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ABSTRACT

Brazilian offshore crude oil exploration has increased after the discovery of new
reservoirs in the region known as pré-sal, in a depth of 7.000 m under the water
surface. Oceanic islands near these areas represent sensitive environments, where
changes in microbial communities due oil contamination could stand for the loss
of metabolic functions, with catastrophic effects to the soil services provided from
these locations. This work aimed to evaluate the effect of petroleum contamination
on microbial community shifts (Archaea, Bacteria and Fungi) from Trindade Island
coastal soils. Microcosms were assembled and divided in two treatments, control and
contaminated (weathered crude oil at the concentration of 30 gkg~!), in triplicate. Soils
were incubated for 38 days, with CO, measurements every four hours. After incubation,
the total DNA was extracted, purified and submitted for target sequencing of 16S
rDNA, for Bacteria and Archaea domains and Fungal ITS1 region, using the Illumina
MiSeq platform. Three days after contamination, the CO, emission rate peaked at
more than 20x the control and the emissions remained higher during the whole
incubation period. Microbial alpha-diversity was reduced for contaminated-samples.
Fungal relative abundance of contaminated samples was reduced to almost 40% of
the total observed species. Taxonomy comparisons showed rise of the Actinobacteria
phylum, shifts in several Proteobacteria classes and reduction of the Archaea class
Nitrososphaerales. This is the first effort in acquiring knowledge concerning the effect
of crude oil contamination in soils of a Brazilian oceanic island. This information is
important to guide any future bioremediation strategy that can be required.

Subjects Biodiversity, Biotechnology, Ecology, Environmental Sciences, Microbiology

Keywords Next generation sequencing, Metagenome, Taxonomy comparison, Alpha-diversity,
Beta-diversity, Crude oil

INTRODUCTION

The offshore petroleum exploration offers risks to the whole sea life, as their hydrocar-
bons are toxic, mutagenic, teratogenic and carcinogenic (Hentati et al., 2013; McKee et
al., 2013). These toxic compounds tend to accumulate in the environment after spillage
events, but factors as temperature, sun light, high exchange of gases and biological activity
can remove the lighter portions of the crude oil in the first weeks after leakage. However,
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the recalcitrant portion of the oil stays in the environment for years (Huesemann,
Hausmann ¢ Fortman, 2002; Trindade et al., 2005). The British Petroleum review of 2015,
states that crude oil is still the dominant energy source in Brazil and that the consumption
has kept rising since 2013. The recent discovery of crude oil reservoirs in the so-called
pré-sal (pre-salt) reservoir is considered an excellent opportunity to supply the country’s
economic and energetic demands (Lina, 2010), but possible oil spills events should be a
major concern.

Trindade Island is located at the South Atlantic Ocean, 1,160 km from the city of
Vitéria, capital of Espirito Santo State, Brazil, being the closest oceanic island from these
new Brazilian petroleum offshore exploration area. It hosts a peculiar and endangered
biodiversity (Alves ¢ Castro, 20065 Mohr et al., 2009), so the development of conservation
approaches to maintain these unique ecosystems is required. It is well known that
microbes are fundamental to several soil processes, including changes on physicochemical
properties and degrading recalcitrant and toxic compounds (Elliott et al., 1996; Haritash &
Kaushik, 2009). The expected scientific benefits from increasing knowledge on Trindade
Island soil microbial diversity are extensive, including a better understanding of the roles
played by these communities to empowering bioremediation actions.

The input of a mixture of hydrocarbons, as crude oil, directly influences the structure
of microbial populations in soils (Hamamura et al., 2006). In contamination events,
changes in soil properties, such as crude oil viscosity increasing, ageing, sorption of nu-
trients and toxicity cause the microbial community to shift towards profiting oil resistant
populations. Some microorganisms are capable of degrading crude oil hydrocarbons
through a number of aerobic and anaerobic metabolic pathways, using these compounds
as sources of carbon and energy (Zobell, 1946; Atlas, 1981; Haritash ¢ Kaushik, 2009)
comprising an appropriate target for studies focused on alleviating any possible impacts
of soil contamination.

In the last 10 years, after the development of the Next Generation Sequencing (NGS)
technology, microbial community studies have undergone a major boost (Caporaso et
al., 2012; Loman ¢ Pallen, 2015; Markowitz et al., 2015). Nevertheless, research related
to crude oil contamination is primarily focused on the water column, without applying
NGS (Huettel, Berg ¢ Kostka, 2014; Rodriguez-R et al., 2015), or only performed after an
accidental contamination event (Lamendella et al., 2014; Rodriguez-R et al., 2015), lacking
any proper control.

Crude oil hydrocarbons are expected to impact soil microbial communities through
toxic effects of the oil components, enriching the environment with hydrocarbon degrading
microorganisms. Here, we aimed to evaluate the microbial community shifts (Archaea,
Bacteria and Fungi) from Trindade Island coastal soil under crude oil contamination, using
state of the art NGS approach on a controlled microcosm experiment, in order to access
the whole soil microbiota, including the nonculturable and low abundance ones.
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Table 1 Summary of physicochemical parameters for soil cores (0—10 cm) sampled at the northeast
coast of Trindade Island—Brazil.

Characteristic Unit Value
pH-H,0 5.6
Soil texture Sandy loam
P-rem* mg L~} 26.5
p’ 1290.8
K’ mg kg ™! 180.33
S¢ 5.63
Cat? cmol, kg 9.84
Mg*2 2.78
oM 0.64
N % 0.19
(& 0.37
Notes.

2Remaining phosphorus (Alvarez et al., 2000).

bExtracted with Mehlich—1.

“Extracted with monocalcium phosphate in acetic acid (Hoeft, Walsh ¢ Keeney, 1973).
dExtracted with KCI 1 mol L',

“Walkley and Black method/OM = C.org * 1.724.

MATERIAL AND METHODS

Sampling site and soil analysis

Trindade Island soil was randomly sampled, 10 soil cores with 6 cm of diameter to the
depth of 010 c¢m, from the northeast shoreline of Trindade (coordinates: 20°30’S and
29°19'W), under influence of native vegetation (Cyperus atlanticus). Soil cores were bulked,
sieved (<2 mm) and stored at 4 °C, for 20 days, until microcosm assembly (Fig. 1). The
sampling expedition took place through April 2013. A total of 10 chemical variables (pH,
P-rem, P, K, S, Ca®t, Mg2+, OM, N and C), plus soil texture, were assessed in the soil
analysis. The protocol references and results are shown in Table 1, in the results section.

Soil treatment with crude oil

Firstly, to simulate the ageing of crude oil exposed to environmental conditions during
spillage events, we heated 500 mL of crude oil to 90 °C and incubated for two hours in a
fume hood. The resulting aged crude oil was a material highly viscous and difficult to work
with. To obtain homogenous mixing of oil with soil, we dissolved the aged crude oil in
hexane and applied to a subsample of each experimental soil (Fig. 1). Studies regarding the
degradation or extraction of hydrocarbons from soil systems routinely use organic solvents
for spiking of soil with these hydrocarbons, and it is well known that organic solvents are
harmful for native microbial community of soil (Maliszewska-Kordybach, 1993; Brinch,
Ekelund ¢ Jacobsen, 2002). Therefore, hexane was also added to soils without crude oil to
create a hexane-only contaminated control stock. These hexane (and crude oil + hexane)
exposed soil stocks were kept in a fume hood until all hexane had evaporated. We then
added 10 g of the control stock soil (hexane evaporated) to the flasks corresponding to
‘Control,” and made up to 20 g with the corresponding soil that had not been exposed to
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Figure 1 Experimental design scheme.

hexane. The same procedure was repeated for the stock soils contaminated with crude oil,
corresponding to the treatment ‘Crude Oil.” This combination method was required to
repopulate the native soil microbial community injured by hexane. The final concentration
of crude oil was 30 g kg™!. The flasks were incubated at 26 °C and the soil moisture was
kept at 60% of its water holding capacity (remoistened periodically with deionised water
upon reaching c. 50% water holding capacity).
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Experimental design

To evaluate the effects of crude oil on the soil microbial community, we assembled six
soil microcosms in borosilicate Wheaton® (Wheaton, KS, USA) respirometer flasks of
250 mL, containing 10 g of soil (dry weight). The microcosms were incubated at 26 °C
for 23 days, and the microbial activity was monitored by quantifying CO? emissions
every 4 hours, using a continuous-flow respirometer coupled to an infrared CO? detector
(TR-RMS8 Respirometer Multiplex—Sable System) (Heinemeyer et al., 1989). After this 23
days, acclimatizing period, three flasks (3 replicates) received further 10 g of stock soil
treated with hexane for Control and three flasks (3 replicates) received further 10 g of stock
soil treated with crude oil and hexane, to the treatment Crude Oil. The final concentration
of the Crude Oil treatment was 30 g kg™!. After the settlement of the treatment replicates,
the incubation continued for 15 more days (Fig. 1). After this period the samples were
frozen using liquid nitrogen and stored at —80 °C until total community DNA extraction.

Molecular analyses
DNA extraction and quality check

Genomic DNA was extracted and purified from each soil sample (0.5 g) using

the PowerMax® Soil DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA)
following manufacturer’s instructions. Purity of the extracted DNA was checked using
a Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, DE,
USA) (260/280 nm ratio) and DNA concentration was determined using Qubit® 2.0
fluorometer and dsDNA BR Assay kit (Invitrogen, Carlsbad, CA, USA). Integrity of the
DNA was confirmed by electrophoresis in a 0.8 % agarose gel with 1 X TAE buffer.

High-throughput sequencing

Sequencing was done on the Illumina MiSeq® platform (Caporaso et al., 2012) at the
High-throughput Genome Analysis Core (HGAC), Argonne National Laboratory (Illinoi,
USA). Bacterial and archaeal 16S rRNA genes were amplified using primers 515F (5'-
GTGCCAGCMGCCGCGGTAA-3") and 806R (5'-GGACTACHVGGGTWTCTAAT-3')
for paired-end microbial community (Caporaso et al., 2011). Fungal ITS1 region was
amplified using primers ITS1F (5-CTTGGCCATTTAGAGGAAGTAA-3') and ITS2 (5'-
GCTGCGTTCTTCATCGATGC-3') using the method described by Smith ¢ Peay (2014).

Data analysis

We applied the 16S and ITS bioinformatics pipeline recommended by the Brazilian
Microbiome Project, available at http://brmicrobiome.org (Pylro et al., 2014). Briefly, this
pipeline uses QIIME (Caporaso et al., 2010) and Usearch 7.0 (Edgar, 2010) for filtering
low quality sequences, clustering sequences of high similarity, diversity analysis, diversity
comparisons and graphical plotting. For fungal ITS analysis we also used the software ITSx
(Bengtsson-Palme et al., 2013) for taxonomic assignment improvement. The sequencing
depth can affect alpha and beta diversity analysis, therefore, we used the strategy of
rarefaction (randomly sub-sampling of sequences from each sample) to equalize the
number of sequences per sample and to evaluate the sufficiency of the sequencing effort.
We also used the Good’s coverage (Good, 1953) index to assess the coverage reached
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Figure 2 Respirometry analysis of Trindade Island coastal soil microcosms. Average CO, emission
rates evaluated during 38 days of incubation. Emissions until 24 days represent the acclimatizing period
without oil addition. Readings after 24 days show the differences in CO, emissions after establishing the
two treatments (Control and Oil). The microcosms were incubated at 26 °C and CO, emission was mon-
itored by an automated respirometer coupled to an infrared CO, detector.

using the rarefaction level chosen. The microbial diversity changes were measured using
the alpha diversity metrics: PD whole tree (for 16S rRNA gene only), Chao (1984) and
observed species. For beta-diversity estimations, we generated distance matrixes using
the phylogenetic method weighted unifrac (Lozupone & Knight, 2005) for 16S rRNA gene
sequences and the Bray—Curtis (Bray ¢ Curtis, 1957) method for ITS sequences. We plotted
the beta-diversity distance matrixes using a bi-dimensional Principal Coordinates Analysis
(PCoA) and the clusters were evaluated using the cluster quality analysis (cluster_quality.py
script on QIIME) (Caporaso et al., 2010), calculating the ratio of mean “distances between
samples from different clusters” to mean “distances between samples from the same
cluster.” The hypothesis testing method used to compare taxonomic differences between
treatments was made using the bioconductor EdgeR package (Robinson, McCarthy ¢
Smyth, 2010). The count matrix was normalized through the relative log expression (RLE)
proposed by Anders ¢ Huber (2010), where the median count is calculated from the
geometric mean of all columns and the median ratio of each sample to the median library
is used as the scale factor. The p-values were corrected using the Benjaming-Hochberg false
discovery rate method (FDR). The R script used in this analysis is described and available
at http://github.com/kdanielmorais.

RESULTS

Soil respiration and physicochemical characteristics

The Trindade Island soil physicochemical properties are listed at Table 1. The first 23 days
of incubation didn’t show any difference in CO, emissions between the 6 microcosms.
Differences were detected only at the 24° day, after the definition of the treatments (Fig. 1).
CO, emission rate of oil-contaminated samples increased 8 x compared to the control in
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Table 2 Average (n = 3) alpha diversity comparison between the treatments control and crude oil for
bacteria and archaea groups.

Metrics Control Std. err. Crude oil Std. err. p-value®

Rarefaction level 45,690 - 45,690 - -

Good’s coverage 0.987 0.001 0.989 0.002 -

PD whole tree 177.51 1.69 164.87 3.72 0.012546

Chao 1 3107.12 39.7 2796.51 149.7 0.047083

Observed species 2679.23 36.9 2443.20 78.5 0.018392
Notes.

2Two-sample parametric ¢-test.

Table 3 Average (n = 3) alpha diversity comparison between the treatments control and crude oil for

fungi.
Metrics Control Std. err. Crude oil Std. err. p-value®
Rarefaction level 25,315 = 25,315 = =
Good’s coverage 0.99 0.001 0.99 0.001 -
Chao 1 100.58 12.1 69.96 12.9 0.0548
Observed species 96.46 11.8 67.8 11.7 0.0681
Notes.

2Two-sample parametric ¢-test.

the first 4 h (Fig. 2). Three days after contamination, emission rate peaked at more than 20
times the control. CO; emission of the oil treated samples was higher than the control from
the definition of the treatments (24th day of incubation) until the sampling of the DNA
(38th day). At the last day of incubation (38th), CO, emission rate of the contaminated
treatment was still almost 4 times higher than the control (Fig. 1).

Sequencing output

A total of 314,748 joined and quality filtered 16S rRNA gene Illumina® barcoded reads, and
424,269 single end quality filtered fungal ITS Illumina® barcoded reads were obtained from
the soil samples (Table S1). The oil-contaminated treatment yielded a smaller number of
sequences. To minimize the effects of sequencing depth variation on diversity analysis and
taxa comparison, we applied the rarefaction method (random subsampling of sequences).
Estimates of alpha and beta-diversity were based on evenly rarefied OTU matrices (45,695
sequences per sample for Bacteria and Archaea and 25,315 sequences per sample for Fungi).

Diversity comparisons

The alpha diversity indexes used in this experiment represent species richness (Tables 2
and 3). We compared treatment’s effects over Bacteria/Archaea community using the
estimators Faith’s PD (phylogenetic measure of diversity based on total branch length of
phylogeny captured by a sample, proposed by Faith, (1992)), the Chao-1 (estimator of
total species richness proposed by Chao, 1984), and observed species (number of species
detected) (Table 2). The effects on Fungal community was measured using only the Chao-1
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and Observed species estimators, as there was not an ITS1 phylogenetic tree available to use
the Faith’s PD estimator. All metrics yielded similar results for Bacteria/Archaea and Fungi.
The comparison between the two treatments shows a significant reduction of diversity
upon the addition of oil for Bacteria, Archaea and Fungi. The fungal community was the
most sensitive group to the oil addition, showing a reduction of ~40% for the indexes
Chaol and Observed species (Table 3).

The rarefaction analysis (Figs. 3A and 3B), which plots the operational taxonomic unit
(OTU) richness as a function of sequencing depth, and the Good’s coverage shows that
sequencing effort was sufficient to capture the Bacterial, Archaeal and Fungal diversity
of samples. The analysis also confirms that crude oil had a reductive effect on microbial
diversity.

The beta diversity analysis was performed using (Fig. 4) Weighted Unifrac for 16s rRNA
gene and Bray—Curtis for fungal intergenic spacer ITS1 due to the lack of a phylogenetic tree
for ITS1 marker. Both methods showed two very distinct clusters separating the treatments
Control and Crude Oil (Cluster quality. 16S = 2.36 and ITS = 2.14).

Taxonomic comparison

The taxonomic distributions of Bacteria/Archaea are shown in Fig. 5 at phylum level.
The control treatment show 6% of sequences to be from the Archaea domain, 93.4%
from Bacteria domain and 0.5% were not assingned to any taxa from the GreenGenes
database (DeSantis et al., 2006). For Archaea, we found only three representatives: the
species Candidatus nitrosphaere belonging to the phylum Crenarchaeota, the order E2
belonging to the phylum Euryarchaeota and the order YLA114, belonging to the phylum
Parvarchaeota. The addition of oil reduced the relative abundance of Archaea to 2.7%.

We identified 225 orders in the bacterial group of the control samples. The most
abundant bacterial orders in the control were Acidobacteria order iiil-15 (7%), Rhizobiales
(6.5%), Rubrobacterales (6.3%), Nitrospherales (6.1%), Xanthomonadales (4.8%),
Syntrophobacterales (4.2%), Gaielalles (4%) and Myxococcales (4%). Oil-contaminated
samples presented 224 orders, and the most abundant orders were Actinomycetales
(17%), Acidobacteria order iiil-15 (8.5%), Rhizobiales (6.4%), Burkholderiales (4%),
Xanthomonadales (3.9%), Chloroacidobacteria order RB41 (3.4%), Sphingomonadales
(3%), Acidimicrobiales (2.9%). The abundance of 57 taxa was significantly different
between Control and Crude Oil (Table 4).

Fungal taxonomy analysis (Fig. 6) was assessed using the UNITE database version 7
(Koljalg et al., 2005). 5% of the reads from non-contaminated soil were not assigned to any
taxonomic group. For the crude oil treatment, only 0.7% of the sequences did not match to
ataxon. We found 29 orders in the fungal group of the control samples. The most abundant
orders in the control were Hypocreales (41%), Mortierellales (27%) and Sordariales (7.5%).
Oil-contaminated samples presented 29 orders, and the most abundant orders were
Mortierellales (70%), Hypocreales (24%) and Botryosphaeriales (1.1%). Abundance of 6
taxa was significantly different between control and oil contaminated soils (Table 5).
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Figure 3 Average alpha diversity rarefaction plot for (A) Bacteria/Archaea and (B) Fungi. It shows the
number of observed species at a random pool of sequences in different depths.

DISCUSSION

In this study, we have applied high throughput sequencing to evaluate the effect of crude
oil contamination on Trindade Island soil microbiota. We found that crude oil had a
deleterious effect on microbial alpha-diversity (Tables 2 and 3). This result is similar to the
obtained by Yang et al. (2014), as crude oil was thought to have an eco-toxicological effect.
The higher amount of CO, evolved in the crude oil treated-soil (Fig. 2) is related to the oil
stressing effect (Franco et al., 2004), and the further peaks observed in the Fig. 2, might be
related to different fractions of oil being degraded according to its bioavailability.

Despite the toxic effect, some taxa are able to use oil hydrocarbons as a source of carbon
and energy being favoured by oil amendment, and gradually overcoming the populations
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Figure 4 Principal coordinate analysis (PCoA). A total of 6 soil samples were analysed by amplicon se-
quencing. Sequences were rarefied at the same sequencing depth and abundance matrixes were gener-
ated using taxa tables summarized at the lowest possible taxonomic level, ranging from phylum to specie.
(A) 16S rDNA amplicon sequences coordinates analysis, generated with Weighted Unifrac distance ma-
trix, explaining 90.90% of variation. (B) Fungal ITSI region amplicon sequences coordinate analysis, gen-
erated with Bray-Curtis distance matrix, explaining 96.16% of variation.
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Table 4 Bacterial/Archaeal OTUs presenting an average absolute abundance significantly different be-
tween the treatments “Oil” and “Control,” under the EdgeR Fisher’s exact test and & = 0.05.

Taxa Control Crude oil q-value’

g_Candidatus Nitrososphaera 10275.0 4098.0 3.77E—03
p_Acidobacteria;o_DS-18 546.0 740.0 9.05E—03
p_Acidobacteria;o_Sva0725 370.0 704.0 9.20E—05
p_Actinobacteria;g_Tamia 93.0 206.0 1.41E—02
p_Actinobacteria;f_Actinosynnemataceae 17.0 71.0 6.66E—07
p_Actinobacteria;g_Gordonia 1.0 51.0 2.69E—02
p_Actinobacteria;f_Intrasporangiaceae 42.0 186.0 1.03E—07
p_Actinobacteria;f_Micrococcaceae 264.0 467.0 1.02E—03
p_Actinobacteria;g Nocardia 6.0 13766.0 2.76E—79
p_Actinobacteria;f Nocardiaceae 18.0 91.0 2.20E—06
p_Actinobacteria;f Nocardioidaceae 392.0 1158.0 4.43E—12
p_Actinobacteria;g_Aeromicrobium 179.0 506.0 3.11E—07
p_Actinobacteria;g_Nocardioides 57.0 105.0 1.13E—02
p_Actinobacteria;g_Pimelobacter 6.0 799.0 1.82E—19
p_Actinobacteria;g_ Amycolatopsis 2.0 88.0 5.19E—10
p_Actinobacteria;f_Streptomycetaceae 166.0 3743.0 2.19E—48
p_Actinobacteria;g_Streptomyces 380.0 613.0 6.03E—04
p_Actinobacteria;g_Actinomadura 32.0 71.0 3.75E—03
p_Actinobacteria;c_MB-A2-108 80.0 130.0 2.16E—02
p_Actinobacteria;f Rubrobacteraceae 4085.0 1590.0 1.72E—04
p_Actinobacteria;g_Rubrobacter 6674.0 1710.0 4.18E—08
p_Bacteroidetes;g_Crocinitomix 62.0 0.0 5.30E—11
p_Bacteroidetes;g_Fluviicola 568.0 53.0 9.23E—05
p_Firmicutes;o_Bacillales 109.0 33.0 3.84E—02
p_Firmicutes;g_Alicyclobacillus 102.0 30.0 1.45E—02
p_Firmicutes;g_Bacillus 1680.0 504.0 5.32E—05
p_Firmicutes;g_Virgibacillus 162.0 65.0 1.61E—02
p_Firmicutes;g_Cohnella 54.0 14.0 1.71E—02
p_Firmicutes;f Thermoactinomycetaceae 52.0 7.0 1.08E—04
p_Nitrospirae;g_Nitrospira 1356.0 591.0 8.71E—04
p_Planctomycetes;c_Pla3 169.0 65.0 4.17E—02
p_Planctomycetes;o_B97 127.0 52.0 4.41E—02
p_Proteobacteria;c_Alphaproteobacteria 95.0 214.0 1.33E—05
p_Proteobacteria;f Caulobacteraceae 62.0 105.0 1.02E—02
p_Proteobacteria;g_Phenylobacterium 52.0 159.0 2.03E—06
p_Proteobacteria;o_Ellin329 579.0 754.0 2.80E—02
p_Proteobacteria;f Rhizobiaceae 142.0 223.0 1.29E—02
p_Proteobacteria;o_Rhodospirillales 1862.0 1003.0 2.52E—02
p_Proteobacteria;g_Phaeospirillum 33.0 83.0 6.83E—04
p_Proteobacteria;o_Rickettsiales 55.0 13.0 3.75E—03

(continued on next page)
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Table 4 (continued)

Taxa Control Crude oil g-value’

p_Proteobacteria;f Alcaligenaceae 88.0 152.0 1.25E—02
p_Proteobacteria;f Burkholderiaceae 1.0 110.0 9.60E—14
p_Proteobacteria;g_Burkholderia 6.0 108.0 8.14E—16
p_Proteobacteria;f Comamonadaceae 611.0 4498.0 1.14E—14
p_Proteobacteria;g_Delftia 15.0 289.0 1.34E—09
p_Proteobacteria;g_Cupriavidus 25.0 258.0 1.09E—17
p_Proteobacteria;f Entotheonellaceae 1030.0 472.0 1.11E—03
p_Proteobacteria;f Bacteriovoracaceae 185.0 35.0 2.80E—02
p_Proteobacteria;f Syntrophobacteraceae 7112.0 3975.0 3.01E—02
p_Proteobacteria;f_Alteromonadaceae 969.0 54.0 5.43E—05
p_Proteobacteria;g_Cellvibrio 101.0 22.0 1.37E—04
p_Proteobacteria;f Moraxellaceae 3.0 271.0 4.08E—02
p_Proteobacteria;g_Acinetobacter 6.0 436.0 3.44E—06
p_Proteobacteria;g_Perlucidibaca 9.0 1496.0 3.11E—07
p_Proteobacteria;g_Arenimonas 60.0 9.0 2.93E—04
p_TM7;c_SC3 127.0 17.0 2.41E—08
p_TM7;c_TM7-1 50.0 7.0 1.77E—04

Notes.

2p-values corrected by the FDR method.

100 -
Unassigned;Other;Other

k_ Fungi;Other;Other
k_ Fungi;p_ Ascomycota;Other
k_ Fungi;p_ Ascomycota;c_ Dothideomycetes

k_ Fungi;p_ Ascomycota;c_ Eurotiomycetes

k__Fungi;p_ Ascomycota;c_ Incertae sedis
k__Fungi;p_ Ascomycota;c_ Leotiomycetes

k_ Fungi;p_ Ascomycota;c_ Orbiliomycetes

k_ Fungi;p_ Ascomycota;c_ Saccharomycetes
k__Fungi;p_ Ascomycota;c_ Sordariomycetes

k_ Fungi;p_ Ascomycota;c_ unidentified

k_ Fungi;p_ Basidiomycota;c__ Agaricomycetes
k__Fungi;p_ Basidiomycota;c__ Microbotryomycetes
k__Fungi;p_ Basidiomycota;c_ Tremellomycetes
k__Fungi;p_ Zygomycota;c_ Incertae sedis
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Figure 6 Relative abundance of Fungi phyla using ITS1 region sequences. Samples are disclosed isolated and as an average of each treatment.

lacking those abilities. The effects on fungal diversity were more marked than that observed
on prokaryotic diversity, corroborating Embar, Forgacs ¢ Sivan (2006), who reported a
rapid increase in abundance and shift in diversity in the fungal community in response to
oil contamination. The strong effect of oil on the fungal diversity may also be explained
by metabolic differences between eukaryotes and prokaryotes. This effect relates to the
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Table 5 Fungal OTUs presenting an average absolute abundance significantly different between the
treatments “Crude Oil” and “Control”’, under the EdgeR Fisher’s exact test and o = 0.05.

Taxa Control Crude oil q-value®

p_Ascomycota;f_Clavicipitaceae 96.3 2442.6 1.96E—16
p_Ascomycota;g_Fusarium 834.0 19800.6 7.25E—16
p_Zygomycota;g_Mortierella 11430.0 69846.3 2.55E—08
p_Ascomycota;o_Hypocreales; 378.0 1148.3 1.01E—-05
p_Ascomycota;g_Lecanicillium 0.0 135.0 3.02E—05
p_Ascomycota;f_Bionectriaceae 14704.3 202.3 8.01E—04

Notes.

p-values corrected by the FDR method.

increased toxicity of polycyclic aromatic hydrocarbons, present in crude oil, after metabolic
activation mediated by the enzyme cytochrome P450 (CYP) of eukaryotes. The majority of
carcinogens in the environment are inert by themselves and require the metabolic activation
by CYP, in order to exhibit carcinogenicity (Shimada ¢ Fujii Kuriyama, 2004). The CYP
genes belong to the superfamily of dioxygenases, present in all domains of life. Genes that
code for dioxygenases in prokaryotes are related to toxin and xenobiotic degradation,
while in eukaryotes CYP genes may be related to a plethora of functions, ranging from
biosynthesis of hormones to chemical defence in plants (Werck-Reichhart ¢ Feyereisen,
2000).

We observed the formation of two distinct clusters representing the control samples
and the crude oil contaminated samples during the analysis of beta-diversity (Fig. 4). We
found that bacterial/archaeal oil-contaminated replicates showed a broader spread in the
PCoA, while oil-contaminated replicates in fungal communities are clustered more tightly
(Fig. 4B). Because of selective pressure, the taxa resistant to the contamination event and
the populations able to degrade hydrocarbons will gradually outnumber the rest of the
community in the curse of succession (Yang et al., 2014). Therefore, as oil presented a
toxic effect, we would expect that the bacterial community of contaminated samples would
show a more compact clustering, as happened with the fungal community. However, as
the bacterial community comprises c. 30x more OTU than the fungal, the shifts in the
bacterial relative abundance might be more related to soil microhabitats present in each
replicate, than with the oil toxic effects. This phenomenon was previously observed (Juck
et al., 2000; Liang et al., 2011; Yang et al., 2014), and could be explained by the appearance
of new niches in the contaminated soil with further fulfilment of these niches by previously
not detected (low abundance) taxa.

Soil is the most diverse environment on earth (Vogel et al., 2009), and many of the native
microorganisms possess the ability to resist and degrade crude oil hydrocarbons (Franco
et al., 2004; Head, Jones & Roling, 2006). In this study, we detected the relative abundance
community shifts in Actinobacteria, Proteobacteria, Firmicutes and Planctomycetes. The
phylum Actinobacteria had its abundance increased in response to crude oil addition.
We detected shifts in one unidentified species from the family Streptomycetaceae, one
specie from the genus Streptomyces and one specie from the order Solirubrobacterales.
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Interestingly, the genera Nocardia represented less than 0.01% of the total sequences in the
control samples and shifted to 9.4% of the sequences in the crude oil samples (Table 4).
Several studies have reported Actinobacteria as a good option for removing recalcitrant
hydrocarbon, since they are known for the production of extracellular enzymes that degrade
a wide range of complex hydrocarbons. Also, many species of Actinobacteria are able to
produce biosurfactants that enhance hydrocarbons solubility and bioavailability (Pizzul,
Del Pilar Castillo & Stenstrom, 2007; Kim & Crowley, 2007; Balachandran et al., 2012;

Da Silva et al., 2015). The Actinobacteria phylum is recognized as the main alkane degrader
in polar soils (Aislabie, Saul & Foght, 2006), besides producing multiple types of antifungals,
antivirals, antibiotics, immunosuppressives, anti-hypertensives and antitumorals (Benedict,
1953; Omura et al., 2001; Khan et al., 2011; De Lima Procdpio et al., 2012). Rodriguez-R

et al. (2015) reported a significant rise in Gamma and Alphaproteobacteria relative
abundance from beach sand of Florida coast, in response to the crude oil plume from
the Deepwater Horizon Drilling rig accident in the Gulf of Mexico. Although some works
have reported prevalence of Gram-negative bacteria upon soils contaminated with heavily
weathered petroleum (Kaplan ¢ Kitts, 2004), our work shows a big shift on Gram-positive
Actinobacteria. Our results also corroborates with Chikere, Okpokwasili & Chikere (2009)
who reports the prevalence of Actinobacteria after oil addition using cultivation dependent
techniques. Grossart et al. (2004) detected the inhibition of several proteobacterias by
actinomycete strains isolated from the German Wadden sea, while Burgess et al. (1999)
report that antibiotic production may be triggered by several factors as presence of
chemical substances, substrate availability, population density and many others.

We did not detect a shift in the general relative abundance of the Proteobacteria phylum
(Fig. 4) but the relative abundance of the classes inside this phylum showed a significant
change (Table 5). Alpha and Deltaproteobacteria classes had a major relative abundance
reduction in the contaminated samples. The reduction of these two classes might even
be connected, considering that the Alphaproteobacteria with the biggest reduction was a
member of the Rhodospirillales order, which is composed mainly by purple non-sulphur
photosynthetic microorganisms. This group fix carbon using hydrogen as an electron
donor, and the member of the Deltaproteobacteria phylum that suffered the biggest
reduction belongs to the Syntrophobacteraceae family, a family known for releasing H,
as a product of organic acids fermentation. This ecological interaction is called syntrophy
(Mclnerney et al., 1981), and its presence could be happening as both groups were reduced
by c. 50%. The Beta and Gammaproteobacteria classes rose in their relative abundance
in response to crude oil treatment. The member of the Betaproteobacteria class with the
biggest increase belonged to the family Comamonadaceae, this family is known by its
heterotrophic denitrification capability (Khan et al., 2002) using organic compounds as
electron donors. The only Archaea species we detected, Nitrososphaera, is an autotrophic
ammonia-oxidizer (MufSmann et al., 2011) and represented 6.1% of the total sequences in
the control. In the crude oil contaminated treatment, this relative abundance was reduced
to 2.8%. Urakawa et al. (2012) evaluating the responses of ammonia-oxidizing Archaea and
Bacteria to crude oil hydrocarbons, showed that Archaea are several times more sensitive
than Bacteria. The reduction of this Archaea and the increase in the relative abundance
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of the Comamonadaceae family individual (Table 5), mentioned above, reinforces the
hypothesis raised to explain the broader cluster observed in Bacteria beta-diversity (Fig.
4A). This phenomenon was not observed for Fungi, as in the control samples we were
able to detect 12 well distributed classes and in the contaminated samples, with more
than 95% of the sequences belonged to the classes Sordariomycetes and Incertae. The
Incertae class presented only the genera Mortierella and its relative abundance in the
contaminated samples reached 70.3%. Mortierella is a Zygomycota and is known as an
oleaginous microorganism, it accumulates lipids and has even been used as a strategy for
biodiesel production (Ratledge, 2002; Kumar et al., 2011).

This is the first study reporting the effect of crude oil contamination in soils of the
Trindade Island, a Brazilian oceanic island threatened by possible oil spills due petroleum
exploration. Our results reinforces the importance of microbial diversity analysis in
insulated environments, pointing out the impact of crude oil on microbial communities
shifts from unexplored environments. Moreover, these finds indicate the biotechnological
potential of degrading hydrocarbons soil microorganisms, fostering further studies aiming
to relieve any oil contamination occurrence on Trindade Island.
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