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dade Federal de Viçosa, como parte
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It ain’t what you don’t know that gets you into trouble.

It’s what you know for sure that just ain’t so. - Mark Twain
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Resumo

HERNANDEZ MARIÑO, Julian Ricardo, M.Sc., Universidade Federal de Viçosa,
Maio de 2016. A computational model for generating visually pleasing
video game maps. Orientador: Levi Henrique Santana de Lelis.

Neste trabalho apresentamos um modelo computacional baseado em teorias de

design para gerar mapas de jogos de plataforma visualmente agradáveis. Nós

estudamos o problema de geração de mapas como um problema de otimização e

provamos que uma versão simplificada do problema é computacionalmente dif́ıcil.

Em seguida, propomos uma abordagem de busca heuŕıstica para resolver o prob-

lema de geração de mapas e utilizamos ela para gerar ńıveis de um clone do

Super Mario Bros (SMB), chamado Infinite Mario Bros (IMB). Antes de avaliar

os ńıveis de IMB gerados pelo nosso sistema, realizamos um estudo detalhado

das abordagens comumente utilizadas para avaliar o conteúdo gerado por progra-

mas de computador. A avaliação utilizada em trabalhos anteriores utiliza apenas

métricas computacionais. Embora esses indicadores são importantes para uma

avaliação inicial e exploratória do conteúdo gerado, não é claro se são capazes de

capturar a percepção do jogador sobre o conteúdo gerado. Neste trabalho, com-

paramos os conhecimentos adquiridos a partir de um estudo com seres humanos

usando ńıveis de IMB gerados por diferentes sistemas, com os conhecimentos

adquiridos a partir de análise dos valores de métricas computacionais. Os nossos

resultados sugerem que as métricas computacionais atuais não devem substituir

estudos com seres humanos para avaliar o conteúdo gerado por programas de

computador. Usando os conhecimentos adquiridos em nosso experimento ante-

rior, foi realizado outro estudo com seres humanos para avaliar os ńıveis de IMB

gerados pelo nosso método. Os resultados mostram a vantagem do nosso método

em relação a outras abordagens em termos de estética visual e diversão. Final-

mente, foi realizado outro estudo com seres humanos, mostrando que o nosso

método é capaz de gerar ńıveis de IMB semelhantes aos ńıveis de SMB criados

por designers profissionais.



x

Abstract

HERNANDEZ MARIÑO, Julian Ricardo, M.Sc., Universidade Federal de Viçosa,
May, 2016. A computational model for generating visually pleasing video
game maps. Adviser: Levi Henrique Santana de Lelis.

In this work we introduce a computational model based on theories of graphical

design to generate visually pleasing video game maps. We cast the problem of map

generation as an optimization problem and prove it to be computationally hard.

Then, we propose a heuristic search approach to solve the map generation problem

and use it to generate levels of a clone of Super Mario Bros (SMB) called Infinite

Mario Bros (IMB). Before evaluating the levels of IMB generated by our system,

we perform a detailed study of the approaches commonly used to evaluate the

content generated by computer programs. The evaluation used in previous works

often relies on computational metrics. While these metrics are important for an

initial exploratory evaluation of the content generated, it is not clear whether they

are able to capture the player’s perception of the content generated. In this work

we compare the insights gained from a user study with IMB levels generated by

different systems with the insights gained from analyzing computational metric

values. Our results suggest that current computational metrics should not be used

in lieu of user studies for evaluating content generated by computer programs.

Using the insights gained in our previous experiment, we performed another user

study to evaluate the IMB levels generated by our method. The results show

the advantage of our method over other approaches in terms of visual aesthetics

and enjoyment. Finally, we performed one last user study that showed that our

method is able to generate IMB levels with striking similarity to SMB levels

created by professional designers.
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CHAPTER 1

Introduction

Video games have played a significant role on human activities, from satis-

fying basic human needs such as the need of relaxing to helping solving complex

biological problems (Khatib et al., 2011).

Game content such as levels, maps, game rules, textures, stories, items,

quests, music, weapons, vehicles, characters, sport commentaries, and other con-

tents can determine the quality of the game. This is because content is essential

for the player’s immersion. For example, levels in a platform game defines the

structure and challenges a player faces in the game. The game’s story builds

meaning to the actions of non-player characters and other elements that are part

of the game, providing purpose and a clear goal to the player. Game rules cre-

ate meaning to players by allowing or disallowing actions (Togelius, Shaker, &

Nelson, 2015a).

Automatically creating content for computer games has become an impor-

tant field of study in Computer Science. This is because automatically generating

content for computer games can reduce the game production time and cost. More-

over, by automatically creating content the game can offer different content each

time that is played (Togelius et al., 2015a).

The research area of automatic content generation is known as Procedu-

ral Content Generation (PCG). According to (Togelius, Kastbjerg, Schedl, &

Yannakakis, 2011) this term is defined as: “the algorithmical creation of game

content with limited or indirect user input”, and according to (Togelius et al.,

2015a), PCG can be seen “as the computer software that can create game content

on its own, or together with one or many human players or designers.”. Still
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according to (Togelius et al., 2015a), there are different approaches to generate

content for games.

Constructive methods, for instance, are methods to build special structures

such as dungeons. The constructive methods need an abstract representation of

the element, a method for constructing that model, and finally a method for

creating the actual geometry of the specific element.

Planning algorithms is another PCG approach, since one way to think

about procedurally generating stories is to consider them to be a planning prob-

lem. In a game, from an initial state, the player must reach a final state, the

objective, as usually defined by an author. The sequence of events performed by

the player defines the destiny in a game story.

Another approach is trough of fractals. Fractals are used to generate spe-

cific kinds of content, such as terrain. A lot of games include elements of nature

such as trees, grass and different types of vegetation. Fractals can be used to

represent the variation in constant frequencies that terrain could have. Gram-

mars is another technique for generation of this type of content. With grammars,

strings are rewritten in others through production rules. Those generated strings

are then considered as drawing instructions for nature elements.

One of the most studied is the search-based approach, which is the ap-

proach used in this work. In search-based PCG, it is common the implementa-

tion of optimization and evolutionary algorithms to find the best representation

of the content according to predefined desired qualities. When this approach is

used, first one identifies how the content will be represented. That is, the content

could be represented with a number, a structure, almost anything. An example

is the content representation in (Togelius et al., 2010), where the representation

of Starcraft maps are simply arrays of real numbers. A search algorithm then is

implemented to explore different configurations of this content, where a model,

usually called evaluation function or fitness function, will determine if a specific

representation has the best properties according to predefined desired qualities.

The output of an evaluation function could indicate, for instance, whether a given

puzzle-based level has solution, or the aesthetic appeal and challenges of a game

map.

One of the main goals for PCG researchers is the creation of content with

good quality, through maximization of the player’s enjoyment. According to

(Shaker, Togelius, & Nelson, 2015), one important aspect that has not been

investigated in depth is the aesthetics in game design using PCG, however recent

works such as (Reis et al., 2015) show that it is important to generate content with

good visual aesthetics, due to the strong correlation between visual aesthetics and
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enjoyment. Thus, it is important to investigate the generation of visually pleasing

and possibly enjoyable levels.

Several works show that adapted models based on theories of graphical

design correlates with the visual aesthetics that humans perceive for graphical

user interfaces (GUI) evaluation. For instance, (Bauerly & Liu, 2006) introduced

models based on theories of graphical design such as symmetry (defined later

in this dissertation) and performed experiments with human subjects. Bauerly

and Yili observed in one of their experiments that the subject’s perceived vi-

sual aesthetics is highly dependent on how symmetrical the GUI is. (Salimun,

Purchase, Simmons, & Brewster, 2010) use some models based on theories of

graphical design introduced in (Ngo, Teo, & Byrne, 2003) to build a user study

about preferences among different theories of design. Among their results, they

found that symmetry and cohesion were more influential than the others metrics.

We focus this work on the problem of automatically generating visually

pleasing video game maps.

1.1 Objectives

The main objective of this work is to develop a computational model for

generating visually pleasing video game maps, able to generate content with good

aesthetics according to theories of graphical design. Infinite Mario Bros (IMB)

a clone of Super Mario Bros (SMB) will be the testbed of the system produced

in this research.

1.1.1 Specific Goals

• Develop an optimization-based algorithm that is able to generate visually

pleasing game maps.

• Compare the proposed approaches to other PCG methods found in the

literature, as well as with content generated by professional designers.

1.2 Contributions

In this work we introduce a computational model based on the concept of

symmetry to generate visually pleasing maps of platform games. We assume that,

by generating symmetrical game maps, one will be generating visually pleasing

game maps. We cast the problem of generating symmetrical game maps as an

optimization problem and propose a heuristic search approach to solve it, which



4

is used for generation of IMB levels. We show a simplified version of the problem

and show that it is computationally hard.

For validating our symmetry hypothesis, we performed two user studies.

First, a user study shows the advantage of our method over other approaches in

terms of visual aesthetics and enjoyment. A second user study shows that our

method is able to generate SMB maps as visually pleasing as maps created by

professional designers.

Before evaluating the levels of IMB generated by our system, we perform

a detailed study of the most common approaches used for evaluating the con-

tent generated by PCG systems. In this study we show that the most common

evaluation techniques, the computational metrics, are important for an initial

exploratory evaluation of the content generated and for measuring features that

are difficult of measuring without computational assistance, but it is not clear

whether they are able to capture the player’s perception of the content generated.

Comparing the insights gained from a user study with IMB levels generated by

different systems with the insights gained from analyzing computational metric

values we claim that current computational metrics should not be used in lieu of

user studies for evaluating content generated by computer programs.

The content of Chapter 3 appears in the Proceedings of the Eleventh

AAAI Conference on Artificial Intelligence and Interactive Digital Entertain-

ment (MARIÑO, Reis, & Lelis, 2015).

1.3 Dissertation Structure

The remainder of this work is organized as follows: Chapter 2 presents the

background and related work, an empirical study is conducted on Chapter 3 over

evaluation metrics for procedurally generated Mario levels. The knowledge gained

in this study is used as a basis for the technique used to test the main proposal

of this work: A model for generating visually pleasing video game maps, which

is presented in Chapter 4. Finally, the conclusions of this work are presented in

Chapter 5.
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CHAPTER 2

Background and Related Work

This chapter presents concepts and techniques used in this work, as well

as related works. Section 2.1 describes the key concepts related to PCG and

search-based PCG, Section 2.2 presents IMB; the testbed of the experiments in

this work. Section 2.3 and section 2.4 describe related works.

2.1 Procedural Content Generation

Togelius et al. (Togelius, Kastbjerg, et al., 2011) define the PCG problem

as

The algorithmical creation of game content with limited or indirect

user input.

According to (Togelius et al., 2015a), a PCG system refers to a system

that includes one or more algorithms to generate content from scratch. However

a PCG system can work as an AI-assisted game design tool, helping developers,

designers and artists to improve game-related content. Examples of generated

content are weapons, characters, textures, levels, music, maps, game rules, stories,

items, quests, vehicles and sport commentaries. Figure 2.1 shows an example of

a map generated by a PCG system in the game of Civilization IV. The main

goal of a PCG system is to generate content with good qualities according to

predefined intentions. For example, if the main goal of a specific PCG system is

the generation of visually pleasing content, a resulting content will be considered

good if it has good visual aesthetics.
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Figure 2.1: A typical map of civilization IV

There are several commercial video games adopting the PCG approach.

Elite is a classical video game that takes advantage of PCG techniques to over-

come storage limitations. Elite compresses in a few tens of kilobytes of memory

hundreds of star systems. Nowadays there are several commercial games using

PCG techniques. As examples, there is Minecraft, a sandbox independent video

game that enables players to explore, build constructions, recollect and fight,

among other activities. Minecraft uses PCG techniques to generate all the con-

tent available in the game’s world. Figures 2.2 shows a screenshot of Minecraft.

Civilization IV is a turn-based strategy computer game released in 2005. In Civi-

lization IV, the player gathers resources, constructs buildings and manages people

to build a civilization while fighting against other civilizations. Civilization IV

uses PCG to create maps. In Spelunky the player explores underground tunnels

fighting enemies and collecting items. Spelunky uses PCG to generate playable

game maps (Togelius et al., 2015a).

While Elite takes advantage of PCG to overcome storage limitations, Civ-

ilization IV, Minecraft and Spelunky are benefited by another important feature

given by PCG: “Re-playability” (Smith, Gan, Othenin-Girard, & Whitehead,

2011). This feature is very important for commercial purposes, because allows to

a player play the same level several times, having different experiences each time.

PCG systems usually employ artificial intelligence (AI) and computational

intelligence (CI) techniques to generate content. There are several approaches to

generate content for games, however there is one approach strongly investigated:

Search-based algorithms. Using search-based algorithms, the PCG is handled as
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Figure 2.2: Minecraft. Extracted from (Bayliss, 2012)

a search/optimization problem where the goal is to find the best global optimal

value that corresponds to a specific configuration of the content representation

(Togelius, Shaker, & Nelson, 2015b).

According to (Togelius, Yannakakis, Stanley, & Browne, 2011), there are

different types of search-based algorithms used for PCG problems. Examples

of search-based approaches are metaheuristics such as simulated annealing or

particle swarm optimization, simple stochastic local search algorithms and evo-

lutionary algorithms. The choice of a specific search-based approach is largely

based on the search space size and the available time to search. If the space is

very small or the available search time is large, it is common to use an exhaus-

tive search algorithm to know all the possible configurations. When it is too

easy to generate good content, maybe a random approach works well, because it

doesn’t matter the content configuration chosen, there will not be difference for

the player’s perspective. On the other hand, when the search space is too large or

the available time to generate content is short, metaheuristic optimization algo-

rithms should be used instead. Although these approaches are not guaranteed to

find an optimal value, they could well find content good enough in a reasonable

time.

Regardless of the type of algorithm, in general there are two core compo-

nents in a search-based approach: A content representation and an evaluation

function. The content representation in search-based approaches is an indirect

representation of the actual content that a player sees. After the search, that in-

direct representation is transformed in a direct representation; the actual entities

being part of the content (Togelius et al., 2015b). An example is the content rep-
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resentation in (Togelius et al., 2010), where the direct representation of Starcraft

maps are the actual maps that the player sees, whereas the indirect representa-

tion are simply arrays of real numbers. Encoding this indirect representation as

part of a search-based approach is easier than do it with a direct representation,

also, the task of understanding the representation to decide whether the content

is good enough or not is easier too. In evolutionary algorithms, that indirect

representation is called genotype, later converted in fenotype; the actual entities

being part of the content. Figure 2.3 shows an indirect representation of a car

racing track (Togelius et al., 2007). This track is represented as a set of control

points where Bezier curves were employed to connect these points.

Figure 2.3: Indirect representation of a car racing track. Extracted from (Togelius
et al., 2007)

The other component of a search-based approach is an evaluation function.

An evaluation function determines the fitness value of the content. During the

search, the search-based algorithm will find several different configurations, each

one with a fitness value given by the evaluation function (Togelius, Yannakakis,

et al., 2011). The evaluation function is built based on the predefined desirable

content qualities, e.g. difficulty, immersion, fun, visual aesthetics, etc. As an

example, (Ferreira & Toledo, 2014) implement a genetic algorithm to generate

Angry birds levels, a physics-based video game that consists in using a slingshot

to throw birds against structures composed of pigs and blocks, where the aim is to

kill all the pigs. In this work, the main goal is to generate interesting levels based

on the stability of the structures. They then implement an evaluation function

that evaluates a level based on a simulation that measures the stability of the

objects composing the level.

In this work we introduce a search-based approach for generating visu-

ally pleasing 2D platform game maps. Our approach uses a branch and bound
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approach to create levels which have optimal symmetry values—our evaluation

function, formally defined in Section 4.2.

2.2 Infinite Mario Bros

Infinite Mario Bros (IMB) is an open source clone of Nintendo’s platform

game Super Mario Bros (SMB). Several modern game consoles still develop ver-

sions of this classic game (Togelius, Shaker, Karakovskiy, & Yannakakis, 2013a).

A screenshot of IMB is shown in Figure 2.4. The gameplay in IMB and SMB

consists in reaching the rightmost spot of the level while avoiding and killing

enemies such as turtles and cannons.

A level of IMB can be seen as a grid space containing objects such as

platforms, mountains, enemies, pipes and cannons. Every object has a specific

location on the grid (x and y coordinates). The PCG problem in IMB is to find

appropriates x and y coordinates for a set of elements, according to predefined

desired level features.

Our experiments are run on IMB because this framework is an excellent

testbed for PCG systems; since the game allows a versatile (Togelius, Karakovskiy,

Koutńık, & Schmidhuber, 2009) and quite entertaining testbed (Reis et al., 2015).

Figure 2.4: IMB level. Extracted from (Reis et al., 2015)
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2.3 PCG Approaches for Platform Games

In this section we review strategies used by other authors for automatically

generating platform levels; we focus mainly on Mario games.

For evaluating the maps generated by our proposed model, we first per-

form a study comparing different evaluation strategies for IMB PCG systems (See

Chapter 3); for this reason the works then are classified according the different

techniques for evaluating systems. We group the works as follows: works based

on user studies to evaluate PCG systems (user studies for evaluation), works

using user studies not to evaluate PCG systems, but to collect data to learn

predictive models (user studies for data collection), works using computational

metrics and/or artificial agents to evaluate PCG systems (computational evalua-

tion), and works that evaluate PCG systems with self critique or some other sort

of evaluation.

2.3.1 User Studies for Evaluation

(Shaker, Yannakakis, & Togelius, 2010) describe a system for generating

adaptive player-tailored IMB levels. Their system directly asks questions to the

players about their preferences. Shaker et al.’s main experiment is carried out

with artificial agents, but an experiment with human subjects compares the pro-

posed adaptive approach with a non-adaptive one. (Dahlskog & Togelius, 2013)

use evolutionary algorithms to generate IMB leves based on design patterns with

reference to SMB. Dahlskog et al., also present an user study comparing different

levels of SMB. (Bakkes et al., 2014) describe a system for balancing game chal-

lenging in IMB levels; their system is also evaluated with human subjects. (Reis

et al., 2015) describe a system which uses human computation to evaluate small

portions of levels generated by an existing system for IMB levels. They tested

their system with human subjects.

2.3.2 User Studies for Data Collection

(Pedersen, Togelius, & Yannakakis, 2009) presented a system for model-

ing player experience based on empirical data collected in a user study. They

were aiming at learning statistical models for predicting, given an IMB level L,

the challenge L will offer to the player, and how much enjoyment and frustra-

tion the player will have while playing L. Similarly, in different works, (Shaker,

Yannakakis, & Togelius, 2011, 2012, 2013; Shaker, Asteriadis, Yannakakis, &

Karpouzis, 2013, 2011) showed how to extract features to learn predictive models
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of the player’s experience in IMB. Pederson et al.’s and Shaker et al.’s long-term

goal is to use these models to guide the search for good-quality player-tailored

IMB levels.

2.3.3 Computational Evaluation

(Smith & Whitehead, 2010) and (Horn, Dahlskog, Shaker, Smith, & To-

gelius, 2014) introduced several computational metrics for evaluating what the

authors called the expressivity of PCG systems—we describe some of these met-

rics in Chapter 3. Their metrics were used in several works as a form of evaluating

PCG systems.

For example, (Smith, Whitehead, & Mateas, 2010) presented Tanagra, a

system for generating levels of 2D-platform games which was evaluated solely with

computational metrics. Later, (Smith, Treanor, et al., 2011) presented Launch-

pad, a system that uses rhythm groups to generate levels of platform games.

(Smith, Cha, & Whitehead, 2008) introduce the idea of Rhythm groups, which

are defined as alternating periods of high and low challenge. Launchpad was also

evaluated with computational metrics. (Shaker, Nicolau, Yannakakis, Togelius, &

O’Neill, 2012) use a grammar to concisely encode design constraints for evolving

IMB levels. Shaker et al.’s system is also solely evaluated with computational

metrics similar to those used by Smith et al. to evaluate Tanagra and Launch-

pad. In another work (Shaker, Yannakakis, Togelius, Nicolau, & O’Neill, 2012)

evaluate the personalized content generated by a grammar-based PCG system

with artificial agents. In a recent work (Shaker & Abou-Zleikha, 2014) used non-

negative matrix factorization to generate levels based on patterns learned from

levels generated by other systems; their method is also evaluated with computa-

tional metrics.

(Dahlskog, Togelius, & Nelson, 2014; Dahlskog & Togelius, 2014a, 2014b)

present systems which use patterns to generate levels for SMB games. All these

works were evaluated with the computational metrics introduced by Smith and

Whitehead (Smith & Whitehead, 2010).

(Sorenson, Pasquier, & DiPaola, 2011) presented a system which uses

rhythm groups to define a computational model of player enjoyment to evolve

levels of IMB. This model is also used to evaluate the resulting levels. Soren-

son et al. also evaluate their system in terms of the results of the Mario AI

Competition (Togelius, Shaker, Karakovskiy, & Yannakakis, 2013b).
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2.3.4 Other Evaluation Strategies

Some PCG systems are evaluated neither with user studies nor with com-

putational metrics. For example, the Occupancy-Regulated Extension (ORE)

PCG system is evaluated by the authors themselves with an analysis of the lev-

els generated (Mawhorter & Mateas, 2010). (Kerssemakers, Tuxen, Togelius, &

Yannakakis, 2012) also presents a critique based in the opinion of the authors of

the proposed approach in addition to an empirical running time analysis of the

system. The seminal work of (Compton & Mateas, 2006) on content generation

for platform games does not present evaluations of the proposed approach.

Recently, (A & Smith, 2015) introduced several metrics based on design

theory for evaluating IMB levels. Their metrics were obtained through discus-

sions with design students. However, in contrast with the computational metrics

introduced by (Smith & Whitehead, 2010) and (Horn et al., 2014), some of those

metrics are not formal enough to be implemented as a computer procedure.

2.4 Visually Pleasing Models

In this work we introduce a computational model based on theories of

graphical design. To the best of our knowledge, this is the first work presenting

a heuristic search algorithm working with a model based on theories of graphical

design to generate platform game maps. To be specific, our heuristic search ap-

proach creates symmetrical game maps. We assume that by creating symmetrical

maps we will be creating visually pleasing content.

(Liapis, Yannakakis, & Togelius, 2012) introduce a search-based approach

to game content generation according to visual aesthetics where one of their

evaluation functions is based on visual properties inspired by psychological and

neurobiological research. Although they also use symmetry as one of the included

properties, Liapis et al.’s system creates 2D game spaceships. By contrast, we

are interested in map generation. In another work, (Liapis, 2016) evaluates game

content created by evolutionary approaches according to visual features such as

balance and shape’s complexity. Similar to (Liapis et al., 2012), (Liapis, 2016) is

focused on creating spaceship shapes.

Several other works use computational models based on theories of graph-

ical design to evaluate content in general, not necessarily video game-related

content. We focus our review on models that use the concept of symmetry.

(Bauerly & Liu, 2006) introduce methods to quantitatively analyze the

composition of an image. The models measure symmetry and balance. Bauerly

and Liu performed experiments with human subjects using images composed by
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simple black and white objects and also images of web page interfaces. Bauerly

and Liu observed that the visual aesthetics of images can be highly correlated

with the symmetry of the objects composing the image. (Lai, Chen, Shih, Liu,

& Hong, 2010) use symmetry and balance models based on the work of (Bauerly

& Liu, 2006). Lai et al.’s experiments were performed on text-overlaid images.

Their experiments suggest a relationship between a higher averaged visual balance

and the aesthetic appeal of this type of images.

(Ngo, Samsudin, & Abdullah, 2000) and (Ngo et al., 2003) propose several

aesthetics measures for graphic displays from theories of design. They introduce

models that measure balance, equilibrium, symmetry, sequence, cohesion, unity,

proportion, simplicity, density, regularity, economy, homogeneity, rhythm, and

order and complexity. (Salimun et al., 2010) use some of the Ngo et al.’s models

to build a user study about preferences between different theories of design. More

specifically, Salimun et al. present the results of a study on the preference ranking

of cohesion, economy, regularity, sequence, symmetry, and unity. Their user study

was performed using images rated according to the Ngo et al.’s models. Among

their results, they found that symmetry and cohesion were more influential than

other metrics.

(Browne, 2012) is the first in propose computational models for the estima-

tion of Shibui, a concept of visual aesthetics. Shibui includes several attributes,

including the concept of asymmetry. The model proposed correlates with ac-

cepted principles of good game design. The main goal of the models is to evaluate

the visual aesthetics of two-player combinatorial games.
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CHAPTER 3

Evaluation of Computational Metrics

There are various approaches in the literature for automatically generating

IMB levels. The evaluation of many approaches is often performed solely with

computational metrics such as leniency and linearity (Smith & Whitehead, 2010;

Horn et al., 2014). While these metrics are important for performing initial

exploratory evaluations of the levels generated, it is not clear whether they are

able to capture the player’s perception of the content generated. A focus in many

PCG research projects is to know whether the content generated has good quality

from the player’s perspective, and the literature lacks a systematic evaluation of

the computational metrics used for evaluating PCG systems.

In this chapter, we perform a systematic user study with IMB PCG systems

and compare the insights gained from our study with those gained from analyzing

a set of commonly used computational metrics. As an example of the results we

present in this chapter, all computational metrics used in our experiment rated

the levels generated by two PCG systems very similarly, while subjects in our

user study found that the levels generated by one of the systems were signifi-

cantly more enjoyable to play than the levels generated by the other system. As

another example, the computational metric of leniency, which was designed to

approximate the difficulty of a given level, only weakly correlated with the diffi-

culty rated by the subjects in our study. Perhaps the most important conclusion

one can draw from our experiments is that although the computational metrics

can be valuable for an initial exploratory study of the content generated by PCG

systems and for verifying the diversity of levels a PCG system can generate, these

metrics should not replace user studies for analyzing the player’s perception of
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the content generated.

This chapter is organized as follows. First, in Section 3.1, we define the

PCG problem for Infinite Mario Bros. Following, in Section 3.2, we explain the

computational metrics evaluated in our experiment. Finally, in Section 3.3 we

describe our experiment and discuss the results obtained.

3.1 The PCG Problem for Infinite Mario Bros

In this chapter we are interested in the problem of evaluating the content

generated by PCG systems for the game of IMB. The levels of IMB are grid spaces

containing a set of objects such as platforms, mountains and shooting cannons.

Every object is associated with a location on the grid (x and y coordinates) and

some of the objects such as mountains can have different heights and widths.

Let L = {o1, o2, · · · , on} be a level of IMB where o1, o2, · · · , on are the n

objects composing the level. The PCG problem for IMB is to choose the set of

objects in L as well as the objects’ x and y coordinates. For some of the objects

such as pits and mountains the PCG system also needs to define their height

and width values. In this work we assume that the goal in PCG for IMB is to

generate levels which are both visually appealing and enjoyable to play.

3.2 Computational Metrics

In this section we describe the computational metrics used in our experi-

ment: linearity and leniency introduced by (Smith & Whitehead, 2010), density,

and Compression Distance introduced by (Shaker, Nicolau, et al., 2012). Simi-

larly to previous works, to ease the presentation of the results, we normalize all

metrics to the [0, 1] interval. Normalization is performed by accounting for the

levels generated by all systems evaluated. Thus, the metric values we present

in this work are not directly comparable to the values presented in other works

as the normalized values depend on the systems evaluated. We note that the

normalization we perform does not affect the results of our experiment.

3.2.1 Linearity

The linearity of level L is computed by performing a linear regression on

the center points of each platform and mountain contained in L. Each possible

position in the x axis is considered as a different point for the linear regression.

The linearity of L is the average distance between the center points and the linear
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(a) Linear level. (b) Non-linear level.

Figure 3.1: Linear level vs Non-linear level

(a) High-leniency level. (b) Low-leniency level.

Figure 3.2: High-leniency level vs Low-leniency level

regression’s line. Normalized values closer to one indicate more linear levels. The

linearity of a PCG system ρ is the average normalized linearity of the levels ρ

generates.

Linearity measures the changes in height (y-coordinate) the player expe-

riences while going through the level. (Smith, Treanor, et al., 2011) pose the

linearity metric as a visual aesthetics metric, which is reasonable since levels

with different linearity values are expected to look different from one another.

Figure 3.1 shows the contrast between a linear and a non-linear level.

3.2.2 Leniency

Leniency measures how much challenge the player is likely face while play-

ing the level. The leniency of level L is the sum of the lenience value w(o) of

all objects o in L, defined as
�

o∈L w(o). We use the lenience values specified

by (Shaker, Nicolau, et al., 2012). Namely, power-up items have a weight of 1,
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(a) High-density level. (b) Low-density level.

Figure 3.3: High-density level vs Low-density level

cannons, flower tubes, and gaps of −0.5, and enemies of −1. We subtract the

average gap width of the level from the resulting sum as defined by Shaker et al.

Leniency is meant to approximate the difficulty of the levels. Normalized values

closer to one indicate more lenient levels. The leniency of a PCG system ρ is

the average normalized leniency of the levels ρ generates. Figure 3.2 shows the

contrast between a high-leniency level and a low-leniency level.

3.2.3 Density

Mountains can occupy the same x-coordinate on the grid defining a IMB

level by being “stacked-up” together. The density of L is the average number

of mountains occupying the same x-coordinate on the grid. Intuitively, a level

with high density could have different layouts and challenges than a level with

low density. Normalized values closer to one indicate denser levels. The density

of a PCG system ρ is the average normalized density of the levels ρ generates.

Figure 3.3 shows the contrast between a high-density level and a low-density level.

3.2.4 Compression Distance

The Compression Distance (CD) measures the structural dissimilarity of

a pair of levels. CD is computed as follows. First, we convert the pair of levels

L and L� into two sequences of integers S and S�, respectively. Each integer in S

represents one of the following in L: (i) an increase or decrease in the platform’s

height, (ii) the existence or the nonexistence of enemies and items, and (iii) the

beginning or ending of a gap. The conversion of L into S is done by traversing

the level’s grid from left to right and for each x-value on the grid we insert the

appropriate integer into the converted sequence (e.g., the integer 1 in position 10
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Figure 3.4: Two levels with high Compression Distance

Figure 3.5: Two levels with low Compression Distance

could represent an enemy at x-coordinate 10 of the level). Intuitively, if sequences

S and S� are very different, then one would expect L and L� to be structurally

different.

The CD value of a PCG system ρ is the average normalized compression

metric (Li, Chen, Li, Ma, & Vit‡nyi, 2004) of S and S� for pairs of levels L and

L� ρ generates. Normalized values closer to one indicate that the PCG system is

able to generate levels with a larger structural variety. Figure 3.4 and Figure 3.5

show a version of a system able to generate levels with high CD values, and a

system able to generate levels with lower CD values respectively.

3.3 Evaluating Metrics

We now evaluate the computational metrics described above. First we

describe the methodology of our experiment. Then, we present the results of

the computational metrics, followed by the results of the user study. Finally, we

discuss the insights gained from each evaluation.
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3.3.1 Methodology

Systems Tested

We used four different IMB PCG systems in our experiments: Notch Level

Generator (NLG), Human-Computation Tension Arc-Based (HCTA) level gen-

erator with a random tension arc (HCTA+R) and with a parabolic tension arc

(HCTA+P) (Reis et al., 2015), and Occupancy-Regulated Extension (ORE) gen-

erator (Mawhorter & Mateas, 2010).

The NLG system receives as input a difficulty value d for stochastically

determining the number of enemies and challenges to be placed in the level.

The levels NLG generates tend to be harder for larger values of d. NLG starts

with an empty level grid and adds objects to the grid according to the value

of d. HCTA+R and HCTA+P are variants of NLG. The HCTA systems work

by having human subjects rating a set of small levels generated by NLG. Then,

HCTA combines the small levels into a regular-sized IMB level according to the

human-rated difficulty of the small levels. HCTA+P combines the small levels

into a regular level in a way that the difficulty of the resulting level follows a

parabolic curve: difficulty increases as the player progresses into the level until

reaching its largest value, then difficulty decreases until the end of the level.

HCTA+R combines the small levels in a way that the difficulty is random (but

still respecting a user-specified upper bound) throughout the level. See (Reis et

al., 2015) for details on HCTA.

We chose NLG, HCTA+R, HCTA+P, and ORE for two reasons. First, the

computational metrics will tend to give similar scores to the levels HCTA+R and

HCTA+P generate since they both use similar strategies for level generation. Yet,

levels generated by the HCTA systems could still be rated differently by the par-

ticipants in the user study. Second, ORE generates levels which are structurally

different from the ones the other systems generate, allowing us to verify whether

the user study is able to capture nuances which are likely to be captured by the

computational metrics. Ideally we would use more systems in our experiment,

but the time required for each participant to complete the experiment could be

prohibitively long should we required them to play extra levels. Figure 3.6 shows

a screenshot of a typical level according the four systems used in this experiment.

Participants

Our within-subject experiment had 37 participants: 32 males and 5 females

with an average age of 23.95 and standard deviation of 4.48. Each participant

played one level generated by each system, resulting in the evaluation of 37 levels
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(a) HCTA+P level. (b) HCTA+R level.

(c) NLG level. (d) ORE level.

Figure 3.6: Systems used for user study in the evaluation metrics experiment

of each PCG system. The experiment was carried out online: our system was

made available in the Internet and our experiment advertised in different mailing

lists. Participation was anonymous and volunteered.

Evaluated Metrics

In the user study the systems are evaluated according to the following

criteria: enjoyment, visual aesthetics, and difficulty. Each participant was asked

to answer how much they agreed or disagreed, in a 7-likert scale, with the following

sentences: “This level is enjoyable to play”; “this level has good visual aesthetics”;

“this level is difficult”. A score of 1 for enjoyment and visual aesthetics means

that the participant strongly agrees that the level played is enjoyable and has

excellent visual aesthetics; a score of 1 for difficulty means that the participant

strongly agrees that the level is difficult.

We compute the computational metric values only for the levels evaluated

in our user study: 148 levels in total (37 levels for each of the four systems). This

is to allow a fair comparison of the insights gained from the computational metrics
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with those gained from the user study.1 The normalization of the computational

metrics to the [0, 1] interval was made by considering all 148 levels used in our

experiment.

Experimental Design

In the beginning of the experiment the subjects filled a questionnaire in-

forming their age, and their skills in the game of Mario Bros. Subjects were

instructed about the controls of the game before playing a practice level. The

practice level is important so that the participants get acquainted with the con-

trols of the game. NLG was used to generate the practice levels. Only after

playing the practice level that the participants evaluated the levels generated by

the PCG systems. Each participant played one level generated by each of the four

PCG systems. After playing each level the participants gave scores according to

the criteria described above in a 7-likert scale. In addition to the scores, the par-

ticipants had the option to enter comments informing us of technical issues they

might have had during the experiment. Since all participants played one level

generated by each system, we used a balanced Latin square design to counteract

ordering effects. The tested levels were generated during the experiment by the

evaluated systems, we did not pre-select a set of levels to be tested.

In order to have a fair comparison of the levels generated by different

systems we had all systems generating levels of the same size: 160×15. We chose

this size because we did not want the experiment to be too long. In total each

participant played 5 levels (1 practice level and 4 other levels for evaluation), and

using larger levels could be tiring for the participants. Finally, to ensure a fair

comparison of the different approaches, we tuned the systems to generate levels

with similar difficulty. This was done by manually setting the d-values of NLG,

HCTA+P, and HCTA+R so that the three systems generated levels which we

thought to be of difficulty similar to the ones generated by ORE.

Data Cleaning

The data of participants who did not finish playing all 5 levels (1 practice

level plus 4 levels to be evaluated) is not included in the results. We also removed

the data of one participant who had never played the game of Mario before. By

examining the logs of the experiment we noticed that this participant was not

able to get too far into the game and thus not able to properly evaluate the levels.

The number of 37 participants was obtained after cleaning the data.

1We also computed the computational metrics for a larger number of levels and observed
results similar to the ones we report in this work.
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HCTA+P HCTA+R ORE NLG
Leniency 0.45 ± 0.10a 0.48 ± 0.18a 0.71 ± 0.11b 0.77 ± 0.15b

Linearity 0.52 ± 0.17a 0.52 ± 0.15a 0.33 ± 0.14c 0.83 ± 0.07b

Density 0.74 ± 0.13a 0.73 ± 0.12a 0.17 ± 0.15c 0.49 ± 0.09b

CD 0.61 ± 0.02a 0.61 ± 0.02a 0.60 ± 0.02a 0.56 ± 0.02a

Table 3.1: Computational metric results. Larger values of leniency, linearity, and
density indicate are more lenient, linear, and dense levels; larger values of CD
indicate that the PCG system is able to generate a larger variety of structurally
different levels. Different letters in the same row indicate statistically significant
results.

3.3.2 Computational Metric Results

We start by presenting the computational metric results. Although the

computational metrics are systematic and do not represent a source of variance

in our experiment, all PCG systems are stochastic and insert variance in the

results. Moreover, as we explained above, the number of levels considered in this

experiment is somewhat limited (37 levels for each system). Therefore, we present

statistical tests for the computational metric results. Table 3.1 shows the average

value and standard deviation for each metric and PCG system. Different letters

in a given row of the table indicate that the two means are significantly different.

We now explain how the statistical significance was computed for the re-

sults in Table 3.1. First, we ran Shapiro-Wilk tests for each metric and verified

that the leniency, density, and CD values were unlikely to be normally distributed.

Thus, repeated-measures ANOVA was used only for linearity, and the test indi-

cated statistically significant results (p < .001). The non-parametric Friedman

test was applied to remaining metrics and indicated statistically significant results

for leniency and density (p < .001), the differences in CD were not significant.

Pairwise comparisons with Tukey tests for linearity showed that the only aver-

ages that are not significantly different are those of HCTA+P and HCTA+R, all

other differences are significant (p < .001). Pairwise comparisons with Wilcoxon

signed-rank tests for leniency and density showed that the averages that are not

significantly different are those of the HCTA+P and the HCTA+R systems for

both leniency and density, and ORE and NLG for leniency; all other results are

statistically significant (p < .001).

We highlight the following observations from Table 3.1.

1. HCTA+P and HCTA+R generate similar levels as both systems scored

similarly in all four metrics tested.

2. The average leniency value of the HCTA systems are much lower than ORE
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HCTA+P HCTA+R ORE NLG
Enjoyment 2.24 ± 1.75a 2.70 ± 1.91b 3.35 ± 2.04c 2.62 ± 2.00ab

Visual Aesthetics 2.32 ± 1.65a 2.38 ± 1.64ab 3.43 ± 2.21c 2.92 ± 1.93b

Difficulty 3.46 ± 1.76a 3.38 ± 1.72a 3.27 ± 1.90a 3.84 ± 2.35a

Table 3.2: User study results. Lower values of enjoyment and visual aesthetics
indicate levels which are more enjoyable to play and have better visual aesthetics;
lower values of Difficulty indicate levels which participants found more challenging
to play. Different letters in the same row indicate statistically significant results.

and NLG, indicating that the levels generated by HCTA are more difficult

than those generated by the other two systems.

3. The HCTA approaches generate levels with nearly equal linearity averages,

ORE generates highly non-linear levels, and NLG generates highly linear

levels. The linearity results suggest that the HCTA approaches generate

levels with similar visual aesthetics while NLG and ORE generate levels

which are visually different than the levels generated by the other systems.

4. The density averages follow a pattern similar to linearity’s: the HCTA

approaches have very similar values while NLG and ORE differ from the

other systems. The density results indicate that the HCTA approaches

often use the pattern of superposing mountains while ORE rarely uses such

a pattern. Similarly to linearity, the difference in the density average values

show that the levels generated by ORE are visually different than the levels

generated by other systems.

5. The difference on the average values of CD is minimal, indicating that all

systems generate levels with similar structural diversity.

3.3.3 User Studies Results

We now present the user study results. The mean results and standard

deviations are shown in Table 3.2. Different letters in a given row indicate that

the two means are significantly different. Shapiro-Wilk tests showed that our

data is unlikely to be normally distributed (p < .0001 for all criteria). Thus, we

used the non-parametric Friedman test which showed a significant difference on

enjoyment (p < .05) and on visual aesthetics (p < .05) across different systems;

there was no significant difference for difficulty.

Next, we use Wilcoxon signed-rank tests to perform pairwise comparisons

of the results obtained by the evaluated systems. We present the effect size

of the comparisons (r-values) in addition to p-values. HCTA+P generates levels
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which are significantly more enjoyable to play than the levels HCTA+R generates

(p < .05, r = 0.21) and the levels that ORE generates (p < .001, r = 0.35).

The levels HCTA+R generates are significantly more enjoyable to play than the

ones ORE generates (p < .05, r = 0.26). Finally, the levels NLG generates

are significantly more enjoyable to play than the ones ORE generates (p < .05,

r = 0.24).

Pairwise comparisons on visual aesthetics (Wilcoxon signed-rank test) showed

that HCTA+P generates levels with significantly better visual aesthetics than

the levels ORE generates (p < .01, r = 0.27) and than the levels NLG generates

(p < .05, r = 0.24). HCTA+R generates levels with significantly better visual

aesthetics than the levels ORE generates (p < .01, r = 0.37).

All pairwise comparisons reported as statistical significant have effect sizes

around the medium size mark of 0.3, indicating substantial differences among the

levels generated by the different systems.

We highlight the following observations from Table 3.2.

1. The system that generates the most enjoyable levels is HCTA+P. The dif-

ference between enjoyment of HCTA+P and HCTA+R is significant and

substantial. That is, HCTA+P yielded an average score of 2.24 which is

close to 2 (score marked by participants who agreed that the level played is

enjoyable). By contrast, HCTA+R yielded an average score of 2.70 which

is close to 3 (score marked by participants who somewhat agreed that the

level played is enjoyable).

2. The HCTA approaches generated the levels with best visual aesthetics,

followed by NLG and then ORE. In particular, HCTA+P generates levels

with significantly better visual aesthetics than NLG and ORE.

3. There is little difference amongst the difficulty scores of the systems, indi-

cating that the evaluated systems generate levels with similar difficulty.

Next, we discuss the strengths and weaknesses of the user study evaluation

and of the computational evaluation by comparing the conclusions drawn from

the two evaluations.

3.3.4 Strengths of the User Study Evaluation

We organize the discussion of the strengths of the user study evaluation

by the evaluated criteria.
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Enjoyment

The user study shows a significant and substantial difference between the

average enjoyment score of the levels generated by HCTA+P and by HCTA+R,

while the computational evaluation yielded nearly the same score for both systems

in all metrics. Spearman correlation tests between enjoyment and the computa-

tional metrics yielded coefficients close to zero, indicating that none of the metrics

correlated with enjoyment.

Enjoyment is perhaps the most important evaluation criterion for PCG

systems as we are interested in generating content which users find enjoyable

to play. The computational metrics used in our experiment were not able to

estimate the player’s enjoyment. This result is not surprising. First, none of

the computational metrics used in the literature were designed for measuring

enjoyment. Second, enjoyment is difficult to measure without accounting for

human input as it depends on various factors such as cultural background.

Our user study required the participants to answer questions after playing

each level. Another promising way of receiving human input for evaluating PCG

systems is by analyzing facial expressions of the players (Shaker & Shaker, 2014;

Tan, Bakkes, & Pisan, 2014).

Visual Aesthetics

Both linearity and density indicated that HCTA+P and HCTA+R would

generate levels with similar visual aesthetics, while ORE and NLG would generate

levels with different visual aesthetics. The user study indicates that the HCTA

approaches have nearly the same score for visual aesthetics, while ORE and NLG

have higher values (indicating worse visual aesthetics). While the computational

metrics indicated levels with different visual aesthetics, the metrics are not able

to distinguish good from bad aesthetics. By contrast, through the user study

we are able to rank the systems with respect to the visual quality of the levels

generated. A Spearman’s test shows that linearity weakly correlates with visual

aesthetics (coefficient of 0.18 and p < .05); none of the other metrics correlates

with visual aesthetics.

Difficulty

While there is a large difference in the leniency values of the systems tested,

according to the user study, there is little or no difference in the difficulty rated

by the participants. Difficulty is also an important criteria for evaluating PCG

systems as it is closely related to enjoyment. That is, it is known that the
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Yerkes-Dodson law (Yerkes & Dodson, 1908) applies to computer games in the

sense that enjoyment will be maximum somewhere in between the largest and

the smallest difficulty (Piselli, Claypool, & Doyle, 2009). Thus, when comparing

different PCG systems the difficulty of the levels generated should be controlled

to yield a fair comparison of the systems. It is hard to automatically measure

difficulty because difficulty depends on factors such as the disposition of objects

on the level. For example, there could be a level full of enemies and challenges

(non-lenient level according to the metric) but with an easy path for Mario to

follow and win the game—in such cases leniency will be misleading. Although our

leniency results were somewhat misleading, we observed a weak but significant

correlation between leniency and difficulty—the Spearman’s coefficient was of

0.199 with p < .05.

The weak correlations observed between the computational metrics and the

human-evaluated criteria of visual aesthetics and difficulty indicate that there is

hope that future research will develop novel computational metrics to automat-

ically (without asking the user) estimate the visual aesthetics and difficulty of

IMB levels.

3.3.5 Strengths of the Computational Evaluation

Although our experiment showed that the computational metrics can be

misleading, this kind of automatic evaluation also has its strengths. In contrast

with the user study, one can easily achieve statistical significance by computing

the metrics for a large number of levels. Moreover, we found the metrics to be

very easy to implement. Taken together, these features make the computational

metrics an easy and cheap way to perform an initial exploratory evaluation of the

content generated by PCG systems.

The computational metrics can be particularly useful for gaining insight

on evaluation criteria which are hard to test in user studies. For example, if one

wants to verify the diversity of levels generated by a given PCG system in a user

study, then the participants would have to play several levels generated by the

same system and then inform the diversity of levels played. If the subjects had to

play several levels of each system, then the experiment would likely be too long to

be practical. One could then use the CD metric—or another similar metric such

as edit distance (Smith, Treanor, et al., 2011)—to gain insight on the structural

diversity of levels generated.
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3.4 Conclusions

We tested several computational metrics used to evaluate levels generated

by PCG systems for the game of IMB. We conducted a user study for evaluating

four PCG systems according to the following criteria: enjoyment, visual aesthet-

ics, and difficulty. Then, we compared the results obtained in the user study with

those obtained by using computational metrics. Our evaluation showed that the

computational metrics (i) are not able to accurately estimate enjoyment, (ii) pro-

vides limited information about the visual aesthetics of the levels, and (iii) can

be misleading with respect to the player’s perceived difficulty. Yet, the compu-

tational metrics can provide important information by measuring features which

are hard to be measured in user studies, such as the evaluation of the diversity

of levels generated by a PCG system.

We show that a well-designed user study cannot be replaced by the cur-

rent computational metrics. Although we believe that the current computational

metrics can help in the design process giving an initial idea about the quality

of content in a cheap and easy way, one of the most important challenges for

PCG researchers is to improve the current computational metrics as well as the

creation of new metrics that reflect better the human’s perspective.
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CHAPTER 4

Visually Pleasing Video Game Maps

In this chapter we introduce the main proposal of this work, the computa-

tional model based on theories of graphical design to generate visually-pleasing

video game maps. We cast the map generation problem as an optimization prob-

lem and present a simplified version of the problem that we use to prove the

problem of generating symmetrical levels to be computationally hard. We then

propose a heuristic search algorithm that is able to quickly solve the map gen-

eration problem. Namely, we implement a Branch and Bound search procedure

(B&B) which guarantees to return an optimal solution to the problem. A user

study using a clone of the Super Mario Bros (SMB) game shows the advantage

of our method over other approaches in terms of visual aesthetics and enjoyment.

Another user study shows that our method is able to generate maps with striking

similarity to the original SMB maps produced by professional designers.

This chapter is organized as follows. First, in Section 4.1, we formulate

the problem. Following, in Section 4.2, we describe the objective function used in

the heuristic search algorithm proposed, in Section 4.3 we describe the level gen-

eration as an optimization problem, in Section 4.4 we present search procedures

that are able to find optimal solutions, in Section 4.5 we compare the number

of nodes expanded among the search procedures used, in Section 4.6 we explain

how we generate a complete IMB level, in Section 4.7 we evaluate with a user

study the symmetry system introduced in this work and compare it to other ex-

isting approaches for generating IMB levels, and finally in Section 4.8 we show

the another user study where we compare the visual aesthetics of level chunks

generated by our system with those created by professional designers.



29

4.1 Problem Formulation

The level generation problem is similar to the problem formulation de-

scribed in Section 3.1, however in his chapter we introduced some new terms. We

divided the problem into two problems. First one has to choose a set of objects

G = {o1, o2, · · · , om} that will compose the game level. Then, one has to define

the objects’ x and y coordinates in a grid space of size L × k · W , i.e., L rows

and k ·W columns. In this work we assume that G is provided as input by the

user or some other system, and our algorithm sets the x and y coordinates of the

objects in the grid aiming at generating visually pleasing levels.

Some objects composing a level can be placed on “top of each other” by

occupying the same cells in the grid; we call these objects shareable. Other objects

must not occupy a cell that is already occupied by another object. For example,

in the game of Super Mario Bros. multiple mountains may occupy the same cell,

while blocks must not. We assume that there is enough space in the grid to place

all m objects.

In this work we transform the problem of generating a level of size L×k ·W
into the problem of generating k smaller levels of size L×W . Then, the k smaller

levels are concatenated into a level of size L×k ·W with a method that is similar

to the one introduced by (Reis et al., 2015) (described in Section 4.6).

4.2 Symmetry as Objective Function

In this section we describe the objective function we optimize while placing

objects on the grid of size L×W . The level is divided into four regions of equal

dimensions by a vertical and a horizontal lines, as illustrated by the dashed lines in

Figure 4.1. The vertical and horizontal line mark the boundaries of the regions,

which are named Upper Left (UL), Upper Right (UR), Lower Left (LL), and

Lower Right (LR), as shown in Figure 4.1. Figure 4.1 also shows the placement

of four objects (gray rectangles), one in each of the regions. Intuitively, the object

placement shown in Figure 4.1 results in a perfectly symmetrical image: there

are identical objects on both sides of the vertical dashed line, as well as on both

sides of the horizontal dashed line. We define next an objective function that

captures this intuitive notion of symmetry.

We define asGUL, GUR, GLL, andGLR the set of objects in regions UL, UR,

LL, and LR, respectively. Note that an object o can be placed simultaneously in

more than one region. For example, half of a rectangle o could fall in LL and the

other half in LR. If this happens, we replace o by two objects o1 and o2, where
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Figure 4.1: An illustrative example of a perfectly symmetrical placement of ob-
jects

o1 is in LL and o2 in LR. Following this approach, the sets of objects in different

regions are disjoint.

We define a symmetry value of a level in terms of function V (·), which is

defined for the objects in region LL as follows.

V (GLL) =
�

o∈GLL

dx(o) + dy(o) + A(o) , (4.1)

where dx(o) and dy(o) are the distances between the center of the rectangle-

shaped object o and the vertical line and the horizontal line, respectively; A(o)

is the area of object o. V (GLR), V (GUL), V (GUR) are defined analogously. The

symmetry value of a level is defined as the sum of the absolute differences of

V -values of different grid regions as shown next.

4.2.1 The Vertical Symmetry Function

One formulation of symmetry we use in our experiments is defined as

follows.

Svert(G) = |V (GUL)− V (GUR)| (4.2)

+ |V (GLL)− V (GLR)| . (4.3)

Svert(G) accounts for the symmetries defined by the vertical line, i.e., the absolute

differences between the upper left and the upper right regions (term 4.2 above), as
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well as the differences between the lower left with the lower right regions (term 4.3

above).

4.2.2 The All Symmetry Function

Another objective function we consider is the following.

Sall(G) = |V (GUL)− V (GUR)| (4.4)

+ |V (GLL)− V (GLR)| (4.5)

+ |V (GUL)− V (GLL)| (4.6)

+ |V (GUR)− V (GLR)| (4.7)

+ |V (GUL)− V (GLR)| (4.8)

+ |V (GUR)− V (GLL)| . (4.9)

Terms 4.4 and 4.5 of Sall account for the symmetries across the vertical line, terms

4.6 and 4.7 for the symmetries across the horizontal line, and terms 4.8 and 4.9

for the symmetries across both the horizontal and vertical lines.

4.3 Level Generation as an Optimization

Problem

In the symmetry problem one receives as input two sets of objects, G and

G�, such that G = G ∪ G�, altogether with the information of which objects are

shareable. The objects in G� are already placed in the grid, i.e., their x and

y coordinates are defined as part of the input and they must not be changed.

The integers L and W defining the size of the grid are also part of the input.

The height and width of the objects in G and G� are no larger than L and W ,

respectively. The task is to place the objects in G in the grid while minimizing

S(G), where S could be Svert or Sall.

We consider the set G� of objects already placed in the grid because we

envision an algorithm that solves the symmetry problem being used to assist a

designer in the process of creating levels of a platform game, where the designer

places a few objects in the grid and the algorithm finishes the work by placing

the remaining objects.
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4.3.1 The Simplified Symmetry Problem

We also consider a simplified version of the symmetry problem that we

use to prove the problem of generating symmetrical levels to be computationally

hard. In the simplified version of the problem the grid has size 1 ×W , i.e., one

row and W columns. Since there is just a single row in the grid, in this simplified

version of the problem there are only two regions of equal area: left (L) and right

(R), with GL and GR being the set of objects placed in L and R, respectively.

The objective function of this simplified version considers only the symmetry with

respect to the the area A(o) of objects o in L and R, and is defined as follows,

Ssim(G) = |V �(GL)− V �(GR)| .

Here, V �(O) =
�

o∈O A(o) for any set O of objects.

Proposition 1. The simplified symmetry problem is NP-hard.

Proof. We make a reduction from the NP-complete Number Partition Problem

(NPP) (Garey & Johnson, 1979), where one is given a finite set U of positive

integers and has to find a subset C ⊆ U such that |�u∈C u − �
u∈U−C u| is

minimized.

In our polynomial-time reduction each element u in U is treated as a

shareable object o in G with dimensions 1× u, which yields A(o) = u. The grid

has 1 row and 2 · (maxu +1) columns, where maxu is the largest u amongst all u

in G. The set of objects already placed, G�, contains two non-shareable objects

of size 1 × 1. One of the objects in G� is placed on the grid cell immediately to

the left of the vertical line separating regions L and R, and the other on the grid

cell immediately to right of the vertical line.

Due to the two non-shareable objects on the boundary of L and R, no

objects in G can be placed simultaneously in L and R. The non-shareable objects

occupy one cell each, leaving maxs(u) grid cells for each region, which allows any

object in G to be placed in either L or R. A solution of this simplified symmetry

problem represents a solution to the NPP.

We conjecture that the regular symmetry problem with either Svert or Sall

objective function is not computationally easier than the simplified symmetry

problem.
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4.4 Symmetry Optimization as Search

In this section we present search procedures that are able to find optimal

solutions of instances of the symmetry optimization problem. First, we define

the optimization problem as a state-space search problem. Then, we present a

brute-force search algorithm for solving the problem. Following, we introduce

a branch-and-bound search procedure (B&B) that uses a heuristic function to

prune unpromising nodes in the search tree while still finding optimal solutions.

4.4.1 Brute-Force Search

The search tree of the symmetry problem is defined as follows. In each

level of the search tree we assign values to the x and y coordinates of one of the

given objects in G. The root of the search tree is an empty partial solution to the

problem, i.e., no objects have their coordinate values assigned yet. Each child of

the root accounts for one possible position on the grid for a given object in G.

Each leaf node of this search tree represents a solution to the symmetry problem.

We are interested in finding the optimal solution, i.e., the leaf node with lowest

symmetry value.

Since in every level we assign the coordinate values to an object in G, the

height of the search tree equals the cardinality of G. The branching factor varies

within the search tree because we consider a set of constraints while assigning

values to the objects’ coordinates. For example, an object cannot occupy a cell

that is occupied by a non-shareable object. Intuitively, a node in the search

tree representing a partial solution that contains many non-shareable objects will

have a smaller branching factor than a partial solution with fewer non-shareable

objects. This is because the non-shareable objects reduce the number of positions

where the remaining objects can be placed. We also consider a set of domain-

specific constraints. For example, in IMB, objects such as pipes and cannons

have to be placed on the ground.

A brute-force search (BFS) algorithm traverses the search tree in a depth-

first manner and returns a solution with lowest symmetry value. Next, we present

a B&B procedure that also finds optimal solutions to the symmetry problem while

possibly expanding many fewer nodes than BFS.

4.4.2 Branch and Bound Search Procedure

The B&B procedure we introduce in this work uses a heuristic function

H(n) to guide its search, where n is a node in the search tree. A heuristic
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Algorithm 1 Branch-and-Bound

Require: root node n, objective function S, and heuristic function H.
Ensure: optimal solution n∗.
1: B ← ∞, n∗ ← ∅ //B and n∗ are global variables
2: return Depth-First-Search(n, S, h) //see Algorithm 2

Algorithm 2 Depth-First-Search

Require: root node n, objective function S, and heuristic function H.
Ensure: optimal solution n∗.
1: for each child n� of n do
2: if H(n�) < B then
3: if n� is a leaf node and S(n�) < B then
4: B ← S(n�) //update bound
5: n∗ ← n� //update solution
6: else
7: Depth-First-Search(n�, S, h) //recursive call
8: return n∗

function H(n) provides an estimate of the symmetry value of a complete solution

obtained from partial solution n. H is called admissible if it never overestimates

the lowest symmetry value encountered amongst all leaf nodes in the subtree

rooted at node n, for all n. Let B be the symmetry value of the best incumbent

solution encountered by B&B. When using an admissible heuristic function H,

if H(n) ≥ B, then node n can be safely pruned as solutions reachable from n

are no better than B. We describe the heuristic we use in our experiments in

Section 4.4.3 below.

Algorithm 1 and 2 show the pseudocode of a recursive implementation of

B&B. B&B uses two global variables, B and n∗, for storing the symmetry value

of the best solution and the best solution encountered thus far, respectively. B

is initialized with infinity and n∗ is initially empty (see line 1 of Algorithm 1).

Then, B&B performs a depth-first search. During its search, B&B updates the

values of B and n∗ (lines 4 and 5 of Algorithm 2) if it encounters a complete

solution n� with symmetry value smaller than the symmetry value of n∗ (line 3

of Algorithm 2). Node n� is only expanded if the lower bound of its symmetry

value, H(n�), is strictly lower than B.

The B&B procedure presented above is guaranteed to return an optimal

solution to the symmetry problem given that H is a lower bound on the symmetry

value of a partial solution n.



35

�� ��

����

(a) Object spanning a single
region.
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(b) Object spanning two re-
gions.
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(c) Object spanning four re-
gions.

Figure 4.2: Different placements of a rectangle-shaped object show that it can
occupy one region, two regions, or four regions.

4.4.3 Heuristic Function

In this section we describe the heuristic function H(n) that returns a lower

bound on the lowest symmetry value amongst all leaf nodes in the subtree rooted

at node n. We consider the objective function Sall in this section.

For node n, we denote as Pn ⊆ G the set of objects already placed on the

grid (objects that had their x and y coordinates assigned by the search procedure).

The set of objects yet to be placed is defined as Mn = G − Pn. A lower bound

on the symmetry value of n is computed as follows.

H(n) = Sall(Pn ∪G�)− 3×
� �

o∈Mn

A(o) +
W

2
+

L

2

�
, (4.10)

where A(o) is the area of the rectangle-shaped objects o, W
2
is the largest possible

distance from the center of an object to the vertical line, and L
2
is the largest

possible distance from the center of an object to the horizontal line. The term

Sall(Pn ∪ G�) in Equation 4.10 accounts for the symmetry value of the objects

already placed on the grid. H(n) considers that the remaining objects Mn can

be placed in a way that they only decrease the symmetry value of the partial

solution n.

The values of H according to Equation 4.10 could be negative, while the

value of Sall(G) is always non-negative. Thus, the value of H(n) is trivially set

to zero if it becomes negative.

The following theorem states that H is admissible.

Theorem 1. Let a symmetry problem be defined with a grid of size L×W , two

sets of objects G and G�, where the height and the width of all o ∈ G ∪ G� are

at most W and L, respectively. Also, let n be a partial solution to the symmetry

problem where the set of objects Pn ∪G�, with Pn ⊆ G, are already placed on the
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grid. There is no placement of the remaining objects Mn = G − Pn that yields

Sall(G ∪G�) < H(n).

Proof. We start by proving that the placement of object o can reduce the sym-

metry value Sall(Pn ∪G�), in terms of area, by at most 3×A(o). Then we prove

that an object can reduce the value of Sall(Pn ∪G�) by at most 3× W
2
and 3× L

2
,

in terms of distance to the vertical and horizontal lines, respectively.

A rectangle-shaped object can be placed completely inside one of the four

regions, partially in two regions, or partially in all four regions, as illustrated by

Figures 4.2a, 4.2b, and 4.2c, respectively. If o is placed partially in more than

one region, then we treat o as though it was replaced by multiple objects, one for

each region it occupies. For example, if o occupies two regions, then we replace

o by objects o1 and o2 with A(o) = A(o1) + A(o2). Analogously, if o occupies

all four regions, then we replace o by four objects whose areas sum up to A(o).

The set of objects in a given region of the grid is accounted for in three terms

of Equations 4.4–4.9 describing Sall(G) (e.g., GUL appears in terms 4.4, 4.6, and

4.8). Thus, when an object o is placed on the grid, its area A(o) can reduce the

symmetry value by at most 3 × A(o). This is true even if o is placed in two or

four regions, since o is replaced by objects with total area equal to A(o).

Since the grid is W wide, each region is W
2

wide. Any object o placed in

one of the regions, as illustrated in Figure 4.2a, reduces Sall by at most 3× W
2
in

terms of the distance of o’s center to the vertical line. This is because the center

of an object cannot be placed farther than W
2
from the vertical line, and dx(o) is

accounted for three times in Sall.

It can also be that o is placed in two regions, as illustrated in Figure 4.2b.

Let o have width of D = p + q. Moreover, since o is placed in two regions, o is

replaced by two objects, one with width p and another with width q. Since the

center point of the objects have distance p
2
and q

2
from the vertical line, the two

objects can reduce at most 3 · p
2
+ 3 · q

2
= 3 · D

2
from Sall. Since D ≤ W , an

object placed in two regions can decrease at most 3 × W
2

from Sall. The object

o may also occupy all four regions, as illustrated in Figure 4.2c. In this case o

is replaced by objects o1 ∈ UL, o2 ∈ UR, o3 ∈ LL, and o4 ∈ LR. Since o is

rectangle-shaped, o1 and o3 have width p and o2 and o4 have width q. Note that

dx(o1) cancels out with dx(o3) and dx(o2) cancels out with dx(o4) in Sall. Thus,

considering only dx-values, Sall can be written considering the four non-cancelled

terms as 4 · (|p−q|)
2

= 2 · |p− q|, which is maximized when p = W
2
and q = 0. Thus,

the value of 3 × W
2

is also an upper bound on how much Sall can be reduced in

terms of dx by placing o.

The proof for the term 3 × L
2
is analogous to the proof just shown for
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3× W
2
.

According to Theorem 1, B&B employingH is guaranteed to find a solution

with optimal symmetry value, possibly expanding many fewer nodes than BFS.

4.4.4 Object Ordering

The B&B procedure described above traverses the search tree while using

H to prune unpromising nodes. As explained, B&B prunes all nodes n for which

H(n) ≥ B. B&B will tend to prune more nodes if H provides values that are

closer to a perfect estimate (i.e., larger values ifH is admissible). We now describe

how the order in which the objects are placed on the grid might affect the accuracy

of the H-values.

The negative (second) term of H(n) (see Equation 4.10) accounts for the

area of the objects yet to be placed, Mn. Thus, if B&B places the objects with

larger A-values earlier during search, it reduces the negative term of H thus

increasing the heuristic value of nodes at deeper levels of the tree. Aiming at

obtaining more accurate heuristic estimates, in our implementation of B&B we

sort the objects in G according to their areas and place larger objects before

smaller ones.

4.4.5 Region Ordering

Another factor that affects how much pruning B&B is able to perform is

the cost of the incumbent solution B. Intuitively, B&B is able to prune larger

portions of the search tree if it quickly finds an optimal or near-optimal solution

to the symmetry problem. This is because smaller B-values allow more nodes

n to be pruned by satisfying the H(n) ≥ B condition. In addition to defining

an ordering of objects to improve the estimates returned by H, as explained in

Section 4.4.4 above, we define an ordering of regions to allow B&B to find optimal

or near-optimal solutions more quickly.

Once the search procedure defines which object o is going to be placed

next during search, B&B verifies which region R ∈ {UL,UR,LL, LR} has the

smallest value of V . B&B will try all possible positions of o within R before

trying to place o in another region. The intuition is that B&B tries to place the

objects aiming at keeping all regions balanced, with similar V values. Then, the

V -values cancel out and B&B is able to find good solutions early in search.
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Table 4.1: Average number of nodes expanded and average running time in sec-
onds of BFS and B&B for the PCG type

PCG Type

|G| BFS B&B Ratio
Nodes Time Nodes Time Nodes Time

4 8,660.0 0.04 3,777.6 0.03 2.29 1.47
5 57,848.4 0.24 18,705.5 0.12 3.09 1.92
6 230,576.7 1.25 71,317.7 0.51 3.23 2.44
7 197,811.1 1.34 68,170.0 0.65 2.90 2.08
8 2,181,380.6 17.81 780,964.5 8.80 2.79 2.02
9 3,863,823.9 41.48 1,947,896.5 24.60 1.98 1.69

4.5 Node Expansion and Running Time

Experiments

In this section we compare the number of nodes expanded by BFS and

B&B, as well as their running times.

4.5.1 Experimental Setup

In this experiment we use sets G of sizes in {4, 5, 6, 7, 8, 9} and a grid of

size 20 × 15 which is initially empty (i.e., G� = {}). We choose these sizes of

G because levels of Super Mario Bros. often have 4 to 9 objects distributed in

chunks of size equivalent to the 15× 20 grid used in this experiment.

We consider two types of sets of objects G. In the first type we allow

shareable and non-shareable objects of varied dimensions. We employ Notch’s

Level Generator system (NLG), to define different G sets. That is, we execute

NLG to generate a level e of size 15 × 20 and use the objects in e to create the

set G of an instance of the symmetry problem. This way we use sets of objects

whose dimensions and properties are similar to the objects that appear in actual

maps of a game. We call this type of set the PCG type.

In the second type of sets G we use a collection of non-shareable objects

of size 1 × r, where r is a random integer ranging from 1 to 4. We chose to

experiment with sets G of this type because they emulate the scenario where one

applies our method to automatically create symmetrical graphical user interfaces

(GUIs) . That is, one is given a set of buttons another GUI elements to be placed

on a software window. The small objects of varying size used in this experiment

emulate several GUI elements. We call this type of set the GUI type.
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Table 4.2: Average number of nodes expanded and average running time in sec-
onds of BFS and B&B for the GUI type

GUI Type

|G| BFS B&B Ratio
Nodes Time Nodes Time Nodes Time

4 233,512.7 1.19 16,832.1 0.21 13.87 5.53
5 4,813,781.2 12.14 829,463.5 3.13 5.80 3.88
6 69,871,632.3 188.49 15,463,431.4 63.15 4.52 2.98
7 1,147,264,687.0 3,626.42 285,681,694.7 1,350.54 4.02 2.69
8 7,049,476,561.0 26,785.45 2,474,114,680.9 13,320.39 2.85 2.01
9 49,489,256,774.6 233,623.03 19,493,911,071.8 127,756.31 2.54 1.83

We perform this experiment with 20 problem instances of each type of sets

(PCG and GUI) and present the average number of nodes expanded and average

running time in seconds for different cardinalities of G. All experiments are run

on 2.67 GHz machines. The results are presented in Tables 4.1 and 4.2, for the

PCG and GUI type, respectively. The tables also show the ratio between BFS’s

average number of nodes expanded to B&B’s, as well as BFS’s average running

time to B&B’s. Ratio values greater than 1.0 indicate that BFS expands more

nodes and is slower to retrieve an optimal solution. For example, the ratio value

of 2.29 for the number of nodes expanded for |G| = 4 in Table 4.1 indicates that

BFS expands 2.29 times more nodes than B&B on average.

4.5.2 Discussion of Results

The problem instances tend to be harder for larger values of |G|—this trend

can be observed in both Table 4.1 and 4.2. The results presented in Table 4.1

show that BFS expands 2 to 3 times more nodes than B&B, and is 1.5 to 2

times slower than B&B. The reduction in the number of nodes expanded does

not translate directly to the same reduction in running time because the heuristic

function represents an overhead to the B&B approach. That is, B&B expands

fewer nodes but has a higher per-node cost. Nevertheless, the B&B approach is

substantially faster than BFS, showing that the overhead of computing H pays

off.

The speedup of B&B over BFS is larger for the GUI type (see Table 4.2).

For example, for |G| of 4, B&B expands almost 14 times fewer nodes than BFS,

and is almost 5 times faster than BFS. In general, the problem instances of the

GUI type are harder than those of the PCG type. This happens because the



40

Figure 4.3: Levels generated by our system using the vertical symmetry function.

Figure 4.4: Levels generated by our system using the all symmetry function.

objects of the PCG type have constraints associated to them. For example, a

pipe object in IMB can be placed in a very limited number of grid cells, as pipes

must not be aloft. By contrast, the objects in the GUI type might be placed

in any empty grid cell, which increases substantially the problem’s state space.

Although we frame the GUI type as a problem of designing a GUI, levels of

platform games may contain objects with properties similar to the objects of the

GUI type. For example, chunks of IMB levels could contain only small blocks

that can be placed virtually anywhere on the grid.

4.6 Generating Larger Levels

The search algorithm described above can be used to generate small chunks

of symmetrical game levels. In this section we explain how we combine these small

levels of size L × W into a level of size L × k ·W . We use an approach that is

similar to the one introduced by (Reis et al., 2015).

Reis at al. describe a system that uses human computation to evaluate

the difficulty, visual aesthetics, and enjoyment of a set of small chunks of a plat-
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form game level. We refer to these small chunks of levels as small levels. Their

method constructs a larger level of the platform game by concatenating small

levels together according to a mathematical function they called tension arc. A

tension arc receives as input the position j of the small level within the larger

level and returns the difficulty value of the small level occupying the j-th position.

For example, for j = 1 (i.e., the first small level composing the large level) the

tension arc used by Reis at al. returns a small value d, indicating that the first

small level composing the large level must be an easy one. Then, their system

randomly selects a level from their library of small level that has a difficulty of

d and was rated highly with respect to enjoyment and visual aesthetics by the

human workers. The idea behind Reis at al.’s tension arc is to have the difficulty

of the level increasing as the player advances into the level.

In this work we use Reis et al.’s tension arc-based system to build a larger

level out of the small symmetrical levels generated by our B&B procedure. How-

ever, in contrast with Reis et al.’s work, our library of small levels is not labelled

by human workers. Instead of using human computation, we trust our B&B

procedure to generate visually pleasing small levels, and we use the metric of

leniency (Smith & Whitehead, 2010) to replace Reis at al.’s human-computed

difficulty values. Leniency measures how much challenge the player is likely face

while playing the level. The leniency of level L is the sum of the lenience value

w(o) of all objects o in L, defined as
�

o∈L w(o).

We use the w-values specified by (Shaker, Nicolau, et al., 2012). Namely,

items that make the game easier such as power-up items have a weight of 1, some

of the enemies of −0.5, and more challenging enemies of −1. Although the metric

was originally defined for IMB, it can be translated to other platform games.

Our method generates an IMB level of size L× k ·W as follows. First we

use the B&B method described above to generate a library I of symmetrical levels

of size L × W with different sets G of objects. As in our previous experiment,

the sets G are defined by the NLG system. Then, we compute the lenience of

each level i ∈ I and normalize the resulting values to a number in [1, 7], and

round them up. After this process each level i ∈ I has a lenience integer value

associated to it.

We have to concatenate k small symmetrical levels to generate a level of

width k · W . The lenience of each of the k levels composing the level of size

L× k ·W is given by the tension arc function. In our experiments we use k = 9

and the tension arc shown in Table 4.3. For example, the fourth level of size

L×W composing a level of size L× k ·W has to have a leniency of 4, while the

last level has to have a leniency of 3. For each position j ∈ [1, k] our method
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Table 4.3: Tension arc used in our experiments.

position 1 2 3 4 5 6 7 8 9
lenience 1 2 3 4 4 5 5 4 3

selects from I a level i with the leniency value shown for entry j in Table 4.3. In

Figures 4.3 and 4.4 we show screenshots of levels generated by our system using

the Vertical Symmetry function, and levels generated by our system using the All

Symmetry function as evaluation function.

4.7 Comparison with Other Systems

In this section we evaluate with a user study the symmetry system intro-

duced in this work and compare it to other existing approaches for generating

IMB levels. The experiment presented is similar to the user study presented in

Chapter 3, however there are some few differences.

We use three different IMB PCG systems in our experiments: symmetry,

Human-Computation Tension Arc-Based (HCTA) with a parabolic tension arc,

as described by citereis2015human, and Occupancy-Regulated Extension (ORE)

generator (Mawhorter & Mateas, 2010). HCTA and ORE were used in the user

study of Chapter 3.

We chose HCTA and ORE to compare against symmetry because the for-

mer was shown to outperform other approaches (Reis et al., 2015) and the latter

was the winner of the 2011 Mario AI Competition.1

In addition to a Turing test, in the user study the systems are evaluated

according to the following criteria: enjoyment, visual aesthetics, difficulty. Each

participant was asked to answer how much they agreed or disagreed, in a 7-likert

scale, with the following sentences: “This level is enjoyable to play”; “this level

has good visual aesthetics”; “this level is difficult”; “this level was developed by

a machine”. A score of 1 for enjoyment and visual aesthetics means that the

participant strongly agrees that the level played is enjoyable and has excellent

visual aesthetics; a score of 1 for difficulty means that the participant strongly

agrees that the level is difficult; a score of 1 for the Turing criterion means that

the participant strongly agrees that the level was designed by a machine.

Subjects were instructed about the controls of the game before playing

a practice level. The practice level is important so that the participants get

1see http://www.marioai.org/LevelGeneration.
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acquainted with the controls of the game. NLG was used to generate the practice

levels. Only after playing the practice level that the participants evaluated the

levels generated by the PCG systems. Each participant played one level generated

by each of the three PCG systems. After playing each level the participants gave

scores according to the criteria described above in a 7-likert scale. In addition

to the scores, the participants had the option to enter comments informing us of

technical issues they might have had during the experiment. At the end of the

experiment the subjects filled a questionnaire informing their age, gender, and if

they had played SMB before.

Our within-subject experiment had 47 participants: 43 males and 4 females

with an average age of 27.53 and standard deviation of 5.59. All participants had

played SMB before. Each participant played one level generated by each system,

resulting in the evaluation of 47 levels of each PCG system. The experiment

was carried out online: our system was made available in the Internet and our

experiment advertised in different mailing lists. Participation was anonymous.

Since all participants played one level generated by each system, we used

a balanced Latin square design to counteract ordering effects. The tested levels

were generated during the experiment by the evaluated systems, we did not pre-

select a set of levels to be tested.

In order to have a fair comparison of the levels generated by different

systems we had all systems generating levels of the same size: 160 × 15. We

chose this size because we did not want the experiment to be too long. Finally,

to ensure a fair comparison of the different approaches, we tuned the systems to

generate levels with similar difficulty.

The data of participants who did not finish playing all levels is not included

in the results. The number of 47 participants was obtained after cleaning the data.

4.7.1 Results

The mean results and standard deviations are shown in Table 4.4. Different

letters in a given row indicate that the two means are significantly different.

Shapiro-Wilk tests showed that our data is unlikely to be normally distributed

(p < .01 for all criteria). Thus, we used the non-parametric Friedman test which

showed a significant difference on enjoyment (p < .01), on visual aesthetics (p <

.01), and on Turing (p < .001) across different systems; there was no significant

difference for difficulty.

We then use Wilcoxon signed-rank tests to perform pairwise comparisons

of the results obtained by the evaluated systems. We present the effect size of the

comparisons (r-values) in addition to p-values. Symmetry generates levels that
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SYM HCTA ORE
Enjoyment 2.70 ± 1.69a 2.97 ± 1.68a 3.89 ± 2.01b

Aesthetics 2.72 ± 1.69a 2.78 ± 1.72a 3.36 ± 1.79b

Difficulty 3.74 ± 1.85a 4.06 ± 1.78a 3.29 ± 2.12a

Turing 3.06 ± 1.83a 3.95 ± 2.12b 2.31 ± 1.93c

Table 4.4: Lower values of enjoyment and aesthetics indicate levels which are
more enjoyable to play and have better visual aesthetics; lower values of Diffi-
culty indicate levels which participants found more challenging to play; larger
values of Turing indicate levels that participants were more prone to believe that
were generated by humans. Different letters in a given row indicate statistically
significant results.

are significantly more enjoyable to play than the levels ORE generates (p < .001,

r = 0.50). HCTA also generates levels that are significantly more enjoyable to

play than those generated by ORE (p < .01, r = 0.42). There is no statistical

difference between the levels generated by symmetry and HCTA with respect to

enjoyment.

Pairwise comparisons on visual aesthetics also showed that symmetry gen-

erates levels with significantly better visual aesthetics than the levels ORE gener-

ates (p < .05, r = 0.37). Similarly, HCTA also generates levels with significantly

better visual aesthetics than the levels ORE generates (p < .01, r = 0.39). There

is no statistical difference between the levels generated by symmetry and HCTA

with respect to visual aesthetics.

Pairwise comparisons on Turing showed that the levels HCTA generates

trick more people into thinking they were generated by human designers than the

levels generated by symmetry (p < .05, r = 0.30) and by ORE (p < .0001, r =

0.56). Also, the levels symmetry generates trick more people into thinking they

were generated by human designers than the levels generated by ORE (p < .05,

r = 0.31).

All pairwise comparisons reported as statistically significant have effect

sizes equal or higher than the medium size mark of 0.3, indicating substantial

differences among the systems. Some of the pairwise comparisons have large effect

sizes (r-values of 0.50 or higher), showing large differences among the systems.

4.7.2 Discussion

Symmetry generates levels that are as enjoyable and as visually pleasing

as those generated by HCTA. HCTA is a method that uses human workers to

select the set of small levels composing the IMB level. symmetry does not use

any sort of human input, it solely relies on the quality of the symmetrical levels
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generated by our B&B approach.

The only criterion that symmetry and HCTA differ is Turing. This shows

that although the levels generated by both systems are visually pleasing, the

participants were able to notice more often that the levels generated by symmetry

were actually generated by a computer program. We believe that symmetry

could achieve results similar to HCTA on the Turing criterion if we introduce a

symmetry error factor �. That is, instead of having B&B return a level with the

smallest symmetry value, we could have it return a level with symmetry value

within a factor of � of the optimal value. This is an interesting future research

direction.

symmetry generates levels that are significantly and substantially more en-

joyable and more visually pleasing than those generated by ORE, another system

that does not account for human input while generating IMB levels.

(a) Original (b) Sall

(c) Svert (d) Random

Figure 4.5: Small levels created by a human designer, by our approach using Sall

and Svert, and by a random placement that respects domain-specific constraints.

4.8 Comparison with Human Designers

In this section we compare the visual aesthetics of level chunks generated

by our system with those created by professional designers for fixed sets of objects

G.
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We reproduced in IMB chunks of size 15 × 20 of original SMB levels.

In total we reproduced 10 of such small levels. This set of small levels were

selected arbitrarily from an online repository of game maps.2 We collected the

set of objects G in each small level reproduced from the original SMB levels and

provided them as input to our B&B procedure so it could produce a level of equal

size and with exactly the same set of objects as the original levels. We tested two

objective functions in this experiment: Sall and Svert.

We ran a user study in which we presented the images of the small levels

created by professional designers side by side with those generated by our B&B

procedure while minimizing Sall and Svert. In addition to the small levels created

by professional designers and those generated by our system, we also presented

to the participants images of levels that were generated by randomly placing the

objects in G. In this random approach we used the same constraints used with

out approach.

In contrast with the IMB game, the images of the levels were presented

to the participants with a blue background. This is to ensure that the random

background generated by the game would not bias the participant’s perception

of the object’s placement. Figure 4.5 shows a representative set G out of the 10

sets used in our experiment—see the others 9 in appendix A.

Each participant visualized all four images at once: one generated by a

professional designer (Original), two generated by our system (Sall and Svert), and

one generated by the random placement (Random). The participants answered

for each level shown on the screen if they agreed with the statement “This level

has good visual aesthetics” in a 7-likert scale. After evaluating all 4 images, the

participant could choose to either quit the experiment or to evaluate another set

of images for another set G of objects.

Since each participant was allowed to interrupt the experiment at any time,

they could evaluate from 1 to 10 sets G during their participation. In order to

account for possible ordering effects, we randomized the order in which the sets

G and the resulting levels of each approach were presented to each participant.

Our experiment was performed online and advertised in different mailing lists and

social network groups. At the end of the experiment the subjects filled a ques-

tionnaire informing their age, gender, and if they had played SMB before. Our

within-subject experiment had 23 participants: 19 males and 4 females with an

average age of 26.38 and standard deviation 3.81. The 23 participants evaluated

215 sets G. They all had played SMB before.

2http://ian-albert.com/games
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Sall Svert Human Random

3.26 ± 1.74a 3.08 ± 1.91a 3.08 ± 1.85a 5.04 ± 1.96b

Table 4.5: Visual aesthetics results. Lower values indicate levels that have better
visual aesthetics. Different letters in a given row indicate statistically significant
results.

4.8.1 Results

Table 4.5 shows the average score and standard deviation each approach

obtained in our user study. Lower values mean that the participants tended to

agree more strongly that the levels generated by a given approach have good visual

aesthetics. Different letters indicate that the two means are significantly different.

A Shapiro-Wilk test showed that our data is unlikely to be normally distributed

(p < .0001). The non-parametric Friedman test showed a significant difference

on the means (p < .0001). Pairwise comparisons with Wilcoxon signed-rank

tests showed statistical difference between Random and all the other approaches

(p < .0001 and r > 0.50 for all comparisons with Random). There was no

statistical difference between the levels generated by our system and those created

by professional designers.

4.8.2 Discussion

Our system generated levels with striking similarity with those created by

human designers (see Figures 4.5a and 4.5b for a representative example). The

results presented in Table 4.5 show that the participants thought that our system

employing Svert generated levels as visually pleasing as those created by human

designers. Moreover, the visual aesthetics of the levels generated by Sall were

rated only slightly worse than those generated by Svert and the professionals.

According to the results, the levels generated by our system and by the

professionals have better visual aesthetics than those generated by the random

placement of objects. These results support our hypothesis that our system is

able to generate visually pleasing game maps.
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CHAPTER 5

Conclusions

In this work we have introduced a computational model for generating

visually pleasing solutions for the object placement problem. Our computa-

tional model optimizes objective functions to generate symmetrical scenarios. We

showed that a simplified version of the problem of finding perfectly symmetrical

scenarios to be computationally hard and introduced a heuristic search approach

to solve it optimally.

The content generated by our algorithm was tested in two user studies.

In the first user study the participants played IMB levels generated by our ap-

proach and by competing systems. The participants rated the levels generated

by our system as enjoyable and as visually pleasing as the levels generated by a

system that requires human input (HCTA), and more enjoyable and more visu-

ally pleasing than the levels generated by another system (ORE). In the second

user study we compared the visual aesthetics of the IMB levels generated by our

system with those created by professional designers. The participants rated the

levels generated by our system as visually pleasing as the levels created by the

professionals.

Although we applied our method to game design, we believe our compu-

tational model for visual aesthetics and our search algorithm are general and

could be applied to other problems, such as the placement of buttons and icons

in graphical user interfaces. The application of our method to other domains is

an interesting direction of future work.

In this work we also tested several computational metrics used to evaluate

levels generated by PCG systems for the game of IMB. We conducted a user study
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for evaluating four PCG systems according to the following criteria: enjoyment,

visual aesthetics, and difficulty. The most important conclusion drawn from this

experiment about metrics is that a well designed user study cannot be replaced by

the current computational metrics. However, we believe that the computational

metrics are suitable to be used during the design process, for quick and easy

exploratory evaluations of the PCG system.
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APPENDIX A

APPENDIX: Set of images used in the

experiment with Human designers

(a) Original (b) Sall

(c) Svert (d) Random
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(a) Original (b) Sall

(c) Svert (d) Random

(a) Original (b) Sall

(c) Svert (d) Random



52

(a) Original (b) Sall

(c) Svert (d) Random

(a) Original (b) Sall

(c) Svert (d) Random
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(a) Original (b) Sall

(c) Svert (d) Random

(a) Original (b) Sall

(c) Svert (d) Random
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(a) Original (b) Sall

(c) Svert (d) Random

(a) Original (b) Sall

(c) Svert (d) Random
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