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Begomoviruses are whitefly-transmitted, ssDNA plant viruses and are among the most damaging

pathogens causing epidemics in economically important crops worldwide. Wild/non-cultivated

plants play a crucial epidemiological role, acting as begomovirus reservoirs and as ‘mixing vessels’

where recombination can occur. Previous work suggests a higher degree of genetic variability in

begomovirus populations from non-cultivated hosts compared with cultivated hosts. To assess

this supposed host effect on the genetic variability of begomovirus populations, cultivated

(common bean, Phaseolus vulgaris, and lima bean, Phaseolus lunatus) and non-cultivated

(Macroptilium lathyroides) legume hosts were sampled from two regions of Brazil. A total of 212

full-length DNA-A genome segments were sequenced from samples collected between 2005

and 2012, and populations of the begomoviruses Bean golden mosaic virus (BGMV) and

Macroptilium yellow spot virus (MaYSV) were obtained. We found, for each begomovirus

species, similar genetic variation between populations infecting cultivated and non-cultivated

hosts, indicating that the presumed genetic variability of the host did not a priori affect viral

variability. We observed a higher degree of genetic variation in isolates from MaYSV populations

than BGMV populations, which was explained by numerous recombination events in MaYSV.

MaYSV and BGMV showed distinct distributions of genetic variation, with the BGMV population

(but not MaYSV) being structured by both host and geography.

INTRODUCTION

Viruses belonging to the family Geminiviridae have circular
ssDNA genomes and are widely distributed in tropical and
subtropical regions, infecting several economically important
crop species (Legg & Fauquet, 2004; Morales, 2006). The
family is divided into seven genera (Becurtovirus, Begomovirus,
Curtovirus, Eragrovirus, Mastrevirus, Topocuvirus and Turncurtovirus)
according to the type of insect vector, host range, genome
organization and phylogeny (Varsani et al., 2014). Viruses

classified within the genus Begomovirus are transmitted by
the whitefly Bemisia tabaci (Brown et al., 2012). Begomo-
viruses usually found in the New World have two genomic
components known as DNA-A and DNA-B, but only the
DNA-A is used in the taxonomic classification of bipartite
begomoviruses (Brown et al., 2012). The DNA-A contains
genes involved in replication and encapsidation, while the
DNA-B contains genes responsible for intra- and inter-
cellular movement (Hanley-Bowdoin et al., 2013). Begomo-
viruses are among the most damaging pathogens infecting
cultivated plants worldwide (Legg & Fauquet, 2004; Morales
& Anderson, 2001; Navas-Castillo et al., 2011; Varma &
Malathi, 2003), and specifically limit production of tomatoes,
peppers and legumes in the New World (Morales, 2006;
Navas-Castillo et al., 2011). In Brazil, Bean golden mosaic virus
(BGMV) has been an important pathogen infecting beans

The GenBank/EMBL/DDBJ accession numbers for the sequences
reported in this paper are KJ939707–KJ939918.

Four supplementary tables are available with the online version of this
paper.
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(Phaseolus spp.) since the 1970s (Costa, 1976; Faria & Maxwell,

1999; Gilbertson et al., 1991b), causing yield losses between

40 and 100 % (Morales, 2006). Despite its economic and

social importance, few studies have focused on BGMV and

other begomovirus populations infecting these crops (Faria

& Maxwell, 1999; Lima et al., 2013). Other begomovirus

species, such as Macroptilium yellow spot virus (MaYSV) and

Sida micrantha mosaic virus (SimMV), have been reported

naturally infecting common bean and non-cultivated

legume hosts, but there is no information about their

epidemiological importance for bean crops.

Wild/non-cultivated plants from different botanical fam-

ilies can sustain a high species diversity of begomoviruses

(Castillo-Urquiza et al., 2008; Fiallo-Olive et al., 2012;

Garcı́a-Andrés et al., 2006; Silva et al., 2012; Tavares et al.,

2012; Wyant et al., 2011), and can play an important

epidemiological role serving as alternate/reservoir hosts,

preventing local extinctions of the virus when the cultivated

host is absent (Alabi et al., 2008; Barbosa et al., 2009; Rocha

et al., 2013). In these cases, whiteflies transmitting begomo-

viruses between cultivated and non-cultivated hosts con-

tribute to virus evolution and disease epidemics (Alabi et al.,

2008; Power, 2000). Additionally, mixed infections by

different begomoviruses are common in wild hosts (Alabi

et al., 2008; Garcı́a-Andrés et al., 2006; Monde et al., 2010),

facilitating recombination among distantly related begomo-

viruses. Recombination is an important evolutionary mech-

anism in begomoviruses (Lefeuvre et al., 2007b, 2009; Lima

et al., 2013; Martin et al., 2005, 2011), and resulted in higher

genetic variability found in begomoviruses populations

infecting primarily non-cultivated hosts (Lima et al., 2013).

We have carried out a large-scale study to obtain more

information about the genetic structure and factors shaping

genetic variability in begomovirus populations infecting

legume hosts in Brazil. Foliar samples of common bean

(Phaseolus vulgaris), lima bean (Phaseolus lunatus) and of the

weed Macroptilium lathyroides (located near common bean

or lima bean fields) were collected over an 8-year period from

different regions where the begomoviruses MaYSV and

BGMV were previously reported infecting cultivated and/or

non-cultivated hosts (Gilbertson et al., 1991a; Lima et al.,

2013; Silva et al., 2012; Wyant et al., 2012). We hypothesized

that non-cultivated hosts, which are more genetically

variable, would harbour more genetically variable virus

sequences, whereas cultivated hosts would select for fewer

haplotypes. Instead, we found that the presumed genetic

variability of the host did not affect viral sequence variability.

Our results corroborate previous studies indicating high

genetic variability in MaYSV populations due to interspecific

recombination (Lima et al., 2013; Silva et al., 2012) and low

genetic variability in BGMV populations (Faria & Maxwell,

1999). Nevertheless, MaYSV and BGMV showed different

biogeographical patterns, and the genetic structure of BGMV

populations was strongly shaped by geography and host,

while that of MaYSV populations was not.

RESULTS

The prevalence of begomoviruses in leguminous
hosts in Brazil shifts temporally and spatially

A total of 515 plant samples (300 common bean, 115 lima
bean and 100 M. lathyroides) were collected. From these
samples, 212 full-length DNA-A components were cloned
and sequenced. Each component was sequenced from
individual plants (see Table S1, available in the online
Supplementary Material). Only 11 full-length DNA-B com-
ponents of common bean-infecting BGMV were obtained
and thus no additional analyses were performed based on
this component.

Using pairwise comparisons of the DNA-A sequences and
the recently established ¢91 % nucleotide identity cri-
terion established by the Geminiviridae Study Group
of the International Committee on Taxonomy of Viruses
(ICTV) (http://talk.ictvonline.org/files/proposals/taxonomy_
proposals_plant1/m/plant04/4399.aspx), the 212 isolates
were assigned to four begomovirus species: MaYSV, BGMV,
Soybean chlorotic spot virus (SoCSV) and Macroptilium yellow
vein virus (MaYVV). While we have sequenced isolates of
these viruses, we assume they are representative of the popu-
lations from which they were isolated, and so refer to them
collectively as populations.

MaYSV was cloned from the three host species, but was
found only in the north-eastern region [states of Alagoas
(AL) and Sergipe (SE)]. MaYSV is known to naturally
infect non-cultivated plants (M. lathyroides, Calopogonium
mucunoides and Canavalia sp.) as well as the common bean
(Lima et al., 2013; Silva et al., 2012). Our results extend its
natural host range to include the cultivated P. lunatus.
BGMV was cloned from lima bean in AL, common bean in
the central region [states of Minas Gerais (MG), Goiás
(GO) and the Federal District (DF)], and M. lathyroides in
MG. SoCSV was found in M. lathyroides samples from MG
and MaYVV was only isolated from M. lathyroides plants
adjacent to a lima bean field in AL (Table S1).

The diversity of begomoviruses infecting P. lunatus in the
north-east was different between sampling times. In 2005,
only BGMV isolates were obtained from this host in AL
and Pernambuco (PE), but in 2011, nearly a third of the
clones obtained from P. lunatus were classified as MaYSV.
In two surveys in 2011 (this study and Lima et al., 2013),
MaYSV was the begomovirus most frequently cloned from
legume hosts in AL (87 of 146 clones obtained), while
BGMV and MaYVV were less prevalent (41 and 18 clones,
respectively). These results highlight the rapid emergence
of MaYSV in legume crops in AL, where it is now the
prevalent begomovirus.

MaYSV populations are more variable than BGMV
populations

A total of 99 MaYSV and 152 BGMV full-length DNA-A
sequences were analysed. The MaYSV dataset contained 55
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sequences previously published (Lima et al., 2013; Silva
et al., 2012) plus 44 new sequences described here, and the
BGMV dataset contained five sequences previously pub-
lished (Fernandes et al., 2009; Gilbertson et al., 1991a; Silva
et al., 2012) plus 147 new sequences described here (Tables
S1 and S2).

The genetic variability of MaYSV was evenly distributed
among isolates infecting the different hosts, and was similar
to the variability calculated for all isolates (Table 1).
Among the different BGMV subpopulations from each of
the three hosts, isolates infecting lima bean were slightly
more variable than those from other hosts, despite a
smaller population size than isolates from common bean
(Table 1). The genetic variability calculated for all BGMV
isolates was higher than that calculated for isolates
infecting each host, suggesting that isolates infecting each
host comprise distinct subpopulations and that the variability
of the whole population reflects the variability between
(rather than within) each subpopulation (Table 1). The
MaYSV Rep gene was four times more variable than its CP
gene (Table 1), and the MaYSV population showed greater
genetic variability than the BGMV populations, especially in
the Rep gene (Table 1).

Recombination is very common in MaYSV but not
in BGMV

To investigate intraspecific recombination events, full-
length DNA-A genomes of MaYSV and BGMV were
analysed using the Recombination Detection Program
(RDP)3 package (Table S3). For MaYSV, a complex pattern
of recombination was found, with seven unique events. Six
events had putative breakpoints in the Rep gene and the
common region, and only one event was in the CP gene
(Table S3). In contrast, only two putative recombination
events were detected in BGMV (Table S3). These events
were restricted to isolates infecting lima bean from AL,
where almost all isolates differed from other BGMV isolates
by a recombinant region with breakpoints in the Rep and
CP genes, and where one isolate (BR : Ata2 : 05) has a
recombinant region in its CP gene and the common region
(Table S3).

The effect of recombination in the CP and Rep genes was
visualized using neighborNet analysis. The networks included
MaYSV, BGMV and other begomoviruses that showed
greatest nucleotide identity to putative recombinant regions
detected in MaYSV and BGMV by RDP3 analysis (Table S2).
In the MaYSV CP dataset, isolates BR : Bas1 : 09 and BR :
Mac1 : 10 may also be recombinant, with another begomo-
virus donating sequence to their common ancestor (Fig. 1a).
The network of MaYSV Rep sequences confirmed the
complex pattern of recombination detected by RDP3, with
both intra- and inter-species events (Fig. 1b). Isolates in
Cluster I were closely related to Sida yellow blotch virus
(SiYBV) and Sida mosaic Alagoas virus (SiMAlV, obtained
from Sida spp.), isolates in Cluster II to SoCSV, and those in
Cluster III to Blainvillea yellow spot virus (BlYSV, from
Blainvillea rhomboidea) (Fig. 1b). Recombination was also
suggested in the BGMV dataset, albeit at a lower degree (Fig.
2). The M. lathyroides-infecting BGMV isolates BR : Car3 : 10
and BR : Car4 : 10 from AL were more closely placed to other
begomovirus species in the CP network compared to the
Rep network (Fig. 2). Similarly, the lima bean-infecting
isolates BR : Ata2 : 05, BR : Rec1 : 05 and BR : Rec2 : 05 were
located away from the main BGMV clusters in both the CP
and Rep networks (Fig. 2).

Full-length DNA-A datasets including the begomovirus
species used in the neighborNet analysis were then assessed
for interspecific recombination using RDP3. For MaYSV,
the event involving isolates in Cluster I had as putative
minor parents SiYBV and SiMAlV, and the single event
involving the CP gene had Macroptilium yellow net virus
(MaYNV) as the putative minor parent (data not shown).
For BGMV, both events were confirmed as intra-species
recombination, with different BGMV isolates identified as
the putative parents (data not shown).

BGMV but not MaYSV populations show genetic
structuring by geography and host

The MaYSV CP and Rep maximum likelihood (ML)
phylogenetic trees are not congruent (Fig. 3). The Rep tree
has four well-supported clades that are not resolved in the
CP tree. In both trees, there is no evidence for structuring

Table 1. Genetic variability of the begomoviruses BGMV and MaYSV infecting three distinct leguminous hosts

Results are given as pairwise, per-site nucleotide diversity±SD.

Population No. of sequences DNA-A p CP p Rep p

BGMV (total) 147 0.0489±0.0015 0.0442±0.0012 0.0371±0.0013

BGMV (common bean) 75 0.0067±0.0002 0.0058±0.0002 0.0043±0.0002

BGMV (lima bean) 59 0.0153±0.0039 0.0117±0.0031 0.0144±0.0036

BGMV (Macroptilium) 13 0.0018±0.0005 0.0020±0.0006 0.0009±0.0002

MaYSV (total) 99 0.0627±0.0021 0.0262±0.0020 0.1055±0.0040

MaYSV (common bean) 50 0.0622±0.0032 0.0224±0.0011 0.1068±0.0065

MaYSV (lima bean) 21 0.0590±0.0062 0.0212±0.0019 0.0976±0.0119

MaYSV (Macroptilium) 28 0.0662±0.0037 0.0352±0.0056 0.1037±0.0078
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by location or host species, as each clade includes isolates
from different hosts and/or locations (Fig. 3). These results
were confirmed by subdivision analysis based on full-length
DNA-A sequences (FST/host50.0223; FST/location50.0794),
which indicates that putative subpopulations have little
genetic differentiation.

The BGMV CP and Rep ML phylogenetic trees are similar
(Fig. 4), with strong evidence for population structuring
both by location and host plant. Both trees showed three
main clades, with isolates from AL (primarily from lima
bean) being a separate population from MG, GO and DF
(common bean) and MG (non-cultivated plants). Isolates

from Florestal (MG) formed a sister subpopulation to

isolates from Unaı́ (MG), GO and DF (Fig. 4). As Unaı́ is

closer to fields located in the neighbouring state of GO [i.e.

85 km from Cristalina (GO) but 470 km from Florestal

(MG)], geographical proximity can explain the clustering

observed in the phylogenetic trees. Two isolates (BR : Rec1 :

05 and BR : Rec2 : 05) from Recife (PE) clustered with MG

isolates, suggesting that there has been migration between

these states (Fig. 4). Based on FST analysis for full-length

DNA-A sequences, BGMV showed strong genetic differ-

entiation between subpopulations isolated from different

hosts/locations (FST/host/location50.8667).

MaYSV

(a)

(b)
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Fig. 1. NeighborNet networks based on (a) CP and (b) Rep nucleotide sequences of MaYSV and selected begomoviruses
from Brazil. In the Rep network, isolates from P. vulgaris are indicated in black, from P. lunatus in red, and from M. lathyroides

in blue. The clusters labelled MaYSV in the CP network and I, II and III in the Rep network contain isolates from all three
hosts.
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Purifying selection predominates in BGMV and
MaYSV populations

To investigate the extent in which selection pressures have
shaped the standing genetic variability in MaYSV and
BGMV populations, CP and Rep datasets were analysed
using different ML-based methods. We analysed subpopu-
lations separately to minimize the impact of recombination
on our results. Most datasets showed mean non-synonym-
ous to synonymous substitution ratios (dN/dS) ,1 (Table
2), indicating negative selection. Although neutral evolu-
tion may be occurring in the Rep encoded by BGMV
infecting Macroptilium (dN/dS51.0), this analysis con-
tained only four distinct sequences, and a larger dataset
needs to be analysed before definitive conclusions can be
drawn.

A higher number of sites were under statistically detectable
negative selection than positive selection in both MaYSV
and BGMV populations. For example, using the fixed-
effect likelihood (FEL) method on the MaYSV CP dataset,
only three sites (142, 163 and 250) were identified as under
positive selection, with site 250 also detected by Single-
Likelihood Ancestor Counting (SLAC), while 72 sites were
under negative selection (Table S4). A few sites under
positive selection were detected in MaYSV Rep datasets. In
Clusters I, II and III, one, six and two sites were detected by
the random-effect likelihood (REL), REL and FEL,
respectively (Table S4). In the BGMV CP gene, seven sites

under positive selection were identified in the population
infecting P. vulgaris (Table S4). A larger number of sites
under positive selection were detected in the small (only
four haplotypes) Macroptilium-infecting BGMV dataset: 28
sites were under positive selection, with only two sites
under negative selection (Table S4). Partitioning for
Robust Inference of Selection (PARRIS) did not identify
any sites under positive selection in any of the datasets
analysed, emphasizing that negative selection is the most
important selective force acting upon BGMV and MaYSV
populations.

DISCUSSION

The species diversity of begomoviruses has been surveyed
extensively (Ala-Poikela et al., 2005; Albuquerque et al.,
2012; Bull et al., 2006; Castillo-Urquiza et al., 2008;
Fernandes et al., 2009; Garcı́a-Andrés et al., 2006; Lozano
et al., 2009; Ndunguru et al., 2005; Reddy et al., 2005;
Ribeiro et al., 2003; Rothenstein et al., 2006; Sserubombwe
et al., 2008; Tavares et al., 2012), and some studies have
investigated the genetic structure of begomovirus popula-
tions in cultivated and non-cultivated hosts in different
geographical regions (Ge et al., 2007; González-Aguilera
et al., 2012; Lima et al., 2013; Rocha et al., 2013; Silva et al.,
2012, 2011). Strikingly, in spite of its great economic
importance as the most damaging viral pathogen of bean

MaYVV_JN419021

MaYSV_KC004130
MaYNV_JN418998

ToRMV_AF291705
ToSRV_JX415196

BIYSV_KC706519

ToSRV_JX415196
BIYSV_KC706519

ToRMV_AF291705

MaYVV_JN419021Rec1_05

Rec1_05

Rec2_05

Rec2_05

M88686

Ata2_05

Ata1_05

0.01

M88686

Ata2_05 Mac2_10

Mac2_10Car4_10
Car3_10

Car4_10
Car3_10

0.01(a)

(b)

MaYNV_JN418998

MaYSV_KC004130

Fig. 2. NeighborNet networks based on (a) CP and (b) Rep nucleotide sequences of BGMV and selected begomoviruses from
Brazil. Isolates from P. vulgaris are indicated in black, from P. lunatus in red, and from M. lathyroides in blue.
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crops in South America (Morales, 2006), no studies on the

genetic variability of BGMV have been conducted since Faria

& Maxwell (1999) analysed 20 partial DNA-A sequences. Our

study of 272 full-length DNA-A begomovirus sequences

across Brazil found no effect of genetic background of the

host species on molecular variability of begomovirus popula-

tions, confirmed the high genetic variability in MaYSV

populations, and detected large differences between BGMV

populations infecting each of three leguminous hosts.

BGMV was the predominant begomovirus species found
infecting lima bean in north-eastern Brazil in 2005, but was

a minority of isolates sampled in this region in 2011.
Instead, MaYSV was the main begomovirus infecting
legumes in 2011 in AL, but was not present in the central
region, where BGMV was still prevalent. MaYSV was
reported for the first time infecting non-cultivated legumes
in the north-east in 2010 (Silva et al., 2012), common bean
in AL in 2011 (Lima et al., 2013) and now naturally
infecting another cultivated host, P. lunatus (this study).
The absence of MaYSV in samples from 2005 could be
related to the cloning method used at that time, which was
biased for previously known sequences. However, a study
using cloning-independent (i.e. unbiased) pyro-sequencing
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of cultivated and non-cultivated legume samples collected
in 2003 and 2004 in three north-eastern states (AL, PE and
Bahia) also did not detect the presence of MaYSV (Wyant
et al., 2012). Our combined results provide strong evidence
for the recent emergence of MaYSV as an important agri-
cultural pathogen, for a rapid expansion of its host range
and for its swift spread throughout AL. Indeed, MaYSV
seems to be replacing BGMV as the dominant begomovirus
infecting common bean and lima bean crops in AL. If the
trends in AL hold for other regions in Brazil, monitoring the
spread of MaYSV would be critical to guarantee the success
of BGMV-resistant transgenic common bean.

High genetic variability in begomovirus populations
infecting different non-cultivated hosts has been reported
(Lima et al., 2013; Rocha et al., 2013; Silva et al., 2012,
2011). Conversely, begomovirus populations infecting
cultivated hosts seem to have lower variability (Faria &
Maxwell, 1999; González-Aguilera et al., 2012; Lima et al.,
2013; Rocha et al., 2013). Here, we found that viral
sequence variability was similar in one non-cultivated and
two cultivated hosts for both BGMV and MaYSV. It will be
interesting to determine whether this result for legume-
infecting begomoviruses can be reproduced for begomo-
viruses infecting solanaceous or malvaceous hosts.

Our results on BGMV, based on 152 full-length DNA-A
sequences, are in agreement with Faria & Maxwell (1999).
We found little genetic variability in common bean-
infecting BGMV isolates, while the lima bean-infecting
population, which showed evidence of recombination, was
slightly more variable. The variability in MaYSV popula-
tions observed here was similar to previous reports (Lima
et al., 2013; Silva et al., 2012), and when compared to other
begomovirus species, MaYSV was 2.5 times more variable
than the next most variable begomovirus reported in
Brazil, BlYSV (González-Aguilera et al., 2012; Rocha et al.,
2013; Silva et al., 2011). We found additional begomovirus
species infecting M. lathyroides, consistent with previously
published reports where this host sustains a high species
diversity of begomoviruses (Silva et al., 2012).

Recombination is very common and important for the
emergence of different geminiviruses, and occurs within
species, between species and across genera in the family
(Garcı́a-Andrés et al., 2007a, b; Hou & Gilbertson, 1996;
Lefeuvre et al., 2009, 2007b; Monci et al., 2002; Padidam
et al., 1999; Pita et al., 2001; Schnippenkoetter et al., 2001;
Tiendrébéogo et al., 2012; Umaharan et al., 1998). Different
studies have shown that it is also an important evolution-
ary mechanism acting within begomovirus populations in
Brazil (Lima et al., 2013; Rocha et al., 2013; Silva et al.,
2012, 2011), with detectable events of recombination
occurring in regular, non-random regions in the genome
(Lima et al., 2013; Rocha et al., 2013).

A complex recombination pattern was found in MaYSV.
The more variable populations all showed evidence of
recombination (e.g. the frequently recombinant Rep gene
in MaYSV), suggesting that recombination could, in part,
explain the higher genetic variability found in MaYSV,
consistent with previously published reports (Lima et al.,
2013). Although we are unable to provide definitive evidence
that the parental sequences identified here are the actual
parents, these results provide a strong indication that MaYSV
evolved through recombination between begomoviruses
infecting non-cultivated hosts belonging to different botanical
families. Similar results were observed for tomato-infecting
begomoviruses in Brazil, which are thought to have arisen
from inter-species recombination between begomoviruses
infecting non-cultivated hosts (Ribeiro et al., 2007; Rocha
et al., 2013). Although some studies indicate that a large
number of recombinants arising from events between
distantly related genomes are defective and probably would
be removed from the population by selection (Liu et al.,
1999; Martin et al., 2005), our results continue to emphasize
the importance of recombination for microevolution and
macroevolution of agronomically important begomo-
viruses.

MaYSV isolates with detectable recombination in the Rep
gene were found in all three hosts studied, but isolates with
recombination in the CP region were only found twice,
both in M. lathyroides in 2009 and 2010. The lack of spread
of CP recombinants could be evidence that they suffer a
greater fitness cost than Rep recombinants. Several studies
have shown that selection pressure is an important factor
determining which recombinants survive in viral popula-
tions (Lefeuvre et al., 2007a; Martin et al., 2011; Rokyta &
Wichman, 2009; Simon-Loriere et al., 2009), and purifying
selection is strongest in the CP gene of begomoviruses
(Lefeuvre et al., 2009). Interestingly, recombination seems
infrequent or selected against in BGMV populations, and
the few putative events detected here were restricted to
isolates located in AL.

The genetic structure of begomovirus populations is
determined by mutation, recombination and the interplay
between adaptation to host species and vector biotypes,
and is influenced by the geographical distribution of the
hosts, vectors and other begomoviruses (Lima et al., 2013;

Table 2. Mean values of non-synonymous to synonymous
substitution ratios (dN/dS) for the subpopulation-specific CP
and Rep genes of BGMV and MaYSV

Datasets dN/dS

BGMV CP (common bean) 0.0936

BGMV CP (lima bean) 0.1207

BGMV CP (Macroptilium) 0.4844

BGMV Rep (common bean) 0.3541

BGMV Rep (lima bean) 0.2073

BGMV Rep (Macroptilium) 1.0000

MaYSV CP 0.0919

MaYSV Rep CI 0.1757

MaYSV Rep CII 0.1725

MaYSV Rep CIII 0.2427
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Navas-Castillo et al., 2011; Rocha et al., 2013). Recently,
phylogeographic segregation of begomoviruses infecting
the same crop was observed in Brazil, where different
species were prevalent in different tomato-growing areas
(Rocha et al., 2013). Here, similar results were observed for
BGMV infecting cultivated and non-cultivated legume
hosts.

MaYSV populations were not neatly subdivided according
to host or sampled area, providing strong evidence of
migration among fields. These phylogenetic results were
confirmed by extremely low FST values. In contrast,
evidence of structuring by both host and geography was
found for BGMV populations. However, related isolates
were found infecting both lima bean and M. lathyroides in
AL (Silva et al., 2012), and infecting common bean and M.
lathyroides in MG, which indicate that this segregation is
not absolute. Furthermore, while there appears to have
been migration between fields located in PE and MG,
BGMV isolates in north-eastern and central Brazil cannot
be considered to comprise one unified population.

The contrasting population structure between MaYSV and
BGMV could be due to the distances among sampling sites.
The MaYSV isolates are separated by a maximum of
240 km [Santana do Ipanema (AL) and Barra de Santana
(PB)], but all but one isolate (BR : Bas1 : 10) were sampled
no more than 105 km apart. BGMV was isolated within
MG from fields 472 km apart (Unaı́ and Florestal), and the
maximum distance between sampling sites was 1425 km
[Cristalina (GO) and Arapiraca (AL)]. Over this larger area,
we observed clustering between isolates collected at closer
locations, such as isolates from Unaı́ (MG) forming one
population with isolates from GO and DF, whose sampling
sites were no more than 85 km away. The observed lack of
population structure for MaYSV may be due to its
restricted geographical range compared to BGMV, and
that substructure could appear as MaYSV spreads over
larger distances. Furthermore, it is an unknown question
whether we are observing viral populations at ‘equilibrium
variability’, but it seems doubtful that the structures
observed in this study will persist over the next decades.
For instance, we would hesitate to consider BGMV stable
in light of the fact that it was much more frequent 20 years
ago, when it was considered the only major begomovirus
threat to Brazilian agriculture.

Recently, a genetically modified BGMV-resistant common
bean was approved by the Brazilian National Biosafety
Commission (http://www.ctnbio.gov.br/index.php/content/
view/16526.html) in which resistance is due to RNA silencing
(Bonfim et al., 2007), a process which is highly sequence-
specific (Raja et al., 2010). Incidentally, our results could
impact the implementation of this BGMV-resistant trans-
genic common bean in Brazil. As this resistance is based on
the highly sequence-specific mechanism of RNA silencing, the
effectiveness of transgenic cultivars must be assessed against
the genetic variation in BGMV and other common bean-
infecting begomoviruses present in Brazil. In particular, in AL

where the highly variable MaYSV is widespread and efficiently
infects common bean, the use of this cultivar may fail to
control the losses due to begomoviruses. Fortunately, MaYSV
seems to be currently restricted to a small part of north-
eastern Brazil, and efforts could be made to contain its spread
into other regions. The far less variable BGMV found in the
main areas growing common bean in central Brazil provides
hope that the RNAi (RNA interference) resistance may be
durable under field conditions.

Purifying selection was the dominant force acting on
BGMV and MaYSV CP and Rep genes, in agreement with
most begomovirus studies (Garcı́a-Andrés et al., 2007a;
González-Aguilera et al., 2012; Lima et al., 2013; Rocha
et al., 2013; Sanz et al., 1999; Silva et al., 2012, 2011). Positive
selection was infrequently observed, and in both species
some positively selected sites in the CP can be associated
with insect transmission (i.e. sites 123 for BGMV and 142 for
MaYSV). Sites located in the region between amino acids
123 and 152 of the CP gene have been shown to be involved
in insect transmissibility (Caciagli et al., 2009; Noris et al.,
1998; Hohnle et al., 2001; Kheyr-Pour et al., 2000). Despite
the long length of this transmission-determining region
(compared to the concise motif conferring aphid transmis-
sion in potyviruses; James & Bryce, 2006), changes in only one
(Kheyr-Pour et al., 2000) or two (Hohnle et al., 2001; Noris
et al., 1998) amino acids in this region may prevent whitefly
transmission. Therefore, the positively selected sites should be
improving whitefly transmission in these begomovirus
populations. Additional studies are needed to determine if
the positively selected sites identified here are involved in
whitefly transmission.

Although the N-terminal region in MaYSV Rep is known
to be highly recombinant (and highly variable), the few sites
we identified to be under positive selection were mostly
located in the C-terminal region. Previously identified sites
under positive selection in MaYSV Rep were hypothesized to
be spurious results due to recombination events (Lima et al.,
2013), which is corroborated by our subpopulation-specific
results. Interestingly, neutral evolution was observed in
BGMV Rep (dN/dS51.0) in the subpopulation infecting M.
lathyroides. These results provide additional evidence that
high nucleotide variability in the N-terminal portion of the
Rep gene (e.g. the MaYSV population) is accompanied by
strong purifying selection that preserves the amino acid
sequence. The Rep N-terminal region in geminiviruses
includes conserved motifs essential for rolling-circle rep-
lication (Ilyina & Koonin, 1992; Koonin & Ilyina, 1992;
Nash et al., 2011). Conservation of the integrity of these
elements is critical for successful infection cycles, despite the
variation introduced by frequent recombination.

We have determined the genetic structure of two legume-
infecting begomovirus populations. BGMV populations are
less variable than MaYSV ones, mostly due to recombination
acting upon MaYSV. BGMV populations are strongly
structured by geography/host, while MaYSV populations
are not. These results suggest that, at least for begomoviruses,
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genetic variability is an intrinsic viral property, rather than a
malleable feature that could be affected by the host (also seen
in Ge et al., 2007). The emergence of the highly variable
MaYSV in Phaseolus spp. could seriously complicate disease
management in this important crop in Brazil and other
countries in South America.

METHODS

Sample collection and storage. Foliar samples with virus-like
symptoms such as yellow mosaic, leaf curl and stunting were collected
in common bean and lima bean fields in different states of Brazil.
Lima bean (P. lunatus) landrace samples were collected in fields in PE
in 2005 and AL in 2005 and 2011 (detailed isolation information
given in Table S1). Common bean (P. vulgaris, ‘carioca’ type) samples
were collected in fields in AL in 2011 and in GO and MG states and in
the DF in 2012 (Table S1). Most common bean samples belonged to
cultivar Pérola, except samples from AL, for which the cultivar was
not determined. Samples of non-cultivated M. lathyroides near
common bean or lima bean fields were collected in AL and SE states
in 2011 and MG in 2012 (Table S1). For each sample collected in 2011
or 2012, the following information was recorded: plant species (and
cultivar for the common bean samples), date of collection, GPS
coordinates of the sampling location and a digital image of the sample
at the time of collection. Incomplete information was available for
samples collected in 2005. Samples were analysed while fresh or were
press dried at room temperature for storage as dried leaf samples until
analysed.

DNA amplification and cloning. Total DNA was extracted from
fresh tissue or dried leaf samples as described by Doyle & Doyle (1987)
and used as a template for rolling-circle amplification (RCA) of bego-
movirus genomes (Inoue-Nagata et al., 2004). RCA products were
individually cleaved with BamHI, ClaI, HindIII or PstI restriction
endonucleases and ligated to the pBluescript KS+ plasmid vector
(Stratagene), previously cleaved with the same enzyme. Different
enzymes were used to ensure that no virus was left uncloned because it
lacked one or more of the sites (only ten samples had undigested RCA
products after incubation with all four restriction enzymes). Viral
inserts were sequenced commercially by primer walking at Macrogen.
All genome sequences were organized to begin at the nicking site in the
invariant nonanucleotide at the origin of replication (59-TAATATT//
AC-39). Isolates were named to include information on the region of
sampling (country and municipality) and year of isolation (last two
numbers; Table S1).

Sequence comparisons. Full-length begomovirus genomes were
assembled using CodonCode Aligner v. 4.1.1 (www.codoncode.com).
Sequences were initially analysed with the BLASTn algorithm (Altschul
et al., 1990) and the GenBank non-redundant nucleotide database to
determine the viral species with which they shared greatest identity.
These similar sequences from GenBank were used to classify the novel
isolates using the Species Demarcation Tool v. 1.0 (Muhire et al.,
2013).

Multiple sequence alignments and phylogenetic analysis. Multiple
sequence alignments were prepared for the full-length DNA-A and for
the CP and Rep coding sequences of each viral species using the
MUSCLE algorithm (Edgar, 2004) and manually adjusted using Se-Al v.
2.0a11 (tree.bio.ed.ac.uk/software/seal/). ML trees were inferred for CP
and Rep sequences using RAxML v. 7.0.3 (Stamatakis, 2006), assuming a
general time reversible nucleotide substitution model with a gamma
model of rate heterogeneity. The CP and Rep genes were chosen for
analysis because of their essential role for insect transmission and viral
replication, therefore being subject to stricter variability constraints

(Rojas et al., 2005). Additionally, they encompass ~70 % of the full-

length DNA-A genome. The robustness of each individual branch was
estimated from 2000 bootstrap replicates. Trees were visualized and

edited using FigTree (tree.bio.ed.ac.uk/software/figtree) and Adobe

Illustrator.

Genetic structure and variability indices. Partitioning of genetic
variability and inferences about population structure were based on

Wright’s F fixation index (Wright, 1951) calculated using DnaSP v.

5.10 (Rozas et al., 2003). Subpopulations were tested for structure

according to host species and geographical location. The mean pairwise

number of nucleotide differences per site (nucleotide diversity, p) was
estimated for each population/subpopulation using DnaSP v. 5.10.

Recombination analysis. Possible parental sequences and recombin-

ation breakpoints were determined using the RDP, Geneconv, Boot-
scan, Maximum Chi Square, Chimaera, SisterScan and 3Seq methods

implemented in RDP v. 3.44 (Martin et al., 2010). Alignments were

scanned with default settings for the different methods and statistical

significance was inferred by a P value lower than a Bonferroni-corrected

cut-off of 0.05. Only recombination events detected by at least three
different methods were considered to be reliable. Putatively recombinant

portions of genomes were BLASTed against the GenBank non-redundant

nucleotide database to identify additional species that may have served as

parental sequences. These were added to the datasets for additional
analysis (Table S2). Evidence of non-tree-like evolution was assessed for

CP and Rep datasets using the neighborNet method (Bryant & Moulton,

2004) implemented in SplitsTree v. 4.10 (Huson & Bryant, 2006). Images

of networks were edited using Adobe Illustrator.

Detection of positive and negative selection at amino acid

sites. To detect sites under positive and negative selection the CP and

Rep datasets were analysed using four different ML-based methods
available in the DataMonkey server (www.datamonkey.org): SLAC,

FEL, REL, PARRIS (Kosakovsky-Pond & Frost, 2005; Scheffler et al.,

2006). To avoid spurious selection results caused by recombination,

different predominantly non-recombinant clusters of sequences were

defined based on phylogenetic and recombination analyses. The SLAC
method was also used to estimate the mean dN/dS based on the

inferred Genetic Algorithm Recombination Detection (GARD)

(Kosakovsky-Pond & Frost, 2005) phylogenetic trees. A general time

reversible nucleotide substitution model was assumed, and Bayes
factors larger than 50 and a P value ,0.1 were used as significance

thresholds for the REL and FEL methods.
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