AKHLAK-BASED INTELLIGENT MULTI-AGENT ARCHITECTURE

AZREE SHAHREL AHMAD NAZRI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

NOVEMBER 2006

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

AKHLAK-BASED MULTI-INTELLIGENT AGENT ARCHITECTURE

By

AZREE SHAHREL AHMAD NAZRI

November 2006

Chairman:Associate Professor Abdul Azim Abd Ghani, PhDFaculty:Computer Science and Information Technology

Coordination in socially intelligent agents is imperative because actions produced by the agents, without any deliberation on its consequences, may have non-local effects. These non-local effects will lead to a possibility of inefficient performance of the individual and the system. Socially intelligent agents can be best described as autonomous problem solvers that have to achieve their objectives by interacting with other similarly autonomous entities. The reason that such agents are inherently social makes the agents must produce decisions that are not only rational from the perspective of the individual agent but also rational from the perspective of the society. To solve the above problems we propose Akhlak coordination model stems from Akhlak concept to help and guide the agents to coordinate their tasks with other members. The model will be design as a social component of an agent-based architecture called Multiagent Linkage Social Intelligent (MALSI) architecture. MALSI architecture that associated with Akhlak model is realized in an exemplar computational setting: a case study and a series of experiments are made of the relative performance of the model functions in a two different environment: homogeneous and heterogeneous environments. The case study measures performance of the system aided MALSI agent (embedded with Akhlak model) in perspective of users and designers of the system. The experiments measure coherency of multi-agent, which mean, how well the agents behaves as a unit, along some dimension of evaluation. The case study and the experiments are conducted in real-life industry in government agencies: Malaysian Administrative Modernization and Management Planning Unit (MAMPU) and Ministry of Education (MOE).

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SENIBINA MULTI-AGEN CERDAS BERASASKAN AKHLAK

Oleh

AZREE SHAHREL AHMAD NAZRI

November 2006

Pengerusi: Profesor Madya Abdul Azim Abd Ghani, PhD

Fakulti: Sains Komputer dan Teknologi Maklumat

Penyelarasan dalam sosial pintar ejen-ejen adalah penting kerana tindakantindakan dihasilkan oleh ejen-ejen, tanpa sebarang perbincangan di akibatnya, mungkin mempunyai bukan tempatan kesan-kesan. Ini bukan tempatan kesankesan akan mengetuai kepada kemungkinan prestasi tidak cekap individu dan sistem. Dari segi sosial pintar ejen-ejen boleh jadi paling baik disifatkan sebagai penyelesai masalah bebas bahawa terpaksa mencapai objektif-objektif mereka oleh berinteraksi dengan lain serupa bebas entiti-entiti. Sebabnya ejen-ejen seperti perlu mengeluarkan keputusan-keputusan yang rasional dari perspektif ejen individu dan juga dari perspektif masyarakat. Untuk menyelesaikan masalah-masalah atas kita mencadangkan Akhlak model berasal dari Akhlak konsep untuk membantu dan panduan ejen-ejen untuk membuat menelaraskan aktivit-aktiviti mereka. Konsep Akhlak adalah berasal daripada kepunyaan pintar agen pintar: keupayaan sosial. Dalam penyelidikan ini, kita telah menerbitkan ciri-ciri untuk konsep ini dan menambah tiga ciri-ciri tambahan: sosial reaktif, sosial proaktif, sendiri kaji diri. Senibina MALSI digabungkan dengan Akhlak model dilaksanakan dalam satu contoh latar dan satu kajian kes serta satu siri dari eksperimen-eksperimen dibuat dalam dua persekitaran: persekitaran homogen dan heterogen. Kajian kes langkah-langkah prestasi sistem membantu ejen MALSI (ditanam dengan model Akhlak) dalam perspektif pengguna-pengguna dan pereka-pereka sistem. Eksperimeneksperimen langkah pertalian bagi multi ejen yang bermaksud betapa baik ejen-ejen berkelakuan seperti satu unit, seterusnya beberapa dimensi penilaian. Kajian kes dan eksperimen-eksperimen dikendalikan dalam industri kehidupan sebenar: Pemodenan Pengurusan yang Rakyat Malaysia dan Unit Perancangan Pengurusan (MAMPU) dan Kementerian Pendidikan (MOE).

ACKNOWLEDGEMENT

Firstly, I would like thank my supervisor, Prof Madya Dr Abdul Azim Abd Ghani, Dean of the Faculty of Computer Science and Information Technology, for invaluable discussion and commentary. Also, I would like to thank my cosupervisor, Prof Madya Dr Hj Md Nasir Hj Sulaiman, for his support and encouragement.

I also would like to express my thanks to the Faculty of Computer Science and Technology, especially the ICT unit, for providing general help and assistance for the experiments. Also, I'd like to thank the Library and the School of Graduate Studies for helpfully fulfilling my every request.

Special thanks to my friends and colleagues at the Faculty of Computer Science and Information Technology for support and advice. Your help will not be forgotten.

Finally, I would like my family for giving me the motivation and moral support needed to complete this thesis. My gratitude is dedicated for my nucleus family, my wife Azwanis Abdosamad and my son Muhammad Azim Hakimi. This gratitude is prolonged to both of my parents, my father Ahmad Nazri Hj. Ahmad and my mother Junaidah Embong Ibrahim .Only Allah can truly reward what they have done.

Azree Shahrel Ahmad Nazri

July 2006

I certify that an Examination Committee met on November 2006 to conduct the final examination of Azree Shahrel Ahmad Nazri on his Master of Science thesis entitled "Akhlak-based Intelligent Multi-Agent Architecture" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mohd Hasan Selamat, M.Sc. Associate Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Chairman)

Masrah Azrifah Azmi Murah, PhD Lecturer Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Internal Examiner)

Norwati Mustapa, PhD Lecturer Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Internal Examiner)

Safaai Deris, PhD Professor Faculty of Computer Science and Information Technology Universiti Teknologi Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, PhD Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 15 Febuary 2007

This thesis has been submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Abdul Azim Abdul Ghani, PhD Associate Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Chairman)

Hj. Md. Nasir Hj. Sulaiman, PhD Associate Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Member)

> AINI IDERIS, PhD Professor/Dean School of Graduate

> > Putra

Studies

Malaysia

Date: 8 March 2007

Universiti

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

AZREE SHAHREL AHMAD NAZRI

Date: 11 November 2006

TABLE OF CONTENTS

xi

ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGEMENTS	vi
APPROVAL	vii
DECLARATION	ix
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xviii

CHAPTER

1	INT	RODUCTION	1
	1.1	Motivation	1
	1.2	Statement of the problems	3
	1.3	Objective of this research	4
	1.4	Contributions of this research	4
	1.5	Scope of this research	4
	1.6	Research methodology	6
	1.7	Structure of this thesis	7
2	LIT	ERATURE REVIEW	10
	2.1	Introduction	10
	2.2	The coordination problem	11
		2.2.1 Definition of coordination	11
		2.2.2 Rationale of Coordination	13
		2.2.3 Types of coordination	14
	2.3	Functional Architecture OF SI Framework	15
	2.4	Socially intelligent agent	20
	2.5	The Key Issues and its Characteristics	24
		2.5.1 Characteristics of the Society	25
		2.5.2 Characteristics of Interactions	28
	2.6	Attribute of Socially Intelligent Model	33
		2.6.1 Attributes of Socially Reactivity	34
		2.6.2 Attributes of Socially Pro-activity 35	
		2.6.3 Attributes of Self-Introspection	35
	2.7	Related Concepts of Social Science in Social Agents	36
		2.7.1 Ethics	38
		2.7.2 Norms	39
		2.7.3 Moral	40
		2.7.4 Akhlak	41
	2.8	Multi-Agent Planning and Scheduling	41
	2.9	Existing Agent Architecture	45
		2.9.1 Archon	46
		2.9.2 Adept	48

Page

	2.9.3 Desire	49
	2.9.4 Retsina	51
	2.9.5 Macron	53
	2.10 Summary	55
3	MALSI ARCHITECTURE	56
	3.1 Introduction	
	56 3.2 Design-based Methodology	56
	3.2 Design-based Methodology3.3 Research Operational Framework	50
	57	
	3.4 Design of MALSI architecture	65
	3.4.1 Agent with Automatic System Personalization	67
	3.4.2 Structural Design of MALSI architecture 68	
	3.4.3 Content design of MALSI architecture	74
	3.5 Summary	92
4	AN AKLAK-ORIENTED COORDINATION MODEL	93
	4.1 Introduction 93	
	4.2 Coordination Protocols	93
	4.2.1 Formation Protocol	94
	4.2.2 Individualization-Socialization (IS) Protocol	97
	4.2.3 Normative Rules of the Protocol	98
	4.3 An Akhlak Coordination Model	101
	4.3.1 An Informal Akhlak Definition	101
	4.3.2 Objects Under Coordination	103
	4.3.3 Issues, Reservation, Weights and Scores4.3.4 Agents and Roles	105 111
	4.4 Akhlak-Oriented Coordination Architecture	111
	4.4.1 The Values Mechanism	113
	4.4.2 The World View Mechanism	113
	4.4.3 The Roles Mechanism	115
	4.4.4 Formation, Socialization and	120
	Individualization Processes	
	4.5 Synchronizing Akhlak model with MALSI Architecture 124	
	4.6 Virtual Workers System Infrastructure	127
	4.7 Summary	133
5	VALIDATION OF MALSI ARCHITECTURE 5.1 Introduction	134
	134	
	5.2 Organizations Selection	135
	5.3 CIR-Agent as a Benchmark Architecture	100
	135	

	5.4 Case study: Dynamic software composition	136
	5.4.1 Case study setting	138
	5.5 Experiments: Socially intelligent agent	146
	5.5.1 Experiment 1: overall multi-agent 147	performance
	5.5.2 Experiment 2: Individual agent performan	ce 154
	5.6 Summary	160
6	RESULTS AND DISCUSSIONS	161
	6.1 Introduction	
	161	
	6.2 Results of case study	161
	6.2.1 Results from Observation	161
	6.2.2 Results from Interview	178
	6.3 Discussion of the Case Study	185
	6.3.1 Satisfying User's Requirements	186
	6.3.2 Facilitating Service Management	187
	6.4 Results of Socially Intelligent Agent Experiments 187	
	6.4.1 Results of overall society performance	187
	6.4.2 Results of individual performance 195	-
	6.5 Discussion of the Experiments	197
	6.6 Summary	198
7	CONCLUSIONS AND FUTURE WORKS	199
	7.1 Introduction 199	
	7.2 Assessment of MALSI architecture	199
	7.2.1 Design Meets Requirements	199
	7.3 Conclusions	
	202	
	7.4 Future Work	203
	7.5 Summary	204
	FERENCES	205
	PENDIXES	217
BIC	DATA OF THE AUTHOR	234

LIST OF TABLES

Table		Page
4.1	The Communication	Rules
101		
5.1	Activities for the subjects and the designers	145
5.2	Schedule for subjects	159
6.1	User Category	179
6.2 179	Designer Category	
6.3	Performance improvement in Homogeneous environment	189
6.4	Performance improvement in Heterogeneous environment	190

LIST OF FIGURES

Figure		Page
2.1	Top Functional Specification of the Social System	
	17	
2.2	Archon architecture	47
2.3	ADEPT architecture	49
2.4	DESIRE architecture	
	51	
2.5	RETSINA architecture	53
2.6	MACRON architecture	54
3.1	Research Operational Framework	58
3.2	Prototyping	63
3.3	GAIA Methodology	63
3.4	Generic Framework of MALSI agent	
	66	
3.5	Service Personalization Processes	67

3.6	MALSI architecture	69
3.7	LCI component	70
3.8	Object's Template	70
3.9	Social Introspection component	72
3.10	Service Blackboard component	73
3.11	Requirement into Detailed Architecture	77
3.12	Detailed Architecture Design into Objective system	
	79	
3.13	The Structure of Objective System	80
3.14	Objective System into Abstract System	84
3.15	An Example of the Script of Activated Systems	85
3.16	An Example of Classified of Activated System	86
3.17	An Example of Aligning of Local Nodes	87
3.18	Execution of the Script	91
4.1	The Formation Protocol	95
4.2	IS Protocol	97
4.3	Example of coordination task	
104		
4.4	Sample Contract	107
4.5	An Example of Coordination	
109		
4.6	Symbiosis Methods	116
4.7	Akhlak-oriented Coordination Architecture	
120		
4.8	Service Example	121

4.9 Detailed MALSI architecture	4.9	Detailed	MALSI	architecture
---------------------------------	-----	----------	-------	--------------

125

4.10	A conceptual diagram of Virtual Worker System	128
4.11	Interface for Information Gathering Interface	129
4.12	Multiple Queries added to the System	131
4.13	Queries Results	132
4.14	User settings	132
4.15	Information Quality	132
4.16	Time Quality	132
5.1	CIR-Agent as a Benchmark Architecture	136
5.2	Settings of Case Study Flow	137
5.3	Subjects of the System Flow	138
5.4	Task Materials Flow	140
5.5	User Category Questions' Themes	142
5.6	Designer Category Questions' Themes	142
5.7	Empirical Research Approach	146
5.8	Empirical Research on Socially Reactive & Socially Proactive	147
5.9	Empirical Research on Self-Introspection	155
5.10	Implementation of Task Dependency Environment	
158		
6.1	Normal Assignment	163
6.2	Time Constraint Assignment	
165		
6.3	Complex Constraint Assignment	167

6.4	Normal with Upgrading Event Assignment	
169		
6.5	Time with Upgrading Event Assignment	171
6.6	Complex with Upgrading Event Assignment	
172		
6.7	Upgrading Event with Normal Assignment	
175		
6.8	Upgrading Event with Time Constraint Assignment	
176		
6.9	Upgrading Event with Complex Constraint Assignment	178
6.10	Overall Completion Time in Homogeneous Environment	
188		
6.11	Overall Completion Time in Heterogeneous Environment	
188		
6.12	Distributed Tasks in society contains MALSI Agents	
	in Homogenous environment	
192		
6.13	Distributed Tasks in society contains CIR Agents	
	in Homogenous environment	
	192	
6.14	Distributed Tasks in society contains MALSI Agents	
	in Heterogeneous environment	193
6.15	Distributed Tasks in society contains CIR Agents	
	in Heterogeneous environment	193
6.16	Communication costs of the society contains MALSI agent	

and the society contains CIF-Agent in Homogeneous environment 194

6.17	Communication costs of the society contains MALSI agent	
	and the society contains CIF-Agent in Heterogeneous enviro	nment
195		
6.18	Completion time between MALSI agent and CIF-Agent	196
7.1	Global Contract	203

LIST OF ABBREVIATIONS

MALSI	Multi-Agent Linkage Social Intelligent
SDA	System Development Approach
IGS	Information Gathering System