
ISSN: 0718-2724. (http://www.jotmi.org)
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

Test-Driven Development as an Innovation Value Chain

Ana Paula Ress1, Renato de Oliveira Moraes2, Mário Sérgio Salerno3

Abstract

For all companies that consider their Information Technology Department to be of strategic value, it is important to
incorporate an innovation value chain into their software development lifecycles to enhance their teams’ performance.
One model is TDD (Test-Driven Development), which is a process that detects failures and improves the productivity
and quality of the team’s work. Data were collected from a Financial Company with 3,500 employees to demonstrate that
software projects that require more than 4,000 hours of development benefit from TDD if a clear knowledge conversion
step occurs between the client and the developers.

Keywords: tdd; test-driven development; innovation value chain; software quality.

Universidade de São Paulo (USP). Departamento de Engenharia de Produção, Avenida Prof. Luciano Gualberto, Travessa 3 Nº 380.
E-mail: 1ana.ress@usp.br, 2remo@usp.br, 3salerno@usp.br

Special Issue on Selected Papers from ALTEC 2011.
Selected February 11, 2013

J. Technol. Manag. Innov. 2013, Volume 8, Special Issue ALTEC.

115

ISSN: 0718-2724. (http://www.jotmi.org)
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2013, Volume 8, Special Issue ALTEC.

Introduction

Global competition propels companies to identify a compet-
itive advantage that will focus the market on their products.
According to Porter (1993), competitiveness depends on a
company’s capacity to improve and innovate. Companies ob-
tain a competitive edge through their innovation initiatives,
which identify new technologies and methods to execute
processes and projects.

Companies must make a strategic decision to develop the
capabilities to innovate and improve. As Porter mentions,
“the choices concerning point of view determines not only
the activities the company will develop and how these ac-
tivities will be configured but also how these activities will
relate with each other” (PORTER, 1996).

According to Parasuraman and Colby (2002), companies
that desire product and service competitiveness need to ad-
equately manage the company-client (external marketing),
company-employee (inside marketing) and employee-client
(interactive marketing) communication channels. This ap-
proach is interesting because it segregates the moments and
the goals of client-company communication. Kotler (2002)
states that while it is important for a company to define and
understand its target market, the company also requires a
mechanism for adequately capturing the needs of its clients.
Understanding all of the software requirements is impor-
tant for having a successful end result that can actually be
launched in the market. Regardless of how well the software
has been planned or coded, it will not meet the end us-
ers’ expectations if it is poorly analyzed and the require-
ments implemented incorrectly. The developer will thus face
difficult inquiries for not having met the client’s goal. Leite
(2001) states that well collected requirements are key in-
puts that must be inserted into building a system such that
the actual needs of the users are considered.

It is a challenge to change the software development pro-
cess. but any change in a company’s culture is rather dif-
ficult. According to Hurley and Hult (1998), the capacity to
innovate within a company can be understood as the ability
of the organization to adhere to or execute new ideas, pro-
cesses and products with success.

To Van de Ven et al. (1999), innovation is a process of de-
veloping and implementing new processes and projects or
generating new ideas, such as a new technology, product,
organizational process or new arrangements that reinforce
Rogers’s (1995) concept that innovation is a “perception”
of the new.

Jonash and Sommerlatte (2001, p. 2) concluded that in-
novation is an organizationally defined strategy that is not

limited to R&D, as occurs in most traditional organizations,
but they affirm that innovation is the propelling force that
drives the company.

According to Powell and Dentmicallef (1997), technology
alone is not enough to maintain a company’s competitive
edge. Information Technology productivity must be continu-
ous and integrated into the companies’ processes. In addi-
tion, this software development model proposes improving
productivity and quality, which motivates the study and prac-
tice of TDD.

The goal of this article is to discuss a software development
model called TDD. This model offers a new way to organize
the activities of software development to promote a better
understanding of the clients’ system requirements clients.
The TDD model will be explored using the innovation con-
cepts approach.

The structure of this article is based on a strong theoreti-
cal foundation, aiming to demonstrate the main concepts
in the following sections: Agile Methodology Management
and Test-Driven Development (TDD), the Product Develop-
ment Model, and the Innovation Value Chain. The methodol-
ogy used, the case study premises and the results are then
presented. The article ends with Conclusion and References.
Academic Board

Agile Methodology Management

Innovation and complex projects are usually present in
dynamic organizations. In this context, there is difficulty
in forecasting the future, which is uncertain and challeng-
ing, due to the limitations of traditional project manage-
ment techniques that perform tests at the end of a project
(SUIKKI; TROMSTEEDT; HAAPASALO, 2006). According
to Senhar (2001), these limitations are present in project
planning and monitoring.

By considering that traditional methodologies, which fore-
cast the total size of the initial phases of the project covering
all of the specification requirements were somewhat adap-
tive, is that in February 2001, a group of developers thus
proposed an alternative methodology for software develop-
ment entitled Agile Project Management (APM), document
published on the internet (http://agilemanifesto.org/) titled
“Agile Manifesto for Software Development“.

Beck (1999) defines TDD as one of the practices that be-
longs to the XP core and should be implemented during the
design and software coding phases. TDD is a practice that
is focused on simplifying the Software Design Activities to
improve the hand-in speed.

116

ISSN: 0718-2724. (http://www.jotmi.org)
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2013, Volume 8, Special Issue ALTEC.

tained through their survey is that TDD has smaller modules
with fewer methods and greater coverage on code (i.e., the
number of coding lines that are executed in test cases). It is
thus possible to assume that by using smaller modules, the
authors reached or exceeded their expectations in terms
of requirements, compared to the traditional approach. A
direct result is less complexity in development, which results
in easier maintenance.

Figure 1 compares the traditional software development
(process A), which applies tests at the end of software de-
velopment, and TDD (process B), which applies tests at the
beginning.

According to Crispin (2006), by applying TDD, clients are
satisfi ed with the quality obtained during development and
the improved communication among the clients, business
analysts and developers. This communication makes it easier
to understand the requirements and scope of the product.

Innovation Concept

Product Development Model

According to Thier (2005), the development process for a
product with many particularities must follow a process,
i.e., a sequence of events, as is common in other ventures.
The process of developing new products (PDP) requires
management to focus on quality control during product de-
velopment to minimize production errors and failures. It is
appropriate to apply these concepts to the model of soft-
ware development. Ulrich and Eppinger (2000) state that the
organization must decide to build the product, and fi gure 2
shows their model, which contains 6 phases.

TDD is a design and development technique that focuses
on building a system incrementally by keeping in mind that
we are never too far away from a functional and deliverable
baseline. The test-code-refactor cycle dictates the rhythm of
development through a series of short and controlled steps
in which refactor is the activity performed by the developer
to increase the internal structure of the code without alter-
ing its functionality. The classic sequence is to fi rst produce
the design, implement it and then test the software for bugs
is the opposite of the test-code-refactor methodology. Ac-
cording to Lewis (2004), quality cannot be reached after a
product is completed. Therefore, the goal is to prevent qual-
ity failures or defi ciencies in the fi rst place using a quality
assurance program.

TDD – Test-Driven Development

According to Jansen and Saiedian (2005), TDD appeared in
a set with agile processes models and has its roots in the
interactive, incremental and evolutionary processes mod-
els used before 1950. The authors add that NASA’s project
Mercury from 1950 applied TDD, which was not known until
2003, when Kent Beck unveiled this method. The authors
still stresses the ability of TDD to improve software quality
and that this method should be a part of Software Engineer-
ing coursework.

According to Pressman (1995), this classic approach fore-
casts system development prior to conducting analyses, the
project and its implementation. These models follow the tra-
ditional execution of fi nal tests for coding.

Janzen and Saiedian (2008) compared the traditional (i.e.,
tests conducted at the end of the project) and TDD (i.e.,
tests conducted at the beginning) approaches. The result ob-

Figure 1: Model of Janzen and Saiedian (2008) - Traditional Development vs. TDD

117

Communica-
tion

Client + Business Analyst Client + Developer Developer Team

TDD Activities Requirements Document
Technical Requirements

Tests Code
Refactor

Traditional
Activities

Requirements Document
Technical Requirements

Code
Tests

ISSN: 0718-2724. (http://www.jotmi.org)
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2013, Volume 8, Special Issue ALTEC.

tiate themselves through their attributes, skills and innova-
tion processes, and states that one of the sources are the in-
ternal factors of the company’s internal value chain. Similarly,
Dosi et al (1982) indicates that innovation is the quest for
new solutions, imitations and experimentation, which leads
to new products or processes and new organizational struc-
tures. Ducker (2002) adds that for internal sources of in-
novation have improved production processes and changes
resulting from the strategic positioning.

Hansen and Birkinshaw (2007) allege that upon observing
innovation from point A to point B, we have an Innovation
Value Chain composed of three phases: idea generation, idea
development and the propagation of the developed con-
cepts. Within these phases, there are several activities that
compound the link of this chain. As observed in table 1, the
TDD concept is used.

Phase 0 –Idea Generation: The client expresses their re-
quirements, and a business analysis of the IT work required
to conceive the product is performed. The result of this
phase is the specifi cation in textual form.

Phase 1 – Idea Conversion: The ideas created in phase 0
must be converted into the target product. In the traditional
approach, the prototype is a resource that can be shared be-

In this above proposed organization of work, the test phase
comes before the production phase, the goal is to produce
suffi cient evidence that the product will satisfy the needs of
the client. In software development, the application of TDD
focuses on looking for the same target, e.g., when writing
the test specifi cations before coding, the functional require-
ments are prioritized. Performing the steps in this order is
a way to guarantee that the clients’ requirements will be
achieved and then apply the coding needed for its operation,
promoting even a lean code.

Innovation Value Chain

The term “Value Chain” was originally adopted by Mi-
chael Porter in the 1980s. According to the author, “every
company is a set of activities which are executed to de-
sign, produce, trade, deliver and support its product” and
“all these activities can be represented using a Value Chain”
(PORTER, 1993).

Each organization desires to improve the way they create
and generate value. In the case of innovation, it is an impor-
tant factor to evolve the competitiveness, productivity and
quality of the product.

Afuah (1998) states that companies should seek to differen-

Figure 2: Modelo f Ulrich and Eppinger (2000) - Product and Development Process

Table 1: Adapted Model of Hansen and Birkinshaw (2007) - TDD vs. Traditional

118

ISSN: 0718-2724. (http://www.jotmi.org)
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2013, Volume 8, Special Issue ALTEC.

PITT-FRANCIS (2009), ENQUOBAHRIE (2007), SFETSOS
(2006), NAGAPPAN (2008), JANZEN; SAIEDIAN (2005),
ZHANG (2004), GERAS (2004), ANDREA (2007), JOHN-
SON (2007), TURNU (2006), RICCA (2009), CRISPIN
(2006), KOU (2010), HUMMEL; ATKINSON (2007)]. Among
them, we can examine the profit gained in the requirements
analyses, as the developers can criticize or even promote
discussions during the conversion of knowledge (before
the coding) made through the test cases [PITT-FRANCIS
(2008),PITT-FRANCIS (2009), RICCA (2009),KOU (2010)].
Some articles question the productivity gain mentioned by
Madeyski (2006) and Madeyski and Szala (2007). These arti-
cles indicate that their studies do not result in a productivity
gain and do not even improve the software quality. These re-
sults could be explained by the research of Muller and Hofer
(2007) and Martin (2007), who express that the success of
TDD depends on the team’s seniority.

Janzen and Saiedian (2008) and Zhang (2004) show the im-
portance of TDD as an extension of the recognition that
TDD is a new practice in Software Engineering.

After its diffusion in 2003 by Kent Beck, works were pub-
lished in 2007 that proposed improvements to the TDD
technique, especially concerning the conversion phase,
which suggested new techniques or improvements in the
test cases [JURECZKO; MLYNARSKI (2010), NAGAPPAN
(2010), CZIBULA (2008), VODDE; KOSKELA (2007)]. By
this time, some works suggested that the TDD concepts
should be applied to specific applications such as embedded
development, databases or even spreadsheets [RUIZ; PRICE
(2007), MCDAID; RUST (2009), HAMILL (2008), CHEN
(2008), GRENNING (2007), AMBLER (2007), DOHMKE;
GOLLEE (2007)].

Search for synonyms for Test-Driven Development

As mentioned by Janzen and Saiedian (2005), TDD has syno-
nyms such as Test-First Programming, Test-First Design and
Test-Driven Design

Test-First Programming

•	 Criteria: Key words, Test-First Programming; Type
of document, Article
•	 Search result: 4 articles

Of these 4 articles, 2 use the term Test-Driven Develop-
ment, 1 discusses the productivity of Erdogmus (2005) and
1 questions that the quality results are deemed inconclusive
to affirm that there are benefits, as mentioned by Madeyski
(2006). The other 2 articles either discuss applying TDD in
larger projects, i.e., the study by Talby D (2006), or investi-
gating improvements in productivity and quality after using
TDD, i.e., the study by Huang L (2009).

tween client and developer, but it cannot be used as a frame-
work for coding after it is a user interface. The develop-
ers must interpret the specifications to code the functional
requirements. In the TDD case, the client will be able to
collaborate with the developers in creating the test classes,
which will be the groundwork for coding. In other words,
the developer will code, and the client will be the informa-
tion resource.

Phase 2 – Idea Propagation: In the traditional approach (test
in the end), there is not a knowledge conversion document.
Each developer must interpret the requirement document,
thus making it difficult to understand the project scope. In
the TDD case, as there is a knowledge conversion step be-
fore beginning product development by applying a test case,
the developers can develop a common communication chan-
nel while having a common understanding of the project.

As mentioned by Hansen and Birkinshaw (2007), it is im-
portant that the links of the chain are equally strong and
weak because the productivity of the chain is measured by
its weakest link. Because the traditional approach does not
contain a conversion phase, we presume that a weak link
in the chain is addressed in the TDD case because it has a
conversion phase.

Method

The development of this study was divided into two distinct
parts. The first constitutes a biographical review to highlight
the key components of TDD and to search for synonyms.
The second part is composed of a case study that is used to
investigate the assumptions of TDD in an actual case.

Biographical Review

To verify the publications referring to TDD, the following
search was used in the Web of Science:

Search for the term Test-Driven Development

•	 Criteria: Key Word, Test-Driven Development; Type
of Document, Article
•	 Search Result: 36 articles
In the analysis, three articles were excluded because they
referred to related subjects in sociology and education. This
left 33 articles to be analyzed.

Seventeen articles demonstrated a productivity gain in TDD
compared to the traditional methodology of software de-
velopment. The articles stress that productivity gain comes
from the early detection of failures in the beginning phases
of process development or product quantity [ERDOGMUS
(2005), JANZEN; SAIEDIAN (2008), PITT-FRANCIS (2008),

119

ISSN: 0718-2724. (http://www.jotmi.org)
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2013, Volume 8, Special Issue ALTEC.

Company A

The Financial Company with 3,500 employees where the TI
department occupies a strategic position in the company. The
data collected are from 2010, and the organization has the
following features:

- Projects are classified according to the development ef-
fort: large is above 4,000 hours; medium is between 2,000
and 3,999 hours; small is between 1,000 and 1,999 hours; and
tasks that take under 1,000 hours are not considered projects.
- The closed projects are considered a success when the
deviation does not exceed 5% compared to the total term
(actual x estimated) and the total cost (actual x estimated)
- All projects, when they complete the development phase,
are submitted to the quality area to validate their func-
tional requirements. This area must create black box test
cases, which will consider the system interface, not the
source code. The goal is the functional validation, which runs
through a minimum of 80% of the system, and the success
rate must be equal to or greater than 90%. The project can
go through this cycle several times until it reaches the re-
quired indicators.

The table below presents the data obtained following the
traditional development (test in the end).

In 2010, the company did not successfully close one large
project. The area of IT management investigated this phe-
nomenon and concluded that these software failures were
responsible for the rising costs and increased software de-
velopment time. To minimize the software failure rate, it was
decided to apply TDD practices to a large project.

The motivation of IT managers for choosing the TDD prac-
tices was the observation that the quality department creat-
ed some ad hoc test cases to determine what was important
for the system, as it was already a post-development activity.
The selected project was estimated to have 5,300 hours of
development. Initially, it was necessary to adjust the team’s
expectations, as TDD seemed less productive and the level
of employee frustration increased due to the time invested
in creating test cases. As the guidance provided was to cre-

Test-First Design

•	 Criteria: Key word, Test-First Design; type of docu-
ment, Article; area, Computer Science
•	 Search Result: 4 articles

In this case, it was necessary to shorten the search in the
field of computing; even with this shortening, it was neces-
sary to exclude 1 article from the analysis, as it referred to a
Physician school. Of the 3 articles analyzed, 2 are presented
with the key word Test-Driven Development, 1 discusses
the productivity of Johnson (2007), and another questions
whether the improvements in quality are conclusive for af-
firming that there are profits, as Madeyski (2006) suggests.
Only one article, i.e., that by Kay (2009), raises the question
of tests in the usage approach.

Test-Driven Design

•	 Criteria: Key words, Test-Driven Design; Type of
document, Article; Area, Computer Science or Operations
Research & Management Science or Engineering or Automa-
tion & Control Systems
•	 Search Result: 14 articles

In this case, there was also a need to limit the subject areas.
As a result, 2 articles were excluded from the analysis be-
cause they refer to the fields of explosives and education.
Twelve articles were left for analyzes, all of which included
the term Test-Driven Development. In closing, the term Test-
Driven Development is used most frequently, and the term
Test-Driven Design is identified as a synonym.

Case Study

Data were collected from projects that followed either the
traditional approach or TDD. The focus of the investigation
was the presence of and/or problems with the assumptions,
compared with the results of the bibliographical review. Con-
sidering the value chain of innovation, it was expected that
the conversion phase in the TDD approach would actually
improve the productivity of development because there is co-
hesion among the links in the chain.

Table 2: Data of Company A - Traditional Development

Medium Quality
Classification # of projects Successful Projects # of Cycles Quality of the 1st

Cycle
Large Project 12 0% 3 62%
Medium Project 38 40% 2 76%
Small Project 63 58% 2 84%

120

ISSN: 0718-2724. (http://www.jotmi.org)
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2013, Volume 8, Special Issue ALTEC.

Considering the model of Ulrich and Eppinger (2000), in
which the test phase occurs before production, the pro-
jects applying TDD were concerned with detecting fail-
ures before coding began. This model was valuable in
software development, as more attention was paid to the
elements to be implemented and less was paid attention
to the logical structures.

It is important, however, to pay attention to the implemen-
tation of TDD by teams with limited experience in devel-
opment, as having knowledge of test class constructions is
necessary to profit from the technique.

In general, we can suppose that applying TDD enhances the
productivity of the software development chain process and
that, as the case study showed, the company should be at-
tentive to the seniority of the development team and should
maintain close communication with the client to build good
test cases.

A limiting factor of this study is the lack of data from other
companies that applied TDD, which prevents us from form-
ing a broader conclusion. We would like to suggest that a
future research project should focus on gathering such data.

ate one test class for each code class, it was necessary to
have two quality cycles to reach the minimum 90% of the
expected quality. The project thus had a 7% of deviation in
time and cost. The lessons learned included the following:

- For the construction of the test classes is required rigor
to certain input parameters that will be inserted. The simple
fact of having a test class not guarantee the expected quality
(above 90%) in the first round of tests.

- To create the test classes, it is necessary for the team to
have certain experience in development, and the ad hoc de-
velopers had difficulties in applying the TDD concepts.

It was thus decided to choose a second project that also had
approximately 5,800 hours of development time. Develop-
ers were instructed to focus on understanding the features,
with the goal of writing good tests. For the main classes of
tests, the user was asked to provide the expected entry and
exit parameters. In the first quality cycle obtained 93% of the
total expected quality, and the project total had a 4% devia-
tion in time and cost and was thus considered a success. The
lessons learned included the following:

- It is necessary to write specific test classes for performance
improvement (i.e., including nonfunctional requirements,
such as processing or response time).

- The development led to tests tend to have the technical
documentation also guided the tests, and developers unfamil-
iar with this technique may present some difficulty in reading.
It is recommended to pay special attention to this scenario.

Discussion

In the traditional development (tests in the end), we observe
that a larger project incurs a larger gap between the project
and the time x cost, according to the rules applied by the
organization studied. It is safe to say that one of the reasons
that this gap occurs is due to the lack of a knowledge conver-
sion phase between the client and the developer. At the end
of the development, it will be revealed whether the coding
reflected the client’s expectations.

When applying TDD techniques, we can observe that the
second project’s results were better, as the developers
were more concerned with understanding the require-
ments so they could prepare better tests. The client also
provided the expected entry and exit parameters. It is
thus possible to conclude that there was knowledge con-
version between the client and developer. Considering
the principles of Hansen and Birkinshaw (2007), it is pos-
sible to expect a higher quality chain, as the weak link
(knowledge conversion) was reinforced.

121

ISSN: 0718-2724. (http://www.jotmi.org)
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2013, Volume 8, Special Issue ALTEC.

HANSEN M. ; Birkinshaw J., The Innovation Value Chain. Har-
vard Business Review, 2007.

HUMMEL, O.; Atkinson, C. Improving the retrieval efficiency
of software component markets. Wirtschaftsinformatik , v.
49, n. 6, p. 430-438, 2007.

HURLEY, Robert F.; Hult, Tomas M. Innovation, market orien-
tation and organizational learning: an integration and empiri-
cal examination. Journal of Marketing, vol. 62, July, 1998. pp.
42-54

JANZEN, D. S.; Saiedian, H. Does test-driven development
really improve software design quality? Ieee Software, v. 25,
n. 2, p. 77-84, 2008.

JANZEN, D.; Saiedian, H. Test-driven development: Concepts,
taxonomy, and future direction. Computer, v. 38, n. 9, p. 43-+,
2005.

JOHNSON, M. J. et al. Incorporating performance testing in
test-driven development. Ieee Software, v. 24, n. 3, p. 67-+,
2007.

JONASH, R. S.; Sommerlatte, T. O valor da inovação (the
innovation premium) como as empresas mais avançadas
atingem alto desempenho e lucratividade. Rio de Janeiro:
Campus, 2001

JURECZKO, M.; Mlynarski, M. Automated Acceptance Testing
Tools For Web Applications Using Test-Driven Development.
Przeglad Elektrotechniczny , v. 86, n. 9, p. 198-202, 2010.

KOTLER, Philip. Administração de marketing: a edição do
novo milênio. 5º ed. São Paulo: Prentice Hall, 2002

KOU, H. B. et al. Operational definition and automated in-
ference of test-driven development with Zorro. Automated
Software Engineering, v. 17, n. 1, p. 57-85, 2010.

LEITE, J. C. S. P.: Gerenciando a qualidade de software com
base em requisitos, Qualidade de software: Teoria e Prática,
cap. 17. A.R.C. Rocha, J.C. Maldonado, K. Weber (orgs), Pren-
tice-Hall (2001)

LUNA, E. R. et al. Incorporating Usability Requirements In
A Test/Model-Driven Web Engineering Approach. Journal of
Web Engineering, v. 9, n. 2, p. 132-156, 2010.

MADEYSKI, L. The impact of pair programming and test-
driven development on package dependencies in object-
oriented design - An experiment. Product-Focused Software
Process Improvement, Proceedings, v. 4034, p. 278-289, 2006.

References

AFUAH, A. Innovation management: strategies, implementa-
tion and profits. New York: Oxford University Press, 1998.

AGILE Alliance. Manifesto for agile software development.
http://www.agilemanifesto.org/ [Accessed May 20, 2011]

AMBLER, S. W. Test-driven development of relational data-
bases. Ieee Software, v. 24, n. 3, p. 37-+, 2007.

ANDREA, J. Envisioning the next generation of functional
testing tools. Ieee Software, v. 24, n. 3, p. 58-+, 2007.

CHEN, W. K. et al. Integration of specification-based and
CR-based approaches for GUI testing. Journal of Informa-
tion Science and Engineering, v. 24, n. 5, p. 1293-1307, 2008.

CRISPIN, I. Driving software quality: How test-driven devel-
opment impacts software quality. Ieee Software, v. 23, n. 6, p.
70-71, 2006.

CZIBULA, I. G. et al. Comdevalco Development tools for
procedural paradigm. International Journal of Computers
Communications & Control, v. 3, p. 243-247, 2008.

DOHMKE, T.; Gollee, H. Test-driven development of a PID
controller. Ieee Software, v. 24, n. 3, p. 44-+, 2007.

DOSI, G. Technological paradigms and technological trajec-
tories. Research Policy, v.11, p.147-162,1982.

DRUCKER, P.E. The discipline of innovation. Innovation. v.42,
p.75-87, 1991.

ENQUOBAHRIE, A. et al. The image-guided surgery toolkit
IGSTK: An open source C++ software toolkit. Journal of
Digital Imaging, v. 20, p. 21-33, 2007.

ERDOGMUS, H. et al. On the effectiveness of the test-first
approach to programming. Ieee Transactions on Software
Engineering, v. 31, n. 3, p. 226-237, 2005.

GERAS, A. M. et al. A survey of software testing practices in
Alberta. Canadian Journal of Electrical and Computer Engi-
neering-Revue Canadienne De Genie Electrique Et Informa-
tique, v. 29, n. 3, p. 183-191, 2004.

GRENNING, J. Applying test driven development to embed-
ded software. Ieee Instrumentation & Measurement Maga-
zine, v. 10, n. 6, p. 20-25, 2007.

HAMILL, P. Unit Testing Web Services. Dr Dobbs Journal, v.
33, n. 11, p. 53-+, 2008.

122

ISSN: 0718-2724. (http://www.jotmi.org)
Journal of Technology Management & Innovation © Universidad Alberto Hurtado, Facultad de Economía y Negocios.

J. Technol. Manag. Innov. 2013, Volume 8, Special Issue ALTEC.

RICCA, F. et al. Using acceptance tests as a support for clari-
fying requirements: A series of experiments. Information and
Software Technology, v. 51, n. 2, p. 270-283, 2009.

ROGERS, E. M., Diffusion of Innovations. New York: The Free
Press, 1995.

RUIZ, A.; Price, Y. W. Test-driven GUI development with
testNG and abbot. Ieee Software, v. 24, n. 3, p. 51-+, 2007.

SENHAR, A. Strategic project leadership: toward a strategic
approach to project management. R&D Management, v. 34,
n.5, p..394-414, 2001

SFETSOS, P. et al. Investigating the extreme programming
system - An empirical study. Empirical Software Engineering,
v. 11, n. 2, p. 269-301, 2006.

SUIKKI, R; Tromstedt, R.;Haapasalo,H. Project management
competence development framework in turbulent business
environment. Technovation, v. 26, n.5, p.723-738, 2006

THIER, Flávio. Modelo para o processo de desenvolvimento
de máquinas para a indústria de cerâmica vermelha. 2005.
198p. Tese (Doutorado em Engenharia de Produção) – Uni-
versidade Federal de Santa Catarina. Florianópolis, 2005.

TURNU, I. et al. Modeling and simulation of open source
development using an agile practice. Journal of Systems Ar-
chitecture, v. 52, n. 11, p. 610-618, 2006.

ULRICH, Karl T.; Eppinger, Steven D. Product design and de-
velopment. 2º ed. New York: McGraw-Hill, 2000

VAN DE VEN, A. H. et al.; The Innovation Journey. New York:
Oxford University Press, 1999

VODDE, B.; Koskela, L. Learning test-driven development by
counting lines. Ieee Software, v. 24, n. 3, p. 74-+, 2007.

ZHANG, Y. F. Test-driven modelling for model-driven devel-
opment. Ieee Software, v. 21, n. 5, p. 80-+, 2004.

MADEYSKI, L. The impact of Test-First programming on
branch coverage and mutation score indicator of unit tests:
An experiment. Information and Software Technology, v. 52,
n. 2, p. 169-184, 2010.

MADEYSKI, L.; Szala, L. Impact of aspect-oriented program-
ming on software development efficiency and design quality:
an empirical study. Ieee Software, v. 1, n. 5, p. 180-187, 2007.

MARTIN, R. C. Professionalism and test-driven development.
Ieee Software, v. 24, n. 3, p. 32-+, 2007.

MCDAID, K.; Rust, A. Test-Driven Development for Spread-
sheet Risk Management. Ieee Software, v. 26, n. 5, p. 31-36,
2009.

MULLER, M. M.; Hofer, A. The effect of experience on the
test-driven development process. Empirical Software Engi-
neering, v. 12, p. 593-615, 2007.

NAGAPPAN, N. et al. Realizing quality improvement through
test driven development: results and experiences of four in-
dustrial teams. Empirical Software Engineering, v. 13, n. 3, p.
289-302, 2008.

PARASURAMAN, A.; Colby, Charles L. Marketing para
produtos inovadores: como e por que seus clientes adotam
tecnologia. Porto Alegre:Bookmann, 2002

PITT-FRANCIS, J. et al. Chaste: A test-driven approach to
software development for biological modelling. Computer
Physics Communications, v. 180, n. 12, p. 2452-2471, 2009.

PITT-FRANCIS, J. et al. Chaste: using agile programming tech-
niques to develop computational biology software. Philo-
sophical Transactions of the Royal Society a-Mathematical
Physical and Engineering Sciences, v. 366, n. 1878, p. 3111-
3136, 2008.

PORTER, Michael E. Estratégia competitiva: técnicas para
análise de indústrias e da concorrência. Rio de Janeiro, Cam-
pus, 1996 .

PORTER, Michael E. Vantagem competitiva das nações. Rio
de Janeiro, ed. Campus, 1993.

POWELL, T. C.; Dentmicallef, A. Information technology as
competitive advantage: The role of human, business, and
technology resources. Strategic Management Journal, v. 18,
n. 5, p. 375-405, 1997.

PRESSMAN, Roger S. Engenharia de Software, São Paulo:
Makron Books, 1995.

123

	Introduction
	Agile Methodology Management
	TDD – Test-Driven Development
	Innovation Concept
	Innovation Value Chain
	Method
	Company A
	Discussion
	References

