MANIPULATION OF *LACTOBACILLUS* PROBIOTIC STRAINS TO PRODUCE HETEROLOGOUS β-GLUCANASE FOR CHICKENS

SIEO CHIN CHIN

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

MANIPULATION OF *LACTOBACILLUS* PROBIOTIC STRAINS TO PRODUCE HETEROLOGOUS β-GLUCANASE FOR CHICKENS

By

SIEO CHIN CHIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

March 2004

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Doctor of Philosophy

MANIPULATION OF *LACTOBACILLUS* PROBIOTIC STRAINS TO PRODUCE HETEROLOGOUS β -GLUCANASE FOR CHICKENS

By SIEO CHIN CHIN March 2004

Chairman: Professor Norhani Abdullah, Ph.D.

Institute : Bioscience

Application of enzymes as feed additives is common in the livestock industry, especially in poultry, to eliminate the antinutritional factors present in the diets of chickens. However, the efficiency of enzymes seldom achieves their desired effects because of destruction during feed processing and unsuitable conditions in the gastrointestinal tract. Thus, in the present study, investigations were carried out to evaluate the potential of 12 *Lactobacillus* strains as delivery vehicles for a heterologous β -glucanase enzyme in poultry. The 12 Lactobacillus strains used were L. crispatus I12, L. acidophilus I16 and 126, L. fermentum 124, 125, C16 and C17, and L. brevis 123, 1211, 1218, C1 and C10. The strains were found to exhibit resistance to chloromphenicol, erythromycin and tetracycline in varying degrees. The erythromycin resistance of L. acidophilus 116 and 126, and L. fermentum 124 and C17 could be cured by using novobiocin, and L. brevis C10 cured by using acriflavin. The chloromphenicol and tetracycline resistances of all the resistant strains were not eliminated even after prolonged curing in sublethal concentrations of individual or mixtures of curing agents such as novobiocin, ethidium bromide, acriflavin or SDS. Electrotransformation efficiency of the Lactobacillus strains was affected by growth phase, growth and recovery medium, cell density, electroporation buffer, buffer strength, plasmid concentration and electrical pulse. At optimized conditions, the strains were transformed at 10^3 - 10^4 transformants/µg plasmid DNA. The erythromycin susceptible wild-type strains (L. crispatus I12, L. brevis I23, I211 and I218, and L. fermentum 125) and cured derivatives (L. acidophilus 116C and 126C, L. brevis

C10C, and *L. fermentum* I24C and C17C) were then transformed at optimized conditions with plasmid pSA3b6, which carried a β -glucanase gene from *Bacillus amyloliquefaciens*. Five wild-type *Lactobacillus* strains, namely, *L. crispatus* I12, *L. fermentum* I25, *L. brevis* I23, I211 and I218 and a cured derivative, *L. brevis* C10C, which could retain the plasmid at a comparatively higher rate, were used for subsequent studies. The *Lactobacillus* transformants were found to secrete 32-52 U/ml of β -glucanase. Optimum activity of the enzyme was at 39 °C and pH 5-6. A loss of 0.4-1.6 U/generation of β -glucanase was observed when the strains were grown under non-selective pressure.

PCR analyses of gastrointestinal samples of chickens fed transformed Lactobacillus strains revealed that the strains could not persist for more than 24 h in the gut. The β glucanase activity detected in the jejunum and ileum of chickens fed transformed Lactobacillus strains was found to be 2-9.4 folds higher than those obtained from other intestinal sites. In the feeding trial, supplementation of transformed Lactobacillus strains to chickens significantly (P<0.05) improved the body weight by 2.5 %, and the feed conversion ratio by 1.0-2.6 %. In addition, the apparent metabolizable energy, digestibilities of crude protein and dry matter of feed were improved by 3.4 %, 5.9 % and 3.5 %, respectively. The intestinal fluid viscosity was reduced by 21-46 %. The relative weights of organs and intestinal segments (pancrease, liver, duodenum, jejunum, ileum, cecum and colon) were also reduced by 6-27 %, and the relative length of intestinal segments (duodenum, jejunum, ileum and cecum) was reduced by 8-15 %. Histological examination of the intestinal tissues showed that the jejunal villus height of chickens fed diet supplemented with transformed *Lactobacillus* strains was significantly (P<0.05) higher than those of chickens fed other dietary treatments. The transformed Lactobacillus strains were also found to reduce the time of feed passage rate by 2.2 h.

The results of the present study showed that the *Lactobacillus* strains have the potential to be used as delivery vehicles for a heterologous β -glucanase enzyme in poultry.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MANIPULASI STRAIN PROBIOTIK *LACTOBACILLUS* UNTUK PENGHASILAN β-GLUKANASE HETEROLOGUS UNTUK AYAM

Oleh SIEO CHIN CHIN Mac 2004

Pengerusi : Profesor Norhani Abdullah, Ph. D.

Institut : Biosains

Penambahan enzim ke dalam pemakanan haiwan adalah biasa dalam industri penternakan, terutamanya ayam, untuk menyingkirkan faktor antinutrisi dalam Walau bagaimanapun, efisiensi enzim pada kebiasaannya jarang pemakanannya. mencapai kesan yang dikehendaki disebabkan oleh pemusnahan enzim semasa pemprosesan pemakanan dan keadaan yang tidak sesuai dalam usus. Oleh itu, kajian ini dijalankan untuk menilai potensi 12 strain Lactobacillus sebagai penghantar alternatif enzim heterologus β -glukanase ke dalam gastrousus ayam. Duabelas strain *Lactobacillus* iaitu L. crispatus 112, L. acidophilus 116 dan 126, L. fermentum 124, 125, C16 dan C17, dan L. brevis I23, I211, I218, C1 dan C10 digunakan. Strain-strain tersebut menunjukkan kerintangan terhadap kloromfenikol, eritromisin dan tetrasaiklin pada tahap yang berbeza. Kerintangan eritromisin L. acidophilus I16 dan I26, dan L. fermentum I24 dan C17 dipulih dengan menggunakan novobiosin dan L. brevis C10 dipulih dengan akriflavin. Kerintangan kloromfenikol dan tetrasaiklin kesemua strain yang rintang tidak disingkirkan walaupun proses pemulihan dalam kepekatan sub-kematian agen pemulihan, secara berasingan atau campuran, seperti novobiosin, etidium bromida, akriflavin dan SDS diperpanjangkan. Efisiensi elektrotransformasi strain Lactobacillus dipengaruhi oleh fasa pertumbuhan sel, media pertumbuhan dan pemulihan, kepekatan sel, penimbal elektroporasi, kekuatan penimbal, kepekatan plasmid dan kekuatan elektrik. Pada keadaan optima, strain *Lactobacillus* ditransformasi pada kadar 10^3 - 10^4 transforman/µg plasmid DNA. Strain asli (*L. crispatus* 112, *L. brevis* 123, 1211 dan 1218, dan *L. fermentum* 125) dan terbitan yang dipulih (*L. acidophilus* 116C dan 126C, *L. brevis* C10C, dan *L. fermentum* 124C dan C17C) yang sensitif kepada eritromisin ditransformasi pada keadaan optima dengan menggunakan plasmid pSA3b6 yang membawa gen β-glukanase dari *Bacillus amyloliquefaciens*. Lima strain asli *Lactobacillus* iaitu *L. crispatus* 112, *L. fermentum* 125, *L. brevis* 123, 1211 and 1218 dan satu terbitan yang dipulih, *L. brevis* C10C, yang mampu mengekalkan plasmid pada kadar yang lebih tinggi diguna untuk kajian seterusnya. Transforman *Lactobacillus* merembeskan 32-52 U/ml β-glukanase. Aktiviti optimum enzim diperolehi pada 39 °C dan pH 5-6. Pengurangan 0.4-1.6 U/generasi β-glukanase diperhatikan apabila strain ditumbuh di dalam keadaan tanpa tekanan pemilihan.

Analisis PCR sampel gastrousus yang diperolehi dari ayam yang diberi makan strain *Lactobacillus* yang ditransformasi menunjukkan bahawa strain tersebut tidak berkekalan untuk lebih dari 24 jam dalam usus. Aktiviti β-glukanase yang dikesan di dalam jejunum dan ileum adalah 2-9.4 kali lebih tinggi daripada aktiviti di tapak usus yang lain. Penambahan strain *Lactobacillus* yang ditransformasi ke dalam pemakanan ayam meningkat secara signifikan berat badan ayam sebanyak 2.5 %. Kadar penukaran pemakanan juga meningkat 1.0-2.6 %. Selain daripada itu, tenaga yang dimetabolisme, penghadaman protein kasar dan bahan kering pemakanan masing-masing meningkat sebanyak 3.4 %, 5.9 % and 3.5 %. Kelikatan cecair usus juga turun sebanyak 21-46 %. Berat relatif organ dan segmen usus (pankreas, hati, duodenum, jejunum, ileum, cecum dan kolon) turun sebanyak 6-27 % dan ukuran panjang relatif segmen usus (duodenum, jejunum, ileum dan cecum) turun sebanyak 8-15 %. Kajian histologi tisu usus

menunjukkan bahawa ketinggian vilus jejunal ayam yang diberi makanan yang ditambah dengan strain *Lactobacillus* yang ditransformasi adalah lebih tinggi (P<0.05) daripada sampel yang diperolehi daripada ayam yang diberi pemakanan lain. Strain *Lactobacillus* yang ditransformasi juga mengurangkan masa untuk kadar laluan pemakanan sebanyak 2.2 jam.

Keputusan kajian ini menunjukkan bahawa strain *Lactobacillus* mempunyai potensi untuk diguna sebagai penghantar alternatif enzim heterologus β -glukanase dalam ayam.

ACKNOWLEDGEMENTS

"This moment is filled with lots of memories...... It marks the end of a chapter of my life. This "journey" has been accompanied and supported by many people. It is a pleasant aspect that I have now the opportunity to express my gratitude to all of them."

First, I would wish to express my deep appreciation and most sincere gratitude to the chairman of the supervisory committee, Associate Professor Dr. Norhani Abdullah, for her invaluable guidance and advice, endless support and encouragement throughout the duration of this study and for her critical analysis and helpful suggestions during the preparation of this thesis.

I am deeply grateful and indebted to Professor Dr. Ho Yin Wan for her support, invaluable guidance, advice and encouragement throughout the course of my study and for her critical comments and constructive suggestions in the preparation of this thesis. I am also thankful to Associate Professor Dr. Tan Wen Siang for his kind assistance, valuable suggestions and guidance during the course of my study.

Special appreciation is due to Professor Emeritus Tan Sri Dato' Dr. Syed Jalaludin Syed Salim (who was a member of Digestive Microbiology Unit till his retirement in 2001) for his constant encouragement, wise counsel and support.

Words are not enough to describe my heartfelt appreciations to Madam Haw Ah Kam, Mr. Khairul Kamar Bakri, Mr. Nagayah Muniandy, Mr. Jivanathan Arumugam and Mr. Paimon Lugiman, staff of the Digestive Microbiology Unit, and Mr. Saparin Denim and Mr. Ibrahim Mohsin, staff of Animal Nutrition Laboratory, for their technical support and kind assistance. Special thanks go to Professor Datin Dr. Khatijah Yusoff, Head of the Department of Biochemistry and Microbiology, and colleagues and staff of the Department for being so kind and accommodating.

I am very glad to have my fellow labmates who accompanied me through this part of my life. My sincere thanks to Kala, Latiffah, Lan, Darlis, Sidieq, Michael, Thongsuk, Wan, Foong Yee, Vicky, Lee and Pit Kang for their friendship, help, support, encouragement and their sense of humor that made the many hours in the laboratory very pleasant.

Finally, very special thanks are due to my loving husband, Lai Kok Loong, for his endless love, untiring patience, support and encouragement throughout the course of this study.

"And now, a new chapter of life begins "

I certify that an Examination Committee met on 16 March 2004 to conduct the final examination of Sieo Chin Chin on her Ph.D. thesis entitled "Manipulation of *Lactobacillus* probiotic strains to produce heterologous β -glucanase for chickens" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Abdul Rani Bahaman, Ph.D.

Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Chairman)

Norhani Abdullah, Ph. D.

Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

Ho Yin Wan, Ph.D.

Professor Institute of Bioscience Universiti Putra Malaysia (Member)

Tan Wen Siang, Ph.D.

Associate Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

Kunio Ohmiya, Ph. D.

Professor School of Bioresources Mie University Tsu, Japan (Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Norhani Abdullah, Ph. D.

Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Chairman)

Ho Yin Wan, Ph.D.

Professor Institute of Bioscience Universiti Putra Malaysia (Member)

Tan Wen Siang, Ph.D.

Associate Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

AINI IDERIS, Ph.D.

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

SIEO CHIN CHIN

Date:

TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	V
ACKNOWLEDGEMENTS	viii
APPROVALS	Х
DECLARATION	xii
LIST OF TABLES	xvii
LIST OF FIGURES	xxi
LIST OF ABBREVIATIONS	XXIV

CHAPTER

1	INTRODUCTION	1
2	LITERATURE REVIEW	5
	2.1 Lactic Acid Bacteria – Lactobacillus	5
	2.1.1 Lactobacillus as Probiotics	6
	2.1.2 Lactobacillus as Transformation Hosts	8
	2.2 Genetic Transfer Systems for Lactobacilli	9
	2.2.1 Cloning Vectors	10
	2.2.2 Transformation Methods	12
	2.3 Heterologous Gene Expression in Lactobacilli	15
	2.4 Factors Affecting Gene Expression in Lactobacilli	17
	2.4.1 Factors Involved in Transcription (Promoters and	
	Terminators)	19
	2.4.2 Factors Involved in Translation	20
	2.4.3 Codon Usage	21
	2.5 Stability of Genetic Determinants	22
	2.6 Chromosomal Integration of Genes	23
	2.7 Enhancing Poultry Production Through Manipulation of	
	Diet Components	26
	2.7.1 Poultry Industry	26
	2.7.2 Genetic Manipulation of Feed	28
	2.7.3 Enzyme Supplement in Feed	28
3	SELECTION OF LACTOBACILLUS STRAINS AS	
	TRANSFORMATION HOSTS	34
	3.1 Introduction	34
	3.2 Materials and Methods	35
	3.2.1 Lactobacillus Strains	35
	3.2.2 Antibiotic Susceptibility Test	36
	3.2.3 Plasmid Curing	37
	3.2.4 Characterization of Cured <i>Lactobacillus</i> Strains	39
	3.2.5 Agarose Gel Electrophoresis	40
	3.3 Results	41
	3.3.1 Antibiotic Susceptibility Test	41
	3.3.2 Plasmid Curing	45
	3.3.3 Carbohydrate Fermentation Ability of Cured	
	Strains	51

3.3.4	Plasmid Profiles	55
3.4 Disc	sussion	56
	ROTRANSFORMATION OF	
	BACILLUS STRAINS	62
4.1 Intro		62
	erials and Methods	63
	Lactobacillus Strains	63
	Plasmid DNA	64
	Initial Electroporation Procedure	65
	Optimization of Electroporation Parameters	67
4.2.3	Electroporation of <i>Lactobacillus</i> Strains with Various Plasmids	70
426	Statistical Analysis	70
4.3 Resi	•	70
	Transformation of <i>Lactobacillus</i> Strains by Initial	70
1.5.1	Electroporation Procedure	70
432	Optimization of Electroporation Parameters	71
	Electroporation of <i>Lactobacillus</i> Strains with	, -
	Various Plasmids	82
4.4 Disc	ussion	86
-	ATIVE AND QUANTITATIVE STUDIES ON	
	SSION OF β -GLUCANASE GENE IN	0.6
	BACILLUS STRAINS	96
5.1 Intro		96
	erials and Methods	98
	<i>Lactobacillus</i> Strains, Plasmids and Media Transformation of <i>Lactobacillus</i> Strains	98 101
	Isolation of Plasmid DNA	101
	Qualitative Study on Expression of β -Glucanase	101
5.2.4	Gene	101
525	Plasmid Stability	101
	Growth Studies	102
	Quantitative Study and Characterization of	102
0.2.1	Expressed β -Glucanase in Transformed	
	Lactobacillus Strains	103
5.2.8	Statistical Analysis	108
5.3 Resu		108
	Transformation of <i>Lactobacillus</i> Strains	108
5.3.2	Qualitative Study on Expression of β -Glucanase	
	Gene	108
5.3.3	Plasmid Stability	111
	Growth Studies	115
	Quantitation of β -Glucanase Produced by	
	Transformed Lactobacillus Strains	115
5.3.6	Localization of Enzyme	115
	Production of Enzyme at Different Growth	
	Phases	120
5.3.8	Effects of pH on the β -Glucanase Activity and	
	Stability	124

4

	5.3.9 Effect of Temperature on β-Glucanase Activity5.3.10 Effects of Different Substrate Concentrations on	124
	Growth, and Production of Enzyme	124
	5.3.11 Production of β -Glucanase at Growth Under	
	Selective and Non-selective Pressures	131
	5.4 Discussion	131
(W VIVA DETECTION OF TO ANGEODMED	
6	IN VIVO DETECTION OF TRANSFORMED LACTOBACILLUS STRAINS	142
	6.1 Introduction	142
	6.2 Materials and Methods	142
	6.2.1 Lactobacillus Strains	143
	6.2.2 Preparation of Transformed <i>Lactobacillus</i> Strains for <i>In Vivo</i> Study	144
	6.2.3 Feeding Experiment	144
	6.2.4 Detection by Polymerase Chain Reaction	111
	(PCR)	146
	6.2.5 PCR Sensitivity Test	147
	6.2.6 β-Glucanase Assay of Gastrointestinal	
	Samples	148
	6.2.7 Statistical Analysis	148
	6.3 Results	149
	6.3.1 Amplification Profiles	149
	6.3.2 PCR Sensitivity Test	149
	6.3.3 Amplification from Intestinal Samples	154
	6.3.4 β-Glucanase Activity of Gastrointestinal	
	Samples	162
	6.4 Discussion	164
7	EFFECTS OF β-GLUCANASE-PRODUCING	
/	LACTOBACILLUS STRAINS ON THE PERFORMANCE	
	OF BROILERS	169
	7.1 Introduction	169
	7.2 Materials and Methods	171
	7.2.1 Preparation of Parental and Transformed	1,1
	Lactobacillus Strains	171
	7.2.2 Animals and Diets	172
	7.2.3 Experimental Design	173
	7.2.3.1 Experiment 1	173
	7.2.3.2 Experiment 2	174
	7.2.4 Determination of Intestinal Viscosity	174
	7.2.5 β-Glucanase Activity in Different Intestinal	
	Contents	175
	7.2.6 Histological Examination	175
	7.2.7 Determination of Abdominal Fat Deposition	176
	7.2.8 Feed Passage Rate	176
	7.2.9 Fecal Sampling for Crude Protein and Gross	
	Energy Determination	178
	7.2.10 Dry matter analysis	181
	7.2.11 Statistical Analysis	181
	7.3 Results	182

7.3.1	Growth Performance	182
7.3.2	Apparent Metabolizable Energy (AME), Apparent	
	Digestibilities of Crude Protein (ACP) and Dry	
	Matter (ADM) of Diets, and Abdominal Fat in	
	Broiler Chickens Fed Different Dietary	
	Treatments	184
7.3.3	Dry Matter of Digesta and Excreta	185
7.3.4	Length and weight of intestines and organs	187
7.3.5	β-Glucanase Activities of Gut Contents of Broiler	
	Chickens	189
7.3.6	Intestinal Fluid Viscosity	190
7.3.7	Histological Examination	192
7.3.8	Feed Passage Rate	192
7.4 Discu	ission	197
GENERA	L DISCUSSION	211
CONCLUSIONS		225
BIBLIOG	GRAPHY	227
BIODAT	A OF THE AUTHOR	257

8

LIST OF TABLES

Table			Page
	1	Expression of heterologous proteins in Lactobacillus	16
	2	Expression of heterologous proteins in <i>Lactobacillus</i> under regulation of lactic acid bacteria promoter	18
	3	<i>Lactobacillus</i> strains and locations of isolation from the gastrointestinal tract of broilers	36
	4	Antibiotics and range of concentrations tested on wild-type <i>Lactobacillus</i> strains	37
	5	Growth of <i>Lactobacillus</i> strains in MRS broth containing various concentrations of tetracycline	42
	6	Growth of <i>Lactobacillus</i> strains in MRS broth containing various concentrations of erythromycin	43
	7	Growth of <i>Lactobacillus</i> strains in MRS broth containing various concentrations of chloromphenicol	44
	8	<i>Lactobacillus</i> strains subjected to plasmid curing and their targeted antibiotic resistance property to be cured	45
	9	Growth of wild-type <i>Lactobacillus</i> strains in various concentrations of curing agent, novobiocin	46
	10	Growth of wild-type <i>Lactobacillus</i> strains in various concentrations of curing agent, acriflavin	47
	11	Growth of wild-type <i>Lactobacillus</i> strains in various concentrations of curing agent, ethidium bromide	48
	12	Growth of wild-type <i>Lactobacillus</i> strains in various concentrations of curing agent, SDS	49
	13	Curing rates (%) of erythromycin resistance in <i>Lactobacillus</i> strains by various curing agents	51
	14	Carbohydrate fermentation profiles of wild-type (WT) <i>Lactobacillus</i> strains and their cured derivatives (C)	52

15	<i>Lactobacillus</i> strains used for electroporation experiments and optimization studies		64
16	Designations and characteristics of plasmids used in this study		65
17	Transformation efficiencies of representative <i>Lactobacillus</i> species at unoptimized electroporation conditions		71
18	Effects of growth phases on transformation efficiency of <i>Lactobacillus</i> strains		72
19	Effects of increasing glycine concentrations on the transformation efficiency of <i>Lactobacillus</i> strains		73
20	Effect of sucrose in growth medium containing glycine on the transformation efficiency of <i>Lactobacillus</i> strains		74
21	Effect of sucrose in recovery medium on transformation efficiency of <i>Lactobacillus</i> strains		75
22	Effect of cell densities on the transformation efficiency of <i>Lactobacillus</i> strains		76
23	Effects of different buffers on transformation efficiency of <i>Lactobacillus</i> strains		77
24	Effects of different buffer strengths of SMEB on the transformation efficiency of <i>Lactobacillus</i> strains		79
25	Effects of the concentrations of plasmid on the transformation efficiency of <i>Lactobacillus</i> strains		80
26	Effects of field strengths on the electrotransformation of <i>Lactobacillus</i> strains with pSA3		81
27	Transformation efficiencies of various plasmids in <i>Lactobacillus</i> strains		83
28	Bacterial strains and plasmids	99	
29	Transformation efficiencies of <i>Lactobacillus</i> strains	109	
30	Growth rate constants and generation times of parental and transformed <i>Lactobacillus</i> strains	119	

31	β-Glucanase activities of <i>Lactobacillus</i> transformants	119
32	Distribution of β -glucanase enzyme in different fractions of cell extract of transformed <i>Lactobacillus</i> strains	120
33	Effect of pH on the β -glucanase activity produced by transformed <i>Lactobacillus</i> strains	125
34	Effect of pH on the stability of β -glucanase produced by transformed <i>Lactobacillus</i> strains	126
35	Effect of temperature on the β -glucanase activity of transformed <i>Lactobacillus</i> strains	128
36	Effect of substrate concentrations on growth, and production of β -glucanase of transformed <i>Lactobacillus</i> strains	129
37	Production of β -glucanase by transformed <i>Lactobacillus</i> strains grown under selective and non-selective pressures	132
38	Composition of basal diet	145
39	Composition of basal diet	172
40	Performance of broiler chickens fed basal diet (BD), diet supplemented with parental <i>Lactobacillus</i> strains (BDP) and diet supplemented with transformed <i>Lactobacillus</i> strains (BDT)	183
41	Apparent metabolizable energy (AME), apparent digestibilities of crude protein (ACP) and dry matter (ADM) and abdominal fat of broiler chickens fed different dietary treatments	185
42	Effects of dietary treatments on intestinal contents and excreta dry matter (%) in broiler chickens	186
43	Relative weights and lengths of different intestinal sections of the gastrointestinal tract of broiler chickens fed different dietary treatments	188
44	β-Glucanase activities (U/kg DM) in diets and gastrointestinal tracts of 21-day-old chickens fed different dietary treatments	190

45	Effect of different dietary treatments on the intestinal viscosity (cP)	191
46	Effect of dietary treatments on the intestinal structures of chickens	193
47	Chromium oxide recovery (%) in excreta of chickens of all ages fed with different dietary treatments	193
48	Variables describing the cumulative excretion curves of chickens fed different dietary treatments	196
49	Time required for excretion of chromic oxide (1 % or 50 %) from chickens of different ages fed different dietary treatments	196

LIST OF FIGURES

Figure	1		Page
	1	Plasmid profiles of wild-type strains and their cured derivatives	55
	2	Physical map of plasmid pSA3	100
	3	Diagrammatic representation of the structure of plasmids pSA3b3 and pSA3b6 showing the relative positions of the <i>Eco</i> R1 and <i>Ava</i> 1 sites, and the position of the β -glucanase determinant (<i>bgl</i> A)	100
	4	Agar plate assay for detection of β -glucanase activity	110
	5	Stability of pSA3b6 in <i>Lactobacillus</i> strains grown under non-selective condition	112
	6	Agarose gel of plasmid preparations of <i>Lactobacillus</i> strains transformed with plasmids pSA3, pSA3b3 and pSA3b6	113
	7a	Growth of parental and transformed Lactobacillus strains (i) L. brevis C10C and L. brevis C10CpSA3b6, (ii) L. crispatus I12 and L. crispatus I12pSA3b6	116
	7b	Growth of parental and transformed Lactobacillus strains (i) L. brevis I23 and L. brevis I23pSA3b6, (ii) L. fermentum I25 and L. fermentum I25pSA3b6	117
	7c	Growth of parental and transformed Lactobacillus strains (i) L. brevis I211 and L. brevis I211pSA3b6, (ii) L. brevis I218 and L. brevis I218pSA3b6	118
	8	β-Glucanase activity at different growth phases of transformed <i>Lactobacillus</i> strains	121
	9	PCR amplification of <i>bgl</i> A gene using primer pairs bglAF1/bglAR1(a) or bglAF2/bglAR2 (b), and amplification of plasmid vector using pACYC184F1/pACYC184R1 primer pair	150
	10	Simultaneous amplification of <i>bgl</i> A gene and cloning vector by primer pairs pACYC184F/pACYC184R and	
		bglAF1/bglAR1 (a), and	151

pACYC184R/pACYC184R and bglAF2/bglAR2 (b)

11a	PCR sensitivity test for pure culture of <i>L. brevis</i> C10CpSA3b6	152
11b	PCR sensitivity test for pure culture of <i>L. crispatus</i> I12pSA3b6	152
11 c	PCR sensitivity test for pure culture of L.brevisI23pSA3b6	152
11d	PCR sensitivity test for pure culture of <i>L</i> . <i>brevis</i> I25pSA3b6	153
11e	PCR sensitivity test for pure culture of <i>L</i> . <i>brevis</i> I211pSA3b6	153
11f	PCR sensitivity test for pure culture of <i>L. brevis</i> I218pSA3b6	153
12	Amplification of the <i>bgl</i> A gene and cloning vector from various gastrointestinal samples obtained at day 0 (a), day 1(b), day 2 (c), day 3 (d) or day 4 (e) after removal of dietary treatment supplemented with <i>L. brevis</i> C10CpSA3b6	155
13	Amplification of the <i>bgl</i> A gene and cloning vector from various gastrointestinal samples obtained at day 0 (a), day 1(b), day 2 (c), day 3 (d) or day 4 (e) after removal of dietary treatment supplemented with <i>L. brevis</i> I23pSA3b6	156
14	Amplification of the <i>bgl</i> A gene and cloning vector from various gastrointestinal samples obtained at day 0 (a), day 1(b), day 2 (c), day 3 (d) or day 4 (e) after removal of dietary treatment supplemented with <i>L. crispatus</i> I12pSA3b6	157
15	Amplification of the <i>bgl</i> A gene and cloning vector from various gastrointestinal samples obtained at day 0 (a), day 1(b), day 2 (c), day 3 (d) or day 4 (e) after removal of dietary treatment supplemented with <i>L. fermentum</i> I25pSA3b6	158
16	Amplification of the <i>bgl</i> A gene and cloning vector from various gastrointestinal samples obtained at day 0 (a), day 1(b), day 2 (c), day 3	

	(d) or day 4 (e) after removal of dietary treatment supplemented with <i>L. brevis</i> I218pSA3b6	159
17	Amplification of the <i>bgl</i> A gene and cloning vector from various gastrointestinal samples obtained at day 0 (a), day 1(b), day 2 (c), day 3 (d) or day 4 (e) after removal of dietary treatment supplemented with <i>L. brevis</i> I211pSA3b6	160
18	Amplification of the <i>bgl</i> A gene and cloning vector from various gastrointestinal samples obtained at day 0 (a), day 1(b), day 2 (c), day 3 (d) or day 4 (e) after removal of basal diet	161