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ABSTRACT. A significant contribution of molecular genetics is 
the direct use of DNA information to identify genetically superior 
individuals. With this approach, genome-wide selection (GWS) can 
be used for this purpose. GWS consists of analyzing a large number 
of single nucleotide polymorphism markers widely distributed in the 
genome; however, because the number of markers is much larger than 
the number of genotyped individuals, and such markers are highly 
correlated, special statistical methods are widely required. Among these 
methods, independent component regression, principal component 
regression, partial least squares, and partial principal components stand 
out. Thus, the aim of this study was to propose an application of the 
methods of dimensionality reduction to GWS of carcass traits in an F2 
(Piau x commercial line) pig population. The results show similarities 
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between the principal and the independent component methods and 
provided the most accurate genomic breeding estimates for most 
carcass traits in pigs.

Key words: Partial least squares; Independent component regression; 
Principal component regression; Partial principal component

INTRODUCTION

Given the abundance of polymorphisms in certain molecular genetic markers, Meu-
wissen et al. (2001) idealized the use of genome-wide selection (GWS), which consists of 
incorporating genomic information directly into the predictions of individual genetic merit 
for traits of economic interest. However, the direct use of these markers in the selection of 
genetically superior individuals is still a challenge due to problems of dimensionality and 
multicollinearity arising from the large number of such markers in relation to the quantity of 
individuals genotyped. As a solution to such problems, Gianola et al. (2003) recommended the 
use of statistical methods that integrate both the selection of covariates and the regularization 
of the estimation process. 

The most commonly used methods for GWS are the penalized regression under the 
frequentist (RR-BLUP and G-BLUP) and Bayesian (Bayes A and B and Bayesian Lasso) ap-
proaches. However, dimensionality reduction methods based on regression, such as uni- and 
multivariate partial least squares (UPLS and MPLS) and independent and principal compo-
nent regression (ICR and PCR), are also of great applicability (Moser et al., 2009; Pintus et 
al., 2012; Azevedo et al., 2013a,b). Another methodology not yet used to compute genomic 
predictions of genetic merit and single nucleotide polymorphism (SNP) marker effects is par-
tial principal components (PPC), and the theoretical detailed description of this method is 
described by Ferreira (2008).

The main difference between PLS and PCR is that the extracted components of PCR 
explain the variance of covariates (X) and the extracted components of PLS have higher cova-
riance for the response variables (Y). The ICR method is similar to PCR but ICR uses single 
value decomposition and PCR uses spectral decomposition. While the proposed method, PPC, 
combines the purposes of PCR and PLS, it maximizes the variance of the covariates and the 
covariance with the response variables.

Several studies using these methodologies as a basis for breeding can be found in 
the literature. The study by Pintus et al. (2012) used principal component analysis to reduce 
the number of predictors for calculating genomic breeding values (GEBV) for dairy traits in 
Italian Brown and Simmental bulls. Colombani et al. (2012) used PLS and sparse PLS for 
predicting GEBV of French Holstein bulls. Recently, Azevedo et al. (2013b) proposed an 
ICR for the estimation of genomic values and of SNP marker effects for carcass traits in an F2 
pig population (Piau x commercial line). Although the literature present several comparisons 
between these methodologies (Moser et al., 2009; Colombani et al., 2012; Azevedo et al., 
2013a,b), there are no comparisons that include independent, partial, and principal component 
methodologies in the same study.

Carcass characteristics are very important in the pig industry, especially those related 
to a higher yield of meat and the smallest fat deposition, to meet the growing and demanding 
consumer market (Rosa et al., 2008; Zangeronimo et al., 2009). A larger quantity of carcass 
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meat of pigs has been the goal not only in the industry, because it improves profitability and 
decreases production costs. Thus, studies involving genomic selection for carcass traits in pigs 
are extremely important for improving the accuracy in estimating the genetic merit of indi-
viduals by considering genomic information. 

In this study, we compared the accuracies of different dimensionality reduction meth-
ods for the computation of genomic prediction of genetic merit and of SNP marker effects for 
carcass traits in an F2 pig population (Piau x commercial line).

MATERIAL AND METHODS

The F2 pig population was generated by crossing two native Brazilian Piau boars with 
18 commercial sows (Landrace x Large White x Pietran) selected for growth rate and backfat 
thickness. The F1 generation consisted of 106 sows and 134 boars (Band et al., 2005). Twelve 
boars from different litters were randomly selected from the 134 F1 boars and mated by natural 
breeding with 54 F1 sows to produce the F2 generation. The F2 generation consisted of approxi-
mately 840 offspring divided into five batches according to the season in which they were born.

After slaughter, around 65 kg live weight (64.71 ± 0.24), the following carcass traits were 
evaluated in the animals of the F2 generation: bacon depth (BCD), midline lower backfat thick-
ness (L); midline backfat thickness after the last rib (LR); midline backfat thickness on the last 
lumbar vertebrae (LL), and backfat thickness after the last rib, 6.5 cm from the midline (ETO).

Details of the DNA extraction procedures used are described in Faria et al. (2006). 
Six primer pairs for microsatellite markers distributed on SSC7 (S0025, S0064, S0102, 
SW252, SW632, and S0212) were used. Amplifications were conducted in an MJ Research 
PTC 100-96® thermocycler, according to standard laboratory procedures (Faria et al., 2006). 
The amplified fragments were scored automatically by the GenScan software installed in an 
ABI PRISM 310 sequencer (Applied Biosystems). Annotation and genotype checking were 
conducted manually by two independent and previously trained technicians. The CRIMAP 
software (Lander and Green, 1987) was used to construct linkage maps of the related markers 
(S0025, S0064, S0102, SW252, SW632, and S0212), which were distributed at positions 0, 
31, 65, 96, 108, and 136 cM, respectively.

All dimensionality reduction methods, besides enabling regularization in the estima-
tion process, guarantee the removal of multicollinearity present in the data, once the cor-
relation between any pair of components (linear combinations of SNPs) equals zero. In the 
dimensionality reduction methods, the X matrix is defined as the matrix of SNP markers x 
(values 0, 1, and 2 for the number of alleles of the SNP) and y is a vector of phenotypic varia-
tion corrected for fixed effects and deregressed.

PCR reduces dimensionality without resulting in significant loss of information pres-
ent in the data (Otto, 1999). In this method, the components Zv , v = 1,...,n, are linear combina-
tions of the explanatory variables X1,X2,...,Xj . Thus, the following equation holds:

where P is the matrix of npcr first eigenvectors of the covariance matrices of the X and Z com-
ponents. Aiming to establish the relationship between y and Zv, multiple linear regression is 
used, obtaining the following prediction equation:

ˆ= Z XP (Equation 1)Z = XP
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(Equation 2)

(Equation 4)

(Equation 5)

(Equation 7)

(Equation 6)

where  is the estimated regression coefficient, which has no biological interpretation. How-
ever, it is possible to estimate the coefficients associated to the original variables (SNPs) com-
bining (1) and (2), using the following expression:

PLS is considered an appropriate method for data containing more covariates than 
observations (Hoskuldsson, 1988), as in GWS. This methodology also allows a multivariate 
approach considering multiple-dependent variables.

MPLS obtains estimators for the dependent variables (traits) using the component iT  ( i = 1,...,p ). Under this approach, the statistical model is expressed as follows:

where kY  is the dependent variable k  ( k = 1,...,n ), βki is the regression coefficient, and e is 
the residual.

The estimated component iT  is dependent on two latent variables, ijV
 
and ikR . Thus, it 

assumes that the components iT  ( i 1≥ ), the variables ijV
 
( j = 1,...,m ), and ikR  ( k = 1,...,n ) have 

been determined. By definition, (i+1)jV  is the residual from the regression between iT  and ijV , and 
(i+1)kR is the residual from the regression between ikR and iT , respectively expressed by:

where it is the column vector of values of the ith component, ijv  is the vector of the values of 
ijV , ikr is the vector of the values of ikR , and i ij i i' ( ' )t v t t and i ik i i' ( ' )t r t t  are regression coef-

ficients. If i = 1 , 1jV
 
is the centered variable of X ( j1j jV  = X -X , to j = 1,...,m ) and 1kR  is the 

centered variable of kY  ( k1k kV  = Y -Y , to k = 1,...,n ). The process is successively repeated to 
obtain the matrices 

(i+1) (i 1)1 (i 1)nR  = ( ,..., )+ +r r  and (i+1) (i 1)1 (i 1)mV  = ( ,..., )+ +v v . Thus, using the matri-
ces (i+1)R  and (i+1)V , a new vector, 

i+1u , is determined by multiplying i+1 i+1R c , where i+1c  is 
the corresponding eigenvector of the eigenvalue of i+1 i+1 i+1 i+1R' V V' R  (Hoskuldsson, 1988).  
Garthwaite (1994) generally defines the component 

(i+1)T  as a weighted average given by:

where (i+1)jw  is a weight defined by 
(i+1)j (i+1)j (i 1) j (i 1) jw var(V ) ( ' ) (n 1)+ +∝ = −v v  and  is 

(Equation 3)mpcr = Pα.

V(i+1)j = Vij - {tꞌi vij/(tꞌiti)}Ti

R(i+1)k = Rik - {tꞌi rik/(tꞌiti)}Ti
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(Equation 8)

(Equation 10)

(Equation 11)

the estimated regression coefficient of U(i+1) in relation to V(i+1)j, given by (i+1)j (i+1)j (i+1) (i+1)j (i+1)jb̂ = ' ( ' )v u v v .
The method is repeated to obtain (i+2) (i+3) pT ,T ,...,T

 
( p min(m,q)≤ , where q is the number 

of observations). After obtaining the p components, the regression coefficients of model (4) are de-
termined by the ordinary least squares method (OLS), obtaining the following prediction equation:

Analogous to the PCR method, it is possible to find the coefficients for each trait k, 
associated to the original variables, which in this context are the markers. Thus, it is necessary 
to combine Equations 7 and 8 to obtain the following equation:

where W is the weight matrix, B̂  is matrix whose elements are the coefficients from the re-
gression between iU  and ijV , and  is the vector of coefficients    ki (i=1,...,p).

The main difference between MPLS and UPLS is in the construction of the vector i+1u
. In the UPLS method, i+1u is the vector of residuals from the regression between Y (single-
dependent variable) and the components iT  ( i = 1,...,p ). While the MPLS method applies a 
regression of each variable kY  (several dependent variables) and the components iT  ( i = 1,...,p ), 
and i+1u is a linear combination between residual vectors.

PPC is considered an appropriate method for data containing many dependent vari-
ables of interest (Ferreira, 2008). The PPC method defines the principal components from the 
maximization of the residual variance matrix given by the difference between the total varia-
tion and the variation explained by the covariates.

The proposed method allows both key components for the dependent variable 
[ 1 2 mY = (Y ,Y ,...,Y ) ] and the covariates [ 1 2 nX = (X ,X ,...,X ) ] to be obtained. So, it is necessary to 
obtain the joint covariance matrix of X and Y, defined by:

where ƩYY, ƩXX, and ƩXY=(ƩYX)' are covariance matrices of Y, X and between X and Y, respectively.
From the regression between X and Y, one can obtain the residual covariance 

matrix given by:

where ƩYY  and ƩXX represent the unconditional covariance matrices of X and Y, respectively, 
and consequently , ƩY.X, and ƩX.Y represent the dispersion of Y ex-
plained by X, the dispersion of X explained by Y, the covariance of Y|x, and the covariance of 
X| y, respectively.

(Equation 9)mpls = BWꞌβ
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(Equation 12)

(Equation 13)

(Equation 14)

(Equation 15)

(Equation 16)Xꞌ = A ꞌSꞌ

Thus, we must maximize the variance eiƩei, subject to restriction eiei = 1 to obtain 
principal components of the variables X and Y (Ferreira, 2008). Therefore, using the theorem 
for maximization of quadratic forms, we obtained:

Therefore, the partial principal components of X and Y are defined, respectively, by:

where YP  is the first eigenvector of Y.XÓ  and XP  is the matrix of the ppcn  first eigenvectors of 
X.YÓ . Aiming to establish the relationship between the partial principal components of X(N) 

and Y(r), multiple-linear regression is used, obtaining the following equation:

where ö̂  is the vector of the estimate coefficients from the regression between m and N. Simi-
larly to other dimensionality reduction methods, marker effects can be obtained by combining 
Equations 13 and 14, resulting in the following estimates:

ICR is the decomposition of the matrix X in linear combinations of completely independent 
components, in terms of both linear and non-linear relations. One advantage of ICR compared 
to PCR is the possibility of complete removal of any relationship of dependence between co-
variates. For this purpose, each independent component is built using the most representative 
SNPs chosen from a group of correlated SNPs.

Such analysis is also suitable for any distribution of the indicator variable in the ma-
trix X, as long as it is a non-Gaussian distribution. Thus, ICR is well suited to GWS, since the 
matrix X of markers is parameterized with values 0, 1, and 2 (non-Gaussian distribution). In 
line with this, the decomposition is as follows:

 
where S is the matrix of independent components and A is the matrix of mixtures. 

Special algorithms are used to try to find an orthogonal matrix R that maximizes the 
statistical independence of the columns of the S matrix using a quantitative measure of inde-
pendence, which is a function of contrasts. The iterative algorithm developed by Hyvärinen 
(1998) is based on the maximum enthropy J(r) concept assuming that the variable r is stan-
dardized. According to this algorithm, the following approximation is obtained:
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(Equation 17)

(Equation 19)

(Equation 20)

(Equation 21)

where, v is a standardized variable and 2
1G (v) = -exp(- v 2) . 

After the iterative process, the component matrix is obtained as follows: 

where K is an orthogonalization matrix and KR is an approximation of A'. Thus, the equation 
of the predictions are obtained based on ICR and computed as:

where ˆ  ky is a prediction vector of the kth dependent variable and the  coefficients deter-
mined by the OLS method icr=1,...,nυ . Similarly to other dimensionality reduction methods, 
marker effects can be obtained by combining Equations 18 and 19, resulting in the following 
estimates:

Dimensional reduction methods were compared using a cross-validation study (Resende et al., 
2012), carried out separately for each trait. In this part of the analysis, the F2 population of pigs 
was divided into three different populations, each one with 115 individuals.

Thus, for each analysis repetition, two of these populations were considered estimate 
(or trial) populations and used to obtain the effects of the SNP markers. The other population, 
denominated the validation population, was used to evaluate the agreement between predicted 
genetic values via estimates originating from the trial population and the corrected phenotypes 
observed. The process was repeated so that in each stage one of the three populations was the 
validating population.

Thus, the correlation between the estimated value in the three validations and the cor-
rected and deregressed phenotypes constituted the predictive ability of the method. The method 
accuracy depends on this correlation and is equivalent to the ratio by the heritability square root:

where 2
smh  is the Mendelian segregation heritability computed as  and 2h is the 

character heritability estimated by the REML (restricted maximum likelihood) method on 
phenotypes in a single-trait model (Resende et al., 2012).

Having the best method for each trait, the effects of the markers in absolute values 
were estimated and standardized considering the whole F2 population of pigs using Equations 
3, 9, 15, and 20, for methods PCR, PLS, PPC, and ICR, respectively. From this information, 
the Manhattan plot was constructed, where each point represents an SNP marker, the x-axis 

(Equation 18)S = XKR

mppc = KRγ
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shows location on the chromosome, and the y-axis shows the effect magnitude.
All computational routines were implemented in R (R Core Team, 2010) using the 

packages pls (PCR and PLS) and caret (ICR) and functions plsr (PLS), pcr (PCR), icr (ICR), 
which are freely accessible at http://www.det.ufv.br/~moyses/links.php. 

RESULTS 

The genetic correlations between pairs of carcass traits are presented in Table 1. Es-
timates of genetic correlations between carcass traits were high and positive, indicating an 
efficient selection through studies of multi-trais. The estimates of heritability for backfat thick-
ness and bacon depth showed high values ​​(Table 1), suggesting possible progress in the breed-
ing of these traits. 

Table 1. Estimates of heritability and genetic correlations between carcass traits in an F2 (Piau x commercial 
line) pig population.

Traits	 LR	 LL	 L	 ETO	 BCD

LR	 0.35	 0.64	 0.60	 0.63	 0.58
LL	 -	 0.36	 0.88	 0.60	 0.46
L	 -	 -	 0.33	 0.66	 0.55
ETO	 -	 -	 -	 0.42	 0.80
BCD	 -	 -	 -	 -	 0.34

Heritability estimates are presented on the diagonal; estimates of genetic correlations are presented above the 
diagonal. Midline backfat thickness after the last rib (LR); midline backfat thickness on the last lumbar vertebrae 
(LL); midline lower backfat thickness (L); backfat thickness after the last rib, 6.5 cm from the midline (ETO); 
bacon depth (BCD).

According to Figure 1, it is evident that the curve of the predictive ability of each 
method relative to the number of components has not reached a plateau. Thus, the number of 
components for each method, considering each trait, was reported that best predictor, i.e., the 
number of components corresponds to the peak of the curve shown in Figure 1.

Figure 1. Curve of the predictive capacity of dimensionality reduction methods relative to the number of 
components for each trait from an F2 (Piau x commercial line) pig population. Midline backfat thickness after 
the last rib (LR); midline backfat thickness on the last lumbar vertebrae (LL); midline lower backfat thickness 
(L); backfat thickness after the last rib, 6.5 cm from the midline (ETO); bacon depth (BCD); principal component 
regression (PCR); partial principal components (PPC); independent component regression (ICR); univariate partial 
least squares (PLS); multivariate partial least squares (PLS MULT).
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The accuracy of the dimensional reduction methods for each carcass trait is pre-
sented in Table 2. 

Table 2. Accuracy and bias of the dimensionality reduction methods for each trait in an F2 (Piau x commercial 
line) pig population.

 	 Method	 LR	 LL	 L	 ETO	 BCD

Predictive ability	 PCR	 0.63	 0.63	 0.23	 0.62	 0.75
	 PPC	 0.20	 0.40	 0.45	 0.25	 0.27
	 ICR	 0.62	 0.65	 0.25	 0.60	 0.75
	 PLS	 0.56	 0.58	 0.23	 0.57	 0.67
	 MULT PLS 	 0.58	 0.54	 0.30	 0.57	 0.69
Bias	 PCR	 0.59	 0.53	 0.02	 0.49	 0.65
	 PPC	 0.63	 1.17	 >10	 >10	 >10
	 ICR	 0.59	 0.54	 0.03	 0.45	 0.82
	 PLS	 0.39	 0.47	 0.04	 0.55	 0.58
	 MULT PLS 	 0.57	 0.50	 0.06	 0.54	 0.47

Midline backfat thickness after the last rib (LR); midline backfat thickness on the last lumbar vertebrae (LL); 
midline lower backfat thickness (L); backfat thickness after the last rib, 6.5 cm from the midline (ETO); bacon 
depth (BCD); principal component regression (PCR); partial principal components (PPC); independent component 
regression (ICR); univariate partial least squares (PLS); multivariate partial least squares (PLS MULT).

DISCUSSION

The heritability estimates found for different measurements of backfat thickness 
ranged from 0.33 to 0.42, values ​​similar to those reported by Mendonça et al. (2012), also us-
ing pigs from a commercial strain x Piau F2 population. Costa et al. (2001) observed estimates ​​
of 0.34, 0.43, and 0.50 for the breeds Duroc, Large White, and Landrace, respectively. Re-
search by Torres Jr. et al. (1998) demonstrated estimates of 0.37 and 0.51 for Large White and 
Landrace, respectively, and Barbosa et al. (2008a,b) observed an estimate of 0.44 for Large 
White. In the current study, the heritability estimate for the thickness of the bacon was 0.24, 
lower than that found by Mendonça et al. (2012).

The values of predictive ability obtained by ICR and PCR were similar considering 
the different number of components (Figure 1). These results suggest that such methods have 
similar, but not the same, statistical concepts. Specifically, the property of independence (ICR 
assumption) implies in the removal of non-linear and linear dependence between variables, 
while the PCR analysis guarantees only the removal linear dependence. Moreover, for all 
characteristics, except lumbar vertebrae, these methodologies presented higher peak values. 
The other methodologies did not present similar behavior when a different number of compo-
nents were considered. The partial principal component methods showed lower results when 
compared to the other methods evaluated.

The peaks of the curves of predictive ability were 44 and 57 (PCR and ICR), 1 (PPC), 
53 and 59 (PCR and ICR), 69 and 81 (PCR and ICR), 37 and 28 (PCR and ICR) for the com-
ponents of the LR, LL, L, ETO, and BCD traits, respectively, providing a reduction of 81.4 
and 75.9, 99.6, 77.6, and 75.1%, 70.9 and 65.8%, and 84.4 and 88.2% in the total number of 
original variables (237 SNPs), respectively.

Considering these results, which corroborate those obtained previously, the PCR and 
ICR methods were more efficient in predicting GEBV, with similar results for LR, LL, ETO, 
and BCD, and with an accuracy ranging from 0.60 to 0.75. The PLS method under the mul-
tivariate and univariate approach showed similar results, with accuracy values ​​between 0.54 
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and 0.69. In contrast, the PPC method displayed the lowest predictive ability of values for these 
traits (0.20, 0.40, 0.25, and 0.27 for LR, LL, ETO, and BCD, respectively, and for the L, the PPC 
method had an accuracy (0.45) superior to other methods.

The use of dimensional reduction methods has only been reported by Azevedo et 
al. (2013a,b) and Azevedo et al. (2014) for genomic selection in carcass traits in the same 
population of pigs, but using a different criterion for choosing the number of components. 
Azevedo et al. (2013a) studied the performance of multivariate and univariate approaches of 
the PLS method, but the results disagreed with the values obtained in our study, where MPLS 
outperformed UPLS considerably. Azevedo et al. (2013b) compared the PLS, PCR, and ICR 
methods and reported results of lower accuracy, from 0.01 to 0.51, compared to those found 
in this study. Azevedo et al. (2014) compared the same methods of dimensional reduction be-
yond their supervised approaches (selection of covariates), showing different results to those 
reported in this study, where PLS had low performance compared to PCR and ICR.

Furthermore, dimensional reduction methods have been applied to other species and 
such results can be used as a reference. Moser et al. (2009) performed a study comparing five 
methods for dairy cattle data, including PLS, all of which displayed similar accuracies. This 
finding differs from the results obtained in the present study. In contrast, Solberg et al. (2009) 
performed a study comparing PLS and PCR and observed similar accuracy ability values (0.47 
and 0.45, respectively), which agree with the values obtained in our study, where PLS has the 
same performance as PCR. 

The regression coefficients between observed and predicted phenotypes or bias are 
presented in Table 2. The only method that obtained an estimate of the regression coefficient 
close to unity for a certain trait was PPC, indicating that the genetic evaluations are not biased 
and are effective in predicting the actual magnitudes of differences between individuals in the 
evaluation (Resende et al., 2010). However, the PPC method was the only method that showed 
bias values ​​well above unity, indicating that the GEBVs were underpredicted, while the esti-
mates for other biases were lower than unity, indicating that the GEBVs were overpredicted.

The PCR and ICR methods only differed significantly in estimates of bias for the ETO 
and BCD traits. However, the advantage of ICR for GWS compared to PCR is the fact that it 
considers complete independence of the components, guaranteeing the absence of both linear 
and nonlinear relationships between latent variables (Azevedo et al., 2013, 2014). Similar 
results observed between the PCR and the ICR methods are possibly due to the structure of 
association of the variables evaluated in this paper, which have linear behavior.

In conclusion, the similar methods of PCR and ICR presented the highest predictive 
ability values and were the most efficient for the prediction of phenotypic values. The pro-
posed PPC method presented the highest predictive ability value for just a single carcass trait, 
but proved biased for most of the remaining traits. In contrast, MPLS and UPLS presented 
values ​​with similar predictive ability, differing only in the results of bias.
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