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ABSTRACT 

BACKGROUND: For the first time, a model was applied at the global scale in order to 

investigate the effects of climate change on Dalbulus maidis. D. maidis is the main vector of 

three plant pathogens of maize crops and has been reported as one of the most important 

maize pests in Latin America. We modeled the effects of climate change on this pest using 

three Global Climate Models under two Representative Concentration Pathways (RCPs) 

using the MaxEnt software. RESULTS: Overall, climate change will lead to a decrease in the 

suitable areas for D. maidis. In South America, climate change will decrease the areas that are 

suitable for the pest, especially in Brazil. However, Argentina, Chile, Colombia, Ecuador, 

Peru, and Venezuela will have small areas that are highly suitable for the corn leafhopper. 

Outside of the pest’s range, Ethiopia, Kenya, Rwanda, Burundi, and South Africa also should 

be concerned about the risk of corn leafhopper invasions in the future since they are projected 

to have highly suitable conditions for this insect in some areas. CONCLUSION: This study 

will allow the relevant countries to increase their quarantine measures and guide researchers 

to develop new Z. mays varieties that are resistant or tolerant to D. maidis. In addition, the 

maize-stunting pathogens for the areas are highlighted in this modeling. 

 

Keywords: MaxEnt; ecosystem modeling; corn leafhopper; ecological niche model; climate 
change; Zea mays. 
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INTRODUCTION 

Maize (Zea mays L.) is the most widely grown and produced cereal worldwide 1. In 

2017, the global production of maize reached more than 1.07 billion metric tons, which is an 

increase in production of 210% compared with 1975 1. The high production of maize is 

related to the economic importance of this crop in many sectors of industry, such as food 

components, rubber, plastics, fuel, clothing and many others 2,3. Due to its versatile uses, the 

worldwide maize industry is worth 170.3 billion dollars annually 1. 

Many factors contributed to the increase in maize productivity, such as its efficient 

use in fertilizers, improvements in agronomic practices, and advances in plant breeding. The 

adoption of genetically engineered maize was itself responsible for a significant 25% increase 

in the grain yield 4. Since the first genetically engineered plant was commercially introduced 

in 1996 4,5, maize has become the crop with more genetically modified registered varieties, 

and it represents almost US$ 8 billion dollars’ worth of business 4. 

Insect-resistant maize varieties, which are capable of synthesizing the cry toxin, is one 

of the many genetically engineered varieties, and it has yielded several benefits, especially 

decreasing the use of pesticides to control insect pests 6,7. The Bt (Bacillus thuringiensis) 

varieties are widely used to control pests of the Lepidoptera and Coleoptera orders 8; 

however, the adoption of this technology has led to the increase in damages associated with 

other nontarget species 9, including the corn leafhopper Dalbulus maidis (DeLong) 

(Hemiptera: Cicadellidae) 9,10, especially due to the decreasing number of insecticide 

applications that are needed in these crops. In 2010, a study found that the D. maidis 
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population was higher in the Bt crop than in the conventional maize in South America, but 

the reasons for this have still not been completely determined 10. 

Dalbulus maidis is the main vector of three plant pathogens of maize crops, including 

the corn stunt spiroplasma (Spiroplasma kunkelii), the maize bushy stunt phytoplasma (MBS) 

and the maize rayado fino virus (MRFV). The transmission of these pathogens occurs in a 

persistent and propagative manner, which can result in high infestation rates 11. In Central 

America, Peru, Brazil, and Argentina, infestations by these pathogens can affect 100% of the 

plants in some areas 12, which translates into yield losses of up to 90% 13,14. Therefore, the 

direct (i.e., sap sucking) and indirect (i.e., pathogens transmission) damages caused by this 

pest have been an ever-increasing concern. 

Due to its increasing importance, many types of research have focused on D. maidis, 

but none of these studies have assessed the effects of climate change using modeling tools for 

different climate change scenarios and considering the host plant. It is expected that 

anthropogenic greenhouse gases emissions will result in alterations in the earth surface 

temperature and precipitation in the future 15. These alterations can lead to improvement or 

deterioration of the climatic suitability for corn leafhoppers in some areas, which can result in 

changes in the corn leafhopper’s habitats. In this context, alteration in pests’ suitable habitats 

can jeopardize food security due to the negative impacts on agriculture. Therefore, studies on 

the effects of climate change are essential in order to establish a reliable decision-making 

process, to design quarantine measures and to guide plant breeding research that can select 

the genetic materials that are best suited for certain areas. 
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The effects of climate change have been assessed mainly through ecological niche 

models 16-18. The effects of climate change can be grouped as correlative models or 

mechanistic models 18-20. Correlative models correlate environmental variables and 

occurrence data in order to make projections of the potentially suitable areas for species 18. 

Examples of correlative models are the Generalized Linear Model, the MaxEnt, the Random 

Forest, the Boosted Regression Tree, and the Bioclim 18. On the other hand, mechanistic 

models (e.g., CLIMEX) use the combination of environmental variables with information 

about the species’ environment tolerances in order to make their projections 18. 

Among these models, one tool that is frequently used to assess the potential 

distribution of species is the correlative maximum entropy-based model or MaxEnt 18-20. The 

MaxEnt model correlates the species’ occurrence and the background data points from spatial 

environmental variables in order to make projections for the suitable areas for the species 21. 

In addition, it has also been widely recognized to perform robust projections for species with 

restricted distributions and small sample sizes, which is advantageous compared to other 

algorithms such as the CLIMEX 20-22. 

Within this framework, this study aims to investigate the suitable areas for D. maidis 

at the global scale and predicts the effects of climate change in 2050 and 2070 under two 

distinct climate change scenarios. For this, we built two spatial distribution models (pest and 

host plant). It is envisaged that this study will provide a comprehensive understanding of the 

effects of climate change on the corn leafhopper and identify those areas that are at the 

greatest risk from D. maidis due to highly favorable conditions for both the pest and its host 

plant. 
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MATERIALS AND METHODS 

Species Occurrence Data 

In order to identify the highly suitable areas and the effects of climate change on the 

distribution of D. maidis, we developed two spatial distribution models (pest and host plant). 

For this purpose, the open-field occurrence records of D. maidis were cataloged and 

confirmed from sources including field surveys and the published literature (Table S1). The 

occurrences of Z. mays L. were gathered from the Global Biodiversity Information Facility 

(GBIF.org (05 February 2018) GBIF Occurrence Download 

https://doi.org/10.15468/dl.lr9vsp) and literature resources 23,24. The presence of D. maidis 

was confirmed at a total of 344 sites, and the pests were only on the American continent (Fig. 

1a). Therefore, there are no occurrences of D. maidis outside this continent (Fig. 1a). For Z. 

mays, 754 records were confirmed to be distributed worldwide (Fig. 1c).  

First, the records of both the D. maidis and Z. mays species were cleaned by removing 

duplicate records, evaluating the coordinate records when possible, and removing spurious 

locations outside the species’ known geographic ranges. Then, the D. maidis and Z. mays 

records were reduced to 334 and 614, respectively, after applying the spatial filtering tool 

using the spThin package that is available in the R software (version 3.2.2) 25,26. This 

procedure was performed to achieve the spatial independence of the data, and the occurrence 

data were kept at least 10 km apart from each other 27,28. This method performs a better 

spatial autocorrelation reduction than other available methods and allows us to keep as many 
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of the records as possible 27. Therefore, when building the models, the species’ filtered data 

that were related to the open-field were used. 

Environmental Data 

Nineteen variables were considered in this study. Eleven variables were derived from 

the monthly temperature and eight from the monthly precipitation (Table 1). The variable 

layers were obtained from the Worldclim dataset (http://www.worldclim.org) 29 at the 2.5 

min resolution (~5 km), which is sufficient for supporting climatic variables at the global 

scale 30. The Worldclim variables were derived from the monthly temperature and 

precipitation, seasonal variation, and climatic extreme indices covering a period of time from 

1950 to 2001 29. According to Jarnevich, et al. 31, the predictors that directly influence the 

species’ distributions, such as those selected in this study, are more transferable than indirect 

predictors (i.e., elevation, land use, etc.), especially for studies that aim to project the 

potential current and future areas that are at risk of pest invasions. For this reason, this study 

only used environmental variables when making its projections. 

The environmental variables were examined for any cross-correlation in order to 

avoid multicollinearity 32. This procedure was undertaken using the SDMtoolbox and only 

one variable that was derived from each set of the highly correlated predictors (Pearson 

correlation coefficient, r = |0.75|) was included in the model (Table S2) 18. Thus, only six 

environmental variables were selected and considered sufficiently biologically relevant to be 

included in the models (Tables 1 and 3). 

Model Development and Validation 
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The correlative maximum entropy-based model or MaxEnt (version 3.3.3k) 21 was 

chosen to assess the suitable areas and the impacts of climate change on the D. maidis 

distribution. MaxEnt correlates the background data points from the spatial environmental 

variables representing different environmental gradients and species’ occurrence data in order 

to make projections of the potential suitable areas for the species 21. MaxEnt classifies the 

areas from 0 to 1, where 0 represents unsuitable areas for the species’ development, and 1 

represents highly suitable areas. MaxEnt is also recognized to perform good projections with 

small samples sizes 20,22. To build the model, a total of 50,000 background points were 

randomly selected from the areas where the insect is currently found 31,33, which is 

recommended in studies that are carried out on a global scale. Additionally, a sampling bias 

surface was developed using the kernel density estimate that is available in the SDMToolbox. 

Considering that the collected data were from external sources and we were not able to 

control the sampling process, the development of the bias surface is recommended 33. 

To select the best model, different settings were adjusted in MaxEnt 18,31,34. Thus, 

different combinations of the regularization multiplier (RM) and feature types were set in 

order to generate different models. Through the RM, MaxEnt selects the features that 

contribute the most to the model, thus reducing the model’s overfitting 34. It is recommended 

that researchers explore a range of RM coefficient values and choose the value that 

maximizes a measure of fit for a cross-validation data set 34. Thus, the RM values that were 

used in this study were 1.0 and 1.5. Different sets of MaxEnt features (e.g., linear [L], 

quadratic [Q], product [P], threshold [T], and hinge [H]) and RM combinations were 

performed in order to obtain the best model for each species (Tables 1 and 3). The ‘fade-by-

This article is protected by copyright. All rights reserved.



 

 
 

clamping’ option was selected in the software in order to avoid extrapolations that are outside 

the species’ environmental range 35. Species ‘response curves’ were also generated by 

employing the ‘Jackknife’ feature, the percent contribution, and the permutation importance 

in MaxEnt (Figs. S1 and S2) 21. 

The ‘response curves' allow us to assess the relationships between the predicted 

probabilities for the species and each environmental predictor 18,21. Therefore, all curves were 

evaluated and were kept for further evaluations only for the models that presented 

biologically coherent curves (Fig. S1, S2). The ‘Jackknife’ feature evaluates the relative 

influence of different environmental predictors on the insects’ distributions (Fig. S3). The 

percentage contribution estimates the contribution of a certain variable to the model, and the 

permutation importance indicates the dependence of the model on that variable 21. 

To select the best model for D. maidis, a 10-fold cross-validation was performed in 

MaxEnt in order to calculate the AUCcv (area under the receiver operating characteristic 

[ROC] curve) 36 and the test sensitivity at 0 and 10% training omission rates (OR) 19,37. The 

AUCcv is a measurement of the model’s ability to discriminate presence from background. 

Based on the AUCcv, the models can be classified into models in which predictions are worse 

than random (AUCcv < 0.5), models in which predictions are not better than random (AUCcv 

= 0.5), models with poor performance (AUCcv < 0.7), models with reasonable or moderate 

performance (0.7 d AUCcv < 0.9), and models with high performance (AUCcv e  0.9) 38. The 

OR represents the percentage (0 and 10%) of the training presence locations for the model 

that fall outside the predicted suitable area. Therefore, with respect to the test sensitivity at 0 
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and 10%, the training OR threshold is expected to be 0 and 0.10, respectively. Values higher 

than the expected values indicate poor model performance 27. 

Future Projections and Model Combinations 

For the future projections for 2050 and 2070, the Global Climate Models (GCMs) 

MIROC5, HadGEM2-AO and HadGEM2-ES under the Representative Concentration 

Pathways (RCP) RCP4.5 and RCP8.5 were used for both species. Theses GCMs have been 

widely used to assess the spatial distributions of many species based on climate change, 

ecosystems, and other long timescale components of the Earth, including the simulations of 

the currently available RCPs 39-41. These models were three of the models that were used in 

the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and 

the associated cycle of the fifth phase of the CMIP5 (http://www.ipcc.ch/report/ar5/wg1/) 42. 

These models take into account various factors, which includes greenhouse gas emissions, 

aerosols, solar irradiance, ozone, and others 43. Here, only the projections that performed 

under the MIROC5 (GCM) are presented, while the HadGEM2-AO and HadGEM2-ES 

projections are included in the electronic supporting information. 

Anthropogenic greenhouse gas (GHG) emissions are widely known to increase the 

global mean surface temperature, and these emissions are related to the population size, 

economic activity, lifestyles, energy use, land use patterns, and so forth 15. Based on these 

factors, the Representative Concentration Pathways (RCPs) are used in order to make 

projections of the effects of climate change 15. The RCPs are divided into four categories: 

RCP2.6, which predicts a severe mitigation scenario; RCPs 4.5 and 6.0, which predict 

intermediate scenarios; and RCP8.5, which predicts very high GHG emissions. In this study, 
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we selected the RCP4.5 and RCP8.5 scenarios in order to project the effects of climate 

change on D. maidis. We selected these two scenarios since they allow us to investigate the 

effects of climate change on these species under both reasonable and extreme climate change 

scenarios. RCP4.5 projects an increase in the global surface temperature from 1.1 to 2.6 ºC by 

the end of the 21st century, while RCP8.5 projects an increase from 2.6 °C to 4.8 °C by the 

end of the same period 15. Changes in the global precipitation patterns are also predicted to 

occur. 

For the combined models, the Prevalence Threshold Approach was selected. This 

approach was chosen in order to highlight the areas that will be highly suitable for maize with 

marginal and high suitability for the corn leafhopper in 2070 for both scenarios. This 

threshold approach was selected based on its recognized simplicity and efficiency in defining 

habitats and nonhabitats 37. We merged the marginal and highly suitable areas for D. maidis 

because this insect is the vector of maize-stunting pathogens, and, even in low-density 

populations, it can lead to large losses due to its negative effects, as mentioned above. 

 

RESULTS 

 

Prediction variables for Dalbulus maidis 

According to the current distribution of the corn leafhopper on the American 

Continent, D. maidis occurs mainly in areas with a mean annual temperature of 22.6 ºC and 

annual precipitation of 1260.5 mm (Table 1). The minimum temperature of the coldest month 

(61.5%), the mean annual precipitation (12%) and the precipitation of driest month (10.2%) 

were the variables that most contributed to the D. maidis projections (percent contributions in 
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parentheses) (Table 1). Therefore, D. maidis favors areas where there are higher winter 

temperatures, moderate to low annual precipitation and characteristic wet and dry seasons. 

The minimum temperature of the coldest month (58.9%) was the variable that individually 

contributed the most to the D. maidis model, and this variable was followed by the annual 

mean temperature (11.4%) and the mean diurnal temperature variation (10.2%). 

Dalbulus maidis model assessment 

Twelve combinations of regularization multipliers (RMs) and feature types were 

tested in this study in order to select the best model for D. maidis (Table 2). All tested models 

performed very well in their projections; they had low omission rates at 0 and 10% and 

excellent AUCcv values. The lowest ORs at 0 and 10% were 0.01 and 0.11, respectively, 

while the highest AUCcv was 0.97 (Table 2). Therefore, the best model for D. maidis includes 

six environmental variables, linear [L] and quadratic [Q] features, and RM = 1.5. It resulted 

in the lowest tested ORs at 10 and 0%, respectively (Table 2). 

Predicted distribution of D. maidis 

The current distribution of D. maidis and the MaxEnt projections were very well 

matched (Figs. 1a and b). Most of the areas that are infected by the corn leafhopper on the 

American continent were projected to be highly suitable for D. maidis. It is worth mentioning 

that the areas that are projected as highly suitable for D. maidis include sites where it is very 

abundant (e.g., northwest of Argentina, central and mid-west of Brazil and the Jalisco region 

in Mexico). Outside the pest’s range, large areas in Africa, Asia and Australia were projected 

as lowly or highly suitable for this insect. On the other hand, most areas in Europe were 

considered to be unsuitable for the corn leafhopper (Figs. 1a and b). 
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In general, all three models under both the RCP4.5 and RCP8.5 scenarios will result 

in a decrease in the suitability for D. maidis (Figs. 2 and 3, Supplementary material). Under 

the RCP4.5 scenario, the areas in South America, especially in the northern and central 

regions of Brazil, are projected to have decreased suitability for the corn leafhopper. Similar 

results are expected to occur in Central Africa and Asia. In North America, climate change 

will lead to a slight decrease in the suitability of Mexico (Figs. 2a and b, Supplementary 

material). The same patterns are projected to occur under the RCP8.5 scenario (Figs. 3a and 

b, Supplementary material). The difference is that, under the RCP8.5 scenario, the changes in 

suitability will be slightly accentuated (Figs. 3a and b, Supplementary material). 

 

Predictor variables for Zea mays L. 

Based on the current distribution of Z. mays, this crop is mostly cultivated in areas 

with a mean annual temperature of 16.7 ºC and precipitation of 929 mm (Table 3). The 

predictor variables that most influenced the Z. mays projections were the minimum 

temperature of the coldest month (72.2%), the mean annual temperature (9.6%) and the mean 

annual precipitation (9%) (Table 3). These results highlight the role of low temperatures in 

limiting maize cultivation. The susceptibly of maize to frost is well known, especially with 

temperatures below 6 ºC 44, which supports the fact that the temperature of the coldest month 

significantly influences the Z. mays projections. 

Zea mays model assessment 

For Z. mays, eight combinations of regularization multipliers (RMs) and feature types 

were tested in order to select the best model (Table 4). It included six environmental 
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variables; linear [L], quadratic [Q] and product [P] features; and RM = 1.0. It resulted in the 

lowest test ORs at 10% = 0.11 and 0% = 0.002, respectively (Table 4). 

Predicted distribution of Z. mays 

The MaxEnt projections also very well matched the current distribution of Z. mays 

(Figs. 1c and d). In both scenarios, the suitability for Z. mays will decrease in South America, 

some areas in Central Africa and Oceania, and Asia (Figs. 2 and 3, Supplementary material). 

The difference between the RCPs is that under the RCP8.5 scenario, the changes in the 

suitability will be slightly accentuated (Figs. 3c and d, Supplementary material). 

Agreement of D. maidis and Z. mays projections 

Through the combination of the D. maidis and Z. mays projections for 2070 under 

both scenarios, it is possible to highlight some areas that will be highly suitable for pest 

infestations (Fig. 4). These areas correspond to areas in South America, Africa, and small 

areas in Asia and Oceania (Fig. 4). In South America, countries such as Argentina, Bolivia, 

Chile, Colombia, Ecuador, Peru, and Venezuela have few optimal areas for Z. mays and 

highly suitable areas for D. maidis. In North America, Mexico has areas that are highly 

suitable for pest infestations (Fig. 4). In Africa, these areas correspond to small parts of 

Ethiopia, Kenya, Rwanda, Angola, South Africa and Tanzania (Fig. 4). 

 

DISCUSSION 

For several years, D. maidis has been reported as one of the most important maize 

pests in Latin America 45. In Brazil, D. maidis is responsible for 10 to 100% of the plants 

with symptoms of the maize-stunting pathogens, which can lead to complete production 
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losses 45,46. Therefore, understanding the interactions between this pest and its host crop 

under changing climate is vital for its future control and planning. This study is the first that 

has been undertaken to assess the suitable areas for the corn leafhopper and the impact of 

climate change on this pest worldwide. The consistency of the validation statistic for the pest 

and host plant projections demonstrates the models’ robustness. Therefore, the results of 

overlaying these models (pest and host plant) allow us to make very reliable assumptions 

about the highly suitable areas for the pest’s development. 

In the model that was proposed in this study, the bioclimatic variable related to 

temperature had an important role in the spatial distribution projections of the corn 

leafhopper. Together, the temperature related variables determined 86.1% of the D. maidis 

model (permutation importance) (Table 1). In another research, Van Nieuwenhove, et al. 12 

reported the effects of the temperature on several life-history parameters of D. maidis under 

laboratory conditions. The temperature affected the egg-laying and hatchability, 

development, and pre-imaginal survival of D. maidis. According to their study, the optimum 

temperature range for the corn leafhopper is between 20 to 30 ºC 12. Therefore, the fact that 

the mean annual temperature that was found in the occurrence data on the American 

continent was between the temperature ranges that were previously proposed reinforces the 

consistency of the projections of our study. 

The results of this research highlight some areas that are not infested by the corn 

leafhopper. These areas correspond to countries in Central Africa and some areas in Asia 

(Fig. 1b). Most of the research that has been performed to assess the effects of climate change 

on pests projects increasing invasion risks; however, in the case of D. maidis, we found that 
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climate change will lead to a decrease in the suitability of most of these areas (Figs. 2 and 3). 

This is important information for countries in South America, especially for Brazil, which is 

the third largest producer of maize in the world 3, and where this insect is a critical pest 

10,12,47. Large areas of this country will become less suitable for the corn leafhopper. Based on 

our projections, most of the areas that are currently highly suitable for the corn leafhopper 

will experience increased temperatures of approximately 5 °C until 2070. This increase will 

raise the mean annual temperature of these regions from 22.6 to 27.6 °C, which is very close 

to the upper thermal requirement threshold for D. maidis, as was previously mentioned (30 

°C). Thus, the decreasing suitability for the corn leafhopper is probably due to the increased 

temperatures in these areas. 

According to the overlay of the pest and host plant future projections, some countries 

on the American Continent such as Argentina, Chile, Peru, Ecuador, Mexico, and Uruguay 

will still have areas that are highly suitable for the pest. Since the corn leafhopper is reported 

in these countries, these countries should be aware of the potential future increases in the 

damages that are associated with D. maidis. Other countries such as Ethiopia, Kenya, 

Rwanda, Burundi, and South Africa should also be concerned about the potential future 

invasion of the corn leafhopper since these countries also have large areas that are highly 

suitable for this insect. Therefore, in these countries, vigilance and quarantine measures 

should be implemented in order to avoid D. maidis invasions. 

In this study, two different climate change scenarios (RCPs) were selected in order to 

assess the impacts of climate change on D. maidis: RCP4.5, which predicts a more reasonable 

mitigation scenario of GHG emissions; and RCP8.5, which predicts very high CHG 
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emissions. Although the selected RCPs are very different from each other, the projection 

results are only slightly different. RCP8.5 projects a slightly higher loss of areas that are 

suitable for the corn leafhopper. However, it is seen that the differences in the projections of 

the temperature increases between the two RCP scenarios will not significantly affect the 

distribution of the areas that are suitable for D. maidis. 

Limitations of modeling approach 

Many factors can affect the distribution of a species, such as the ability to reach and 

develop at a potential site and to compete with others occupying the same habitat 48. It is 

important to note that, in this study, we considered only the climatic suitability; therefore, 

there are other factors that might limit the distribution of the corn leafhopper, such as 

geographic barriers and natural enemies. In addition, spatial distribution studies have some 

uncertainties, and they might be associated with future GHG emissions levels, the magnitude 

of the climate change projections, the model’s parameterization, and the currently broad-scale 

climate data that are available 31,49,50. 

For example, the future GHG emissions levels will alter the temperature and 

precipitation, which, in turn, will alter plant phenology. This alteration might influence the 

synchronization between herbivores and their hosts, thereby altering the herbivores and their 

natural enemies’ abundance. In general, there is consistency among the climate change 

projections of the different models. However, the magnitude of climate change strongly 

depends on the mitigation policies that may be applied in the future 15,51. The model’s 

parameterization has to be performed in order to obtain results that are consistent with the 
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known distribution of the species and its habitat requirements 31. Therefore, the knowledge 

and experience of the modeler about the species are essential. 

Another important aspect of this study is that the evolutionary and adaptation 

processes that insects are likely to experience were not considered in this modeling 49,50. The 

projection of the effects of climate change on insects normally assumes that the thermal 

requirements for a certain species are static and cannot evolve 49. However, these 

physiological requirements are flexible and, through acclimation and diapause/quiescence, 

they might respond differently during the evolutionary process 49. 

Conclusion 

This is the first study that has been undertaken to assess the predicted effects of 

climatic change in 2050 and 2070 on an important pest of maize, the corn leafhopper D. 

maidis. Our models were proven to be very reliable based on the current distribution of the 

studied insect. According to the proposed model, temperature was one of the predictors that 

most affected the distribution of this insect. Overall, climate change will decrease the areas 

that are suitable for D. maidis. In South America, climate change will decrease the areas that 

are suitable for the pest, especially in Brazil. Argentina, Chile, Colombia, Ecuador, Peru, and 

Venezuela will have small areas that are highly suitable for the corn leafhopper. Outside the 

pest’s range, Ethiopia, Kenya, Rwanda, Angola, South Africa and Tanzania also should be 

concerned about the risk of corn leafhopper invasions in the future since these countries have 

highly suitable projections for this insect in some areas. The results that were generated in 

this research will be useful for the relevant countries that are at risk of D. maidis invasions. 

This study provides a warning call for the vulnerable areas to implement quarantine strategies 
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and to develop new Z. mays varieties that are resistant or tolerant to D. maidis and the maize-

stunting pathogens that this insect transmits. 
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Table 1: The environmental variables that were considered in the D. maidis niche models, and the average percent contributions of the 
environmental variables in the D. maidis distribution model. The values were averaged across 10 replicate runs. The general statistics were 
calculated using all occurrences (n = 150). (Min=minimum, Max=maximum, and SD = standard deviation). 

Variable 
Percent 

contribution 
Permutation 
importance 

Min. Max. Mean SD 

Minimum temperature of coldest month (bio6; °C) 61.5 64.5 4.8 17.0 12.1 3.1 
Mean annual precipitation (bio12; mm) 12.0 3.8 588 1886 1260.5 317.5 
Precipitation of driest month (bio14; mm) 10.2 0.1 0 25 9.06 6.8 
Mean diurnal range in temperature (bio2; °C) 6.0 10.2 11.3 16.3 12.9 1.1 
Annual mean temperature (bio1; °C) 5.9 11.4 17.6 24.9 22.6 1.5 
Precipitation seasonality (CV) (bio15) 4.5 9.9 59 111 78.7 11.5 
Isothermality (bio3) - - 49 75 67.3 7.0 
Temperature seasonality (SD x 100) (bio4) - - 691 4578 1717.7 1104.8 
Maximum temperature of warmest month (bio5; °C) - - 28.6 35.2 31.5 1.3 
Temperature annual range (bio7; °C) - - 15.2 27.2 19.4 3.5 
Mean temperature of wettest quarter (bio8; °C) - - 19.5 27.6 23.9 1.3 
Mean temperature of driest quarter (bio9; °C) - - 13.6 24.1 21.0 2.5 
Mean temperature of warmest quarter (bio10; °C) - - 19.9 27.6 24.4 1.4 
Mean temperature of coldest quarter (bio11; °C) - - 13.5 23.7 20.1 2.7 
Precipitation of wettest month (bio13; mm) - - 109 335 235.2 49.2 
Precipitation of wettest quarter (bio16; mm) - - 306 963 626.4 136.1 
Precipitation of driest quarter (bio17; mm) - - 1 86 34.9 23.4 
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Precipitation of warmest quarter (bio18; mm) - - 129 561 364.4 115.1 
Precipitation of coldest quarter (bio19; mm) - - 10 187 64.3 42.7 

Bold font indicates the variables in the final model. Source of data: WorldClim (http://www.worldclim.org/bioclim) 29.
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Table 2: Summary of the performance statistics of the D. maidis MaxEnt models. The best 
model is highlighted in bold. 

Model Rank Variables 
MaxEnt settings OR Test AUCcv 

(±SD) 
Features RM 10% 0% 

1 
bio1,bio2,bio6, bio12, 
bio14, bio15 

LQ 1.5 0.11 0.01 0.973 ± 0.005 

2 Same as above LH 1.5 0.11 0.01 0.987 ± 0.001 

3 Same as above LQ 1.0 0.12 0.01 0.977 ± 0.005 

4 Same as above LQP 1.0 0.12 0.01 0.977 ± 0.003 

5 Same as above LH 1.0 0.14 0.01 0.988 ± 0.002 

6 Same as above LQH 1.0 0.14 0.01 0.987 ± 0.002 

7 Same as above LQPT 1.0 0.16 0.01 0.987 ± 0.002 

8 Same as above LQT 1.0 0.16 0.01 0.987 ± 0.003 

9 Same as above LQPTH 1.0 0.17 0.01 0.988 ± 0.001 

10 Same as above LQPT 1.5 0.17 0.01 0.987 ± 0.003 

11 Same as above LT 1.0 0.19 0.01 0.986 ± 0.005 

Note: The variables’ full names are provided in Table 1. L, Q, P, T, and H are the linear, 
quadratic, product, threshold and hinge features, respectively. RM is the regularization 
multiplier, and SD is the standard deviation. OR is the test omission rate. The test’s AUCcv is 
the MaxEnt 10-fold cross-validation Area Under the ROC curve. 
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Table 3: The environmental variables that considered in the Z. mays L. niche models, and the average percent contributions of the environmental 
variables in the Z. mays L. distribution model. The values were averaged across 10 replicate runs. The general statistics were calculated using all 
occurrences (n = 61). (Min=minimum, Max=maximum, and SD = standard deviation). 

Variable 
Percent 

contribution 
Permutation 
importance 

Min. Max. Mean SD 

Minimum temperature of coldest month (bio6; °C) 72.2 17 -26.2 22.3 3.9 9.4 
Annual mean temperature (bio1; °C) 9.6 58.5 1.3 28.6 16.7 6.1 
Mean annual precipitation (bio12; mm) 9.0 10.7 2.0 3860.0 929.0 496.4 
Mean diurnal range in temperature (bio2; °C) 5.9 5.2 5.7 18.0 11.8 2.5 
Precipitation seasonality (CV) (bio15) 2.7 5.9 8.0 150.0 54.2 31.9 
Precipitation of driest month (bio14; mm) 0.6 2.7 0.0 141.0 27.3 28.8 
Isothermality (bio3) - - 20.0 92.0 50.6 18.6 
Temperature seasonality (SD x 100) (bio4) - - 0.0 141.0 27.3 28.8 
Maximum temperature of warmest month (bio5; °C) - - 18.0 46.1 29.5 4.3 
Temperature annual range (bio7; °C) - - 10.1 53.7 25.6 8.4 
Mean temperature of wettest quarter (bio8; °C) - - 2.4 32.3 19.4 5.9 
Mean temperature of driest quarter (bio9; °C) - - -17.8 35.8 13.9 10.0 
Mean temperature of warmest quarter (bio10; °C) - - 11.3 35.8 22.5 4.0 
Mean temperature of coldest quarter (bio11; °C) - - -17.8 27.4 10.5 9.8 
Precipitation of wettest month (bio13; mm) - - 1.0 1062.0 149.9 92.0 
Precipitation of wettest quarter (bio16; mm) - - 2.0 2741.0 394.6 240.8 
Precipitation of driest quarter (bio17; mm) - - 0.0 466.0 98.1 97.7 
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Precipitation of warmest quarter (bio18; mm) - - 0.0 1235.0 278.1 169.4 
Precipitation of coldest quarter (bio19; mm) - - 0.0 1005.0 160.0 157.2 

Bold font indicates the variables in the final model. Source of data: WorldClim (http://www.worldclim.org/bioclim) 29.
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Table 4: Summary of the performance statistics of the Z. mays L. MaxEnt models. The best 
model is highlighted in bold. 

Model Rank Variables 
MaxEnt settings OR Test AUCcv 

(±SD) 
Features RM 10% 0% 

1 
bio1,bio2,bio6, bio12, 
bio14, bio15 LQP 1.0 0.11 0.002 0.848 ± 0.016 

2 Same as above LQ 1.0 0.11 0.002 0.836 ± 0.024 
3 Same as above LQPTH 1.5 0.11 0.002 0.873 ± 0.010 
4 Same as above LQPTH 1.0 0.12 0.002 0.876 ± 0.014 
5 Same as above LQH 1.0 0.12 0.007 0.873 ± 0.017 
6 Same as above LPH 1.0 0.13 0.002 0.873 ± 0.019 
7 Same as above LQPT 1.0 0.16 0.003 0.873 ± 0.014 
8 Same as above LQT 1.0 0.16 0.003 0.871 ± 0.023 

Note: The variables’ full names are provided in Table 1. L, Q, P, T, and H are the linear, 
quadratic, product, threshold and hinge features, respectively. RM is the regularization 
multiplier, and SD is the standard deviation. OR is the test omission rate. The test AUCcv is 
the MaxEnt 10-fold cross-validation Area Under the ROC curve. 
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Figure 1: Current global distribution of D. maidis in open field (a), its potential distribution at the current time (b), the current global distribution 
of Z. mays L. in open field (c) and the potential suitable areas for this crop in the current time (d) using the MaxEnt model. 
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Figure 2: Future projections for 2050 and 2070 for D. maidis (a, b) and Z. mays L. (c, d) using the MaxEnt model running the MIROC5 (GCM) 
under the RCP 4.5 scenario. 
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Figure 3: Future projections for 2050 and 2070 for D. maidis (a, b) and Z. mays L. (c, d) using the MaxEnt model running the MIROC5 (GCM) 
under the RCP 8.5 scenario. 
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Figure 4: Agreement in the MaxEnt projection of optimal areas for Z. mays L. and high for D. 
maidis under MIROC5 (GCM) running the RCPs 4.5 (a) and 8.5 (b) for 2070. 

This article is protected by copyright. All rights reserved.



 

 
 

REFERENCES 

 
1. FAO. FAO Statistical Yearbook. Vol. 2017 (Food and Agriculture Organization of the United 

Nations, 2017). 
2. Mejía, D. MAIZE: Post-Harvest Operation. Vol. 2018 (ed. AGST/FAO: Danilo Mejía, P., FAO 

(Technical)) (:Food and Agriculture Organization of the United Nations (FAO), AGST, 2003). 
3. Ranum, P., Peña-Rosas, J.P. & Garcia-Casal, M.N. Global maize production, utilization, and 

consumption. Annals of the New York Academy of Sciences 1312, 105-112 (2014). 
4. Pellegrino, E., Bedini, S., Nuti, M. & Ercoli, L. Impact of genetically engineered maize on 

agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. 
Scientific Reports 8, 3113 (2018). 

5. Snow, A.A. & Palma, P.M. Commercialization of Transgenic Plants: Potential Ecological Risks. 
BioScience 47, 86-96 (1997). 

6. Brookes, G. & Barfoot, P. Global impact of biotech crops. GM Crops & Food 3, 129-137 
(2012). 

7. Brookes, G. & Barfoot, P. Global impact of biotech crops: Environmental effects, 1996-2008. 
AgBioForum 13, 76-94 (2010). 

8. Hellmich, R.L. & Hellmich, K.A. Use and Impact of Bt Maize. Nature Education Knowledge 
3(10):4 3, 4 (2012). 

9. Catarino, R., Ceddia, G., Areal, F.J. & Park, J. The impact of secondary pests on Bacillus 
thuringiensis (Bt) crops. Plant Biotechnology Journal 13, 601-612 (2015). 

10. Virla, E.G., Casuso, M. & Frias, E.A. A preliminary study on the effects of a transgenic corn 
event on the non-target pest Dalbulus maidis (Hemiptera: Cicadellidae). Crop Protection 29, 
635-638 (2010). 

11. Hogenhout, S.A., Ammar, E.-D., Whitfield, A.E. & Redinbaugh, M.G. Insect Vector Interactions 
with Persistently Transmitted Viruses. Annual Review of Phytopathology 46, 327-359 (2008). 

12. Van Nieuwenhove, G.A., Frías, E.A. & Virla, E.G. Effects of temperature on the development, 
performance and fitness of the corn leafhopper Dalbulus maidis (DeLong) (Hemiptera: 
Cicadellidae): implications on its distribution under climate change. Agricultural and Forest 
Entomology 18, 1-10 (2016). 

13. Oliveira, E.d. et al. Incidência de viroses e enfezamentos e estimativa de perdas causadas por 
molicutes em milho no Paraná. Pesquisa Agropecuária Brasileira 38, 19-25 (2003). 

14. Giménez, P.M. et al. Diffusion of corn stunt spiroplasm (Spiroplasma kunkelii) and the vector 
(Dalbulus maidis) in Argentina. Revista de la Facultad de Agronomía 105, 1-8 (2002). 

15. IPCC. Climate Change 2014: Synthesis Report. in Contribution of Working Groups I, II and III to 
the Fifth Assessment Report of the  Intergovernmental Panel on Climate Change (eds Core 
Writing Team, Pachauri, R.K. & Meyer, L.A.) 151 pp. (IPCC, Geneva, Switzerland, 2014). 

16. Soberón, J. Interpretation of models of fundamental ecological niches and species’ 
distributional areas. Biodiversity Informatics 2, 1-10 (2005). 

17. Shabani, F. & Kumar, L. Risk levels of invasive Fusarium oxysporum f. sp. in areas suitable for 
date palm (Phoenix dactylifera) cultivation under various climate change projections. PLoS 
ONE 8, e83404 (2013). 

18. Kumar, S., Neven, L.G. & Yee, W.L. Evaluating correlative and mechanistic niche models for 
assessing the risk of pest establishment. Ecosphere 5, 1-23 (2014). 

This article is protected by copyright. All rights reserved.



 

 
 

19. Kumar, S., Neven, L.G., Zhu, H. & Zhang, R. Assessing the Global Risk of Establishment of 
Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt Niche Models. Journal 
of Economic Entomology 108, 1708-1719 (2015). 

20. Kumar, S. & Stohlgren, T.J. Maxent modeling for predicting suitable habitat for threatened 
and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and The 
Natural Environment 1, 094-098 (2009). 

21. Phillips, S.J., Anderson, R.P. & Schapire, R.E. Maximum entropy modeling of species 
geographic distributions. Ecological Modelling 190, 231-259 (2006). 

22. Townsend Peterson, A., Papeş, M. & Eaton, M. Transferability and model evaluation in 
ecological niche modeling: a comparison of GARP and Maxent. Ecography 30, 550-560 
(2007). 

23. Bassu, S. et al. How do various maize crop models vary in their responses to climate change 
factors? Global Change Biology 20, 2301-2320 (2014). 

24. Fischer, R.A., Byerlee, D. & Edmeades, G.O. Crop yields and global food security: will yield 
increase continue to feed the world? (Australian Centre for International Agricultural 
Research, Canberra, 2014). 

25. Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B. & Anderson, R.P. spThin: an R 
package for spatial thinning of species occurrence records for use in ecological niche models. 
Ecography 38, 541-545 (2015). 

26. R Development Team. R: A Language and Environment for Statistical Computing. 3.2.2 edn 
(The R Foundation for Statistical Computing, Vienna, Austria, 2015). 

27. Boria, R.A., Olson, L.E., Goodman, S.M. & Anderson, R.P. Spatial filtering to reduce sampling 
bias can improve the performance of ecological niche models. Ecological Modelling 275, 73-
77 (2014). 

28. Veloz, S.D. Spatially autocorrelated sampling falsely inflates measures of accuracy for 
presence-only niche models. Journal of Biogeography 36, 2290-2299 (2009). 

29. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. Very high resolution 
interpolated climate surfaces for global land areas. International Journal of Climatology 25, 
1965-1978 (2005). 

30. Daly, C. Guidelines for assessing the suitability of spatial climate data sets. International 
Journal of Climatology 26, 707-721 (2006). 

31. Jarnevich, C.S., Stohlgren, T.J., Kumar, S., Morisette, J.T. & Holcombe, T.R. Caveats for 
correlative species distribution modeling. Ecological Informatics 29, 6-15 (2015). 

32. Dormann, C.F. et al. Collinearity: a review of methods to deal with it and a simulation study 
evaluating their performance. Ecography 36, 27-46 (2013). 

33. Brown, J.L. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and 
species distribution model analyses. Methods in Ecology and Evolution 5, 694-700 (2014). 

34. Merow, C., Smith, M.J. & Silander, J.A. A practical guide to MaxEnt for modeling species’ 
distributions: what it does, and why inputs and settings matter. Ecography 36, 1058-1069 
(2013). 

35. Owens, H.L. et al. Constraints on interpretation of ecological niche models by limited 
environmental ranges on calibration areas. Ecological Modelling 263, 10-18 (2013). 

36. Peterson, A.T., Papeş, M. & Soberón, J. Rethinking receiver operating characteristic analysis 
applications in ecological niche modeling. Ecological Modelling 213, 63-72 (2008). 

This article is protected by copyright. All rights reserved.



 

 
 

37. Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence 
with presence-only data. Journal of Biogeography 40, 778-789 (2013). 

38. Galdino, T.V.d.S. et al. Mapping Global Potential Risk of Mango Sudden Decline Disease 
Caused by Ceratocystis fimbriata. PLOS ONE 11, e0159450 (2016). 

39. Shabani, F., Kumar, L. & Hamdan Saif Al Shidi, R. Impacts of climate change on infestations of 
Dubas bug (Ommatissus lybicus Bergevin) on date palms in Oman. PeerJ 6, e5545-e5545 
(2018). 

40. Dike, V.N. et al. Modelling present and future African climate using CMIP5 scenarios in 
HadGEM2-ES. International Journal of Climatology 35, 1784-1799 (2015). 

41. Ramos, R.S., Kumar, L., Shabani, F. & Picanço, M.C. Mapping global risk levels of Bemisia 
tabaci in areas of suitability for open field tomato cultivation under current and future 
climates. PLOS ONE 13, e0198925 (2018). 

42. Taylor, K.E., Stouffer, R.J. & Meehl, G.A. An Overview of CMIP5 and the Experiment Design. 
Bulletin of the American Meteorological Society 93, 485-498 (2012). 

43. Andrews, T., Gregory, J.M., Webb, M.J. & Taylor, K.E. Forcing, feedbacks and climate 
sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophysical Research Letters 
39, n/a-n/a (2012). 

44. Sánchez, B., Rasmussen, A. & Porter, J.R. Temperatures and the growth and development of 
maize and rice: a review. Global Change Biology 20, 408-417 (2014). 

45. de Oliveira, C.M., Lopes, J.R.S., Camargo, L.E.A., Fungaro, M.H.P. & Nault, L.R. Genetic 
Diversity in Populations of Dalbulus maidis (DeLong and Wolcott) (Hemiptera: Cicadellidae) 
from Distant Localities in Brazil Assessed by Rapd-Pcr Markers. Environmental Entomology 
36, 204-212 (2007). 

46. Oliveira, E. et al. Enfezamento pálido" e "enfezamento vermelho" na cultura do milho no 
Brasil Central. Fitopatologia Brasileira 23, 45-47 (1998). 

47. Meneses, A.R., Querino, R.B., Oliveira, C.M., Maia, A.H.N. & Silva, P.R.R. Seasonal and Vertical 
Distribution of Dalbulus maidis (Hemiptera: Cicadellidae) in Brazilian Corn Fields. Florida 
Entomologist 99, 750-754 (2016). 

48. Begon, M., Townsend, C.R. & Harper, J.L. ECOLOGY: From individuals to ecosystems, 
(BLACKWELL PUBLISHING, Malden, MA, 2005). 

49. Thomson, L.J., Macfadyen, S. & Hoffmann, A.A. Predicting the effects of climate change on 
natural enemies of agricultural pests. Biological Control 52, 296-306 (2010). 

50. Hance, T., Baaren, J.v., Vernon, P. & Boivin, G. Impact of Extreme Temperatures on 
Parasitoids in a Climate Change Perspective. Annual Review of Entomology 52, 107-126 
(2007). 

51. Collins, M. et al. Chapter 12 - Long-term climate change: Projections, commitments and 
irreversibility. in Climate Change 2013: The Physical Science Basis. IPCC Working Group I 
Contribution to AR5 Cambridge (ed. IPCC) (Cambridge University Press, 2013). 

 

This article is protected by copyright. All rights reserved.




