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Abstract Convolutional neural networks excel in a number
of computer vision tasks. One of their most crucial architec-
tural elements is the effective receptive field size, which has
to be manually set to accommodate a specific task. Standard
solutions involve large kernels, down/up-sampling and di-
lated convolutions. These require testing a variety of dilation
and down/up-sampling factors and result in non-compact
networks and large number of parameters. We address this
issue by proposing a new convolution filter composed of dis-
placed aggregation units (DAU). DAUs learn spatial dis-
placements and adapt the receptive field sizes of individ-
ual convolution filters to a given problem, thus reducing the
need for hand-crafted modifications. DAUs provide a seam-
less substitution of convolutional filters in existing state-of-
the-art architectures, which we demonstrate on AlexNet, Res-
Net50, ResNet101, DeepLab and SRN-DeblurNet. The ben-
efits of this design are demonstrated on a variety of com-
puter vision tasks and datasets, such as image classification
(ILSVRC 2012), semantic segmentation (PASCAL VOC 2011,
Cityscape) and blind image de-blurring (GOPRO). Results
show that DAUs efficiently allocate parameters resulting in
up to four times more compact networks in terms of the
number of parameters at similar or better performance.
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Fig. 1 A classic convolution filter with a fixed-grid filter kernel (left)
is replaced with a convolution filter composed of several displaced ag-
gregation units (DAUs) whose sub-pixel positions are learned (right).

1 Introduction

Deep convolutional neural networks (ConvNets) (He et al.
2016a; Xie et al. 2017; Redmon and Farhadi 2017; Kaim-
ing et al. 2017) have demonstrated excellent performance
across a broad spectrum of computer vision tasks, such as
image classification (He et al. 2016a), semantic segmenta-
tion (Ronneberger et al. 2015; Chen et al. 2016a), image
restoration, and blind image de-blurring (Tao et al. 2018).
Early works showed that deep features pre-trained for one
task (e.g., classification (Simonyan and Zisserman 2015))
can be applied with some success to other tasks (e.g. seman-
tic segmentation (Shelhamer et al. 2016)). Direct application
to another task, however, is sub-optimal and architectural
changes are required (Chen et al. 2016b).

One of the crucial task-dependent architectural elements
is the effective receptive field size of neurons (Luo et al.
2016). In image classification, relatively small convolution
filters are used and the receptive field size is increased by
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Fig. 2 Example of the state-of-the-art architecture (ResNet101) where classic convolution is replaced with the displaced aggregation units. In
DAU residual block, DAUs with 2 units replace all 3× 3 convolutions from the classic residual block.

gradual sub-sampling of features in consecutive layers. How-
ever, the output resolution obtained by such process is too
coarse for tasks that require per-pixel predictions (e.g., se-
mantic segmentation).

Standard strategies to address this issue are based on
(i) removing the pooling layers or down-sampling, and us-
ing large convolution filters or (ii) keeping the filters small
and appending a network with (gradual) up-sampling layers
and skip connections (Ronneberger et al. 2015). Both strate-
gies significantly increase the number of parameters lead-
ing to non-compact networks and inefficient learning. Jeon
and Kim (2017) have proposed deforming small convolution
kernels, but these deformations result in negligible change of
the receptive field sizes.

The problem of parameter dependence on the filter size
was partially addressed by Chen et al. (2016b) with dilated
convolutions. The dilation factor is manually set and fixed,
which may be sub-optimal for a given application. Chen
et al. (2016b) thus proposed atrous spatial pyramid pool-
ing (ASPP), which is composed of parallel processing paths,
each path with a different dilation factor. Since ASPP entails
a non-negligible increase of parameters, the authors propose
adding it only as a post-processing block on top of deep fea-
tures. There are several drawbacks of using fixed dilations.
First, the pattern of the dilation is a regular expansion of a
grid-based filter. The pattern is fixed prior to learning and
cannot change. Other patterns might be more appropriate
for a given task, but the search would lead to a combina-
torial explosion of possible filters to be tested during learn-
ing, which is practically infeasible. Secondly, large dilations
significantly violate the Nyquist theorem (Amidror 2013),

resulting in gridding artifacts as demonstrated by Yu et al.
(2017).

In this paper, the above issues with the effective recep-
tive field size and filter pattern are addressed by introducing
a novel formulation of the convolution filter. In particular,
the standard CNN convolution filter, which is a regular grid
of values, is replaced by a continuous parametric function.
Specifically, a mixture of weighted Gaussian kernels is pro-
posed for the functional form (see Figure 1). Each Gaussian
acts as a unit that aggregates feature responses locally at its
displacement. During learning the displacement of units is
optimized along with other parameters—hence we call these
displaced aggregation units (DAU). The number of param-
eters in the convolution filter is thus fixed by the number of
units and does not increase with the receptive field size.

Our main contribution is a DAU convolution filter (Fig-
ure 1), which incorporates three novel concepts into the deep
networks: (a) decoupling of the parameter count from the re-
ceptive field size, (b) learning of the receptive field of each
convolution filter in the network, (c) and automatic adjust-
ment of the spatial focus on the sub-feature from a previ-
ous layer through explicit modeling of the unit’s position.
By following those concepts the DAU-ConvNets exert com-
pactness in terms of the number of parameters, efficient use
of parameters, and allow adaptation to specific tasks with-
out manually testing various complex dilation factors and
filter patterns. Those properties directly contribute to the im-
proved performance for various computer vision tasks.

The benefits of DAUs are demonstrated on a range of
computer vision tasks (i.e., image classification, semantic
image segmentation and blind image de-blurring) by replac-
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ing the standard convolution filters (see Figure 2). We em-
pirically verify that the resulting novel deep models:

– enable automatic and efficient allocation of parameters
for spatial attention while requiring as few as 25% of
parameters compared to the standard ConvNets,

– address a spectrum of different tasks without ad-hoc man-
ual tuning of receptive fields,

– eliminate the need for dilated convolutions with hand-
crafted dilation factors, and

– enable a novel analysis of parameter allocation and spa-
tial coverage in ConvNets.

This paper extends our (preliminary) work published in
two conference papers (Tabernik et al. 2016, 2018), which
considered only shallow architectures on small datasets. The
DAU formulation is extended with details to cover the gen-
eral form as well as its efficient formulation. Additional com-
puter vision tasks are considered (i.e., blind image de-blur-
ring), significantly deeper architectures are used (ResNet50,
ResNet101 and DeepLab, SRN-DeblurNet) and several data-
sets (Citycape and GOPRO) are used to support the empir-
ical findings. Implementations of DAU convolution filters
in standard deep learning toolboxes1 are available to the re-
search community along with DAU modifications of popular
deep architectures used in this paper.

The remainder of the paper is structured as follows. Sec-
tion 2 provides a review of most closely related works. The
DAU convolution filter is introduced in Section 3. A com-
prehensive empirical analysis of DAU convolution filter pa-
rameters and displacements is given in Section 4. We demon-
strate DAUs on standard computer vision tasks: classifica-
tion (Section 5), semantic segmentation (Section 6) and blind
image de-blurring (Section 7). We conclude with a discus-
sion in Section 8.

2 Related Work

The receptive field has been considered as an important fac-
tor for deep networks in several related works (Luo et al.
2016; Chen et al. 2017). Luo et al. (2016) measured an ef-
fective receptive field in convolutional neural networks and
observed that it increases as the network learns. They sug-
gest an architectural change that foregos a rectangular win-
dow of weights for sparsely connected units. However, they
do not show how this can be implemented. Our proposed ap-
proach is in direct alignment with their suggested changes
as our displaced aggregation units are a direct realization of
their suggested sparsely connected units.

1 A low-level CUDA implementation of the DAU convolution filters
are available in Caffe as well as Tensorflow at: https://github.
com/skokec/DAU-ConvNet-caffe and https://github.
com/skokec/DAU-ConvNet

The importance of deforming filter units has also been
indicated by recent work of Dai et al. (2017). They imple-
mented spatial deformation of features with deformable con-
volutional networks, while a general non-euclidean based
formulation for a non-grid based input data was later pro-
posed by Chang et al. (2018). Both explicitly learn feature
displacements but learn them on a per-pixel location basis
for input activation maps and share them between all chan-
nels. Dai et al. (2017) also applies deformations only to the
last few convolution layers on regions generated by Mask
R-CNN (Kaiming et al. 2017) with the effective outcome
of normalizing scale-changes relative to the pixel position
in the region of interest. Our model instead learns different
displacements for different channels and shares them over
all pixel locations in the input activation map. DAUs are ap-
plied to all layers with the goal of decoupling the receptive
field size from the kernel size thus reducing the number of
parameters and simplifying the architecture. Formulation of
both methods also makes them conceptually complementary
to each other.

Deforming filter units has also been explored by Jeon
and Kim (2017), which, as opposed to deformable convolu-
tions, apply deformation on filter units similarly as to our ap-
proach. They use bilinear interpolation similar to ours to get
displacements at a sub-pixel accuracy, however, their limita-
tion is in relying on 3 × 3 filters. They can neither displace
them to more than a single neighboring pixel nor adapt them
during the learning stage to an arbitrary position as we do.
They also increase their parameter count as they still use 9
units per filter. We show that significantly fewer units are
needed.

Works by Luan et al. (2017) and Jacobsen et al. (2016)
changed the filter definition using different parametrization
techniques. Both decompose filter units into a linear com-
bination of edge filters. They show a reduction in parame-
ters per filter but their models do not allow displacements
of filter units to arbitrary values. Their models have fixed
receptive fields defined as hyperparameters and cannot be
learned as ours. This also prevents any further analysis on
distribution of displacements and receptive field sizes which
is possible with our model with the explicit modeling of the
unit’s displacements.

Several papers also studied the importance of number of
parameters. Eigen et al. (2014) performed an extensive eval-
uation and studied where parameters should be allocated,
either for additional layers or for additional features. They
concluded that it is more useful to allocate them for addi-
tional layers, but their study was limited by convolutional fil-
ter design and did not study how many should be allocated in
spatial dimensions. Others have also observed inefficient al-
location of parameters. For instance, Jaderberg et al. (2014)
performed a low-rank analysis of pre-trained model weights
and showed significant compression rate, while Iandola et al.

https://github.com/skokec/DAU-ConvNet-caffe
https://github.com/skokec/DAU-ConvNet-caffe
https://github.com/skokec/DAU-ConvNet
https://github.com/skokec/DAU-ConvNet
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(2016) proposed a more efficient network with 50-times less
parameters. Most of the approaches reduce number of pa-
rameters through compression or architectural design change.
Such compression techniques are complementary to ours
and can be applied to our model as well.

3 Displaced Aggregation Units (DAU)

We start by defining displaced aggregation units (DAUs) in
their most general form. The derivatives required for learn-
ing in standard deep learning frameworks are presented in
Section 3.1 and an efficient formulation for fast inference is
derived in Section 3.2.

The activation map of the i-th feature (input into the cur-
rent layer of neurons) is defined in the standard ConvNet as

Yi = f(
∑

s
Ws ∗Xs + bs), (1)

where for each s-th input channel, bs is a bias, ∗ is a con-
volution operation between the input map Xs and the fil-
ter Ws, and f(·) is a non-linear function, such as ReLU or
sigmoid (LeCun et al. 1998). In convolution networks ap-
plied to images, theXs and Yi are two-dimensional features,
while Ws is two-dimensional convolution filter. We refer to
the individual weight value of a filter Ws in the standard
ConvNet as its unit.

We re-define the filters Ws as a mixture of localized ag-
gregated feature responses from the input feature map (see
Figure 3). A Gaussian function is chosen for the analytic
form of the aggregation units, although any other differen-
tiable function that models the aggregation and displace-
ment can be used. The resulting displaced aggregation unit
(DAU) convolution filter is thus written as a mixture of K
units

Ws =

K∑
k=0

wkG(µk, σk), (2)

where the unit’s displacement and aggregation perimeter are
specified by the mean µk and standard deviation σk, respec-
tively, and wk is the input amplification factor (i.e., the unit
weight). Note that parameters wk, µk and σk depend on the
specific s-th input channel, as well as, on the specific i-th
output channel, but in the interest of clarity we omit these
in the notation. We refer to σk as the aggregation perimeter
since values of the Gaussian function at 3σ become small
and its contribution will be negligible. Therefore, 3σ repre-
sents an approximate cutoff point of the unit’s aggregation.

The displaced aggregation unit, denoted by G(·), is im-
plemented with a normalized Gaussian. To avoid discretiza-
tion errors inG(µk, σk) when implementing continuous func-
tion in a discrete convolution filter kernel, we replace the
normalization factor computed in the continuous space with

Fig. 3 Convolution filter with displaced aggregation units (DAUs) is
composed of several displaced units that aggregate within a constrained
area of the underlying sub-features from the lower layer.

one computed in the discretized space, leading to our final
aggregation unit G(x;µk, σk)

G(x;µk, σk) =
1

N(µk, σk)
· exp(−‖x− µk‖2

2σ2
k

), (3)

where N(µk, σk) is the normalization term, i.e.,

N(µk, σk) =
∑

x exp(−‖x−µk‖2
2σ2
k

). (4)

The proposed DAU-based convolution filter is similar to
a standard Gaussian mixture model, but we do not enforce∑
wk = 1 since the DAU weight wk ∈ [−∞,∞] can take

any value.

3.1 Learning DAU Convolution Filter

Learning the parameters of individual DAU consists of learn-
ing the displacement µk, the aggregation perimeter σk and
the weight wk. The number of DAUs, K, in the convolution
filter is a hyper-parameter that has to be set prior to learning.
Since DAUs are analytic functions, the filter parameters are
fully differentiable and compatible with the standard Con-
vNet gradient-descent learning techniques based on back-
propagation.

Parameters are thus optimized by computing the gradi-
ents w.r.t. the cost function l(y, ȳ), which leads to three dif-
ferent types of gradients. By applying the chain rule, we de-
fine the gradient for the weight ∂l

∂wk
as a dot-product of the

back-propagated error and the input feature Xs convolved
with the k-th DAU, i.e.,

∂l

∂wk
=
∑
n,m

∂l

∂z
· ∂z
∂wk

=
∑
n,m

∂l

∂z
·
∑
x

Xs ∗G(x;µ, σ), (5)

where n,m run over width and height of the image, x runs
over discretized kernel positions, while z =

∑
sWs∗Xs+bs
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and ∂l/∂z is the back-propagated error. Note that only the s-
th channel of input features are used since the weight wk
appears only in Ws. The back-propagated error for layer n
follows the standard approach:

∂l

∂zns
=

∂l

∂zn+1
s

∗ rot(Ws), (6)

where the back-propagated error from the higher layer n+1

is convolved with the 180◦rotated filter rot(Ws) which can
be computed from Eq. (2). We can similarly apply the chain
rule to obtain the gradient for the mean and the standard
deviation,

∂l

∂µk
=
∑
n,m

∂l

∂z
·
∑
x

Xs ∗
∂G(x;µk, σk)

∂µk
, (7)

∂l

∂σk
=
∑
n,m

∂l

∂z
·
∑
x

Xs ∗
∂G(x;µk, σk)

∂σk
, (8)

where the derivatives of the Gaussian are

∂G(x;µ, σ)

∂µ
= w

N(µ, σ) · g(x;µ,σ)

∂µ
− g(x, θ) · ∂N(µ,σ)

∂µ

[N(µ, σ)]2
, (9)

∂G(x,µ, σ)

∂σ
= w̃

N(µ, σ) · g(x)

∂σ
− g(x;µ, σ) · ∂N(µ,σ)

∂σ

[N(µ, σ)]2
. (10)

3.2 Efficient Inference and Learning of DAUs

DAUs can be efficiently implemented in ConvNets by ex-
ploiting the translational invariance property of the convo-
lution. The displacement of a Gaussian relative to the filter
manifests in a shifted convolution result, i.e.,

f ∗G(µk, σ) = f ∗ Tµk [G(σ)] (11)

= Tµk [f ∗G(σ)], (12)

where Tx(g, y) = g(y − x) is translation of function g(·)
andG(σ) is a zero-mean Gaussian. Thus, the activation map
computation can be written as:

Yi = f

(∑
s

∑
k

wkTµk(G(σ) ∗Xs) + bs

)
. (13)

This formulation affords an efficient implementation by pre-
computing convolutions of all inputs by a single Gaussian
kernel, i.e., X̃s = G(σ) ∗ Xs, and applying displacements
by µk to compute the aggregated responses of each output
neuron. The size of the blurring kernel is determined by the
standard deviation (2 · d3σe+ 1), however, large kernels do
not add much computational cost since blurring represents

only 1% − 3% of the whole computational cost. The effi-
cient implementation requires sharing of the same aggrega-
tion perimeter σ value among all units of the same layer. In a
preliminary study, we have determined that this constraint is
compensated for by the other free parameters in DAUs and
performance is not affected. In fact, further constraints can
be applied to the aggregation perimeters, which are empiri-
cally analyzed in Section 4.1.

Due to discretization, the Eq. (13) is accurate only for
discrete displacements µk. We address this by re-defining
the translation function in Eq. (13) as a bilinear interpola-
tion,

T̂x(g, y) =
∑
i

∑
j

ai,j · g(y − bxc+ [i, j]), (14)

where ai,j are bilinear interpolation weights. This allows
computing sub-pixel displacements and can be efficiently
implemented in CUDA kernels.

The aggregation perimeter constraints and the displace-
ment re-formulation also make the learning more efficient.
Only two parameters have to be trained per DAU, i.e., the
weight wk and the spatial displacement µk, while the aggre-
gation perimeter and the number of DAUs per convolution
filter are hyperparameters2.

Applying the efficient formulation to the learning of DAU
convolution filter results in the following partial derivatives:

∂l

∂wk
=
∑
n,m

∂l

∂z
·
∑
x

T̂µk(Xs ∗G(σ)), (15)

∂l

∂µk
=
∑
n,m

∂l

∂z
·
∑
x

wk · T̂µk(Xs ∗
∂G(σ)

∂µ
), (16)

where ∂l
∂z is back-propagated error.

Similarly to the inference, the gradient can be efficiently
computed using convolution with zero-mean Gaussian (or
its derivatives) and sampling the response at displacement
specified by the mean values in the DAUs.

The backpropagated error for the lower layer is com-
puted similarly to the classic ConvNets, which convolve the
backpropagated error on the layer output with rotated filters.
Since the DAUs are rotation symmetric themselves, only
the displacements have to be rotated about the origin and
Eq. (13) can be applied for computing the back-propagated
error as well, yielding efficient and fast computation.

Computational cost Compared to the implementation of DAUs
based on standard convolution (Tabernik et al. 2016) that
discretize DAUs to large kernels, the efficient DAU imple-
mentation results in several times faster inference and an

2 Note that reasonable aggregation perimeter value σ can in fact be
estimated for a given problem by pre-training using the derivatives in
Eq. (8), but using fixed value has proven sufficient. See Section 4.1 for
the analysis of different choices of this parameter.
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order of magnitude faster learning. However, the speed-up
factor is dependent on the number of DAUs per channel K,
and on the maximum displacement value. Considering the
following input sizes:

Xs = [W ×H × S] , Yi = [W ×H × F ] ,

Gk =
[
K̂w × K̂h

]
,

where S is the number of input channels, F is the number
of output channels and K is the number of DAUs per input
channel, then the computational cost for the efficient DAU
implementation is O(4 · S · F · K ·W · H + S ·W · H ·
K̂w ·K̂h), where 4 relates to the bi-linear interpolation. Blur-
ring with the Gaussian kernel K̂w × K̂h in the second term
is performed F -times fewer than the first term, thus making
the blurring part negligible for large number of input chan-
nels F . With the standard convolutional network using the
K̂′w · K̂′h convolution kernel, the computational complexity
is O(F · S ·W ·H · K̂′w · K̂′h), and the speed-up factor γ
becomes:

γ =
K̂′w · K̂′h

4 ·K
. (17)

With large DAU displacements resulting in bigger kernels
for the standard convolution implementation, the speed-up
of the efficient DAU implementation becomes more signif-
icant since kernel size K̂′w · K̂′h for the standard ConvNet
must increase quadratically for larger displacements, while
efficient DAU retains the same kernel size K̂w · K̂h and the
same number of DAUs regardless of the displacements val-
ues.

4 Analysis of the Displaced Aggregation Units

An extensive empirical analysis was performed to gain in-
sights into the properties of the displaced aggregation units
CNN formulation (DAU-ConvNet). We have focused on two
main parameters: (i) the DAU aggregation perimeter encoded
by the variance of a Gaussian (Section 4.1) and (ii) the num-
ber of units per convolution filter (Section 4.2). We have then
analyzed the learned convolution filters in terms of displace-
ment distributions of the DAUs and thier receptive fields
(Section 4.3), and analyzed the practical computational sav-
ings (Section 4.4).

4.1 Influence of the DAU Aggregation Perimeter

The aggregation perimeter of a single DAU is determined
by the standard deviation, σ, of the corresponding Gaussian
(Eq. 3). In our most general formulation, the standard de-
viation can be learned for each unit by backprop (Eq. 8),
which in practice increases the computational complexity of

Table 1 Standard deviation σ hyperparameter evaluation on CIFAR10
classification task using a shallow DAU-ConvNet. Standard deviation
has minor effect on classification performance.

Std. deviation σ = 0.3 0.4 0.5 0.6 0.7 0.8 Learned

DAU-ConvNet 82.9 83.4 83.8 83.6 82.9 82.8 84.25CIFAR10

the learning. The standard deviation plays several roles. On
the one hand, it defines the region within which the DAU
neuron aggregates features from a previous layer and on the
other hand, it enables computation of smooth derivatives for
DAU displacement optimization (Eq. 10) when σ is large
enough to encompass neigbooring pixels. We explore the
trade-off between learning all the standard deviations and
fixing them to a reasonable value that affords sufficient ag-
gregation as well as displacement optimization.

The experiments were carried out on CIFAR10 (Krizhevsky
2009) classification problem using a network with three con-
volutional layers with DAU filters and three max-pooling
layers followed by a fully-connected layer for predicting the
image class. Batch normalization (He et al. 2014) was ap-
plied and weights were initialized using (Glorot and Ben-
gio 2010). We trained the network with a stochastic gradient
descent and a softmax loss function for 100 epochs using
a batch size of 256 images. Learning rate was set to 0.01
for the first 75 epochs and reduced to 0.001 for remaining
epochs. A momentum of 0.9 was also used.

In the first experiment, the number of DAUs per con-
volution filter was fixed to four, while the standard devi-
ations were learned. The standard deviations were initial-
ized randomly with a uniform distribution over [0.3, 0.8].
As reported in Table 1, DAU-ConvNet with learned stan-
dard deviation achieved a 84.25% accuracy. Top row in Fig-
ure 4 shows the distribution of standard deviations for each
layer after learning. Distributions for the second and the
third layer remained uniformly distributed even after the train-
ing, while in the first layer, the standard deviations con-
verged towards smaller values. The distributions in Figure 4
were weighted by the learned unit’s weight to reflect the
changes of standard deviations only in the neurons that sig-
nificantly contribute to the output. Comparison of the initial
and final standard deviations in the bottom row of Figure 4
confirms that learning affected only the first layer, while the
following two layers were negligibly affected. This indicates
that DAU structure does not benefit considerably from learn-
ing the standard deviations and supports the use of simplifi-
cation that leads to efficient inference and learning.

As noted in Section 3.2, the learning and inference of
DAU-ConvNets can be made efficient by fixing the stan-
dard deviations in DAUs in the same layer. Table 1 also
reports the results obtained by fixing the standard devia-
tions to {0.3, 0.4, 0.5, 0.6, 0.7, 0.8} in all layers. The results
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Fig. 4 Distribution of learned DAU perimeters (σ) in the top row, and changes in the learned DAU perimeters from the initialization in the bottom
row, both for model trained on the CIFAR10 dataset for each three layers in the network.

show that the classification rates vary by approximately 1%,
which means that the specific value of the perimeter negligi-
bly affects the classification performance as long as it is set
to a reasonable value. This means that unit’s displacements
and weights compensate for the chosen standard deviations.
Comparing the performance of the DAU-ConvNet with the
standard deviations fixed to 0.5 and the DAU-ConvNet with
the individually learned standard deviations (“Learned” in
Table 1), we also observe a negligible difference of 0.5%.
Note that individually learned standard deviations prevent
the use of efficient DAU implementation and require the im-
plementation based on standard convolutions (Tabernik et al.
2016). Such implementation is significantly slower (cf. Sec-
tion 3.2) and prevents the use of DAUs in very deep modern
architectures.

Fixing the perimeters reduces the computational com-
plexity of learning and very deep DAU-ConvNets can be
trained. Thus in the remaining part of the experiments, we
have fixed the DAU standard deviations to 0.5.

4.2 Influence of the Number of DAUs

With the standard deviations fixed, each DAU contains three
parameters: two parameters for 2D displacement and a weight,
which are learned from the data. A discrete parameter that
has to be manually set, however, is the number of DAUs in
the DAU convolution filter. This parameter thus determines
the total number of parameters to be learned in the DAU-

ConvNet and we analyze its impact on performance here
using the ILSVRC 2012 (Russakovsky et al. 2015) image
classification task with a moderately deep standard ConvNet
architecture.

In a classical ConvNet, the units are equivalent to pix-
els in the convolution filters. Several research papers inves-
tigated the influence of the number of parameters in classic
ConvNets with respect to the number of layers, number of
features and filter sizes (Eigen et al. 2014), but could not an-
alyze the impact of the number of units independently from
the convolution filter size. The classic ConvNets are limited
to a minimum of 9 parameters per filter, which corresponds
to a 3 × 3 filter. Receptive fields may be increased with the
dilated convolution (Holschneider et al. 1990) without in-
creasing the number of parameters, but any such change re-
quires hard-coding the size and the pattern, which leads to a
combinatorial explosion of possible convolution filters.

The DAU formulation of convolution filter, on the other
hand, allows us to investigate filters with even smaller num-
ber of parameters without affecting the spatial coverage and
the receptive field sizes, since these are learned from the
data. In addition, the DAU convolution filter definition (Eq. 2)
provides a straight-forward way to prune the units. During
the training, the number of units is kept the same in all fil-
ters. After the training is finished, the units with very small
weights are removed, which further reduces the number of
parameters.
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Table 2 Analysis of the number of parameters and units per filter with three variants of DAU-AlexNet: Large, Medium and Small. Rows also
show the elimination of units based on their amplification value. In columns we report classification top-1 accuracy on ILSVRC2012 validation
set, the number of DAU on all filters and the percentage of removed units.

Relative threshold Large DAU-AlexNet Medium DAU-AlexNet Small DAU-AlexNet

Acc. (%) # units % removed Acc. (%) # units % removed Acc. (%) # units % removed

0 57.3 1,523,712 0 56.9 786,432 0 56.4 393,216 0
0.01 57.3 1,389,131 8 56.8 739,884 6 56.4 378,692 4
0.02 57.1 1,325,057 13 56.7 707,745 10 56.4 366,144 7
0.05 40.1 1,157,129 24 54.8 623,923 20 55.4 331,137 16
0.10 28.3 925,509 39 47.4 507,651 35 49.6 279,162 29
0.25 0.2 453,987 70 1.9 261,093 66 0.9 154,624 61

Table 3 Per-filter unit and parameter count with three variants of
DAU-ConvNet: Large, Medium and Small. Note, a unit in DAU has
three parameters while a unit in a classic ConvNet has a single param-
eter.

Per-filter unit count

Large Medium Small AlexNet

Layer 2 6 4 2 5× 5
Layers 3-5 4 2 1 3× 3

Per-filter parameter count

Layer 2 18 12 6 25
Layers 3-5 12 6 3 9

Architecture. AlexNet (Krizhevsky et al. 2012), composed
of 7 layers (5 convolutional and 2 fully connected) was cho-
sen for the baseline architecture for this experiment. We used
a single-pipeline AlexNet, that does not require splitting into
two streams as originally proposed (Krizhevsky et al. 2012).
For simplicity, we refer to a single-pipeline AlexNet as a
standard AlexNet. The local normalization layers, max-pooling
and dropout on fully-connected layers were kept. The ini-
tialization was changed to a technique by Glorot and Ben-
gio (Glorot and Bengio 2010). The baseline AlexNet was
modified into a DAU-AlexNet by replacing discrete convo-
lution filters in layers 2 to 5 with DAU convolution filters
presented in Section 3.

Three variations of DAU-AlexNet are constructed: Large,
Medium and Small. Different number of units and parame-
ters per kernel for each variant are shown in Table 3 and
follow approximate coverage of filter sizes from standard
AlexNet with 5 × 5 filter sizes for the second layer and
3 × 3 filter sizes for the remaining layers. The Small DAU-
AlexNet contains 400,000 DAUs, the Medium DAU-AlexNet
contains 800,000 DAUs, and the Large DAU-AlexNet con-
tains 1.5 million DAUs, which translates to 1.2 million, 2.3
million, and 4.5 million parameters, respectively. For refer-
ence, the baseline AlexNet contains 3.7 million parameters.

Dataset. The networks were trained on 1.2 million train-
ing images from ILSVRC 2012 (Russakovsky et al. 2015)
and tested on 50,000 validation images. All images were

cropped and resized to 227 pixels as in the reference AlexNet
architecture (Krizhevsky et al. 2012). To keep the experi-
ments as clean as possible, we did not apply any advanced
augmentation techniques apart from mirroring during the
training with a probability of 0.5.

Optimization. The networks were trained by stochastic gra-
dient descent with the batch size of 128 for 800,000 itera-
tions, or 80 epochs. The initial learning rate was set to 0.01
and was reduced by a factor of 10 every 200,000th itera-
tion. A momentum with a factor of 0.9 was applied together
with a weight decay factor of 0.0005. The weight decay was
applied only on the weights wk in DAUs but not to the dis-
placement values µk.

Results and discussion. The results are reported in Table 2.
We observe that all three DAU-AlexNets achieve classifica-
tion accuracy of approximately 56-57%, which is compa-
rable to the standard AlexNet (cf. Section 5). This perfor-
mance is already achieved by a DAU-AlexNet with two or
less units per convolution filter, resulting in 3 to 6 param-
eters per filter, which is significantly lower than in a stan-
dard AlexNet with 9 parameters for the smallest filter (i.e.,
3× 3) and 25 for a moderately large filter (i.e., 5× 5). Note
that the efficient use of parameters is possible since DAU-
AlexNet learns the required convolution filter receptive field
size through its adjustable units without increasing its pa-
rameters.

Further improvements are observed after the pruning –
eliminating units with low weights. Table 2 shows that in
all DAU-AlexNets, 7-13% of units can be removed without
reducing the classification accuracy. The relation between
the number of parameters and the classification performance
is visualized in Figure 5. A steep increase in performance
by the Small DAU-AlexNet shows that even pruning the
smaller network can reduce some parameters while retaining
fairly good results. Almost 50% accuracy can be maintained
with less than 300,000 units, which is 10-fold less than in
standard AlexNet. Furthermore, comparing to the less steep
decline of the Large DAU-AlexNet shows that pruning is
less effective than just learning with a limited set of units.
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Fig. 5 Classification accuracy on ILSVRC 2012 dataset with respect to
the number of DAUs in the network (in million). DAU-based AlexNet
requires an order of magnitude fewer units than standard AlexNet at the
same classification accuracy. Note that in DAU-AlexNet, the unit refers
to one Gaussian component with a learnable weight and displacement,
while in AlexNet, the unit refers to one weight in a kernel.

This indicates that larger network has encoded its informa-
tion over many more units than are necessary.

4.3 Spatial Adaptation of DAUs

Next, we have investigated spatial distribution of the learned
DAUs displacements from the convolution filter centers. The
aim of the experiment was to expose whether certain dis-
placement sizes are favored for a given task, and what are
the indicated receptive field sizes of the convolution filters.

Such an experiment is practically unfeasible with classi-
cal ConvNets and requires a combinatorial sweep over al-
ternative architectures with various hand-crafted filter de-
signs. On the task of segmentation, for example, convolution
filter receptive fields may be increased by dilated convolu-
tions (Chen et al. 2016b), but the dilation factor has to be
manually set. In contrast, the DAU convolution filters opti-
mize their units with sub-pixel accuracy and can vary across
the filters, thus no hand-crafting is required.

We investigate a 1D distribution of distances to the con-
volution filter centers as well as 2D distributions aggregated
over all convolution filters. In both distributions a specific
DAU contributes to the overall distribution proportionally to
the unit absolute weight.

Architecture. A pre-trained Medium DAU-Alexnet architec-
ture from the previous section was adapted to the segmen-
tation task to perform a fine pixel-level class prediction as
follows. The last fully-connected classification layer was re-
placed by the expansion and classification layer from Long
et al. (2015) that entails a 1 × 1 classification layer and bi-
linear up-sampling with deconvolution layer to obtain pixel-
wise mask. By removing the last two max-pooling layers we

further increase the resolution which results in object bound-
aries maintained sharp. In this way the down-sampling fac-
tor is reduced from 32× to 8×. Increasing the resolution
of a pre-trained DAU-AlexNet model results in missaligned
DAU positions, which were trained for a lower resolution.
This is compensated for by proportionally increasing the
displacements of DAUs in the layers with the increased res-
olution.

Dataset. The PASCAL VOC 2011 (Everingham et al. 2011)
segmentation challenge was used. The training set was a
combination of 1,112 training images from the PASCAL
VOC 2011 segmentation challenge and 7,386 images col-
lected by Hariharan et al. (2011). Performance was evalu-
ated on the PASCAL VOC 2011 validation set excluding the
images from Hariharan et al. (2011).

Optimization. The models were trained by mini-batch stochas-
tic gradient descent for 65,000 iterations (150 epochs) with
a batch size of 20 images. A fixed learning rate of 0.0002
was used, weight decay was set to 0.0005 and momentum
to 0.9. Similar to Long et al. (2015), the added classification
layer was initialized with zeros and a normalized per-pixel
softmax loss was applied on pixels with valid labels.

Results and discussion. The DAU-AlexNet achieves segmen-
tation accuracy comparable to the standard AlexNet with di-
lated convolutions (c.f. Section 6), which verifies that the
network has properly adapted to the task. DAU displacement
distributions were computed separately for layers 3, 4 and
5. In particular, three different distributions were computed.
The first distribution considered locations of all DAUs, the
second considered locations of the DAUs with weight at
least 90% of the largest absolute weight and the third consid-
ered locations of the DAUs with the weight at least 75% of
the largest absolute weight. The resulting 1D and 2D distri-
butions are visualized in Figure 6 and Figure 7, respectively.

Two significant spikes are observed in the 1D distribu-
tions in Figure 6. One spike corresponds to 2.5 pixels dis-
placement and the other to 4 pixels displacement. The spike
at 2.5 pixels occurs only at the third layer and corresponds
to DAU initialization points, which means that many units
did not move significantly. This is confirmed by the high
density regions in 2D distributions Figure 7, at initializa-
tion centers (red dots). However, a further inspection reveals
that these units do not contribute in the inference, since their
weights are very small. In fact, they disappear in the dis-
tributions of Figure 6 and Figure 7 with the DAUs corre-
sponding to negligible weights removed. This is in effect
the self-pruning property of DAU-ConvNets which was ob-
served in Section 4.2. The spikes at initialization points are
not apparent at the 4th and the 5th layers in the correspond-
ing distributions (Figure 6 and Figure 7). This means that in
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Fig. 6 Distance-to-center distributions collected from displacement of DAUs. Distributions are shown per-layer and after keeping only units
corresponding to the top percentage of absolute weights (blue, orange, green).
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Fig. 7 2D distributions of displacements collected from DAUs. Red
dots indicate initialization points. Distributions reported for layer 3, 4
and 5 in top, middle and bottom row, respectively. The three columns
show the distributions after keeping only units corresponding to the top
percentage of absolute weights.

this particular problem the DAUs are redundant only at the
3rd layer.

The second spike at 4 pixels is significant and does not
disappear when removing DAUs with small weights (Fig-
ure 6). The spike occurs due to a limitation of our imple-
mentation that constraints the receptive field size, which in
our case is set at four pixels in both spatial dimensions3.
Still, a significant number of those units have large weights,
which suggests that even larger receptive fields would be
observed if unconstrained by the implementation specifics
of GPU processing.

3 Our current implementation in CUDA allows only distances up
to 4 or 8 pixels. This limitation can be overcome by modifying the
implementation.

The overall shape of the displacement distribution is con-
sistent across all layers (Figure 6). This indicates a prefer-
ence to densely cover locations 1-2 pixels away from the
center for the segmentation task. Some units with large weights
are located far away from the center, which indicates a need
to cover large receptive fields albeit with a lower density.
The same conclusion is drawn from 2D spatial distributions
in Figure 7.

The Effective Receptive Field. We further visualize the re-
ceptive field of the network by calculating the Effective Re-
ceptive Field (ERF) as introduced by Luo et al. (2017). The
ERF measure calculates the effective receptive field of a sin-
gle output pixel in a specific channel by back-propagating
the error with only one active pixel in the corresponding
channel. We report ERF averaged over all the channels for
each layer and depict ERF as contour plots that well capture
the extent of the receptive field. A contour represents the
area with a fixed percentage of the influence to the output
neuron. For instance, all pixels within 75% line represent
75% of the whole influence on the output neuron.

The effective receptive fields for DAU-AlexNet and stan-
dard AlexNet trained on the semantic segmentation are re-
ported in Fig. 8. In all three layers, the DAU-ConvNet con-
sistently demonstrates larger receptive field sizes than the
ConvNet. The most noticeable difference is demonstrated in
the 5th layer in the bottom row, where in the standard Con-
vNet the 99.9% of the influence to the output neuron is con-
centrated at only approximately 60 pixels from the center,
while in DAU-CovNet, this influence is extended by nearly
a factor of two.

4.4 Computational cost

As show in Section 3.2, the computational cost of the DAU
model is dependent only on the number of DAUs per chan-
nel, and not on the size of the convolution kernel, as in the
standard convolution. In practice, we found K = 2 and 4
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Fig. 8 The effective receptive fields (ERF) in a contour plot visualiza-
tion for layers 3, 4 and 5 in standard AlexNet (left) and DAU-AlexNet
(right) trained for the semantic segmentation. The size of the visualiza-
tion patch is 227×227 pixels. Note the inner (yellow) contour presents
a 25% influence area.

pixel displacements (corresponding to K̂′w · K̂′h = 9 × 9)
are sufficient for large networks such as AlexNet or ResNet.
This results in a theoretical speed-up of γ = 10.125. Pro-
filing an efficient DAU implementation on a shallow 3-layer
architecture with K = 2, K̂′w · K̂′h = 9 × 9, 192 output
features and 32×32 input resulted in 3.25 times faster infer-
ence and 12.54 times faster learning on NVIDIA RTX 2080
Ti compared to the implementation based on the standard
convolution. Note that in the efficient DAU the sigma was
not learned, therefore adding additional 1.33-times speed-up
compared to the theoretical speed-up (Eq. 17), while the dif-
ference to the theoretical speed-up for the inference points
to the overhead cost and inefficiencies in our CUDA imple-
mentation compared to the CuDNN implementation.

5 Application to Classification

The generality of DAU-ConvNets is demonstrated on sev-
eral computer vision tasks with state-of-the-art CNN archi-
tectures. In this section, DAU-ConvNets are empirically an-

Table 4 Results on ILSVRC 2012 validation set using AlexNet ar-
chitecture and corresponding number of parameters on convolutional
layers. Top-1 accuracy reported.

Network architecture
Top-1

accuracy (%)
Number of parameters

on conv. layers

DAU-AlexNet 56.89 2.3 million
AlexNet 56.99 3.7 million

alyzed on the ILSVRC 2012 classification task using the
AlexNet and ResNet models, while the following sections
(Section 6 and Section 7) demonstrate application to seman-
tic segmentation and de-blurring.

5.1 AlexNet with DAUs

The first experiment involved evaluation on a classic archi-
tecture AlexNet (Krizhevsky et al. 2012) from Section 4.2.
We compare the baseline AlexNet to Medium DAU-AlexNet
(Table 3), which contains less than 70% of parameters than
the baseline.

Table 4 reports accuracy for both methods together with
the number of free parameters in the convolution layers.
The DAU-AlexNet and the baseline AlexNet converge to
comparable performance, close to 57%. The DAU-version
of AlexNet achieved comparable performance to the clas-
sical AlexNet with over 30% fewer parameters and analy-
sis in Section 4.2 shows that further reduction is possible
at negligible performance loss. The overall comparable per-
formance supports the hypothesis that DAUs do not lose
expressive power on the account of their simple functional
form.

5.2 Residual Networks with Displaced Aggregation Units

Next, we evaluated DAUs on ResNet50 and ResNet101 (He
et al. 2016a) classification architectures. In particular, we
evaluated ResNet v2 (He et al. 2016b), which applies batch
normalization and activation before convolution for learning
stabilization.

ResNet was modified into a DAU-ResNet by replacing
all 3×3 convolutions with DAU convolution filters contain-
ing only two units (see Figure 2). This includes all layers
except the first layer with 7 × 7 kernels and bottleneck lay-
ers with 1×1 kernels. We also implemented down-sampling
with max-pooling instead of using convolutions with a stride4.
This was performed on all levels except on the first one,
where standard convolution was retained. The same down-
sampling with max-pooling was included in the standard
ResNet for a fair comparison. In DAU-ResNet, the displaced

4 DAU layers with stride operation are not yet implemented.
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Table 5 Results on segmentation task using a PASCAL VOC 2011 validation set. Per-class mean-IU and averaged mean-IU over all classes are
reported.

Network arch. bg arpln.bcyle.bird boat bottle bus car cat chair cow d.tble dog horse m.bikepersonp.plantsheep sofa train tv. mIoU

DAU-AlexNet 86.1 58.5 29.7 55.0 41.7 47.2 61.3 56.3 57.9 14.1 47.1 27.3 47.8 36.7 54.7 63.9 28.9 53.0 19.3 59.8 45.3 47.22
AlexNet-dilation 85.8 54.6 27.2 51.8 39.0 45.2 56.3 54.2 57.4 12.4 43.8 26.1 50.6 35.6 54.1 61.1 26.9 53.6 18.9 60.2 42.5 45.57

Table 6 Results on ILSVRC 2012 validation set using deep residual
network architecture and corresponding number of parameters on con-
volutional layers. Top-1 accuracy reported.

Network arch. Top-1
acc. (%)

Number of parameters (in million)

Conv/DAU Bottlenecks Total

ResNet50 74.08 11.3 M 14.2 M 25.5 M
DAU-
ResNet50

74.06 7.5 M 14.2 M 21.7 M

ResNet101 75.39 21.3 M 23.1 M 44.5 M
DAU-
ResNet101

74.89 14.2 M 23.1 M 37.4 M

aggregation units were initialized randomly with uniform
distribution on interval [−1.5, 1.5], following the observa-
tion of displacement distribution in Section 4.3. Units were
restricted to move up to 4 pixels away from the center, re-
sulting in receptive field size of up to 9× 9 pixels relative to
the previous layer. This restriction was enforced only due to
technical limitations in current DAU implementation.

Optimization. Both architectures were trained by stochastic
gradient descent. The same optimization hyper-parameters
were used in DAU and classic ResNet, i.e., learning rate of
0.1, momentum of 0.9, weight decay of 10−4 and a batch
size of 256. Learning rate was reduced four times by a fac-
tor of 10 at 30th, 60th, 80th and 90th epoch. In DAUs, the
weight decay was applied only to weights but not to offset;
however, 500-times larger learning rate for offset was used
during the training to compensate for orders of magnitude
different values compared to the weights.

Classification Results with ResNet. Results for networks with
50 and 101 layers are reported in Table 6. The DAU ver-
sion achieves the same performance as the classical Con-
vNet counterparts on ResNet50 as well as ResNet101. This
result is achieved with a 30% reduction of parameters allo-
cated for convolutions in spatial coverage of DAU-ResNet.
The reduction in the overall number of parameters is slightly
lower since the residual network allocates half of the param-
eters for 1×1 bottleneck layers, which are not replaced with
DAUs.

6 Application to Semantic Segmentation

Classic ConvNet architectures designed for classification re-
quire hand-crafted structural modifications in the form of
hand-tuned dilated convolutions to achieve high-quality re-
sults on other task like semantic segmentation. In particular,
dilated convolution with several manually set dilation sizes
are placed at certain layers in the ResNet when adapting for
semantic segmentation (Chen et al. 2016a). Such changes
are not required for DAU counterparts, since these simulta-
neously learn the filter receptive field sizes and content to
the task at hand. A semantic segmentation task on PASCAL
VOC 2011 and Cityscape datasets using three popular deep
learning architectures, AlexNet, ResNet101 and DeepLab
was chosen to demonstrate this.

6.1 Semantic Segmentation with AlexNet

We first evaluated a classic architecture – the AlexNet model.
An AlexNet architecture modified for semantic segmenta-
tion from Section 4.3 was evaluated on PASCAL VOC 2011
segmentation dataset. Modification includes increased reso-
lution at the last two layers and scaled displacements in the
corresponding DAU convolution filters. The baseline AlexNet
was similarly modified for the semantic segmentation task,
but instead of scaling the displacements, we dilated convo-
lution filters with the same factor. The layers after the first
removed max-pooling use a dilation of two (layers 3, 4 and
5) and the layers after the second-removed-max-pooling use
a dilation factor of four (layers 6 and 7).

Segmentation results. The performance of DAU-AlexNet com-
pared to the baseline AlexNet with dilation is shown in Ta-
ble 5. DAU-AlexNet consistently outperforms the baseline
AlexNet with dilation across all measures. The mean IoU
and per-pixel accuracy are improved by approximately 2%.
Looking at the per-class mean IU, we observe the improve-
ment is consistent over all categories, with the exception of
”dog”, ”sheep” and ”train”.

6.2 Semantic Segmentation with Residual Networks

DAUs were further evaluated on a very deep residual net-
work with 101 layers (ResNet101) (He et al. 2016a). Res-
Net101 was modified in the same way as AlexNet in the
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Fig. 9 Examples of semantic segmentation on Cityscape dataset with DAU-ResNet101 in the third and seventh row and standard ResNet101 fourth
and eigth row.

previous section. This included removal of the last max-
pooling layer, which resulted in a network with output layer
resolution reduced by 16× (as opposed to 32× reduction in
the original ResNet101). This matches to having the output
stride of 16 as in the DeepLab model (Chen et al. 2016a).

Cityscape dataset. The Cityscape dataset (Cordts et al. 2016)
was used for evaluation. The dataset contains high-resolution
images of city driving and the task requires pixel-wise seg-
mentation of the image into 19 classes. Only fine-grained
annotations were used (i.e., 2,975 training images) and the
networks were evaluated on 500 test images from the vali-
dation set.

Optimization. The standard ResNet and DAU-ResNet were
first pre-trained on ImageNet (Russakovsky et al. 2015). Both
models were then trained for segmentation using a mini-
batch stochastic gradient descent with a batch size of 8 for

50,000 iterations (134 epochs). A learning rate of 0.01 was
used, with momentum of 0.9 and a weight decay of 10−4.
A polynomial decay of the learning rate with a factor of 0.9
was applied. Data augmentation was used with the follow-
ing operations: images were resized by a factor randomly se-
lected from a uniform distribution in a range of [0.5, 2.0] and
high-resolution images were randomly cropped into 769 ×
769 large patches, and left-to-right mirroring was applied
with a probability of 0.5. Testing was performed on a single-
scale without multi-scale testing.

Results. Results are reported in the first row in Table 7.
DAU-ResNet101 achieves 72.8% mIoU and outperforms the
standard ResNet101 (68.6% mIoU). A similar difference is
observed in the mean accuracy – standard ResNet101 ob-
tains 77.2% mean accuracy, while the DAU version obtains
a 82.2% mean accuracy. Improvement of around 4% clearly
demonstrates the benefits of having learnable unit displace-



14 D. Tabernik et al.

Table 7 Results on Cityscape validation set using deep residual network architecture and DeepLabv3+ improvements. We report mean intersection-
over-union (mIoU). DAU-6U is a single displaced aggregation layer with 6 units per channel which replaces ASPP.

Standard ResNet101 backbone ResNet101 with DAUs (our) backbone

Output Stride ASPP Image-pool Decoder mIoU +/- mIoU Output Stride DAU-6U Image-pool DAU-Decoder

16 68.6 +4.2 72.8 16

16 X 72.7 +0.1 72.8 16
16 X X 75.6 -0.1 75.5 16 X X
16 X X X 75.8 +0.3 76.1 16 X X X

ments, which allow the network to focus on spatial features
required for segmentation without requiring manual spec-
ification. Note that a 4% increase in the performance was
achieved with 15% less parameters in the network. Several
examples of semantic segmentation on both networks are
depicted in Figure 9. Several top examples well demonstrate
gridding artifacts in ResNet101 while DAUs avoid this is-
sue.

6.3 Improving DeepLab with DAUs

Since DAUs inherently provide adjustable receptive field sizes,
it becomes a natural fit for a popular semantic segmentation
model, DeepLab (Chen et al. 2016b, 2017), where large re-
ceptive fields are achieved with hand-tuned dilation. For this
experiment, we used the latest version of DeepLab v3+ (Chen
et al. 2018) that incorporates the following improvements
for semantic segmentation: (a) output stride of 16, (b) atrous
spatial pyramid pooling (ASPP) layer, (c) global image-pool-
ing features, and (d) an output decoder layer. As a backbone
network, we used ResNet101 that was modified for a seman-
tic segmentation problem from the previous subsection.

The DeepLab architecture was modified to include DAUs
as follows. First, the convolution filters in ResNet were re-
placed by DAUs in the same manner as for the DAU-ResNet
from the previous subsection. Next, the atrous spatial pyra-
mid pooling (ASPP) (Chen et al. 2016b) with three par-
allel convolutions, each with a different dilation rate, was
replaced by a single DAU layer with six units per kernel
(termed as DAU-6U) as depicted in Figure 10. We used more
units than on other layers to provide enough coverage for
larger area. Receptive field size is thus adjusted dynami-
cally during training, provided that large enough displace-
ment of a unit is allowed. Lastly, the output decoder was
implemented with DAUs (two units per convolution filter)
instead of using 3× 3 convolutions.

Dataset and Optimization. Optimization and evaluation of
DeepLab was performed on the Cityscape dataset using the
same hyper-parameters as in the previous subsection. The
same process of augmentation was used with the input scal-
ing, cropping and flipping. Testing was performed on val set
and a single-scale without multi-scale testing.

Fig. 10 a) Atrous Spatial Pyramid Pooling (ASPP) block processes
the input features along several parallel pathways, each containing 256
convolution filters with a fixed dilation rate – the rates differ between
the pathways. b) A single DAU pathway containing 256 DAU filters
with 6 DAUs per channel outperforms ASPP and eliminates hand-
tuning of the dilation rates using less parameters.

Results. Results are reported in Table 7. Results for several
DeepLab versions are reported to quantify contributions of
different improvements. Notice that standard ResNet101 be-
comes competitive with the DAU version only when image-
pooling features are included. Since image-pooling features
capture global information (i.e., context), this indicates that
DAU convolution filters already capture most of the global
information through their sparse and adjustable displace-
ments. Results also show that a single DAU-6U layer pro-
vides a comparable performance boost to the ASPP with
three hand-crafted parallel convolutions. Finally, implement-
ing the decoder with DAUs also improves DeepLab slightly
more than using a standard decoder and ASPP. In this case,
the DAU version achieves a mIoU of 76.1%, while standard
DeepLab achieves a mIoU of 75.8%.

Note that DAU-6U is a single layer with 6 units (18 pa-
rameters) while ASPP applies at least three parallel convolu-
tions each with 9 parameters, resulting in at least 27 param-
eters. While ASPP was hand-crafted and would require sep-
arately testing various variations of the receptive field com-
binations to fine-tune its architecture to a given dataset, the
DAU-6U learns them directly from the dataset, thus signif-
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Fig. 11 Examples of de-blurring on GOPRO dataset with SRN-DeblurNet in the second row and DAU variant in the third row.

icantly reducing the complexity of designing high-perfor-
mance networks.

7 Application to Blind Image De-blurring

As the last application example, we demonstrate the per-
formance of DAUs on the task of blind image de-blurring
where large receptive fields have proven to play an impor-
tant role.

7.1 A Scale-Recurrent Network with DAUs

A scale-recurrent network by Tao et al. (2018), termed SRN-
DeblurNet, is a state-of-the-art method for blind image de-
bluring task. SRN-DeblurNet employs a 43-layer U-Net ar-
chitecture in a scale-recurrent approach to perform a dense
regression of each output pixel value. SRN-DeblurNet at-
tains large receptive field sizes by down-sampling and 5× 5

convolution kernels. The network obtains top performance
on de-blurring benchmarks (Tao et al. 2018), but at a cost of
inefficient use of parameters for the spatial coverage.

We propose a DAU-SRN-DeblurNet where 5 × 5 con-
volutions are replaced with two displaced aggregation units
per convolution filter. The replacements are made in all but
four layers: we retain two de-convolution layers and the first
and the last layers as classical convolutions5. This results
in a much more efficient network with 4× fewer parame-
ters than SRN-DeblurNet, and in per-filter adapted receptive
field sizes. A central requirement of the convolution filters in
SRN-DeblurNet is to enable modeling the identity function

5 Current implementation of DAUs requires an even number of
channels.

which allows the network to pass through pixels that are not
blurred. Thus the standard deviations in DAU weights were
reduced to 0.35 to reduce their aggregation effect. Accord-
ing to further evaluation by Tao et al. (2018) after the paper
acceptance6, they removed the color ringing artifacts to fur-
ther improve the performance by applying SRN-DeblurNet
without LSTM to the RGB data. We used the same approach
in our experiments.

The GOPRO Dataset. The GOPRO dataset (Nah et al. 2017)
was used for training and testing. The dataset contains 2,103
pairs of training images and 1,111 pairs of testing images.
Each pair consists of two colored images: a blurred image
(input) and a sharp image (groundtruth), both in 1280× 720

resolution.

Optimization. The training protocol of Tao et al. (2018) was
followed. We trained with a mini-batch stochastic gradient
descent using the Adam solver (Kingma and Ba 2015) for
2000 epochs with a batch size of 16 images. For SRN-Deblur-
Net, we used the best hyper-parameters provided by Tao
et al. (2018), and a learning rate of 10−4 with a polynomial
decay using a power factor of 0.3. The learning rate was in-
creased for DAU-SRN-DeblurNet to 5 · 10−4 to compensate
for the smaller weights in DAUs due to normalized Gaus-
sian blurring. Furthermore, since the unit displacement val-
ues are several orders of magnitude larger than the weights,
we also increased the learning rate for displacement values
µ to 10−3 and applied a linear decay, i.e., a polynomial de-
cay with a power factor of 1.0. The trainable variables were
initialized with the Glorot and Bengio (2010) method. Dis-
placement values of DAUs were initialized randomly with a

6 https://github.com/jiangsutx/SRN-Deblur
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Table 8 Results on the GOPRO dataset using the reference and DAU-
based SRN-DeblurNet architecture with reported peak-signal-to-noise-
ratio (PSNR) and the number of trainable parameters (in million).

Network architecture PSNR (dB) Number of
params.

Number of
units

SRN-DeblurNet 30.07 6.878 M 6.878 M
DAU-SRN-DeblurNet 30.02 1.781 M 0.708 M

zero-mean normal distribution with σ = 0.5. Data augmen-
tation was not used in training but images were randomly
cropped into 256× 256 patches to fit them into the memory.
This followed the learning protocol of Tao et al. (2018).

Results. Results are reported in Table 8. Both methods achieved
a peak-signal-to-noise-ratio (PSNR) of slightly above 30 dB.
Note that SRN-DeblurNet required 6.8 million parameters,
while DAU-SRN-DeblurNet required only 25% of parame-
ters (1.7 million) for the same performance. The difference
is even more substantial when considering the number of
units required for spatial coverage (see Table 8) – in this
case DAU-SRN-DeblurNet requires only 10% of units com-
pared to SRN-DeblurNet. Examples of de-blurred images
with both methods are shown in Figure 11.

We have also observed that a larger aggregation perime-
ter (i.e., larger standard deviation of DAUs) did not signifi-
cantly affect the performance. DAUs with σ = 0.5 achieved
PSNR of 29.84 dB, while DAUs with σ = 0.35 resulted
in PSNR of 30.02 dB. Considering that the increased ag-
gregation perimeter introduces significant feature blurring, a
larger performance difference might be expected. The small
difference points to an effective and robust DAU structure
that is able to compensate for the added blurring effect, which
is particularly important in the deblurring task.

8 Discussion and Conclusion

We proposed DAU convolution filters to replace fixed grid-
based filters in classical convolutional networks. The DAUs
modify only the convolutional layer in standard ConvNets,
can be seamlessly integrated into existing architectures, and
afford several advantages. In addition to the filter unit weights,
they allow learning the receptive field size. Since the number
of parameters is decoupled from the receptive field size, they
efficiently allocate the free parameters, resulting in compact
models and efficient learning. In addition, DAUs eliminate
the need for hand-crafted convolution filter patterns (e.g.,
dilated convolutions) and allow automatic adaptation for a
broad spectrum of computer vision tasks.

The parameter reduction capability was demonstrated on
classification, semantic segmentation and blind image de-
blurring. In particular, experiments with the AlexNet (Krizhevsky
et al. 2012) architecture on a classification task have shown

that DAUs achieved a similar performance to the standard
network with only 30% of the parameters. Similar improve-
ment has been demonstrated on a state-of-the-art de-blurring
method, SRN-DeblurNet (Tao et al. 2018), where the same
performance has been achieved with only 25% of the param-
eters. With only three free parameters per unit, this shows
that networks can potentially allocate an order of magnitude
fewer units for providing sufficient spatial coverage and that
existing deep learning methods are inefficiently using their
parameters.

The experiments on semantic segmentation have further
shown that DAUs trained for one task enable a straightfor-
ward adaptation to another task by using the same architec-
tural model and only learning new parameters for the new
task. We have demonstrated this by adapting a DAU-based
residual network (He et al. 2016a) with the architecture for
the classification to the semantic segmentation. The exper-
iment on Cityscape dataset has shown improvement in the
performance of the DAU-ResNet model by 4% compared
to standard ResNet without significant modifications to the
network. This was achieved while using 15% fewer param-
eters. The classic ResNet has become competitive to DAUs
only after global image-pooling features have been added.
This means that DAUs already capture the contextual infor-
mation through position adaptation, which has to be added
manually by architectural change in the standard network.

Experiments show that DAUs can completely replace
atrous spatial pyramid pooling (ASPP) in DeepLab (Cheng
et al. 2014). By adjusting displacement, DAUs were able to
selectively focus on spatial areas of sub-features that are im-
portant for specific tasks. This was demonstrated on seman-
tic segmentation where DeepLab with only a single extra
DAU layer was able to fully replace several parallel convo-
lutions in ASPP that use different dilation factors. This was
achieved at the same or slightly better performance while
using 15% fewer parameters. More importantly, DAUs re-
moved the need for hand-tuning the dilation factors in Deep-
Lab. Thus, they enable learning without repeating extensive
experiments to hand-tune dilation for a new domain.

DAUs seamlessly integrate into existing state-of-the-art
architectures with plug-and-play capability by simply re-
placing the standard convolution layers. We have published
CUDA implementations for Caffe and TensorFlow frame-
works and plan to release all the DAU versions of state-of-
the-art architectures reported in this work, making all results
in this work fully reproducible.

An active area of exploration in the deep learning com-
munity is development of mathematical tools for formal anal-
ysis of ConvNet properties. Such analysis is very difficult
with the classical ConvNet formulation with discrete con-
volution filters that can take arbitrary values, and simplifi-
cations of the model have to be made. A highly interest-
ing analysis is the work of Bruna and Mallat (2013) who
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treat ConvNets from a spectral perspective. Note that DAUs
also provide a new formal view of the ConvNet pipeline. In
their simplest variant with a single unit per convolution filter,
DAU-ConvNets can be considered as a sequence of feature
low-pass filtering (blurring) and spatial shifting with inter-
mediate nonlinearities. Our results show that even this sim-
plest formulation achieves comparable performance to the
classical ConvNets, but is more tractable. We expect that this
mathematically simpler formulation will open new venues
for further theoretical analysis of deep models.
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