in this

study, were isolated from the midgut of A. gemmatalis by Visôtto, Oliveira, Ribon, Mares-Guia, and Guedes

(2009b).

Preinoculumswere prepared in 25ml of brain heart infusion (BHI) culturemediumwith 0.1%bovine serumalbumin

(BSA) andmaintainedat200 rpmand37◦C.Analiquotof1mlof thepreinoculumofeachbacterial culturewas removed

at an absorbance at 600 nm, equal to 0.2, transferred to 50 ml sterile BHI, with 0.1% BSA, and maintained at 200 rpm

and 37◦C for 24 h. At intervals of 2 at 2 h, 1 ml aliquots were taken for determination of absorbance, and the amount

of protein and enzymatic activity in cultures.
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2.2 Preparation of the enzyme extract

One milliliter of each preinoculum was removed to an absorbance at 600 nm equal to 0.2, and individually inoculated

in 200 ml of a BHI with 0.1% BSA, and maintained at 37◦C, 200 rpm for 4 h to E. mundtii and S. xylosus, and 6 h for B.

cereus and E. gallinarum. The bacteria were centrifuged at 10,000 rpm for 20 min at 4◦C. The supernatant containing

the enzyme extract was removed and concentrated by ultrafiltration in an Amicon Ultra-15 with a porous membrane

molecular limit of 3 kDa (Millipore), and stored at−20◦C for later use as the enzyme source for purification.

2.3 Protein concentration and trypsin activity

The protein concentration of the extracts of bacterial cultures was determined as described by Bradford (1976), with

BSA solutions of 0–0.2mg/ml as standards.

Trypsin activitywasdeterminedasdescribedbyErlanger, Kokowsky, andCohen (1961),with afinal concentrationof

a 0.5 mM N-𝛼-benzoyl-L-Arg-p-nitroanilide (L-BApNA) in 0.1 M Tris-HCl buffer (pH 8.2). Initial rates were determined

by the formation of 𝜌-nitroanilide product by measuring absorbance at 410 nm versus time (2.5 min). The calculations

were performed considering the specificmolar extinction coefficient of 8,800M−1 cm−1 for the product.

2.4 Purification of bacterial trypsin

Supernatants from enzyme extracts were subjected to precipitation with ammonium sulfate to 70% saturation. The

amount of ammoniumsulfate required to achieve this range of saturationwas calculated based on the volumeof super-

natant of the culture that was subjected to precipitation (Scopes, 1994). The formed suspension was kept under agi-

tation for 1 h, and 1 h to stand under cooling. Subsequently, the extracts were centrifuged at 12,000 rpm for 60 min

at 4◦C, and then the precipitates were collected. The precipitates were solubilized in Tris-HCl (10 mM, pH 7.5) and

dialyzed overnight with the same buffer at 4◦C, using molecular membranes with pore limit of 3 kDa (Sigma-Grade).

After this period, centrifugation was performed 33,000 rpm for 60min at 4◦C to remove impurities. The supernatants

were removed after being subjected to affinity chromatography on a column of 𝜌-aminobenzamidine agarose (2.5 ml)

(Sigma R©) equilibrated with Tris-HCl buffer (0.05 M, pH 7.5) and 0.5 M NaCl. Elution of the proteins was performed

with glycine buffer (0.05M, pH 3.0) with continuous flow of 1ml/min and collected in 1.5ml fractions. The eluted frac-

tions were monitored by determining the Abs280, and determining trypsin activity. The fractions corresponding to the

elution peak were pooled and stored at−20◦C for subsequent use in enzymatic characterization tests.

2.5 Polyacrylamide gel electrophoresis

After each purification step, electrophoresis was performed with the samples following Laemmli (1970), with 12%

polyacrylamide gel in the presence of 0.1% sodium dodecyl sulfate (SDS-PAGE). The experiment was conducted at a

constant voltage of 100 V for 1 h and 20 min at room temperature. The staining of the gels was performed with silver

nitrate, according to Blum, Beier, andGross (1987). After the electrophoretic run, the gels were fixed in 100ml of solu-

tion ofmethanol, glacial acetic acid, andwater (50:12:38) for 2 h, followed by threewashes of 10min,with 50%ethanol

solution. Subsequently, they werewashed for 1min in solution 0.02% sodium thiosulfate w/v, quickly washedwith dis-

tilledwater, and incubated for 15min in a solution of 0.2% silver nitrate w/v containing 37 𝜇l of 37% formaldehyde v/v.

Gels were treated with the developing solution (4% sodium carbonate, 2 ml 0.02% sodium thiosulfate solution, and 50

𝜇l of 37% formaldehyde) to visualize the protein bands. The reaction was stopped by adding acetic acid.

2.6 Effect of pH and temperature

The pH profiles for trypsin activity from the bacterial isolates were determined with L-BApNA in the follow-

ing buffer systems at 50 mM with 20 mM CaCl2: citric acid/disodium phosphate (pH 3.0–6.5), Tris-HCl (pH 7.5–

8.5), glycine/sodium hydroxide (pH 9.5–10.5), and disodium phosphate/sodium hydroxide (pH 11.0). The effects of
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temperature on the enzyme activity were determined using the same substrate (L-BApNA) at temperatures ranging

from 10◦C to 50◦C, using a spectrophotometer (Thermo Scientific UV-VIS, model Evolution 200) with temperature

control system.

2.7 Kinetic parameters

The determination of the kinetic parameters, KM and Vmax, were performed in the buffers, and in the best activities

temperatures obtained using L-BApNA in a concentration range varying from 0.05 to 2.0 mM. Kinetics parameters

were estimated by nonlinear regression (Michaelis-Menten equation) with the curve-fitting procedure of Sigma Plot

(Systat, 2008).

2.8 Effect of CaCl2 and PIs

The effects of calcium ions on the enzyme activity were measured by the addition of different concentrations of

CaCl2 (5–30mM) in the reaction mixture, using the temperature of 40◦C and buffers with pHwhere best activity was

obtained for each isolate (pH 7.0 to B. cereus, pH 9.5 to E. mundtii, pH 8.5 to E. gallinarum and S. xylosus).

Different PIs were selected and tested on enzyme activity in different concentration ranges according to their esti-

matedKi . Inhibition assayswere performedwith the following inhibitors: aprotinin (1.0–2.0𝜇M), bis-benzamidine (10–

40 𝜇M), soybean Kunitz trypsin inhibitor—SKTI (0.5–1.5 𝜇M), N-𝛼-tosyl-L-phenilalanine chloromethyl ketone—TPCK

(5–20 𝜇M), pepstatin A (1.0–2.0 𝜇M), E-64 (5.0–50 𝜇M), and ethylenediamine tetraacetic acid—EDTA (55–75 𝜇M).

The enzyme extracts were incubated for 25 min with each inhibitor prior to the addition of substrate to the reaction

mixture, time required for the occurrence of possible enzyme–inhibitor interaction. After this incubation, the trypsin

activity was subsequently determined as previously described.

The results were submitted to analysis of variance (ANOVA) and Tukey’s test (P < 0.05) using the PROC GLM pro-

gram; SAS Institute (2001).

3 RESULTS

3.1 Bacterial growth and trypsin activity

The profile of growth of B. cereus, E. mundtii, E. gallinarum, and S. xylosus, isolated from the midgut of A. gemmatalis, and

the trypsin activity produced by these microorganisms were describe as a function of time (Figure 1). The bacteria

growth and the enzyme activity began immediately after themicrobial inoculation in culturemedium. The exponential

growth of the microorganisms occurred in 4 h of incubation for B. cereus and E. mundtii, and 6 h for E. gallinarum and S.

xylosus. From these times, the growth speedwas reduced and the cultures entered the stationary phase.

Enzyme production was increased in the exponential phase and early stationary growth stage. The greater

activity of the trypsin was obtained after 4 h of incubation for E. mundtii and S. xylosus, and after 6 h for B. cereus

and E. gallinarum (Figure 1). During the stationary phase, when the bacteria had reached peak enzyme, the trypsin

activity was low, suggesting that the enzyme production is associated with growth and metabolism of the active

microorganisms.

According to these results, the times of increased activity of trypsin were selected: 4 h for E. mundtii and S. xylosus,

and 6 h for B. cereus and E. gallinarum, to obtain the enzyme extract necessary for the purification step.

3.2 Purification of bacterial trypsin

The chromatographic profile for each purified enzyme (Figure 2) showed twopredominant peaks after extensivewash-

ing with equilibration buffer. The first peak corresponds to proteins that do not have affinity for 𝜌-aminobenzamidine
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F IGURE 2 Elution profile of trypsin of Bacillus cereus (a), Enterococcus mundtii (b), Enterococcus gallinarum (c), and
Staphylococcus xylosus (d) using the 𝜌-aminobenzamidine agarose column. Electrophoresis profile of the samples ana-
lyzed by SDS-PAGE (e); column 1: MW Standards; columns 2, 4, 6, and 8: crude enzyme extract of B. cereus, E. mundtii,
E. gallinarum, and S. xylosus, respectively; columns 3, 5, 7, and 9: trypsin purified of B. cereus, E. mundtii, E. gallinarum, and
S. xylosus, respectively

and do not possess the ability to efficiently hydrolyze the L-BApNA. The second minor protein peak corresponds

to proteins that bind to 𝜌-aminobenzamidine, and has significant proteolytic ability against L-BApNA (Figure 2–d).

These data are consistent with expectations, considering that trypsins are capable of hydrolyzing the L-BApNA

substrate.

When subjected to electrophoresis, the samples eluted from the column migrate as a single band, while the crude

extract showed several bands (Figure 2e), demonstrating the efficiency of the purification process. Comparing the dis-

tance of pattern migration (column 1) and the samples applied to columns 3, 5, 7, and 9, a molecular mass of approxi-

mately 25 kDawas obtained.

The steps andyields of purification (Table 1) show that the trypsin fromB. cereus and S. xylosushas higher purification

factor (155.65-, 152.63-fold, respectively), due tohigher recoveryof enzymeactivity to theendof theprocess, followed

by 143.62-fold of E. gallinarum and 140.36-fold of E. mundtii.
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TABLE 1 Steps in purification of trypsin produced by bacteria isolated from themidgut of Anticarsia gemmatalis

Purification Steps
Bacteria
Species

Total
Protein (mg)

Total
Activity
(𝝁M⋅s−1)

Specific
Activity
(𝝁M⋅s−1/mg)

Purification
Factor (X) Yield (%)

Crude extract 2.03 0.16 0.08 1.00 100.00

Ammonium sulfate B. cereus 0.16 0.14 0.87 10.87 87.50

𝜌-Aminobenzamidine agarose 0.01 0.10 12.52 155.65 71.43

Crude extract 2.16 0.16 0.07 1.00 100.00

Ammonium sulfate E. mundtii 0.22 0.15 0.69 9.50 93.75

𝜌-Aminobenzamidine agarose 0.01 0.10 10.20 140.36 66.67

Crude extract 2.30 0.17 0.07 1.00 100.00

Ammonium sulfate E. gallinarum 0.22 0.14 0.61 8.47 82.35

𝜌-Aminobenzamidine agarose 0.01 0.09 10.37 143.62 64.29

Crude extract 1.99 0.16 0.08 1.00 100.00

Ammonium sulfate S. xylosus 0.21 0.14 0.69 8.57 87.50

𝜌-Aminobenzamidine agarose 0.01 0.10 12.26 152.63 71.43

3.3 Effect of pH and temperature on trypsin activity

The trypsins were highly active in the pH range of 7–9.5, and showed different values (pH 7.0 for B. cereus, pH 9.5 for

E. mundtii, and pH 8.5 for E. gallinarum and S. xylosus), but within the expected range of neutral to alkaline (Figure 3). As

for the effect of temperature, all purified trypsin activity reached a plateau above 25◦C (Figure 3).

3.4 Kinetic characteristics

The KM and Vmax values of bacterial enzymes and soluble and insoluble extract of velvetbean caterpillar are shown in

Table 2. The KM values of trypsin of B. cereus, E. mundtii, E. gallinarum, and S. xylosuswere 0.18, 0.22, 0.35, and 0.21mM,

respectively. The KM obtained in this study are similar to those found for trypsins present in the soluble and insoluble

extracts of themidgut of A. gemmatalis.

3.5 Effect of CaCl2 and proteinase inhibitors

The activity of the purified trypsin from B. cereus, E. mundtii, E. gallinarum, and S. xylosus was not affected by the pres-

enceof calcium ions in the concentrations tested.However, some inhibitors significantly reduced theenzymatic activity

(Table 3). We found that aprotinin significantly reduced (P< 0.05) the activity of all enzymes due to increased concen-

tration. The bis-benzamidine also affected significantly (P<0.05) enzymatic activity in all concentrations; however, the

concentration of 40 𝜇M was more effective. The SKTI inhibitor was also tested on bacterial enzymes, and it showed

to be very effective in the concentration of 1.5 𝜇M for all enzymes. The TPCK, pepstatin A, E-64, and EDTA did not

significantly affect (P> 0.05) the activity of the purified trypsins.

4 DISCUSSION

Purification and characterization of insect trypsins have been performed in order to elucidate its structure and,

thereby, to develop alternative insecticides molecules, such as PIs. Many active proteases in the intestine of insects

are considered to be sensitive and others insensitive to PI, and little is known about the inhibitor and protease rela-

tionship of the associatedmicrobiota. Recently, Shindle et al. (2017) reported that bacterial gut ofHelicoverpa armigera
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TABLE 2 Kinetic parameters of trypsin purified from bacteria isolated from themidgut Anticarsia gemmatalis

Kinetics Parameters

Species KM (mM) Vmax (nM⋅s−1) Reference

Bacillus cereus (purified extract) 0.18 120.72 Present work

Enterococcus mundtii (purified extract) 0.22 117.89 Present work

Enterococcus gallinarum (purified extract) 0.35 116.79 Present work

Staphylococcus xylosus (purified extract) 0.21 105.43 Present work

Anticarsia gemmatalis (soluble extract) 0.32 480.00 Oliveira et al. (2005)

Anticarsia gemmatalis (insoluble extract) 0.23 21.80 Xavier et al. (2005)

TABLE 3 Effect of different inhibitors on the specific activity of trypsin purified from bacteria isolated from the
midgut of Anticarsia gemmatalis

Inhibitor/Concentration (𝝁M) Specific Activity of Trypsin (𝝁M⋅s−1⋅mgProtein)

Aprotinin B. cereus E. mundtii E. gallinarum S. xylosus

0.0 12.41 ± 0.23a 9.40 ± 0.38a 9.56 ± 0.19a 19.75 ± 0.09a

1.0 2.07 ± 0.29b 0.02 ± 0.01b 0.18 ± 0.06b 0.17 ± 0.08b

1.5 0.16 ± 0.10b 0.18 ± 0.09b 0.18 ± 0.02b 0.07 ± 0.02b

2.0 0.02 ± 0.02b 0.22 ± 0.11b 0.12 ± 0.01b 0.03 ± 0.03b

Bis-benzamidine

0.0 12.41 ± 0.23a 9.32 ± 0.18a 10.75 ± 0.14a 14.05 ± 0.32a

10.0 7.55 ± 0.22b 2.21 ± 0.24b 6.15 ± 0.02b 6.75 ± 0.27b

20.0 5.22 ± 0.36c 1.00 ± 0.20c 3.96 ± 0.19c 4.09 ± 0.47c

40.0 2.89 ± 0.19d 0.31 ± 0.05d 2.13 ± 0.08d 1.28 ± 0.05d

SKTI

0.0 12.41 ± 0.23a 7.02 ± 0.33a 10.68 ± 0.07a 14.00 ± 0.05a

0.5 7.30 ± 0.33b 4.10 ± 0.38b 0.46 ± 0.04b 0.70 ± 0.02b

1.0 3.95 ± 0.39c 0.03 ± 0.01c 0.37 ± 0.08b 0.13 ± 0.01c

1.5 1.51 ± 0.14d 0.04 ± 0.01c 0.14 ± 0.008c 0.03 ± 0.006c

TPCK

0 13.07 ± 0.35a 7.70 ± 0.52a 9.63 ± 0.14a 11.50 ± 0.01a

5–20 nd nd nd nd

Pepstatin A

0 11.74 ± 0.06a 9.32 ± 0.18a 9.00 ± 0.32a 13.86 ± 0.33a

1–2 nd nd nd nd

E-64

0 12.25 ± 0.01a 9.04 ± 0.06a 8.21 ± 0.21a 9.51 ± 0.25a

5–50 nd nd nd nd

EDTA

0 9.67 ± 0.27a 7.80 ± 0.59a 10.40 ± 0.21a 14.44 ± 0.02a

55–75 nd nd nd nd

Mean± SEM.Means followed by the same letter vertically do not differ statistically by Tukey’s HSD test (P> 0.05). nd: nonde-
tectable levels of inhibition.
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(Lepidoptera: Noctuidae) have an important impact on digestive physiology of this insect. Proteases synthesized by

Bacillus sp. YP1 isolated from H. armigera significantly degraded the PIs present in seeds. Such a finding suggests that

bacterial proteases have significant contribution in the degradation and detoxification of host seed protein rich in PIs

(Shindle et al., 2017). In this sense, it is crucial to know the set and kinetic-enzymatic aspects of all proteases involved

in the digestion process. In the present study, we purified and characterized the trypsin produced by the gut bacteria

of A. gemmatalis.

Research related to the role of the gut microbiota of insects suggests that, microorganisms synthesize a variety of

digestive enzymes that contribute to host digestion, and that the catalytic potential of these proteins is closely related

to the characteristics of the physiological environment in which they are secreted (Anand et al., 2010; Liang, Fu, &

Liu, 2015).We found that trypsin purified frombacteria showed bigger activity in neutral–alkalinemedium. It is known

that lepidopterous larvaehavehigh luminal pH,which favors enzymatic activity at alkalinepH (Berenbaum, 1980; Terra

& Ferreira, 1994). Our results corroborate those reported for chymotrypsin-like produced by Bacillus subtilis isolated

from the gut ofH. armigera (Shinde, Shaikh, Padul, & Kachole, 2012).

Proteases canbe classifiedbasedon their sensitivity to various inhibitors (Elhoul et al., 2015;Rao,Aparna,Ghatge,&

Deshpande, 1998). Enzymes isolated from Streptomyces koyangensis (Elhoul et al., 2015) and Bacillus circulans (Benkiar

et al., 2013) were characterized and classified as serine proteases through biochemical evaluations, including deter-

mination of the effect of PIs. Here, purified enzymes from gut bacteria of A. gemmatalis were significantly inhibited

by a natural peptide that acts as a competitive inhibitor of trypsin, aprotinin (Laskowski & Kato, 1980); by a syn-

theticmolecule that acts as a parabolic partially competitive inhibitor of trypsin, called the bis-benzamidine (Junqueira,

Silva, & Mares-Guia, 1992) and by a soybean trypsin inhibitor, SKTI. These results, together with the molecular mass

obtained, and to the absence of enzymatic inhibition upon the treatment with inhibitors TPCK (irreversible inhibitor

of chymotrypsin), pepstatin A (inhibitor of aspartyl protease), E-64 (irreversible inhibitor of cysteine proteases), and

EDTA (chelating Ca2+ and other divalent metal and acts on metalloproteases and proteases activated by metals), sug-

gest that the enzymes evaluated in this study are trypsins. The weak impact of EDTA on the activity of these enzymes

also suggests that such proteases do not rely on any divalent cation, consistent with the fact that proteases are gener-

ally independent of cofactors (Uttatree &Charoenpanich, 2016).

The calcium ion regulates many biological systems by interacting with proteins with different affinities in different

biological environments. The binding of Ca2+ to some proteins leads to an increase in stability and to changes in

conformation of the calcium-binding proteins (Kotomán, Laczkó, Szabó, & Simon, 2003). Numerous studies con-

firm the positive effect of calcium ions (3–10 mM) on serine protease activity isolated from B. circulans (Benkiar

et al., 2013; Rao, Sathish, Ravichandra, & Prakasham, 2009); S. koyangensis TN650 (Elhoul et al., 2015); Bacillus

sp. strain B001 (Deng, Wu, Zhang, & Wen, 2011); Bacillus laterosporus-AK1 (Arulmani et al., 2007); and Bacillus

caseinilyticus (Mothe & Sultanpuram, 2016). Many of these authors believe that the removal of Ca2+ from the

strong binding site is associated with a significant decrease in stability, especially at high temperatures. Studies of

DNA and sequence homology of bacterial proteases have demonstrated that the binding sites of calcium ions are

variable in relation to the number and sequence of amino acids (Rao et al., 1998). Of the four calcium-binding sites

in bacterial serine protease, two sites, that is, sites 3 and 4, are absent in the thermolabile neutral proteases of

Bacillus amyloliquefaciens and B. subtilis (NprA), whereas in NprB, Asn187 in site 3 is replaced by Arg. Such changes

are responsible for the loss of thermostability and can be detected by sequence homology studies (Tran, Wu, &

Wong, 1991). In this study, the trypsin activities were not affected by calcium ions in the concentrations tested

(5–30 mM). According to Rao et al. (1998), some proteases of bacterial origin do not require divalent ions to act

efficiently.

Through the obtained results it can be inferred that bacteria present in the gut of A. gemmatalis synthesize trypsins.

Previous studies have shown that these enzymes contribute significantly to protein digestion along with trypsins pro-

duced by the insect itself, demonstrating that there is a diversity of digestive trypsins active in A. gemmatalis. In addi-

tion, it provides basic information for analyses ofmolecularmodeling and docking studies that will enable the develop-

ment of potent organic PIs, peptides, or peptidemimetics, which could be used in plant protection and agricultural pest

control.
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