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Discrete beliefs space and equilibrium: a cautionary
note
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Abstract
Bounded rationality requires assumptions about ways in which rationality is con-
strained and agents form their expectations. Evolutionary schemes have been used to
model beliefs dynamics, with agents choosing endogenously among a limited num-
ber of beliefs heuristics according to their relative performance. This work shows
that arbitrarily constraining the beliefs space to a finite (small) set of possibilities can
generate artificial equilibria that can be stable under evolutionary dynamics. Only
when “enough” heuristics are available are beliefs in equilibrium not artificially con-
strained. I discuss these findings in light of an alternative approach to modelling
beliefs dynamics, namely, adaptive learning.

Keywords Expectations · Evolutionary dynamics · Learning · Equilibrium

JEL Classification C62 · D83 · D84 · E32

1 Introduction and related literature

The aim of this work is to shed some light on some results derived in macroeco-
nomics using models with bounded rationality. In particular, I look at the practice of
modelling expectations using evolutionary schemes to allow agents to choose among
a limited set of alternative rules or heuristics. I will highlight possible perils of such
practice and then draw a comparison with another common way of modelling agents’
expectations under bounded rationality, namely, adaptive learning.
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Rational expectations (RE) represents a powerful way of closing and solving an
economic model but they impose strong requirements on agents in terms of informa-
tion acquisition and computational capabilities. In recent years, a growing number of
studies have replaced RE with more realistic ways of modelling agents’ expectations
and their dynamics.

One popular method to model bounded rationality is adaptive learning, by which
agents are treated as econometricians who repeatedly adjust the parameter values in
their model economy based on previous forecast errors. Prominent examples are Sar-
gent (1999), Evans et al. (2003, 2009) and, for an extensive treatise on methodology
and applications, Evans and Honkapohja (2001).

A second class of methods used to model the way agents revise their expectations
over time relies on evolutionary dynamics applied to a predetermined set of heuris-
tics. Agents are allowed to select among the available expectation formation rules on
the basis of their relative performance. While adaptive learning can be interpreted
to represent learning at the individual level, evolutionary dynamics on expectation
formation rules better capture the idea of social learning, where agents tend to imi-
tate strategies that are more successful in the population. Under adaptive learning,
in fact, agents adapt their own forecast strategy1 based on previous performance,
as measured against actual outcomes; under evolutionary models, instead, agents
adopt strategies (again, expectations formation rules) that have been relatively more
successful in the population, i.e., the performance of which has been assessed and
evaluated positively against other strategies. Under evolutionary dynamics, thus, the
performance of a strategy is not evaluated against actual outcomes but only against
the performance of other available strategies. A strategy can thus perform quite badly
in absolute terms, but still outperform all other available strategies and prevail in a
market.

The two approaches, adaptive learning and evolutionary dynamics, have also been
studied together in economic models: for example, Berardi (2015) combines evolu-
tionary selection among heterogeneous classes of models with adaptive learning on
the parameters of each model and finds that heterogeneous equilibria are possible
but fragile; Branch and Evans (2006) propose the concept of misspecification equi-
librium, where different underparameterized predictors are selected even in the limit
under least-squares learning and dynamic predictor selection based on average prof-
its; Guse (2010) considers a setting where agents can choose between a minimum
state variable and a sunspot forecasting model and finds that, with an ad hoc cost to
using the sunspot predictor, heterogeneity cannot be sustained under the combined
evolutionary-adaptive learning dynamics.

The relation between learning and evolutionary dynamics has also been studied
extensively in game theory. Fudenberg and Levine (1998, ch. 3) derive replicator
dynamics from models of individual learning while Borgers and Sarin (1997) show
that, in a game theoretical framework, a learning model based on the reinforcement of
strategies with higher payoff converges, in a continuous time limit, to the replicator

1Throughout this work, I will use the term strategy to mean a model/rule/heuristic for forming expec-
tations. I will also call it “perceived law of motion” (or PLM), in line with the adaptive learning
literature.
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dynamics of evolutionary game theory. A key element to note is that, in these works,
learning entails competition of strategies against each other, which differentiates
crucially such learning mechanisms from adaptive learning.

More generally, the relation between learning and evolution has been debated in
biology for a long time: Sznajder et al. (2012) recently reviewed some of the litera-
ture concerning the so called Baldwin effect Baldwin (1896), i.e., the hypothesis that
learning, by improving fitness, accelerates evolution. Closer to our field of investi-
gation, Marimon (1993) considers a game theoretical framework and compares key
properties of adaptive learning (adaptation, experimentation and inertia) with their
counterparts in evolutionary dynamics (reproduction, mutation and conservation).

An important difference between adaptive learning and evolutionary schemes as
ways of modelling the evolution of expectations is that, in the first case, the researcher
usually endows agents with a single forecasting model and then allows them to opti-
mize the parameters in such a model through learning; in the second case, instead, the
researcher selects a set of alternative forecasting models, and then allows agents to
choose among this fixed set of rules based on their relative performance.2 Anufriev
and Hommes (2012), for example,consider a fixed set of rules, or heuristics, available
to agents and investigate how the switching between these rules can explain results
from experimental data. I will argue that the coarse discretization of the beliefs space
under evolutionary schemes can lead to the creation of artificial equilibria and thus to
misleading conclusions about possible outcomes in an economy. Such equilibria can
be stable under evolutionary schemes, though they disappear when the beliefs space
is sufficiently expanded.

From an empirical point of view, there seems to be quite a lot of dispersion in
forecasts available through survey data (as seen, for example, from the Survey of Pro-
fessional Forecasters). This means that households at any point in time have access,
at least in principle, to a fairly large number of different predictors, represented by
the different professional forecasters. Whether they actually take advantage of them,
and whether any sort of convergence emerges among such predictors over time, are
empirical questions that are beyond the scope of this paper. The aim of this paper is
simply to point out the perils of artificially restricting, a priori, the set of available
predictors to agents in a theoretical framework.

Another important question that is outside the scope of this paper pertains to the
best way to model expectations under bounded rationality, whether through adaptive
learning, evolutionary dynamics or possibly other methods. The answer, I specu-
late, would probably be case dependent, as different schemes could provide a better
approximation of how agents actually behave under different circumstances. One,
for example, could imagine that, in competitive environments, where the pressure for
improvement comes from the need to outperform competitors, evolutionary dynam-
ics could do a better job at approximating the way beliefs are formed and updated
over time by agents; in problems of individual decision making, instead, adaptive
learning might be a superior modelling strategy, as agents are not competing against
each other but are trying to do the best they can for themselves in “absolute” terms.

2From an evolutionary perspective, only selection is allowed, but not mutation or crossover that could
generate new alternatives.
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Ultimately, this again seems to be an empirical question that can be settled only by
empirical evidence. What I argue here is that it is important to understand the impact
of using one or the other approach on the predictions that a model can deliver.

1.1 Related literature

The concept of evolutionary dynamics has been extensively applied in economics. In
a seminal work, Brock and Hommes (1997) define the concept of adaptively ratio-
nal equilibrium (ARE), in which agents adapt their beliefs over time by choosing
from a finite set of different predictors according to a discrete logit model. They
show how, in a simple cobweb model where agents can choose between rational (at
a cost) and naive (free) expectations, highly irregular equilibrium prices can emerge.
Building on this idea, Brock et al. (2005) introduce the concept of large type limit
(LTL), describing the dynamic behavior of heterogeneous markets with many trader
types. Applications of the LTL have been considered by Anufriev et al. (2013) and
by Agliari et al. (2017): in both cases, from multiple steady states, the system moves
to one unique steady state in the large type limit. This work will shed light on these
results. In fact, in different settings, other studies - Aoki (2002) and Evstigneev et al.
(2001) and Hens and Schenk-Hoppé (2005) - find that, as the number of strategies
available to agents increases, heterogeneity in trading strategies tends to disappear. In
related work, Evstigneev et al. (2006) find that only a rational market in which assets
are evaluated by expected relative dividends is evolutionary stable. Similar to the LTL
approach, Diks and Van der (2002) and Diks and van der (2003) propose a contin-
uous beliefs system (CBS), where a continuum of strategies for forming beliefs are
available to agents: while they are able to derive the limiting distributions for a num-
ber of performance measures, such distributions in fact degenerate into a point mass
(and prices converge to the fundamental value) if agents are all allowed to choose the
best possible predictor available. Again, the aim of this work is to understand such
results more broadly.

An application of the ARE concept to a New Keynesian macroeconomic model
of inflation and output has been proposed by Agliari et al. (2017), showing how this
way of modelling expectations can alter the conclusions in terms of stability and
uniqueness of equilibrium compared to rational expectations. Branch and McGough
(2016) find cycles and chaotic dynamics in a monetary model a la Lagos and Wright
(2005), with traders switching between (costly) rational and (costless) adaptive pre-
dictors according to a discrete logit model. De Grauwe (2011) generates endogenous
waves of optimism and pessimism (“animal spirits”) in a macroeconomic model with
beliefs switching behavior implemented through a discrete logit mechanism where
agents can choose among a limited set of simple but biased rules (heuristics) to fore-
cast future output and inflation. The author, discussing the results, recognizes that
“[...] the menu of heuristics which is extremely small in this paper, will have to be
broadened so that the selection of the “fittest” rules can occur using a wider pool of
possible rules.” This is the aspect upon which this paper focuses.

In order to keep the analysis as general as possible, the evolutionary concept I will
mainly rely upon is the evolutionary stable strategy (ESS), proposed by Maynard
Smith and Price (1973, 1974). I will also make use, at times, of two additional
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evolutionary schemes: the first is the concept of replicator dynamics proposed by
Taylor and Jonker (1978) and used in economics, for example, by Sethi and Franke
(1995) and more recently by Branch and McGough (2008); the second is a discrete
logit model of beliefs selection, used, for example, in Brock and Hommes (1997).3

The choice of focusing on the notion of ESS has its benefits, but it is not without
costs. While in fact this concept allows for a sharper characterization of some results,
it does not allow us to discuss properly beliefs dynamics in a way that schemes such
as replicator dynamics or the discrete logit model would. In particular, the notion of
ESS relates to local stability properties of the model, and it has nothing to say about
the global properties of the system under consideration. These various concepts are,
nevertheless, closely related, and Weibull (1995) shows that every ESS is (locally)
asymptotically stable under replicator dynamics, though the reverse does not gener-
ally hold. In other words, focusing on the notion of ESS will lead to results that are
conservative: the equilibria found using ESS are also (locally) stable equilibria under
replicator dynamics, though there might be other stable outcomes that emerge under
replicator dynamics that do not correspond to ESS.

2 A stylized model

In order to investigate how the restriction of the beliefs space affects the set of
possible equilibria, I consider a simple linear stochastic model with feedback from
expectations to actual outcomes. The model, though very simple, admits multiple
equilibria under rational expectation (RE).

The linear, stochastic model is represented by

yt = Bye
t+1 + vt , (1)

where ye
t+1 denotes expectations at time t of yt+1 and vt is an i.i.d. random variable

with zero mean and variance σ 2
v . Under RE, the model has a unique, fundamental (or

minimal state variable - MSV) noisy steady state, with ye
t+1 = 0 and yt = vt , for

B �= 1.4

There is also a set of AR(1) RE equilibria of the form

yt = 1

B
yt−1 − 1

B
vt−1, (2)

indexed by the initial condition y0. Such equilibria are stationary if |B| > 1.
The previous model, though most simple, captures nevertheless important features

of economic models and can represent stylized economic systems.
The New Keynesian model presented in Agliari et al. (2017), for example, fits in

this form, with y a vector of variables and B a suitable matrix. The Cobweb model
used in Brock and Hommes (1997) has a different timing in terms of expectations,

3The discrete logit model can be derived from a random utility model (see, e.g., Manki and McFadden
(1982) in which agents observe the performance of each rule with some noise; it can also be derived from
a rational inattention problem, as shown by Matejka and McKay (2015).
4For B = 1, any arbitrary ye

t+1 = k gives rise to a noisy steady state of the form yt = k + vt .
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but admits the same fundamental (noisy) RE steady state (though no AR(1) REE),
and considerations about the consequences of the discretization of beliefs derived in
Eq. 1 can be carried over to that model.

3 Modelling beliefs

Stepping back from RE, beliefs dynamics under evolutionary forces can be mod-
elled in different ways. Common choices in this respect are replicator dynamics
and a discrete logit model, which I will discuss below. In game theory, a common
way to analyze evolutionary stability is through the notion of an ESS. I will use
this last concept in conducting my analysis and discuss the relationship between
ESS and stability under both replicator dynamics and the discrete logit model. As
all these concepts require a measure of the relative performance of different predic-
tors, I first introduce the measure I will be using throughout the paper, the mean
squared error.

3.1 A measure of relative performance

Agents are characterized by the strategy they use to form their expectations. I
define a strategy for an agent as a forecasting model, also called a perceived law
of motion (PLM), used to form their beliefs about actual outcomes. The perfor-
mance of a strategy (PLM) is then measured by its mean squared error (MSE),5

defined as

MSE = E(yt − ye
t )

2, (3)

where ye
t are the expectations of yt (formed at time t − 1) based on the PLM used.6

Given two competing strategies in use among agents, say PLM1 and PLM2, their
performance will depend in general on the fraction of agents using each strategy (as
this determines the actual outcome yt ), determined by μ.7 Appropriate use of notation
would thus require one to denote the performance of each strategy as MSE (μ)1 and
MSE (μ)2, respectively, to show their dependence on μ. One could then define a
measure of relative performance as

�(μ) = MSE (μ)2 − MSE (μ)1 . (4)

5The choice of MSE as measure of performance for the evolutionary schemes is consistent with the use
of recursive least squares under adaptive learning, the objective of which is indeed to choose parameter
estimates that minimize the MSE of the forecasting rule.
6Using the mean squared error as a driver for evolutionary dynamics might seem to impose strong infor-
mational requirements on agents. An alternative would be to assume that agents use an adaptive process
to estimate the MSE over time, such as

MSEt = (1 − gt ) MSEt−1 + gt

(
yt − ye

t

)2

with gt a small fixed or decreasing gain. For simplicity and analytical tractability, I will assume in this
work instead that agents have full knowledge of the relevant MSEs at each point in time.
7More precisely, μ is the fraction of agents using PLM1, with 1 − μ the fraction of agents using PLM2.
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For simplicity, in the rest of the paper I will drop the notation that shows depen-
dence on μ and simply write �, MSE1, MSE2. Note that, in all the settings
considered in this paper (and generally in all well behaved economic models), � (μ)

is continuous, differentiable and monotonic in μ.

3.2 ESS and evolutionary schemes

While I will mainly adopt the concept of ESS in my analysis, the literature often
models the evolution of beliefs according to evolutionary schemes such as replicator
dynamics and discrete logit. There is a deep connection between these concepts. In
particular, if such schemes are driven by the difference in forecasting performance,
as described above, results of this paper derived using the ESS notion can be applied
to settings using either of the two evolutionary schemes, under certain conditions. I
elaborate on this point below, describing in briefs such schemes and showing their
connection with the ESS concept.

3.2.1 Nash equilibrium and evolutionary stable strategy

Generally speaking, a Nash equilibrium is characterized by the fact that no agent has
an incentive to change strategy. A strategy profile is defined by the strategies used by
agents and the relative fraction of the population using each strategy. The following
definition adapts this concept to the present setting, with two competing predictor
strategies available to agents:

Definition 1 Consider a setting with two competing belief strategies available to
agents, defined by PLM1 and PLM2, used respectively by a proportion μ and
(1 − μ) of agents. A Nash equilibrium is defined by the triple (PLM1, PLM2, μ)
and one of the following three conditions: i) a non-negative fraction of agents
uses each PLM available (i.e., μ ∈ [0, 1]) and � = 0; ii) all agents
use PLM1 (μ = 1) and � > 0; iii) all agents use PLM2 (μ = 0)
and � < 0.

I also define an evolutionary stable strategy (ESS) in this context, both for homo-
geneous and heterogeneous equilibria. In a homogeneous equilibrium, all agents use
the same strategy (i.e., form their beliefs using the same PLM), and the condition
for such strategy to be an ESS is the following:

Definition 2 The triple (PLM1, PLM2, μ = 1) is an ESS if ∃μ̄ ∈ (0, 1), s.t.
�|μ>μ̄ > 0. Analogously, the triple (PLM1, PLM2, μ = 0) is an ESS if ∃μ̄ ∈
(0, 1), s.t. �|μ<μ̄ < 0.

In a heterogeneous (Nash) equilibrium, instead, a positive fraction of agents use
each of the two strategies available. A strategy profile is then a ESS if the following
condition holds:
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Definition 3 The triple (PLM1, PLM2, μ̃ ∈ (0, 1)) is an ESS if ∃ε, s.t. for μ = μ̃+
ε, � < 0 and for μ = μ̃− ε, � > 0, with � = 0 for μ = μ̃.

These definitions follow from the definition of ESS in the seminal works Maynard
Smith and Price (1973) and Maynard Smith 1974). It is well known that every ESS
is a Nash equilibrium, but the converse is not necessarily true. Note also that Taylor
and Jonker (1978) define an ESS as an evolutionary stable state (rather than strategy),
which seems more appropriate for this setting. A state might be determined by a
homogeneous group of agents using the same predictor (strategy), or by different
groups using different predictors (strategies): the combination of strategies and the
relative fraction of agents using each strategy defines a strategy profile.

Note that it is not possible in this setting to have a homogeneous Nash equilibrium
that is not an ESS, since there is continuity of payoffs (�) in μ, and equilibrium
requires � to be negative (positive) for μ = 1 (μ = 0).8 There could, though, be a
heterogeneous Nash equilibrium that is not an ESS: a heterogeneous equilibrium, in
fact, requires � = 0, but nothing guarantees that the conditions set out in Definition
(3) are satisfied.9

Finally, a note on terminology: in this paper I will often refer to an equilibrium as
being an ESS (or not). This represents a slight misusage of terminology and must be
understood as meaning that the strategy profile associated with such equilibrium is
an ESS (or not).

3.2.2 Replicator dynamics

While replicator dynamics have been defined both in continuous and discrete time
in the literature, the continuous time version is more widely used than its discrete
time counterpart. In addition, and crucially for this work, it allows for a direct
representation of the dynamics in terms of �.

Under continuous time replicator dynamics, the fraction μ of agents using PLM1
(with the remaining fraction (1 − μ) using PLM2) evolves according to the ordinary
differential equation (ODE)

μ̇ = μ (1 − μ) � (μ) (5)

where �(μ) is defined by Eq. 4.
Clearly equilibrium points of these replicator dynamics are points where μ =

0, μ = 1 or � = 0. Note that points where all agents use the same predictor (μ = 0
and μ = 1) are fixed points of ODE (5) but need not be Nash equilibria, according
to the definition given above (e.g., μ = 1, � < 0 is an equilibrium under replicator
dynamics, but it is not Nash, as agents would have an incentive to switch model).

8I abstract here from corner solutions where homogeneous Nash equilibria (μ ∈ {0, 1}) have � = 0:
in those cases, an equilibrium could be Nash but not an ESS. For example, if μ = 0 ⇒ � = 0 but
μ > 0 ⇒ � > 0. This reminds one of a self-confirming equilibrium: if nobody uses PLM1, no agent has
any incentive to adopt it, but once someone starts using it, everyone will follow.
9This is the case, for example, in an economy where there is negative feedback from expectations to
outcomes: as more agents adopt a strategy, its performance decreases.
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Local stability of equilibrium points under replicator dynamics is governed by δμ̇
δμ

,
with

δμ̇

δμ
= (1 − 2μ) � (μ) + μ (1 − μ)

δ� (μ)

δμ
.

In particular, at μ = {1, 0}, local asymptotic stability is governed only by the sign of
�(μ): μ = 0 is stable for �(0) < 0, while μ = 1 is stable for �(1) > 0.

Remark 4 An homogeneous ESS is always locally asymptotically stable under
replicator dynamics. The converse is not necessarily true.

This remark is a well known result in the literature. See, e.g., Weibull (1995),
Proposition 3.10, p. 100. It implies that the set of ESSes that will be found in my anal-
ysis is a subset of the possible equilibria under replicator dynamics. Since the local
asymptotic stability conditions for homogeneous equilibria (μ = {1, 0}) under repli-
cator dynamics are the same as the conditions for Nash equilibrium in definition (1),
the set of Nash equilibria in the model corresponds to the set of locally asymptotically
stable homogeneous equilibria under replicator dynamics. Coupling this result with
the fact that the set of ESSes is a (possibly improper) subset of the Nash equilibria,
it leads to the above remark that every homogeneous ESS is locally asymptotically
stable under replicator dynamics, but the converse is not necessarily true.

3.2.3 Discrete choice model

Brock and Hommes (1997) use a discrete logit model for modelling prediction choice
dynamics.10 Defining as μt the fraction of agents using PLM1 in period t , the
predictor choice in the population evolves over time according to

μt+1 = exp{−βMSE1,t }
exp{−βMSE1,t } + exp{−βMSE2,t } (6)

or equivalently

μt+1 = 1

2

(
tanh

[
β
2
�(μt)

]
+ 1

)
, (7)

where β is the “intensity of choice” parameter, a measure of how fast agents switch
predictors, and MSE1,t , MSE2,t and �t are the unconditional mean square errors
and their difference computed with μt .

Note that, for β = ∞, the model reduces to a deterministic choice model where all
agents choose the predictor with the smaller MSE: only the sign of � matters. This
implies that, for �(μt−1) > 0, μt = 1 and, for �(μt−1) < 0, μt = 0. Stability
of homogeneous equilibria then requires �(0) < 0 for μt = 0 and �(1) > 0 for
μt = 1. These conditions once again correspond to the Nash equilibrium conditions
in definition (1). This means that every homogeneous ESS is a stable equilibrium
under the discrete logit model with β = ∞, but the converse does not necessarily
hold. I summarize these observations in the following remark:

10This is equivalent to a so called softmax action selection based on a Gibbs or Boltzman distribution.
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Remark 5 Every homogeneous ESS is asymptotically stable under the discrete logit
model. More generally, every homogeneous Nash equilibrium defined in Definition
(1) - sub-points ii) and iii) - is asymptotically stable under the discrete logit model
with β = ∞.

For finite β, instead, homogeneous equilibria do not emerge for finite values of
�(μt), as, in this case, μt = 1 requires �(μt−1) = ∞ and μt = 0 requires
�(μt−1) = −∞.

The relationship between the full set of Nash equilibria and stationary states under
the two different evolutionary schemes can lead to interesting results. In particular, I
will show below that if a setting does not allow for a homogeneous Nash equilibrium
but it includes an heterogeneous Nash equilibrium that is also an ESS, it is possible
to generate simple cycles between the two homogeneous (non-Nash) states using a
discrete logit model for predictor selection. The same, though, would not be possible
under replicator dynamics, as homogeneous states (μ = 1 or μ = 1) are always fixed
points in this case (though not necessarily stable, as discussed previously).

4 Steady state equilibria

In this section, I analyze (noisy) steady state equilibria of model (1) when belief
dynamics can evolve according to evolutionary schemes.11

Such steady states will be characterized by yt = y + vt , for some y, and by
beliefs dynamics being in equilibrium, in the sense that no agent wishes to change the
predictor he is using. In addition to being a Nash equilibrium in this sense, I will also
verify whether such equilibrium is evolutionary stable, using the concept of ESS.

In a steady state, a PLM for an agent is simply represented by a number, the
predicted value for yt in steady state.

4.1 Optimistic/pessimistic versus fundamental agents

Consider a setting where two competing PLMs are available to agents in order to
form expectations, defined as follow:

PLM1 : yt = 0 (8)

PLM2 : yt = a, a ∈ R − {0} . (9)

While PLM1 is consistent with the fundamental equilibrium, one could interpret
PLM2 as representing agents being optimistic (for a > 0) or pessimistic (for a < 0)

11It is instructive to note that steady state equilibria of Eq. 1 correspond to steady state equilibria of the
alternative model

yt = Bye
t + vt

where ye
t denotes expectations at time t − 1 of yt . This follows from the fact that, in a steady state,

ye
t = ye

t+1. The framework is then also equivalent to a Cobweb model.
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about the state of the economy.12 If μ agents use PLM1 and 1 − μ use PLM2, then
for any arbitrary a, aggregate expectations are given by (1 − μ) a and the actual law
of motion (ALM) for the economy is represented by

yt = B (1 − μ) a + vt .

Mean squared errors for the two groups are

MSE1 = E (B (1 − μ) a + vt − 0)2

MSE2 = E (B (1 − μ) a + vt − a)2

and therefore
� = a2 (1 − 2B (1 − μ)) .

The choice of predictors by agents depends on the sign of �, as seen above, and
clearly

� > 0 ⇔ B (1 − μ) <
1

2
. (10)

It follows that, for any B, it is possible to find a μ̄ ∈ (0, 1) such that �|μ>μ̄ > 0
(since, for μ = 1, the condition is satisfied, and � is continuous in μ): the strategy
profile (PLM1, PLM2, μ = 1) is thus an ESS. One can also see that, if μ = 0,
� < 0 requires B > 1/2, in which case it is always possible to find a μ̄ ∈ (0, 1)

: �|μ<μ̄ < 0 and thus the strategy profile (PLM1, PLM2, μ = 0) is also an ESS if
B > 1

2 .

Proposition 6 From condition (10), it follows that the strategy profile (PLM1,
PLM2, μ = 1), with PLMs defined by Eqs. 8-9, is an ESS ∀a �= 0. Moreover, the
strategy profile (PLM1, PLM2, μ = 0) is also an ESS ∀a �= 0 if B > 1

2 .

The previous proposition shows that in a setting where agents can choose between
beliefs consistent with the fundamental equilibrium (PLM1) and biased beliefs
(PLM2), a situation in which all agents use such biased beliefs can represent a Nash
equilibrium (and an ESS). For B > 1/2, there are thus two (noisy) steady states, one
where yt = 0 + vt (fundamental) and one where yt = a + vt .

As noted before, because in these equilibria the MSE of the PLM used is smaller
than the MSE of the PLM not used (that is � < 0 for μ = 0 and � > 0 for μ = 1),
these ESSes are stable both under replicator dynamics and under the discrete logit
model with β = ∞. Analyzing this system with either of the two mechanisms for
selecting beliefs, one would thus conclude that additional steady states exist (and are
evolutionary stable) besides the fundamental equilibrium.

4.2 Heterogeneous equilibria

The above results have shown that additional homogeneous equilibria can emerge
from artificially limiting the set of belief strategies available to agents. Heteroge-
neous equilibria, where different groups of agents maintain different beliefs (i.e., use

12The case with both pessimistic and optimistic agents simultaneously competing is analyzed in the
Appendix and confirms results found here.
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different PLMs), can also emerge from the same practice of limiting the set of avail-
able alternatives to agents. I will show how this is possible by considering the case
with only two available strategies (but the case is easily generalizable to setting with
more alternatives available).

Consider the setting where a fraction μ of agents use PLM1 defined as

PLM1 : yt = a, a ∈ R − {0} (11)

and the remaining fraction 1 − μ use PLM2

PLM2 : yt = αa, α ∈ R. (12)

This framework captures the situation where agents can choose among two steady
state predictors, one of which could be consistent with the fundamental steady state.

The respective MSEs are

MSE1 = E (Ba (μ + (1 − μ) α) + vt − a)2

MSE2 = E (Ba (μ + (1 − μ) α) + vt − αa)2

and therefore

� = a2 (α − 1) (1 + α − 2B (μ + (1 − μ) α)) . (13)

It is clear that � < 0 if: α > 1 and B (μ + (1 − μ) α) > 1+α
2 ; or if α < 1

and B (μ + (1 − μ) α) < 1+α
2 ; that is, if αa is closer than a to the actual outcome

induced by the heterogeneous expectations.
An heterogeneous equilibrium instead exists when � = 0 for μ ∈ (0, 1): this

requires

μ = μ̃ ≡ α + 1 − 2Bα

2B (1 − α)
. (14)

For example, if α = −1, then μ = 1
2 implies � = 0: a heterogenous equilibrium

exists where half the population is optimistic and half is pessimistic, equally distant
from the fundamental value. Note that, in general, restrictions on α and B must be
placed to ensure that μ̃ ∈ (0, 1).

Would this heterogeneous equilibrium (i.e., the triple PLM1, PLM2, μ̃) be an
ESS? The condition for this to happen is that agents don’t have any incentive to
deviate from the strategy played in equilibrium, i.e.,

� < 0 if μ > μ̃

� > 0 if μ < μ̃.

This means that � has to be decreasing in μ at μ̃, i.e., d�
dμ

|μ=μ̃< 0. It is easy to
compute

d�

dμ
= 2a2 (α − 1)2 B

and thus
d�

dμ
< 0 ⇔ B < 0.

The heterogeneous equilibrium corresponds to an ESS for B < 0. I summarize results
of this section in the following Proposition:
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Proposition 7 In a setting where agents can select among the two PLMs defined
by Eqs. 11 and 12, a heterogeneous expectations equilibrium exists with μ = μ̃

determined by Eq. 14. The corresponding strategy profile (PLM1, PLM2, μ = μ̃)
is an ESS if B < 0.

With an arbitrary restriction of the strategy space, not only one can have artificial
homogenous equilibria, but it is also possible to construct heterogeneous equilibria,
and such equilibria can also be ESSes.

4.3 Rational cycles: an example

In the analysis considered in Section 4.2, for B < 0, a stable heterogeneous equi-
librium is coupled with two homogeneous states that are not Nash equilibria (in the
sense that � �= 0, though they are by definition fixed points for the replicator dynam-
ics), and thus not ESSes. 13 In particular, for μ = 0, � > 0 and for μ = 1, � < 0:
this means that under a discrete logit model, “rational” agents (i.e., with β = ∞)
would keep switching between the two strategies and the system would cycle between
two states.14

4.4 Refining the beliefs space

Having seen that arbitrary restrictions of the beliefs space can lead to artificial equi-
libria under evolutionary dynamics, this section will show that, as the set of possible
strategies is enlarged, the only ESS that survives is the one where all agents use
a PLM consistent with the fundamental equilibrium. In other words, any arbitrary
equilibrium (i.e., not fundamental) that is an ESS when a finite number of belief
strategies is available ceases to be an ESS once available strategies are not artificially
constrained.

To model an unrestricted beliefs space, it is convenient to use the setting discussed
in Section 4.2, modifying it to allow an infinite number of strategies to be available.
To this end, consider the same model presented before, with two PLMs available to
agents, PLM1 : yt = a, for some a ∈ R−{0}, and PLM2 : yt = αa, but where now
the second PLM is parameterized by α (instead of being characterized by a given
and fixed α). This last PLM thus represents in effect a class of PLMs: restrictions
on α amount to restrictions to the beliefs space of agents, while an unrestricted space
of belief strategies can be characterized by an unconstrained α ∈ R − {0}.

For PLM1 to be an ESS against PLM2, ∀α ∈ R−{0}, it must be that it is possible
to find a μ̄ ∈ (0, 1) such that �|μ>μ̄ > 0 . But the difference in performance, given
by Eq. 13, for μ = 1 reduces to

�(α) = a2 (α − 1) (1 + α − 2B) , (15)

13Cycles could not emerge between different ESSes (unless different costs are assumed), as ESSes are
absorbing states for evolutionary dynamics.
14This sort of cycles would not emerge under continuous time replicator dynamics, as μ ∈ {0, 1} are fixed
points of the relevant ODE.

517



M. Berardi

−1 −0.5 0 0.5 1 1.5 2
−1

0

1

2

3

4

5

6

7

8

alpha

D
el

ta

a = 2, B = 1/2

Fig. 1 Shape of � (α)

where the dependence of � on α is made explicit. Clearly, for any B �= 1,15 it is
always possible to find an α ∈ R − {0} s.t. �(α) < 0. In particular, since sign(�)

depends on (α − 1) (1 + α − 2B), for a given B, this requires

1 < α < 2B − 1 if B > 1 (16)

2B − 1 < α < 1 if B < 1. (17)

This means that, when agents are free to chose any strategy (that is, any α), not only
can an arbitrary PLM1 not be an ESS, but it does not even correspond to a Nash
equilibrium.

To understand these restrictions, it is useful to look at Eq. 15, which shows that
�(α) takes a U shape, with � < 0 iff α lies within the two roots of the quadratic
equation, equal to (2B − 1) and 1, and a minimum at α = B. For example, with
a = 2 and B = 1

2 , it can easily be seen that � = 0 at the two roots α = 1 and
α = 2B − 1 = 0, with � reaching a minimum at a = B = 1/2: see Fig. 1.

Note that the middle point between the two roots is B, the actual effect of expecta-
tions on yt . Intuitively, agents using PLM1 were expecting yt = a, while the actual
outcome turns out to be aB, that is, aB is the individual best response to strategy a.
It follows that, for generic B �= 1, any arbitrary strategy a �= 0 cannot be a Nash
equilibrium of this system, and thus cannot be an ESS if the state space of beliefs is
not restricted. Moreover, since a = 0 is the only Nash equilibrium, it is by necessity
an ESS - see Weibull (1995).

Proposition 8 When the space of beliefs is unconstrained, the only Nash steady
state equilibrium (also corresponding to an ESS) in model (1) is the fundamental one
where all agents use PLM1.

15The non-generic case B = 1 is trivial, as it implies that any a is an equilibrium and an ESS.
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Equilibria derived under evolutionary dynamics arise from comparing the perfor-
mance of different available strategies against each other. Since the actual outcome
is endogenous to the forecasting strategy used by agents, restrictions in this space
mean that equilibria can emerge where it is not worth it for agents to switch to an
alternative strategy, even though the one they are using is far from being optimal,
i.e., it is not a fixed point in the map from beliefs to outcomes. For example, the sec-
ond part of Proposition 6, which states that PLM2 can be an ESS, depends crucially
on comparing the two strategies PLM1 and PLM2 against each other. But any arbi-
trary strategy is not a best response against itself, and so it does not represent a Nash
equilibrium when the set of possible strategies is expanded.

4.5 Stepping stones and individual best response

The previous section showed that when the space of beliefs is unconstrained, the
fundamental equilibrium is the only Nash (and ESS) equilibrium. Though a contin-
uum of strategies is a sufficient condition for this result, it is by no means necessary.
What is necessary, instead, is to have just enough “stepping stones” to ensure that
any arbitrary strategy cannot survive. Any arbitrary belief (commonly held) will gen-
erate an actual outcome: as long as an alternative belief exists, which is closer to the
actual outcome than the belief that generated it, such arbitrary belief cannot be an
equilibrium.

One possible way to generate these “stepping stones” is through an individual
best response function, as shown below. This method, though, does not generate the
minimum number of strategies needed to ensure that the situation where all agents use
the fundamental PLM is the only Nash equilibrium: one could exploit the fact that,
for any given strategy, there is an interval of alternative strategies that outperform it,
as seen above, and select the one that is closer to the fundamental as a stepping stone;
that is, at each iteration, instead of the best response (i.e., α = B), one could select
a “minimum strategy” that does at least as well as the current one (i.e., α = 2B − 1)
and use that as a stepping stone towards the fundamental equilibrium.

A fruitful way to analyze the set of equilibria of the system when there are no a
priori constraints on the set of possible belief strategies available to agents is to look
at the long run equilibria of an adaptive game where agents can replace strategies over
time, moving from one to the next through an individual best response mechanism.
In this perspective, a strategy profile represents a Nash equilibrium if it is a best
response to itself.16

I thus define a best response function f : a → Ba, which generates successive
strategies for agents and determines the beliefs dynamics of the system.

Consider, for example the framework from the previous section: when all agents
use a strategy defined by PLM1 : yt = a1, the actual outcome is given by
yt = Ba1. An individual agent, observing such outcome, could then use the new
strategy PLM2 = a2 = Ba1 as predictor for the steady state. This new strategy
is derived as the best response to PLM1 and represents the case where the new

16For an analysis of best response dynamics and Nash equilibria, see Gilboa and Matsui (1991).
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belief is halfway in the range of possible values that would lead to a lower MSE.
In the next round, then, the new best response strategy would be Ba2 = B2a1.
And so on.

This way of introducing new strategies through the best response function f

reminds one of the naive expectations assumption common before the RE rev-
olution, by which agents use the current observed value as a predictor for the
future. It is clearly not optimal in general, though it can be in special cases. More
importantly here, it provides a way to generate new strategies for evolutionary
selection.

In the present case, such “adaptive” behavior would indeed be optimal for an
atomistic agent: when all agents predict the outcome a1, the strategy a2 = Ba1
is indeed the best individual predictor, since it has minimum MSE. In other
words, a2 = Ba1 is a best response strategy, in game theoretic terms, for
an atomistic agent when everybody else is using a1. If all agents switch from
one period to the other, only two long run outcomes are then possible: either
yt → 0 (for |B| < 1) or yt → ±∞ (for |B| > 1), either monotonically
or oscillating depending on the sign of B. The following proposition summarizes
this result.

Proposition 9 The only long run stationary (Nash) equilibrium in an adaptive game
where new strategies are generated (synchronously) through an “individual best
response” mechanism is the fundamental equilibrium with ye = 0.

5 Equilibria in autoregressive form

So far I have considered only steady state equilibria of Eq. 1, which have the spe-
cial feature that a PLM (or forecasting strategy) is simply a constant. It is well
known, though, that, under RE, in addition to the fundamental, steady state equi-
librium, model (1) admits also equilibria in AR(1) form.17 It is thus interesting to
analyze beliefs dynamics under evolutionary schemes that rely on AR(1) forecasting
models.

Given the simple form of model (1), which does not include any lagged variable,
in order for an AR(1) equilibrium to emerge it is necessary that (at least some) agents
use an AR(1) model to form expectations.

5.1 Discrete beliefs space

I will start by showing how artificial AR(1) equilibria can also arise under evolution-
ary schemes when the beliefs space is constrained. In order to discipline the analysis,
I will focus on two cases separately: i) the case where a steady state PLM and an
AR(1) PLM are available to agents to form their expectations; ii) the case where two
competing AR(1) PLMs are available.

17Such equilibria require restrictions on B in order to be stationary.
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5.1.1 AR(1) versus steady state models

Consider first the case where two PLMs are available to agents, one consistent
with the economy being in a steady state and the other consistent with the econ-
omy being in an AR(1) equilibrium. In particular, the first model, denoted PLM1, is
represented by

yt = a, a ∈ R (18)
while the second, PLM2, is consistent with the AR(1) equilibrium and represented
by

yt = byt−1, b ∈ R. (19)
Parameters a and b will be specified later on for different scenarios.

With a fraction μ of agents using the first model and the remaining fraction (1−μ)

using the second model, the ensuing aggregate expectations are

Etyt+1 = μa + (1 − μ) b2yt−1

and the ALM for the system is given by

yt = Bμa + B (1 − μ) b2yt−1 + vt . (20)

MSEs are given, respectively, by

MSE1 = E (yt − a)2

MSE2 = E (yt − byt−1)
2 ,

and inserting the ALM into these equations leads to:

MSE1 = E
(
(Bμ − 1) a + B (1 − μ) b2yt−1 + vt

)2
(21)

MSE2 = E
(
Bμa +

(
B (1 − μ) b2 − b

)
yt−1 + vt

)2
. (22)

It follows that

� = b2 (1 − 2bB (1 − μ))
(
B2μ2a2 + σ 2

v

)

1 − (
B (1 − μ) b2

)2
− a2 (1 − 2Bμ) + 2a2bB2μ (b (1 − μ) − μ)

1 − B (1 − μ) b2
.

(23)
For the general case a, b �= 0, the analysis is complicated by the interactions between
the unconditional mean of the model (which would be different from zero for a �= 0)
and the AR(1) component. Some special cases are of particular interest.

First, for a �= 0 and b = 0, � > 0 ⇔ Bμ > 1
2 : this condition ensures that the

expectations derived with PLM1 (equal to a) are closer (in expected value) to the
actual realization (Bμa) than those derived under PLM2 (equal to 0). Thus B > 1/2
ensures that the strategy profile (PLM1, PLM2, μ = 1) is an ESS18. For μ = 0,
instead, � < 0, and thus the strategy profile (PLM1, PLM2, μ = 0) is always an
ESS (again, as already seen above).

More interesting is the case where a = 0 and b �= 0, for which it is possible to
derive precise results that shed light on the interactions between these components.

18This case, in fact, corresponds to one already seen above, since, from PLM2 with b = 0, the expected
value for yt is always zero.
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In particular, I will consider two sub-cases: i) a MSV PLM against an AR(1) REE
PLM; ii) a MSV PLM against a “naive expectations” PLM . The intuition behind
the results is always the same: the strategy that performs better is the one that delivers
expectations that are closer, in MSE, to the actual realization, which is determined
by the expectations of each group, weighted by their relative size, and mapped into
actuals through the structural parameter B.

MSV versus AR(1) REE models Suppose, first, that the two groups of agents believe
themselves to be in a RE equilibrium, but not in the same one: agents in the first
group, of size μ and using PLM1, believe themselves to be in the fundamental noisy
steady state (thus a = 0) while agents in the other group, of size 1 − μ and using
PLM2, believe themselves to be in the AR(1) RE equilibrium (thus b = 1

B
). The

ensuing aggregate expectations are thus given by

Etyt+1 = 1 − μ

B2
yt−1

and the ALM for the economy is

yt = 1 − μ

B
yt−1 + vt . (24)

It is then straightforward to derive the MSEs for the two groups

MSE1 = E

(
1 − μ

B
yt−1 + vt

)2

MSE2 = E
(
−μ

B
yt−1 + vt

)2
.

Using the fact that, from Eq. 24 and assuming stationarity of yt ,19

Eyt = 0

Ey2
t = B2

B2 − (1 − μ)2
σ 2

v

it follows that

MSE1 = B2σ 2
v

B2 − (1 − μ)2

MSE2 =
(
B2 + 2μ − 1

)
σ 2

v

B2 − (1 − μ)2
.

The stationarity condition implies that the denominator of these MSEs is positive.
Clearly then, MSE2 > MSE1 ⇔ μ > 1

2 : the model used by the majority of agents
delivers better forecasts and, in the long run, prevails under evolutionary dynamics.
This means that the two strategy profiles (PLM1, PLM2, μ = 1) and (PLM1,
PLM2, μ = 0) represent ESSes: the first gives rise to the MSV REE, the second

19Note, from ALM (24), that stationarity requires |1 − μ| < |B| . As μ → 1, this condition is satisfied
∀B. As μ → 0, instead, the requirement is the usual one for the existence of stationary AR(1) solutions
seen above, i.e., |B| > 1.
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to the AR(1) REE. This result also implies that, under replicator dynamics, both
μ = 1 and μ = 0 are locally asymptotically stable equilibria, with basins of attraction
separated by μ = 1

2 , which represents an unstable heterogeneous equilibrium.

Proposition 10 Both strategy profiles (PLM1, PLM2, μ = 1) and (PLM1, PLM2,
μ = 0), with PLM1 defined by Eq. 18 with a = 0 and PLM2 defined by Eq. 19
with b = 1/B represent ESSes. The first gives rise to the MSV REE, the second to
the AR(1) REE.

MSV versus naive expectations Another interesting case arises when a = 0 and
b = 1: one group of agents thus uses a PLM consistent with the MSV fundamental
equilibrium while the other uses a simple “naive expectations” model. It is straight-
forward to show, from condition (23), that: a) the strategy profile (PLM1, PLM2,
μ = 1) is always an ESS; b) the strategy profile (PLM1, PLM2, μ = 0), where all
agents use naive expectations, is an ESS if B < −1 or 1

2 < B < 1 (but, in the second
case, the ensuing equilibrium is not stationary). Naive expectations can thus represent
an ESS strategy against fundamental expectations in this setting for B < −1.

Proposition 11 Consider the strategy profiles (PLM1, PLM2, μ = 1) and (PLM1,
PLM2, μ = 0), with PLM1 defined by Eq. 18 with a = 0 and PLM2 defined by
Eq. 19 with b = 1. The first represents an ESS for any value of B, while the second
is an ESS if B < −1 or 1

2 < B < 1.

5.1.2 Competing AR(1) models

The second case I consider is one where different group of agents use different AR(1)
models as PLMs. Consider the two competing AR(1) PLMs, used, respectively, by
a fraction μ and of 1 − μ of agents:

PLM1 : yt = byt−1, b ∈ R (25)

PLM2 : yt = dyt−1, d �= b ∈ R. (26)

Deriving the ensuing ALM for the system and computing the MSEs for each PLM ,
it is straightforward to find the following condition on � ≡ MSE2 − MSE1 :

� > 0 ⇔ (d − b)
(
d + b − 2B

(
μb2 + (1 − μ) d2

))
> 0 (27)

or

d > b ⇒ � > 0 ⇔ d + b

2
> B

(
μb2 + (1 − μ) d2

)
(28)

d < b ⇒ � > 0 ⇔ d + b

2
< B

(
μb2 + (1 − μ) d2

)
. (29)

Note that the r.h.s of these conditions represents the impact of yt−1 on yt . These
conditions, therefore, have a straightforward interpretation: the PLM that performs
better is the one that predicts an impact of past yt−1 on current yt closer to its actual
value.
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If one now sets d = 1/B, PLM2 corresponds to the AR(1) REE strategy. One
can thus check whether such strategy can dominate arbitrary AR(1) strategies (and
vice-versa).

Setting d = 1/B and μ = 0 in condition (27) leads to

� > 0 ⇔ − (1 − Bb)2 > 0

and such condition is clearly never satisfied. Since � < 0 for any possible value of b,
the strategy d = 1/B always outperforms any possible alternative strategy b when
all agents use it (as it represents the best response to itself). Moreover, by continuity,
is as also an ESS. Conversely, setting d = 1/B and μ = 1 in condition (27) leads to

� > 0 ⇔ (1 − Bb)
(

1 + Bb − 2 (Bb)2
)

> 0. (30)

It follows that, ∀B, ∃b such that condition (30) is satisfied and � > 0:20 the strategy
defined by such b thus outperforms the strategy defined by d = 1/B when all agents
use it and it is an ESS.

More generally, it is possible to verify whether two arbitrary AR(1) models,
defined by PLM1 with arbitrary b and PLM2 with arbitrary d , can represent ESSes.
Clearly condition (27), computed with μ = 1 and μ = 0, respectively, shows that
they can. Assuming, without loss of generality, that d > b, � > 0 with μ = 1
requires d + b − 2Bb2 > 0 and � < 0 with μ = 0 requires d + b − 2Bd2 < 0.
Putting together the two conditions, it is thus possible to find, ∀B , a pair (b, d) that
satisfies d+b

2b2 > B & d+b

2d2 < B.

Proposition 12 Consider the strategy profiles (PLM1, PLM2, μ = 1) and (PLM1,
PLM2, μ = 0), with PLM1 defined by Eq. 25 with arbitrary b and PLM2 defined by
Eq. 26 with arbitrary d , with d > b. Both strategy profiles can represent ESSes. The
first requires d+b

2b2 > B and the second d+b

2d2 < B. Selecting b and d appropriately,
one can define a system where both strategy profiles are ESSes.

With a limited number of strategies (two in this case), it is always possible to
choose strategy profiles where arbitrary beliefs dominate the alternatives available
and thus construct artificial equilibria (in the sense that they would be equilibria
under beliefs dynamics driven by replicator dynamics or discrete logit model). But
these equilibria are artificial, due to the arbitrary restriction of the beliefs space, as I
show in the next section.

5.2 Refining the beliefs space

In order to model an unrestricted beliefs space, I consider as before a setting
where one PLM is fixed while the other is parameterized to represent a con-
tinuum of PLMs, this time in AR(1) form. In particular, the two PLMs are
given by

20This requires − 1
2 < Bb < 1. For example, one could simply choose b = 1

2B
.
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PLM1 : yt = byt−1, b ∈ R (31)

PLM2 : yt = αbyt−1, (32)

where the second PLM is now parameterized by α ∈ R.
If μ agents use PLM1 and 1 − μ use PLM2 to form expectations, the ensuing

ALM is then

yt = Bb2
(
μ + (1 − μ) α2

)
yt−1 + vt , (33)

and the two MSEs are

MSE1 = E
((

Bb2
(
μ + (1 − μ) α2

)
− b

)
yt−1 + vt

)2

MSE1 = E
((

Bb2
(
μ + (1 − μ) α2

)
− αb

)
yt−1 + vt

)2
.

Note that Eyt = 0 and Ey2
t = σ 2

v

1−(b2B(μ+(1−μ)α2))
2 , under the condition that Eq. 33

is stationary (which requires
∣
∣Bb2

(
μ + (1 − μ) α2

)∣∣ < 1). It is then possible to
compute

�(α) = σ 2
v

b2
(
α2 − 1

) + 2b (1 − α)
(
b2B

(
μ + (1 − μ) α2

))

1 − (
b2B

(
μ + (1 − μ) α2

))2
, (34)

where again it is made clear that � is now a function of the free parameter α. The
next step now is to check whether an arbitrary PLM1 can be a Nash equilibrium
against any other PLM2, which is a necessary condition for it to be an ESS. To do
so, I compute (34) with μ = 1 and obtain

�(α)μ=1 = σ 2
v b2

(
α2 − 1

) + 2Bb (1 − α)

1 − (
b2B

)2
. (35)

Note that stationarity of Eq. 33 with μ = 1 requires
∣∣Bb2

∣∣ < 1 and thus the denom-
inator is always positive. In order for the strategy profile (PLM1, PLM2, μ = 1) to
be a Nash equilibrium, it must be that �(α) > 0 everywhere. But one can see that
it is always possible to find a value for α such that �(α) < 0. In particular, given B

and b , this requires to choose α as follows:

α > 1 if Bb > 1

α < 1 if Bb < 1.

This shows that, unless b = 1/B, which has been shown before to represent a Nash
equilibrium,21 it is always possible to find a value for α such that PLM2 outperforms

21With b = 1/B, from Eq. 35 � = (α−1)2

1−B−2 and for |B| > 1 (required for stationarity), � > 0 (in fact,

MSE1 = σ 2
v ),∀α �= 1: the strategy b = 1/B is thus a Nash equilibrium. Moreover, because of continuity

of � in μ, it is also an ESS.
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PLM1 for μ = 1: any PLM defined by an arbitrary AR(1) parameter b cannot,
therefore, represent a Nash equilibrium (and thus cannot be an ESS).

Proposition 13 When agents can choose among a set of unrestricted AR(1) models
to form their forecasts, the belief strategy defined by b = 1/B is the only Nash
equilibrium and ESS that gives rise to a stationary homogeneous AR(1) equilibrium
for |B| > 1.

This result shows that any other AR(1) strategy different from b = 1/B can
be outperformed and does not, therefore, represent an equilibrium in this setting.
Such arbitrary strategies can only be found to be equilibria when the set of available
predictors is arbitrarily restricted.

5.3 Stepping stones and individual best response

Again, it is insightful to look at the problem in terms of an adaptive game, where
agents replace their strategies with better ones over time through an “individual best
response” function.

Starting from the case where every agent uses the arbitrary PLM1 : yt = byt−1,
the individual best response to such strategy would be to use the new PLM2 : yt =
Bb2yt−1. Repeating this process over time gives rise to the map

b → Bb2,

which defines a difference equation in b

bt+1 = Bb2
t .

This non-linear difference equation admits two fixed points: b = 0 and b = 1/B.
Such points correspond to the two homogeneous RE equilibria and their stability
requires the derivative

∂bt+1

∂bt

= 2Bbt

to be within the unit circle. It is then immediate to see that b = 0 is locally stable
while b = 1/B is not under this “individual best response” dynamics.22 Thus, when
agents are unconstrained in terms of their forecasting strategy, the only equilibrium
that can emerge from the above adaptive process is the fundamental MSV equilib-
rium. Again, as before, it is not necessary to have a continuum of strategies available
in the form of the support for b: only “enough” strategies to ensure that any arbitrary
value of b that is not Nash can be selected away by a better strategy. Individual best

22Remember that it was found instead that b = 1/B can be a Nash equilibrium and an ESS, when played
against the fundamental equilibrium. Again, this shows the central message of the paper: restricting the
strategy space can generate artificial equilibria, which do not survive if the strategy space is sufficiently
enlarged.
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reply is a natural way to deploy such stepping stones strategies, though it is not the
most parsimonious one.

6 Some discussion and a comparison

The central message of this paper is that an arbitrary limitation of beliefs under evolu-
tionary schemes can give rise to artificial equilibria. Through the notion of “stepping
stones” I have shown that, if enough strategies are available, only strategies that are
Nash in an unrestricted beliefs space can emerge as equilibrium outcomes.

Researchers wishing to use evolutionary dynamics on a pre-defined set of
heuristics, thus, should make sure that “enough” heuristics are made available to
agents. It might well be that different strategies entail different costs (monetary,
informational, or of other sort), but the choice should not be restricted a priori.

This paper helps explain some results in the existing literature. For example, Brock
and Hommes (1997) show that, if the intensity of choice parameter β → ∞, the equi-
librium in their cobweb model with adaptively rational agents would be one where
all agents use the naive predictor, as in equilibrium such a predictor is equivalent to
the rational one, and it is cost free. Without costs on the rational predictor, all agents
would instead use the RE predictor. In either case, the price (and the expected price)
is equal to the fundamental value, which is the only Nash equilibrium and ESS. Note
that, in that setting, while it would seem that only two predictors are available, the
naive and the rational one, effectively the rational predictor is not defined as a fixed
heuristic but instead as a belief equal to the actual realized price, which changes
(among other things) with the fraction of agents using the naive predictor: it thus
corresponds to an infinite set of heuristics in the terminology of this paper.

Similarly, Diks and van der (2003) find that, in a model similar to Eq. 1 with AR(1)
strategies, a CBS leads to an equilibrium distribution that, as β → ∞, degenerates
into a mass point on the fundamental price. This is indeed the only stationary Nash
and ESS for B < 1.

With a discrete logit model, when β → ∞, heterogeneity by definition disap-
pears. The question is, what strategy will prevail? This work has provided some
insight into the answer to this question. It is important to note that results obtained
are not due to specific features of the framework I’ve adopted, but instead come
from the way evolutionary schemes select strategies, based on relative, rather than
absolute, performance. A strategy can thus prevail even if it entails a large fore-
cast error, as long as such error is smaller than the ones entailed by the available
competing strategies. With a small number of competing strategies, such error
can in fact be quite large. Note that, if all possible strategies were available, the
only equilibrium points would be ones where the error is at its minimum, i.e.,
the error entailed by rational expectations. I am going to expand on this point in
Section 6.1.

One important assumption held throughout this paper is that all agents switch
beliefs at the same time (synchronous updating): it would be interesting to consider
these issues in the case where agents are allowed to switch at different times. I leave
this issue for future work.
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6.1 A comparison with adaptive learning

In order to gain some more insights into the above results, it is useful to draw a com-
parison between evolutionary dynamics and adaptive learning as a means to model
the evolution of beliefs.

Under adaptive learning, model (1) has a unique E-stable (that is, stable under
adaptive learning)23 equilibrium, the MSV, for |B| < 1 (E-stability requires B < 1;
the other part of the constraint ensures a unique RE equilibrium). The AR(1) equi-
librium instead is never E-stable, which means that it cannot be learned by agents
acting as econometricians and recurrently estimating an AR(1) PLM.24 This means
that, if agents are given a steady state PLM, they can converge to the fundamental
REE, while if they are given an AR(1) PLM, they cannot learn the AR(1) REE. In
contrast, we have seen that, under evolutionary schemes with a limited number of
beliefs heuristics available, non-fundamental equilibria can arise. With unrestricted
beliefs, instead, the only ESS are the MSV equilibrium and the AR(1) REE (this last
one requiring |B| > 1), though only the MSV equilibrium is obtainable through “best
reply” dynamics.

Under adaptive learning, as long as beliefs are not consistent with actual outcomes
(i.e., a �= Ba for the steady state case, or b �= Bb2 for the AR(1) case), beliefs are
revised (i.e., new strategies, in the form of revised values for a or b, are generated
through a form of directed search). Under evolutionary dynamics, instead, agents
change beliefs (heuristics) only if better ones are available, i.e., they can only select
a′s and b′s that are made available to them by the modeller.

Evolutionary dynamics and adaptive learning thus tend to deliver different results
in terms of beliefs dynamics and equilibrium outcomes: while adaptive learning can
only select (Nash) REE,25 evolutionary dynamics allow for a richer set of outcomes
to emerge when the set of available strategies is restricted. An important element in
all these results is the self-referentiality of models such as Eq. 1, where actual out-
comes depend on agents’ beliefs. This means that the measure of fitness for beliefs,
their forecasting accuracy, is endogenous to the choice of agents, and thus multi-
ple equilibria can emerge.26 While such self-referentiality is a feature of the model
itself, irrespective of how expectations are modelled, its consequences are more dra-
matic under evolutionary dynamics because such dynamics are based on the relative
performance of competing forecasting models (PLMs), rather than on the absolute
performance of a given forecasting model against actual outcomes as is the case
under adaptive learning. In a sense, beliefs under evolutionary dynamics are less con-
strained by outcomes, as they only need to prevail in relative terms, and this enhances
the possibility of non-fundamental outcomes. This is particularly the case when a

23For a discussion of E-stability, and in general for an exhaustive treatment of adaptive learning in
macroeconomics, see Evans and Honkapohja (2001).
24These are well known results in the adaptive learning literature. See, e.g., Evans and Honkapohja (2001).
25This is true under the assumption that agents are given the correct PLM; otherwise, convergence could be
to a different equilibrium, such as a restricted perceptions equilibrium. See Evans and Honkapohja (2001).
26For example, with B = 0 it is easy to see from Proposition 14 that the arbitrary PLM2 cannot be an
ESS. The MSV model would always dominate under evolutionary dynamics.
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small number of beliefs heuristics compete, as the “distance” in performance between
different predictors can be quite large and allows for each set of beliefs to be an
equilibrium (in the restricted sense of being Nash and an ESS against each other).

Evolutionary algorithms require two elements in order to be able to drive beliefs
dynamics towards an optimum: a selection criteria (such as the forecasting perfor-
mance in terms of MSE), and a mechanism to generate new strategies.27 The two
elements combine to produce dynamics that move from one strategy to the next,
improving performance along the way. But if the mechanism that generates new
strategies is muted, no evolution towards an optimum can take place. Under adaptive
learning, instead, the two elements are joint: the dynamics from one strategy (rep-
resented by the current estimates for parameters in the PLM) to the next (updated
estimates) are determined by the forecast error through some form of parameter esti-
mation (e.g., recursive least square), that is, “mutation” in the strategy spaces takes
place in the direction of the forecast error, and the magnitude is determined by the
gain coefficient and the second moments of the regressors. This ensures that only
fixed points from beliefs to outcomes (entailing a zero expected forecast error), i.e.,
Nash equilibria, can be equilibria of these learning schemes.

7 Conclusions

In this work I have shown how modelling beliefs using evolutionary schemes based
on a limited number of predictors can lead to misleading conclusions about possible
equilibrium outcomes in a model where current endogenous variables are affected by
expectations.

After analyzing this issue in a simple, univariate forward-looking model, I have
put results in context by drawing a comparison with adaptive learning and dis-
cussed the differences between the two approaches. The key difference lies in the
fact that adaptive learning algorithms are driven by the difference between predic-
tions and outcomes, while evolutionary schemes are driven by the difference in
performance between different available predictors. Constraining the set of available
strategies/predictors can thus allow for otherwise inferior beliefs to survive. The out-
come is analogous to using genetic algorithms for optimization without allowing new
population elements to be generated at each iteration: inferior solutions can prevail.

It must be noted, to conclude, that the aim of this work is not to argue against the
use of evolutionary schemes to model expectations dynamics, but simply to warn of
the possible consequences of such practice. Whether agents modify their forecasting
models in the direction of actual outcomes, as implied by adaptive learning methods,
or they select among a limited set of fixed heuristics, as assumed under evolutionary
schemes, is ultimately an empirical question that remains to be settled and that is
bound to be context specific. The aim of this paper is simply to clarify how different
assumptions in this regard lead to different conclusions about equilibrium outcomes
in self-referential economic models.

27In genetic algorithms, this second step is usually achieved through the operations of crossover and
mutation.
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Appendix: Optimistic, pessimistic and fundamental agents

While the analysis in Section 4.1, and throughout the paper, is restricted to only
two PLMs available to agents, it can be extended to allow for more possibilities.
Consider, for example, the case where three PLMs are available to agents, defined
as follows:

PLM1 : yt = 0 (36)

PLM2 : yt = a, a ∈ R − {0} (37)

PLM3 : yt = αa, α ∈ R − {0} . (38)

A strategy profile is now defined by the 5-tuple (PLM1, PLM2, PLM3, μ1, μ2),
where μ1 and μ2 represent the relative fraction of agents using, respectively, PLM1
and PLM2 (with μ3 = 1 − μ1 − μ2 representing the remaining fraction of agents
using PLM3). One can interpret PLM1 as being a “fundamental” PLM , while
PLM2 and PLM3 define different degrees of optimism/pessimism competing with
each other.

Clearly, the strategy profile where all agents use the fundamental PLM1 is always
an ESS. It can also be shown that the strategy profile where all agents use the arbitrary
PLM2 is an ESS if

α < 0 & B >
1

2
(39)

0 < α < 1 & B >
1

2
+ α

2
(40)

α > 1 &
1

2
< B <

1

2
+ α

2
. (41)

The conditions for the strategy profile where all agents use the arbitrary PLM3 to be
an ESS are then symmetric, with

α < 0 & B >
1

2
(42)

0 < α < 1 &
1

2
< B <

1

2
+ 1

2α
(43)

α > 1 & B >
1

2
+ 1

2α
. (44)
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A brief comment on these inequalities. Condition B > 1
2 is required in order for

the optimistic/pessimistic PLM to outperform the fundamental PLM1. The remain-
ing part of the conditions ensures that PLM2 outperforms PLM3 when all agents
use it (this is: (B − 1)2 < (B − α)2), or PLM3 outperforms PLM2 when all agents

use it (this is: (B − 1)2 <
(
B − α−1

)2
): such conditions depend on whether α ≶ 1 .

For example, selecting α = −1, one obtains a setting with two non funda-
mental PLMs, one leading to optimistic and one to pessimistic forecasts, with
optimism/pessimism symmetric around the fundamental steady state: in this case, the
condition for the strategy profiles where all agents use one of the two non fundamen-
tal PLMs to be ESSes reduces to B > 1

2 . Selecting instead an α ∈ − (0, ∞), the
symmetry of optimism and pessimism would not necessarily hold anymore, but the
condition for strategy profiles where either PLM2 or PLM3 are used by all agents
to be ESSes would still be B > 1

2 .

Proposition 14 Consider the three PLMs defined in Eqs. 36-38. Each of the three 5-
tuples (PLM1, PLM2, PLM3, μ1 = 1, μ2 = 0), (PLM1, PLM2, PLM3, μ1 = 0,
μ2 = 1) and (PLM1, PLM2, PLM3, μ1 = 0, μ2 = 0) can be an ESS. In particular,
the first one is always an ESS; the second one is an ESS if one of the three conditions
(39)-(41) is satisfied; the third one is an ESS if one of the three conditions (42)-(44)
is satisfied.

The intuition for these results is straightforward: a PLM prevails on the others
if its prediction is closer to the actual realization than each of the alternative’s pre-
dictions, when all agents use it. Again, these ESSes correspond to equilibria that are
stable both under replicator dynamics and under the discrete logit model with β = ∞.
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