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LIOUVILLE-TYPE THEOREMS FOR THE STATIONARY MHD

EQUATIONS IN 2D

WENDONG WANG AND YUZHAO WANG

Abstract. This paper is devoted to investigating Liouville type properties of the two-dimensional

stationary incompressible Magnetohydrodynamics equations. More precisely, we show that

there are no non-trivial solutions to MHD equations either the Dirichlet integral or some Lp

norm of the velocity-magnetic fields is suitably bounded, which generalize the well-known results

for the 2D Navier-Stokes equations by Gilbarg-Weinberger [13] and Koch-Nadirashvili-Seregin-

Sverak [19]. Compared to the Navier-Stokes equations, there is no maximum principle for

solutions to the MHD equation. To overcome this difficulty, we develop a different approach,

which does not appeal to the special structure of the vorticity equation as [13] did.

Keywords: Liouville type theorems, MHD equations, Navier-Stokes equations

1. Introduction

In this note, the main concern is the two-dimensional (2D) stationary incompressible Mag-

netohydrodynamics (MHD) equations on the whole plane R2:
−µ∆u+ u · ∇u+∇π = b · ∇b,
−ν∆b+ u · ∇b = b · ∇u,
div u = 0, div b = 0,

(1)

where u : R2 → R2 and b : R2 → R2 denote the velocity field and the magnetic field respectively;

µ > 0 is the viscosity coefficient and ν > 0 is the resistivity coefficient. Magnetohydrodynamics

is the study of the magnetic properties of electrically conducting fluids, which appear naturally

in various branches of physics and engineering such as plasmas, liquid metals, salt water, and

electrolytes, etc. It models the phenomena that the magnetic fields induce currents in a moving

conductive fluid, which in turn affects the magnetic field itself. As a consequence, the math-

ematical model of MHD is a coupled system of the Navier-Stokes equations of fluid dynamics

governing the velocity field and the Maxwell’s equation of electromagnetism describing the mag-

netic field. Due to its fundamental importance, the field of MHD has attracted considerable

attention. In particular, Hannes Alfvén received the Nobel Prize in Physics in 1970 for his

pioneering contribution in this field. We focus on the stationary equations (1), which plays a

particularly important role in understanding the long time behaviour of its dynamical model.

For further physical background and mathematical theory, we refer to Schnack [26] and the

references therein.

It is obvious to observe that (1) admits trivial solutions u = b = C. A natural question to

ask is whether there exists non-trivial solutions to (1) with the finite Dirichlet energy:

D(u, b) =

ˆ
R2

|∇u|2 + |∇b|2 dx. (2)

1
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This question is known as the Liouville-type problem concerning MHD equations (1). Liouville

theory for MHD, if holds, claims that the stationary Magnetohydrodynamics flow owns the

rigidity in the sense that the Dirichlet energy of the flow is either null or infinite. Liouville

theory has been established for various fluid models, such as stationary Navier-Stokes equations.

When b = 0 and µ = 1, the MHD equation (1) reduces to the standard 2D Navier-Stokes

(NS) equations, {
−∆u+ u · ∇u+∇π = 0,

div u = 0,
(3)

for which Liouville properties are well understood. For instance, Gilbarg-Weinberger [13] proved

that there are only constant solutions to (3) provided the Dirichlet energy is finite, that is
ˆ
R2

|∇u|2 dx <∞.

Their proof relies on the fact that the vorticity of the 2D NS equations (3) satisfies a nice elliptic

equation, to which the maximum principle applies. To be more precise, for a solution u to (3),

define w = ∂2u1 − ∂1u2 to be its vorticity. Then w solves the following elliptic equation

∆w − u · ∇w = 0,

which satisfies the maximal principle. The assumption on boundedness of the Dirichlet energy

can be relaxed to ∇u ∈ Lp(R2) with some p ∈ (6
5 , 3], see [2]. As a different type of Liouville

property for the 2D NS, Koch-Nadirashvili-Seregin-Sverak [19] showed that any bounded solu-

tion to (3) is trivial solution, say u ≡ C, as a byproduct of their results on the non-stationary

case. In [19] they exploited the maximum principle of a parabolic type, see also a note of Koch

[17]. Recently, it was extended to the case of generalized Newtonian fluids, where the viscosity is

a function depending on the shear rate in [7, 9]. See also [29] for a similar result for u ∈ Lp(R2)

with p > 1 on the generalized Newtonian fluid. Other types of Liouville properties for the

stationary NS on the plane were also extensively studied, such as under the growth condition

lim sup |x|−α|u(x)| < ∞ as |x| → ∞ for some α > 0, see [10, 2]; existence and asymptotic

behavior of solutions in an exterior domain, see [14, 24, 25, 15, 22, 18, 5]. For more references

on Liouville theorems of (3), we refer to [11, 6, 28, 16, 8] and the references therein.

If we take the magnetic effect into account, i.e. b is not necessarily vanishing, the under-

standing of the Liouville-type properties of MHD on the plane is far from satisfactory. The

involvement of the magnetic field makes the problem much more complicated. As pointed out

by Oleinik-Samokhin in [21], the magnetic field applied to a conducting viscous flow may affect

the process of separation of the boundary layer as well as the speed. However, some numerical

experiments in [23] seem to indicate that the velocity field should play a more important role

than the magnetic field in the regularity theory. See also [27]. One may wonder whether the ve-

locity fields also play the leading role in a Liouville theory for MHD equations. Partial progress

has been made for the three-dimensional case, where Chae-Weng [4] recently proved the axially

symmetric Dirichlet solution (u, b) is trivial if u ∈ L3(R3). It is still a challenging open problem

to remove the L3(R3) boundedness. In this note, we will give an affirmative answer to the

two-dimensional case. In particular, we show that by adding the magnetic effect the Liouville
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theorem still holds, provided that the magnetic fields are suitably controlled by the Reynold

number.

Before proceeding with our man result, we define the weak solution to the MHD system (1).

Definition 1.1. We say that (u, b) is a weak solution to the 2D MHD equations (1) in a domain

Ω ⊂ R2 provided that:

(i). u, b ∈ Lsloc(Ω) for some s > 2;

(ii). divu = 0 and div b = 0, in the weak sense;

(iii). (u, b) satisfies the following system

µ

ˆ
Ω
u · 4φdx+

ˆ
Ω

(u · ∇φ) · u dx =

ˆ
Ω

(b · ∇φ) · b dx

and

ν

ˆ
Ω
b · 4φdx+

ˆ
Ω

(u · ∇φ) · b dx =

ˆ
Ω

(b · ∇φ) · u dx

for all φ ∈ C∞0 (Ω) with φ = (φ1, φ2) and divφ = 0.

In what follows, we shall take Ω = R2 unless otherwise specified.

To establish the Liouville theory for the 2D stationary MHD equations (1), one may want to

mimic the arguments in [13] or [19] for Navier Stokes equations (3). However, this is not the

case. For instance, due to the presence of the magnetic fields, the maximum principle doesn’t

hold for the vorticity of the MHD equations. Therefore, Gilbarg-Weinberger’s argument fails to

apply to the 2D MHD equations. Nevertheless, we step forward in this direction and provide

positive answers to this question by assuming that the magnetic fields are suitably bounded.

Our first main result is as follows,

Theorem 1.1. Let (u, b) be a weak solution of the 2D MHD equations (1) defined over the

entire plane. Assume that D(u, b) ≤ D0 <∞ and there exists an absolute constant C∗ such that

‖b‖L1(R2)D
1
2
0 ≤ C∗min{µν, µ

1
2 ν

3
2 }.

Then u and b are constants.

Remark 1. Similar analysis as Galdi in [11], for any weak solutions (u, b) to the stationary

MHD equations (1), if u, b ∈ Lsloc(Ω;R2) with some s > 2, then u, b ∈ W 1,2
loc (Ω;R2) and u, b are

smooth as a consequence of the regularity property of Stokes equations. For more details, we

refer readers to [11, Chapter IX]. Therefore, the weak solutions to (1) are indeed smooth under

the conditions of Theorem 1.1.

Remark 2. We stress that smallness conditions only apply to the magnetic field b. Note that

if (u, b) be a solution of (1), then

uλ(x)
.
= λu(λx), bλ(x)

.
= λb(λx)
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is also a solution of (1). The quantities ‖b‖L1(R2)‖∇u‖L2(R2) and ‖b‖L1(R2)‖∇b‖L2(R2) are invari-

ant under the natural scaling. Furthermore, our proof doesn’t appeal to the special structure of

the vorticity equation of the 2D NS equations as [13] did, and so it is more robust in extending

to more general settings.

Remark 3. The suitable smallness of the magnetic field plays a vital role in our proof of

Theorem 1.1. When µ ≈ ν ≈ (Re)−1 and ‖u‖Ḣ1 . 1, Theorem 1.1 shows that ‖b‖L1∩Ḣ1 .
(Re)−2 implies the trivial solution are stable in this space. The upper bound (Re)−2 also

appeared in the study of in the time-dependent Navier-Stokes equations as the stability threshold

of shear flow. See Bedrossian-Germain-Masmoudi [1]. However, it is still not clear whether this

bound is essential to the Liouvillle theorem Theorem 1.1.

Motivated by [19] and [29], our second result is concerned with the Liouville property for Lp

solutions,

Theorem 1.2. Let (u, b) be a weak solution of the 2D MHD equations (1) defined over the

entire plane. Then u, b are constants if one of the following conditions holds:

(1) u, b ∈ Lp(R2,R2) for some p ∈ [2, 6];

(2) ‖u‖Lp(R2) + ‖b‖Lp(R2) ≤ L <∞ for some p ∈ (6,∞], and there exists an absolute constant

C∗ such that ‖b‖L1(R2)L
p
p−2 ≤ C∗min{µν, µ

1
2 ν

3
2 }.

Remark 4. Note that for p ∈ [2, 6], no smallness conditions are needed, that is to say there are

no non-trivial Lp solutions to (1). However, it is different when p > 6. The main difference comes

from a simple fact: the estimate of the nonlinear term u ·∇u or b ·∇b, and R−1
´
BR\BR/2

|b|3dx =

o(R) as R→∞ if b ∈ Lp(R2) satisfying p ≤ 6(see Section 4.1,4.2). When p ∈ (6,∞], we need to

assume that the scaling invariant norms ‖b‖L1(R2)‖u‖
p
p−2

Lp(R2)
and ‖b‖L1(R2)‖b‖

p
p−2

Lp(R2)
are sufficiently

small. Moreover, the above result generalizes the corresponding theorems for the Navier-Stokes

equation (3) in [19] or [29] to the setting of MHD equations.

2. Preliminaries

In this section, we prepare some preliminary lemmas that we shall rely on. Throughout this

article, C(a1, · · · , ak) denotes a constant depending on a1, · · · , ak, which may be different from

line to line. We denote the ball with centre x0 of radius R by BR(x0). If x0 = 0, we simply

write BR = BR(0). Let a radially decaying smooth η(x) be a test function such that

η(x) =

{
1, x ∈ B1,

0, x ∈ Bc
2.

and let

ηR(x) = η
( x
R

)
(4)

for R > 0. One notices that |∇kηR| ≤ C
Rk

.

Let us recall a result of Gilbarg-Weinberger in [13] about the decay of functions with finite

Dirichlet integrals.
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Lemma 2.1 (Lemma 2.1, 2.2, [13]). Let a C1 vector-valued function f(x) = (f1, f2)(x) = f(r, θ)

with r = |x| and x1 = r cos θ. There holds finite Dirichlet integral in the range r > r0, that isˆ
r>r0

|∇f |2 dxdy <∞.

Then, we have

lim
r→∞

1

ln r

ˆ 2π

0
|f(r, θ)|2dθ = 0.

and furthermore, there is an increasing sequence {rn} with rn ∈ (2n, 2n+1), such that

lim
n→∞

|f(rn, θ)|2

ln rn
= 0,

uniformly in θ.

If, furthermore, we assume ∇f ∈ Lp(R2) for some 2 < p < ∞, then the above decay property

can be improved to be point-wise uniformly. More precisely, we have

Lemma 2.2 (Theorem II.9.1 [11]). Let Ω ⊂ R2 be an exterior domain and let

∇f ∈ L2 ∩ Lp(Ω),

for some 2 < p <∞. Then

lim
|x|→∞

|f(x)|√
ln(|x|)

= 0,

uniformly.

We also need a Giaquinta’s iteration lemma [12, Lemma 3.1], also see a proof in [3, Lemma

8].

Lemma 2.3 (Lemma 3.1 [12]). Let f(r) be a non-negative bounded function on [R0, R1] ⊂ R+.

If there are negative constants A,B,D and positive exponents b < a and a parameter θ ∈ (0, 1)

such that for all R0 ≤ ρ < τ ≤ R1

f(ρ) ≤ θf(τ) +
A

(τ − ρ)a
+

B

(τ − ρ)b
+D,

then for all R0 ≤ ρ < τ ≤ R1

f(ρ) ≤ C(a, θ)

[
A

(τ − ρ)a
+

B

(τ − ρ)b
+D

]
.

3. Proof of Theorem 1.1

For a solution of (u, b) to (1), consider the vorticity w = ∂2u1− ∂1u2 and the current density

h = ∂2b1 − ∂1b2. It is easy to check that (w, h) satisfies{
−µ∆w + u · ∇w = b · ∇h,
−ν∆h+ u · ∇h = b · ∇w +H,

(5)

where

H = 2∂2b2(∂2u1 + ∂1u2) + 2∂1u1(∂2b1 + ∂1b2). (6)
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One crucial step of the proof is to get the higher regularity estimates of the solutions of (1).

Different from the argument in [13], we have to exploit something new to overcome the obstacle

due to the lack of maximum principle for the 2D MHD equations. Before proceeding with the

proof of Theorem 1.1, we prove the following smoothing property for the solution of (5).

Lemma 3.1. Let the vorticity w and the current h as in the MHD equations (5) with finite

Dirichlet integral, i.e. D(u, b) <∞. Then, we haveˆ
R2

|∇w|2 + |∇h|2 dx <∞; (7)

and furthermore, under the polar coordinate x = r cos θ and y = r sin θ, we have

lim
r→∞

|u(r, θ)|2

ln r
+
|b(r, θ)|2

ln r
= 0 (8)

uniformly in θ.

Proof. We assume µ = ν = 1 without loss of generality. Choose a cut-off function φ(x) ∈
C∞0 (BR) with 0 ≤ φ ≤ 1 satisfying the following two properties:

i). φ is radially decreasing and satisfies

φ(x) = φ(|x|) =

{
1, |x| ≤ ρ,
0, |x| ≥ τ,

where 0 < R
2 ≤ ρ < τ ≤ R;

ii). |∇φ|(x) ≤ C
τ−ρ for all x ∈ R2.

Multiplying both sides of (5) by φ2w and φ2h respectively and then integrating over R2 to getˆ
R2

φ2|∇w|2 dx = −
ˆ
R2

∇w · ∇(φ2)w dx−
ˆ
R2

u · ∇wφ2w dx+

ˆ
R2

b · ∇hφ2w dx

andˆ
R2

φ2|∇h|2 dx = −
ˆ
R2

∇h · ∇(φ2)h dx−
ˆ
R2

u · ∇hφ2h dx+

ˆ
R2

b · ∇wφ2h dx+

ˆ
R2

Hφ2h dx.

By noticing the cancelationˆ
R2

b · ∇hφ2w dx+

ˆ
R2

b · ∇wφ2h dx = −
ˆ
R2

b · ∇(φ2)hw dx,

and then applying integration by parts, we arrive atˆ
R2

φ2|∇w|2 dx+

ˆ
R2

φ2|∇h|2 dx

= −
ˆ
R2

∇w · ∇(φ2)w dx−
ˆ
R2

∇h · ∇(φ2)h dx+
1

2

ˆ
R2

u · ∇(φ2)w2 dx

+
1

2

ˆ
R2

u · ∇(φ2)h2 dx−
ˆ
R2

b · ∇(φ2)hw dx+

ˆ
R2

Hhφ2 dx

.
= I1 + · · ·+ I6. (9)

In what follows we shall estimate Ij for j = 1, 2, · · · , 6 one by one.
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For the term I1, by Hölder’s inequality and (2) we have

I1 ≤
C

τ − ρ
‖∇w‖L2(Bτ )‖w‖L2(Bτ )

≤ 1

8

ˆ
Bτ

|∇w|2 dx+
C

(τ − ρ)2
,

and similarly

I2 ≤
1

8

ˆ
Bτ

|∇h|2 dx+
C

(τ − ρ)2
.

For the terms I3, · · · , I5, it only needs to consider I5 since other terms can be treated similarly.

Let

f̄(r) =
1

2π

ˆ 2π

0
f(r, θ)dθ,

then by Wirtinger’s inequality (for example, see Ch II.5 [11]) we haveˆ 2π

0
|f − f̄ |2 dθ ≤

ˆ 2π

0
|∂θf |2dθ. (10)

By Hölder inequality, (10) and Lemma 2.1 we have

I5 ≤
∣∣∣∣ˆ

R2

hw b · ∇φdx
∣∣∣∣

≤
∣∣∣∣ˆ

R2

hw (b− b̄) · ∇φdx
∣∣∣∣+

∣∣∣∣ˆ
R2

hw b̄ · ∇φdx
∣∣∣∣

≤ C

τ − ρ

(ˆ
Bτ

w4

) 1
4
(ˆ

Bτ

h4

) 1
4

(ˆ
R
2
<|r|<R

ˆ 2π

0
|b(r, θ)− b̄|2 dθ rdr

) 1
2

+
C

τ − ρ

ˆ
Bτ\BR

2

|wh|
(ˆ 2π

0
|b(r, θ)|2 dθ

) 1
2

dx

≤ CR

τ − ρ

(ˆ
Bτ

w4

) 1
4
(ˆ

Bτ

h4

) 1
4

(ˆ
R
2
<|r|<R

1

r2

ˆ 2π

0
|∂θb|2dθ rdr

) 1
2

+ C
(lnR)

1
2

τ − ρ

ˆ
Bτ

(w2 + h2) dx.

Using the following Poincaré-Sobolev inequality(see, for example, Theorem 8.11 and 8.12 [20])

‖w‖L4(Bτ ) ≤ C‖∇w‖
1
2

L2(Bτ )
‖w‖

1
2

L2(Bτ )
+ Cτ−

1
2 ‖w‖L2(Bτ ), (11)

we obtain

I5 ≤ CR

τ − ρ

(ˆ
Bτ

|∇w|2 + |∇h|2
) 1

2

+
CRτ−1

τ − ρ
+
C
√

lnR

τ − ρ
,

where we used the boundedness of Dirichlet integral. Thus

I3 + I4 + I5 ≤
1

8

ˆ
Bτ

|∇h|2 + |∇w|2 dx+
CRτ−1

τ − ρ
+
C
√

lnR

τ − ρ
+

CR2

(τ − ρ)2
.
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For the term I6, using (11) again we get

I6 =

ˆ
R2

φhH dx ≤ C‖∇b‖2L4(Bτ )‖w‖L2(Bτ )

≤ 1

8

ˆ
Bτ

|∇2b|2 dx+ C(1 + τ−1).

Moreover, due to ∇⊥ = (∂2,−∂1)> and divu = 0, there holds

4u = ∇⊥(∂2u1 − ∂1u2) = ∇⊥w.

Thus by integration by parts we haveˆ
R2

φ2|∇2u|2 dx

≤ 4

3

ˆ
R2

φ2|4u|2 dx+
C

(τ − ρ)2

ˆ
Bτ

|∇u|2 dx

≤ 4

3

ˆ
Bτ

φ2|∇w|2 dx+
C

(τ − ρ)2
. (12)

Collecting the estimates I1, · · · , I6, by (12) we get

3

4

ˆ
Bρ

|∇2u|2 + |∇2b|2 dx

≤ 1

2

ˆ
Bτ

|∇2b|2 + |∇2u|2 dx

+ C(1 + τ−1) +
CRτ−1

τ − ρ
+
C
√

lnR

τ − ρ
+

CR2

(τ − ρ)2
+

C

(τ − ρ)2
.

Then by applying Lemma 2.3, we obtain

ˆ
BR/2

|∇2u|2 + |∇2b|2 dx ≤ CR−2 + C

√
lnR

R
+ C.

Finally, by taking R→∞, we arrive at (7).

Now we turn to the proof of (8). By Gagliardo-Nirenberg inequality, one notices that

‖∇u‖L4(R2) ≤ C‖∇u‖
1
2

L2(R2)
‖∇2u‖

1
2

L2(R2)
.

Then (8) follows from (7) and Lemma 2.2. Therefore, the proof is complete. �

Remark 5. Lemma 3.1 roughly says that by assuming the boundedness of the Dirichlet integral

(2), i.e. the L2 norm of the gradient, one can bound the second order derivatives, (7). This is

a manifestation of the smoothing effect, which will be used as a substitution of the maximal

principle in [13]. Please also note that the assumptions on the magnetic field b in Lemma

3.1 holds automatically for the Navier-Stokes equation since then b = 0. Therefore, in this

perspective, the smoothing effect exploited by Lemma 3.1 is more robust than the maximal

principle used in [13].

Now we are ready to demonstrate the proof of Theorem 1.1.



2D STATIONARY MHD 9

Proof of Theorem 1.1. Making the inner product with η2
Rw on both sides of the equation (5)1,

and η2
Rh on both sides of the equation (5)2, we have

µ

ˆ
BR

|∇w|2 + ν

ˆ
BR

|∇h|2 dx

≤ C

R2

(ˆ
B2R\BR

|w|2 + |h|2 dx

)
+
C

R

(ˆ
B2R\BR

|u||w|2 + |h|2|u|+ |b||h||w| dx

)

+

∣∣∣∣ˆ
B2R

Hhη2
R dx

∣∣∣∣
.
= I1 + I2 + I3, (13)

where ηR is as in (4) and H is as in (6).

Terms I1 and I2 are easy to estimate. By D(u, b) ≤ D0 and (8) we have

|I1|+ |I2| ≤ CR−2 +
C

R

√
lnR. (14)

It remains to bound I3. In what follows, we may assume that I3 = 2∂2b2∂2u1 since the

treatments for other terms are similar.

|I3| =
∣∣∣∣ˆ
B2R

η2
Rh∂2b2∂2u1 dx

∣∣∣∣
≤
∣∣∣∣ˆ
B2R

b2∂2∂2u1hη
2
R dx

∣∣∣∣+

∣∣∣∣ˆ
B2R

b2∂2u1∂2hη
2
R dx

∣∣∣∣+

∣∣∣∣ˆ
B2R

b2∂2u1h∂2η
2
R dx

∣∣∣∣
≤
(ˆ

B2R

|b2hηR|2 dx
)1/2(ˆ

B2R

|∂2∂2u1ηR|2 dx
)1/2

+

(ˆ
B2R

|∂2hηR|2 dx
)1/2(ˆ

B2R

|b2∂2u1ηR|2 dx
)1/2

+
C

R

√
lnR.

where we used D(u, b) ≤ D0 and (8). For the first factor of the first term, due to the Gagliardo-

Nirenberg inequality we have(ˆ
B2R

|b2hηR|2 dx
)1/2

≤ ‖b‖L4(R2)‖h‖L4(R2)

≤ C‖b‖
1
2

L1(R2)
‖∇2b‖

1
2

L2(R2)
‖h‖

1
2

L2(R2)
‖∇h‖

1
2

L2(R2)

≤ C
(
‖b‖L1(R2)D

1
2
0

) 1
2

‖∇h‖L2(R2),

where we used (7), D(u, b) ≤ D0, and (12). Similarly, we have(ˆ
B2R

|b2∂2u1|2 dx
)1/2

≤ C
(
‖b‖L1(R2)D

1
2
0

) 1
2

‖∇h‖
1
2
2 ‖∇w‖

1
2
2 .

Hence, by letting R→∞, we conclude

I3 ≤ C
(
‖b‖L1(R2)D

1
2
0

) 1
2 (
‖∇h‖2‖∇w‖2 + ‖∇h‖

3
2
2 ‖∇w‖

1
2
2

)
.
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By choosing ‖b‖L1(R2)D
1
2
0 small enough, we arrive at

I3 ≤
µ

16
‖∇h‖22 +

ν

16
‖∇w‖22. (15)

For instance, one may choose ‖b‖L1(R2)D
1
2
0 ≤ C∗min{µν, µ

1
2 ν

3
2 }, where C∗ is an absolute con-

stant.

By collecting (13), (14), and (15), we finally get

µ

ˆ
BR

|∇w|2 + ν

ˆ
BR

|∇h|2 dx ≤ CR−2 +
C

R
lnR+

µ

16
‖∇w‖22 +

ν

16
‖∇h‖22.

Consequently, letting R→∞, we conclude that

∇w = ∇h = 0.

It follows that both w and h are constants. Due to D(u, b) ≤ D0, we conclude that w = 0 and

h = 0. Finally, since divu = 0 and div b = 0, it follows that u and b are constants. Furthermore,

one notices that b = 0 since b ∈ L1. Thus the proof is finished. �

4. Proof of Theorem 1.2

In this section, the proof relies on a Giaquinta’s iteration lemma [12, Lemma3.1]. We assume

that µ = ν = 1 for simplicity. The proof is split into four cases: 3 ≤ p ≤ 6, 2 ≤ p < 4,

6 < p <∞, and p =∞. The arguments for the former two cases are similar, the main point of

which is to establish a gradient estimate; while the later two cases appeal to estimates involving

second order derivatives. We shall give full detailed proofs for the first and third cases, and

indicate where modification is needed to treat the second and fourth cases.

Let us start with the first case.

4.1. Case 3 ≤ p ≤ 6. At first, we fix a R ∈ R+ and the cut-off function φ(x) ∈ C∞0 (BR) as in

the previous section. But here the choice of the parameters ρ, τ satisfies

0 <
R

2
<

2

3
τ <

3

4
R ≤ ρ < τ ≤ R.

Due to Theorem III 3.1 in [11], there exists a constant C(s) and a vector-valued function

w̄ : Bτ \ B 2
3
τ → R2 such that w̄ ∈ W 1,s

0 (Bτ \ B 2
3
τ ), and ∇ · w̄(x) = ∇x · [φ(x)u(x)]. Moreover,

we get ˆ
Bτ\B 2

3 τ

|∇w̄(x)|s dx ≤ C(s)

ˆ
Bτ\B 2

3 τ

|∇φ · u|s dx. (16)

We thus can extend w̄ to the whole space R2, which vanishes outside of the domain Bτ .

Proof of Theorem 1.2: case 3 ≤ p ≤ 6. Making the inner products (φu−w̄) and φb on both sides

of the equation (1), by ∇ · w̄ = ∇ · [φu] we haveˆ
Bτ

φ|∇u|2 dx

= −
ˆ
Bτ

∇φ · ∇u · u dx+

ˆ
Bτ\B 2

3 τ

∇w̄ : ∇u dx−
ˆ
Bτ

u · ∇u · φu dx
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+

ˆ
Bτ\B 2

3 τ

u · ∇u · w̄ dx+

ˆ
Bτ

b · ∇b · φu dx−
ˆ
Bτ\B 2

3 τ

b · ∇b · w̄ dx

= I1 + · · ·+ I6,

and ˆ
Bτ

φ|∇b|2 dx

= −
ˆ
Bτ

∇φ · ∇b · b dx−
ˆ
Bτ

u · ∇b · φb dx+

ˆ
Bτ

b · ∇u · φb dx

= I ′1 + I ′2 + I ′3.

For the term I1, by Hölder inequality we have

|I1| ≤
C

τ − ρ

(ˆ
Bτ

|∇u|2 dx
) 1

2

(ˆ
BR\BR/2

|u|2 dx

) 1
2

.

For the term I2, Hölder inequality and (16) imply that

|I2| ≤ C
(ˆ

Bτ

|∇u|2 dx
) 1

2

‖∇w̄‖L2(Bτ\B 2
3 τ

)

≤ C

τ − ρ
‖∇u‖L2(Bτ )‖u‖L2(BR\BR/2).

By integration by parts, it is easy to find that

|I3| ≤
C

τ − ρ
‖u‖3L3(BR\BR/2).

For the term I4, integration by parts leads to

I4 = −
ˆ
Bτ\B 2

3 τ

u · ∇w̄ · u dx.

Then in view of (16) we find

|I4| ≤ ‖u‖2L3(BR\BR/2)‖∇w̄‖L3

≤ C

τ − ρ
‖u‖3L3(BR\BR/2).

For the term I5, we need a cancellation with I ′3. More precisely,

I5 + I ′3 = −
ˆ
Bτ

(
b⊗ b

)
:
(
∇φ⊗ u

)
,

and it follows that

|I5 + I ′3| ≤
C

τ − ρ

(
‖u‖3L3(BR\BR/2) + ‖b‖3L3(BR\BR/2)

)
.

The treatment for I6 is similar to I4 and

|I6| ≤
C

τ − ρ
‖b‖2L3(BR\BR/2)‖u‖L3(BR\BR/2).

For the terms I ′1 and I ′2, similar as I1 and I3 respectively, we find
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|I ′1|+ |I ′2| ≤
C

τ − ρ
‖∇b‖L2(Bτ )‖b‖L2(BR\BR/2) +

C

τ − ρ

(
‖u‖3L3(BR\BR/2) + ‖b‖3L3(BR\BR/2)

)
.

By setting

f(r) =

ˆ
Br

|∇u|2 + |∇b|2 dx, (17)

collecting the above estimates we have

f(ρ) ≤ 1

2
f(τ) +

C

τ − ρ

(
‖u‖3L3(BR\BR/2) + ‖b‖3L3(BR\BR/2)

)
+

C

(τ − ρ)2

(
‖u‖2L2(BR\BR/2) + ‖b‖2L2(BR\BR/2)

)
.

Now we apply Lemma 2.3 with R0 = 3R
4 and R1 = R to obtain

ˆ
BR/2

|∇u|2 + |∇b|2 dx

≤ C

R2

(
‖u‖2L2(BR\BR/2) + ‖b‖2L2(BR\BR/2)

)
+
C

R

(
‖u‖3L3(BR\BR/2) + ‖b‖3L3(BR\BR/2)

)
≤ CR−

4
p

(
‖u‖2Lp(BR\BR/2) + ‖b‖2Lp(BR\BR/2)

)
+ CR

1− 6
p

(
‖u‖3Lp(BR\BR/2) + ‖b‖3Lp(BR\BR/2)

)
. (18)

for all p ≥ 3.

Hence, for p ∈ [3, 6], we get

lim
R→∞

ˆ
BR/2

|∇u|2 + |∇b|2 dx = 0,

provided u, b ∈ Lp(R2). It follows that u and b are constants, thus u ≡ b ≡ 0. Therefore we

finish the proof. �

By incorporating with the translation, the estimate (18) implies the following uniform local

estimate

Corollary 4.1. For smooth solutions u, b to the MHD equations (1), we haveˆ
BR/2(x0)

|∇u|2 + |∇b|2 dx

≤ CR−
4
p

(
‖u‖2Lp(BR(x0)\BR/2(x0)) + ‖b‖2Lp(BR(x0)\BR/2(x0))

)
+ CR

1− 6
p

(
‖u‖3Lp(BR(x0)\BR/2(x0)) + ‖b‖3Lp(BR(x0)\BR/2(x0))

)
, (19)

provided u, b ∈ Lp(R2) with 3 ≤ p ≤ ∞.
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In particular, the above lemma says that ∇u and ∇b are uniformly locally in L2(R2), which will

be denoted by u, b ∈ Ḣ1
uloc, by assuming u, b ∈ Lp(R2) for some p ≥ 3. From Corollary 4.1 one

easily obtains the following estimate on the growth of the Dirichlet integral,

Corollary 4.2. For smooth solutions u, b to the MHD equations (1), we haveˆ
BR(x0)

|∇u|2 + |∇b|2 dx . 1 +R
1− 6

p ,

provided u, b ∈ Lp(R2) with 3 ≤ p ≤ ∞.

These two properties are of particular importance in what follows.

4.2. Case 2 ≤ p < 4.

Proof of Theorem 1.2: case 2 ≤ p < 4. The argument for this case is similar to that of the pre-

vious one. While different treatments are needed to deal with the nonlinear terms I3, · · · , I6,

and I ′2, I
′
3. However, the methods to estimate each of these terms are similar and thus we only

compute one term, say I4, to illustrate the idea.

With the help of (16) and (11), we have

|I4| =
∣∣∣ˆ

Bτ\B 2
3 τ

u · ∇w̄ · u dx
∣∣∣

≤ ‖u‖2L4(Bτ\B 2
3 τ

)‖∇w̄‖L2(Bτ\B 2
3 τ

)

≤ C

τ − ρ
‖u‖L2(BR\BR/2)

[
‖u‖L2(Bτ )‖∇u‖L2(Bτ ) + τ−1‖u‖2L2(Bτ )

]
≤ 1

8
‖∇u‖2L2(Bτ ) +

C

(τ − ρ)2
‖u‖2L2(BR\BR/2)‖u‖

2
L2(Bτ )

+
C

τ(τ − ρ)
‖u‖L2(BR\BR/2)‖u‖2L2(Bτ ).

Similar arguments for all other terms finally lead to

f(ρ) ≤ 1

2
f(τ) +

C

(τ − ρ)2

(
‖u‖2L2(BR) + ‖b‖2L2(BR)

)
+

C

(τ − ρ)2

(
‖u‖4L2(BR) + ‖b‖4L2(BR)

)
+

C

τ(τ − ρ)

(
‖u‖3L2(BR) + ‖b‖3L2(BR)

)
,

where f(ρ) was defined in (17) and 3R
4 ≤ ρ < τ ≤ R. Then we apply Lemma 2.3 to obtainˆ

BR/2

|∇u|2 + |∇b|2 dx

≤ C

R2

(
‖u‖2L2(BR) + ‖b‖2L2(BR)

)
+

C

R2

(
‖u‖3L2(BR) + ‖b‖3L2(BR)

)
+

C

R2

(
‖u‖4L2(BR) + ‖b‖4L2(BR)

)
≤ CR−

4
p

(
‖u‖2Lp(BR) + ‖b‖2L2(BR)

)
+ CR

1− 6
p

(
‖u‖3Lp(BR) + ‖b‖3Lp(BR)

)
+ CR

2− 8
p

(
‖u‖4Lp(BR) + ‖b‖4Lp(BR)

)
,
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which implies the triviality of u, b when 2 ≤ p < 4. Therefore we complete the proof for this

case. �

4.3. Case 6 < p < ∞. We’ll reduce this case to the case of p = ∞, i.e. we show that the Lp

boundedness implies the L∞ boundedness. See Corollary 4.4. Then the completed proof for this

case will then be presented in the next subsection when considering the case of p =∞. Under

the natural scaling, we can assume that ‖u‖Lp(R2) + ‖b‖Lp(R2) ≤ 1.

Now we turn to the vorticity and current-density equation (5). As we have seen in the previous

subsection, when p ≤ 6, from (19) one has a decay estimate on the gradientsˆ
BR

|∇u|2 + |∇b|2 dx = o(1),

as R → ∞, from which the theorem follows. However, this argument fails when p > 6 as the

left hand side of (19) may fail to decay to zero as R → ∞. To circumvent this difficulty, we

exploit the local properties of the solution instead. To be more precise, by choosing R = 2, (19)

becomesˆ
B1(x0)

|∇u|2 + |∇b|2 dx ≤ C(p)
[
1 + ‖u‖3Lp(B2(x0)) + ‖b‖3Lp((B2(x0))

]
≤ C(p),

from which we shall show u, b are bounded globally. To this purpose, we shall first prove that

∇2u and ∇2b are uniformly locally L2 bounded

Lemma 4.3. For p > 6, assume u, b ∈ Lp(R2) are smooth solutions to (1) and

‖u‖Lp(R2) + ‖b‖Lp(R2) ≤ 1.

Then, we have

sup
x0

ˆ
B1(x0)

|∇2u|2 + |∇2b|2 dx <∞. (20)

Proof. The idea of the proof is similar to that of Lemma 3.1. In view of Corollary 4.1, we have

the local boundedness (19). Then, there holdsˆ
B1(x0)

|∇u|2 + |∇b|2 dx ≤ C. (21)

Without loss of any generality, we may assume x0 = 0 for simplicity.

Let φ be defined as in Subsection 4.1 with R = 2. Multiplying both sides of the vorticity and

current-density equation (5) by φ2w and φ2h respectively and then integrating over R2 to getˆ
φ2|∇w|2 dx+

ˆ
φ2|∇h|2 dx

= −
ˆ
∇w · ∇(φ2)w dx−

ˆ
∇h · ∇(φ2)h dx+

1

2

ˆ
u · ∇(φ2)w2 dx

+
1

2

ˆ
u · ∇(φ2)h2 dx−

ˆ
b · ∇(φ2)hw dx+

ˆ
Hhφ2 dx

.
= I1 + · · ·+ I6. (22)

In what follows we shall estimate Ij for j = 1, 2, · · · , 6 one by one.
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For the term I1, by Hölder’s inequality and (21) we have

I1 ≤
C

τ − ρ
‖∇w‖L2(Bτ )‖w‖L2(B2)

≤ 1

8

ˆ
Bτ

|∇w|2 dx+
C

(τ − ρ)2
,

where Bτ ⊂ B2. For the term I2, similar argument as the case I1 gives

I2 ≤
C

τ − ρ
‖∇h‖L2(Bτ )‖h‖L2(B2) ≤

1

8

ˆ
Bτ

|∇h|2 dx+
C

(τ − ρ)2
.

To estimate the term I3, we set

(w2)Bτ =
1

|Bτ |

ˆ
Bτ

w2 dx and uBτ =
1

|Bτ |

ˆ
Bτ

u dx,

be the means of w2 and u over the ball Bτ , we have

I3 ≤
∣∣∣∣ˆ u · ∇wφ2w dx

∣∣∣∣ =
1

2

∣∣∣∣ˆ u · ∇
(
w2 − (w2)Bτ

)
φ2 dx

∣∣∣∣
≤ C

τ − ρ

ˆ
Bτ

∣∣w2 − (w2)Bτ
∣∣|u− uBτ | dx+ C

|uBτ |
τ − ρ

ˆ
Bτ

w2 dx

≤ ε
ˆ
Bτ

∣∣w2 − (w2)Bτ
∣∣2 dx+

Cε
(τ − ρ)2

ˆ
Bτ

|u− uBτ |2 dx+ C
|uBτ |
τ − ρ

ˆ
Bτ

w2 dx

where ε > 0 will be determined later. The last two terms can be easily bounded by

Cε
(τ − ρ)2

ˆ
B2

|∇u|2 dx+
C

τ − ρ

ˆ
B2

w2 dx

ˆ
B2

|u| dx,

where we used Poincaré’s inequality. For the first term, by Poincaré inequality, Hölder’s in-

equality, and Young’s inequality, we arrive atˆ
Bτ

∣∣w2 − (w2)Bτ
∣∣2 dx

≤ C
(ˆ

Bτ

∣∣∇(w2)
∣∣ dx)2

≤ C
ˆ
Bτ

|∇w|2 dx
ˆ
B2

|w|2 dx.

To summary, by choosing ε small enough and applying (21) we have

I3 ≤
1

8

ˆ
Bτ

|∇w|2 dx+
C

τ − ρ
+

C

(τ − ρ)2
. (23)

For the term I4, the proof is similar to that of I3, we have

I4 ≤
1

8

ˆ
Bτ

|∇h|2 dx+
C

τ − ρ
+

C

(τ − ρ)2
.

To bound I5, we use a similar argument as that of I3 but with the following application of

Poincaré inequality insteadˆ
Bτ

∣∣wh− (wh)Bτ
∣∣2 dx ≤ C ˆ

Bτ

|∇h|2 dx
ˆ
B2

|w|2 dx+ C

ˆ
Bτ

|∇w|2 dx
ˆ
B2

|h|2 dx.
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One then gets

I5 ≤
1

8

ˆ
Bτ

|∇h|2 dx+
1

8

ˆ
Bτ

|∇w|2 dx+
C

τ − ρ
+

C

(τ − ρ)2
.

Lastly, for the term I6, by using Hölder inequality and Gagliardo-Nirenberg inequality, we

have ˆ
φ2hH dx ≤ ‖φ∇b‖2L4(Bτ )‖∇u‖L2(B2)

≤ C‖φ∇b‖L2(Bτ )‖∇(φ∇b)‖L2(Bτ )‖w‖L2(B2)

≤ 1

8
‖∇h‖2L2(Bτ ) + C +

C

τ − ρ
,

where we also used (12).

By denoting

g(r) =

ˆ
Br

|∇h|2 dx+

ˆ
Br

|∇w|2 dx,

we finally arrive at

g(ρ) ≤ 1

2
g(τ) + C +

C

τ − ρ
+

C

(τ − ρ)2

for all 3
4 ≤ ρ < τ ≤ 2. Then an application of Lemma 2.3 yieldsˆ

B1

|∇h|2 dx+

ˆ
B1

|∇w|2 dx ≤ C.

Then the desired bound (20) follows. �

One direct consequence of Lemma 4.3 is the boundedness of u and b.

Corollary 4.4. With the same assumptions as Lemma 4.3, we have

‖u‖L∞(R2;R2) + ‖b‖L∞(R2;R2) ≤ C(p) <∞.

4.4. Case p =∞. In Subsection 4.3, it is showed that u, b ∈ L∞ provided u, b ∈ Lp(R2;R2) for

some p ∈ (6,∞). Next we shall start with u, b ∈ L∞. At first, we strengthen the local estimate

(20) into a global one. More precisely, we have

Lemma 4.5. Let smooth solutions u, b to the MHD equations (1) satisfying

‖u‖L∞(R2;R2) + ‖b‖L∞(R2;R2) ≤ 1.

Then, there exists an absolute constant C∗ such that if

‖b‖L1(R2) ≤ C∗min{µν, µ
1
2 ν

3
2 },

there holds ˆ
R2

|∇2u|2 dx+

ˆ
R2

|∇2b|2 dx ≤ C.

Proof. In view of (12), it suffices to showˆ
R2

|∇w|2 dx+

ˆ
R2

|∇h|2 dx . 1.
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The proof is a modification of the proof of Lemma 4.3. As in the proof of Lemma 4.3, we get

µ

ˆ
φ2|∇w|2 dx+ ν

ˆ
φ2|∇h|2 dx

= −
ˆ
∇w · ∇φ2w dx−

ˆ
∇h · ∇φ2h dx+

1

2

ˆ
u · ∇φ2w2 dx

+
1

2

ˆ
u · ∇φ2h2 dx−

ˆ
b · ∇φ2hw dx+

ˆ
Hφ2h dx

= I1 + · · ·+ I6. (24)

where φ is a test function as in the proof of Lemma 4.1 with |∇φ| ≤ C
τ−ρ and |∇2φ| ≤ C

(τ−ρ)2
.

We shall show all the above terms are bounded uniformly in R.

For the term I1, by Corollary 4.2 we have

|I1| =
1

2

ˆ
w2|∆φ2| dx ≤ C

(τ − ρ)2

ˆ
Tτ

w2 dx ≤ Cτ

(τ − ρ)2
,

where Tτ = Bτ \B 2
3
τ . For the term I3, since u ∈ L∞ and then we have

|I3| = C

ˆ
w2|∇φ2| dx ≤ C

τ − ρ

ˆ
Tτ

w2 dx ≤ Cτ

τ − ρ
.

For the term I2, I4, I5, similar as I1 and I3 we have

|I2|+ |I4|+ |I5| ≤
Cτ

τ − ρ
+

Cτ

(τ − ρ)2
.

Now we turn to the term I6, which is the main difficulty. Without loss of any generality, we

may assume H = ∂2b2∂2u1. Applying integration by parts we obtain

|I6| =
∣∣∣∣ˆ φ2h∂2b2∂2u1 dx

∣∣∣∣
≤
∣∣∣∣ˆ ∂2φ

2h∂2u1b2 dx

∣∣∣∣+

∣∣∣∣ˆ φ2∂2h∂2u1b2 dx

∣∣∣∣+

∣∣∣∣ˆ φ2h∂2
2u1b2 dx

∣∣∣∣
= I61 + I62 + I63.

The first term can be bounded easily by using b ∈ L∞ and Corollary 4.2,

I61 ≤
C

τ − ρ

ˆ
Bτ

|h∂2u| dx ≤
Cτ

τ − ρ
.

The terms I62 and I63 can be treated in a similar way. Therefore we only estimate the former,

for which we have ˆ
φ2∂2h∂2u1b2 dx

=

ˆ
∂2h∂2(u1φ)φb2 dx−

ˆ
∂2hu1∂2φb2φdx

= I621 + I622.

We notice that the term I622 is easy to control,

I622 ≤
C

τ − ρ
‖∇h‖L2(Bτ )‖φu‖L4‖b‖L4
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≤ C

τ − ρ
‖∇h‖L2(Bτ )‖u‖L4(Bτ )‖b‖

1
4

L1‖b‖
3
4
L∞

≤ Cτ
1
2

τ − ρ
‖∇h‖L2(Bτ )‖u‖L∞(Bτ )‖b‖

1
4

L1‖b‖
3
4
L∞ ,

which is sufficient for our purpose. Now we turn to the term I621,

I621 ≤ ‖∇h‖L2(Bτ )‖∂2(u1φ)φb2‖L2

≤ ‖∇h‖L2(Bτ )‖∇(uφ)‖L4(R2)‖φb‖L4(R2).

Then we apply the following two Gagliardo-Nirenberg inequalities,

‖∇f‖L4(R2) ≤ ‖∇2f‖
1
2

L2(R2)
‖f‖

1
2

L∞(R2)
,

and

‖f‖L4(R2) ≤ ‖∇2f‖
1
2

L2(R2)
‖f‖

1
2

L1(R2)
,

to obtain

I621 ≤ C‖∇h‖L2(Bτ )

(
‖∇2(uφ)‖L2(R2)‖∇2(bφ)‖L2(R2)

) 1
2 ‖φb‖

1
2

L1(R2)
‖φu‖

1
2

L∞(R2)

≤ 1

4

(ˆ
Bτ

µ|∇h|2 + ν|∇w|2 dx
)

+ C +
CR

(τ − ρ)2
+

Cτ2

(τ − ρ)4
,

provided ‖b‖L1 is small enough and we used (12) and Corollary 4.2.

Finally, by setting

g(r) =

ˆ
Br

|∇h|2 + |∇w|2 dx,

we arrive at

g(ρ) ≤ 1

2
g(τ) + C +

CR

τ − ρ
+

CR2

(τ − ρ)4
,

where 3R
4 ≤ ρ < τ ≤ R.

Hence, by Lemma 2.3, we haveˆ
BR/2

|∇w|2 + |∇h|2 dx ≤ C +
C

R2
.

Letting R→∞, the proof is complete. �

In fact, by assuming b is small enough in L1 space, we can conclude that ∇2u and ∇2b are

both trivial. More precisely, we have

Lemma 4.6. Let (u, b) be a weak solution of the 2D MHD equations (1) defined over the entire

plane. Assume that

‖u‖L∞(R2) + ‖b‖L∞(R2) ≤ 1.

There exists a constant C∗ such that if

‖b‖L1(R2) ≤ C∗min{µν, µ
1
2 ν

3
2 },

then

∇2u ≡ 0, ∇2b ≡ 0.
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Proof. In view of Lemma 4.5, we may assume ∇2u,∇2b ∈ L2(R2) in what follows. We shall

revisit the proof of Lemma 4.5 and show the terms I1 to I5 in (24) vanishes and I6 becomes

small as R goes to infinity.

Let φ be replaced by ηR in Lemma 4.5, then one notices that the terms I1 and I2 tend to

zero as R→∞. The treatments for terms I2, I4, I5 are similar, thus we only focus on the term

I3. Let χ(x) be a test function such that

χR(x) =

{
1, x ∈ BR \BR/2,
0, x ∈ Bc

2R ∪BR/4.

and |∇kχ| ≤ C
Rk

. Then

I3 ≤
C

R

ˆ
BR\BR/2

|u|w2 dx ≤ C

R

ˆ
BR\BR/2

w2 dx ≤ C

R
‖∇(uχR)‖2L2(TR)

≤ C

R
‖u‖L2(TR)

[
‖χR∇

2u‖L2(TR) + ‖∇u|∇χR |‖L2(TR) + ‖|u|∇2χR‖L2(TR)

]
≤ C‖∇2u‖L2(TR) +

C√
R
,

where TR = B2R \ BR/4, and we used Corollary 4.2. Obviously, I3 tends to zero as R →∞ by

Lemma 4.5.

Now we turn to the term I6. Unlike other terms, we will not show I6 goes to zero as R→∞,

instead we shall show I6 tends to something smaller than the left hand side of (24), which

implies the desired result.

Without loss of any generality, assume H = ∂2b2∂2u1. Therefore,

I6 =

ˆ
R2

φh∂2b2∂2u1 dx

= −
ˆ
R2

φh∂2
2u1b2 dx−

ˆ
R2

φ∂2h∂2u1b2 dx−
ˆ
R2

∂2φh∂2u1b2 dx

= J1 + J2 + J3.

Then we shall estimate J1, J2, and J3 one by one. For the term J1,

J1 ≤ ‖∂2
2u1‖L2(R2)‖h‖L4(R2)‖b‖L4(R2)

≤ C‖∂2
2u‖L2(R2)‖b‖

1
2

L∞(R2)
‖∇2b‖

1
2

L2(R2)
‖b‖

1
2

L1(R2)
‖∇2b‖

1
2

L2(R2)

≤ µ

4
‖∇2u‖L2(R2) +

ν

4
‖∇2b‖L2(R2),

provided ‖b‖L1 sufficiently small, that is ‖b‖L1 ≤ C∗µν holds for a small C∗. For the term J2,

it can be estimated in the same way

J2 ≤ ‖∂2h‖L2(R2)‖∂2u‖L4(R2)‖b‖L4(R2)

≤ C‖∂2
2b‖L2(R2)‖u‖

1
2

L∞(R2)
‖∇2u‖

1
2

L2(R2)
‖b‖

1
2

L1(R2)
‖∇2b‖

1
2

L2(R2)

≤ µ

4
‖∇2u‖L2(R2) +

ν

4
‖∇2b‖L2(R2),

provided ‖b‖L1 ≤ C∗µ
1
2 ν

3
2 . The term J3 can be dealt with similarly as I3, which also vanishes

as R→∞. Thus the proof is finished. �
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Now we are ready to finish the remaining part 6 < p ≤ ∞ of Theorem 1.2.

Proof of Theorem 1.2: case 6 < p ≤ ∞. For 6 < p ≤ ∞, assume that (u, b) are nontrivial and

‖u‖Lp(R2) + ‖b‖Lp(R2) = L > 0 (25)

then consider the scaling solution (uλ(x), bλ(x)), where

uλ(x) = λu(λx), bλ(x) = λb(λx)

Then by scaling property we get

‖uλ‖Lp(R2) + ‖bλ‖Lp(R2) ≤ 1

if λ
− p−2

p = L. By the assumption of Theorem 1.2, we get there exists an absolute constant C∗
such that

L
p
p−2 ‖b‖L1(R2) ≤ C∗min{µν, µ

1
2 ν

3
2 }

and hence

‖bλ‖L1(R2) = λ−1‖b‖L1(R2) ≤ C∗min{µν, µ
1
2 ν

3
2 } (26)

Then it follows from Corollary 4.4 and Lemma 4.6 that

∇2(uλ) ≡ 0, ∇2(bλ) ≡ 0,

which implies u, b are constants, since u, b ∈ Lp(R2). This is a contradiction with (25). Hence

(u, b) are trivial solutions.

The proof is complete. �
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