PHYTOCHEMICAL AND BIOLOGICAL ACTIVITY STUDIES OF COSMOS CAUDATUS AND CURCUMA MANGGA AND THE ONLINE CHARACTERIZATION OF BIOACTIVE FRACTIONS FROM MELICOPE PTELEFOLIA

FARIDAH ABAS

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2005

PHYTOCHEMICAL AND BIOLOGICAL ACTIVITY STUDIES OF COSMOS CAUDATUS AND CURCUMA MANGGA AND THE ONLINE CHARACTERIZATION OF BIOACTIVE FRACTIONS FROM MELICOPE PTELEFOLIA

By

FARIDAH ABAS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

February 2005

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

PHYTOCHEMICAL AND BIOLOGICAL ACTIVITY STUDIES OF COSMOS CAUDATUS AND CURCUMA MANGGA AND THE ONLINE CHARACTERIZATION OF BIOACTIVE FRACTIONS FROM MELICOPE PTELEFOLIA

By

FARIDAH BINTI ABAS

February 2005

Chairman: Professor Nordin H. Lajis, Ph.D.

Institute: Bioscience

Twelve species of Malay traditional vegetables were screened for antioxidant and nitric oxide (NO) inhibitory activities. Ferric thiocyanate (FTC), thiobarbituric acid (TBA) and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) methods were used for the antioxidant activity measurements, and the Griess assay on elicited murine peritoneal macrophages was used to assess NO inhibitory activity of the extracts. *Melicope ptelefolia, Cosmos caudatus,* and *Curcuma mangga* were selected for further study, based on the results of their biological activity evaluations. Characterization of the NO inhibitory fractions of the *Melicope ptelefolia* using online high performance liquid chromatography (HPLC)-diode array detector (DAD)-mass spectrometry (MS), identified seven main constituents. The compounds were identified as kokusaginine (**1**), either kokusagine (**2a**) or 5methoxymaculine (**2b**), 3-prenyl-2,4,6-trihydroxyacetophenone (**3**), 3-geranyl-2,4,6-trihydroxyacetophenone (**4**), 3-geranylgeranyl-2,4,6-trihydroxyacetophenone (**5**), 3-[4-O-(3,7-dimethyl-2,6-octadienyl)phenyl]-2-propenoic acid (**6**), and 3-farnesylgeranyl-2,4,6-trihydroxyacetophenone (**7**).

Phytochemical investigation of the methanolic extract of *Cosmos caudatus* led to the isolation of four known compounds namely, quercetin 3-*O*- β - arabinofuranoside (**17**), quercetin 3-*O*- α -rhamnoside (**18**), quercetin 3-*O*- β - glucoside (**19**), and quercetin (**20**). All four compounds isolated from *C. caudatus* showed strong antioxidant activity. The activity was in the order of **20** > **17** > **18** > **19** > α -tocopherol (standard).

From the rhizomes of *C. mangga*, eleven compounds were isolated, namely a mixture of stigmasterol and β -sitosterol (141), demethoxycurcumin (101), bisdemethoxycurcumin (102), 1,7-bis(4-hydroxyphenyl)-1,4,6-heptatrien-3-one (113), 7-hydroxy-6-methoxycoumarin (142), curcumin (100), zerumin B (143), curcumanggoside (144), 4-hydroxycinnamic acid (145), labda-8(17),12-diene-

15,16-dial (**128**), and calcaratarin A (**146**). Curcumanggoside was identified as a new compound, while zerumin B and calcaratarin A were isolated for the first time from the genus *Curcuma*. The structures of these compounds were established based on spectral data and comparison with the literature. Four diarylheptanoids, demethoxycurcumin, bisdemethoxycurcumin, curcumin, and 1,7-bis(4-hydroxyphenyl)-1,4,6-heptatrien-3-one, showed strong antioxidant activity. Zerumin B showed strong and selective cytotoxic activity to four cell lines, including HL-60, HepG2, MCF-7 and DU-145 with IC₅₀ values of 7.21, 25.33, 0.59 and 11.21 μ M, respectively.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAJIAN FITOKIMIA DAN AKTIVITI BIOLOGI DARIPADA COSMOS CAUDATUS DAN CURCUMA MANGGA DAN PENCIRIAN SECARA TERUS FRAKSI-FRAKSI BIOAKTIF DARIPADA MELICOPE PTELEFOLIA

Oleh

FARIDAH BINTI ABAS

Februari 2005

Pengerusi: Professor Nordin H. Lajis, Ph.D.

Institut: Biosains

Dua belas jenis ulam telah dikaji untuk menentukan aktiviti antioksidaan dan perencatan nitrik oksida (NO). Kaedah ferrik tiosianat (FTC), asid tiobarbiturik dan radikal bebas 1,1-difenil-2-pikrilhidrazil telah digunakan untuk menentukan aktiviti antioksidaan dan kaedah Griess digunakan untuk menentukan perencatan NO. *Melicope ptelefolia, Cosmos caudatus* dan *Curcuma mangga* telah dipilih untuk kajian lebih lanjut berdasarkan keputusan penilaian aktiviti-aktiviti biologi.

Pencirian komponen fraksi-fraksi M. ptelefolia yang menunjukkan aktiviti perencatan NO menggunakan HPLC-DAD-MS/MS telah mengenalpasti tujuh sebatian kimia. Sebatian-sebatian itu dikenalpasti sebagai kokusaginina (1), samada kokusagina (2a)atau 5-metoksimakulina (2b), 3-prenil-2,4,6trihidroksiasetofenon (3), 3-geranil-2,4,6-trihidroksiasetofenon (4), 3geranilgeranil-2,4,6-trihidroksiasetofenon (5), 3-[4-O-(3,7-dimetil-2,6asid oktadienil)fenil]-2-propenoik (6), and 3-farnesilgeranil-2,4,6trihidroksiasetofenon (7).

Kajian fitokimia terhadap ekstrak metanol *C. caudatus* telah berjaya memencilkan empat sebatian yang diketahui, iaitu kuersetin 3-*O*-*β*-arabinofuranosida (**17**), kuersetin 3-*O*-*α*-ramnosida (**18**), kuersetin 3-*O*-*β*-glukosida (**19**), dan kuersetin (**20**). Semua sebatian yang telah dipencilkan dari *C. caudatus* menunjukkan aktiviti antioksidaan yang tinggi. Aktiviti mengikut turutan adalah **20** > **17** > **18** > **19** > *α*-tokoferol (piawai).

Sebelas sebatian berjaya dipencilkan daripada rizom *Curcuma mangga*, iaitu campuran stigmasterol dan β -sitosterol (**141**), demetoksikurkumin (**101**),

bisdemetoksikurkumin (102), 1,7-bis(4-hidroksifenil)-1,4,6-heptatrien-3-on (113), 7-hidroksi-6-metoksikaumarin (142), kurkumin (100), zerumin B (143), curcumanggosida (144), asid 4-hidroksisinamik (145), labda-8(17),12-diene-15,16dial (128), dan calcaratarin A (146). Curcumanggosida merupakan sebatian baru. Ini merupakan laporan yang pertama mengenai pemencilan zerumin B dan calcaratarin A daripada genus *Curcuma*. Struktur sebatian-sebatian ini dikenalpasti berdasarkan data spektroskopi dan perbandingan dengan literatur. Keempat-empat diarilheptanoid, iaitu demetoksikurkumin, bisdemetoksikurkumin, kurkumin dan 1,7-bis(4-hidroksifenil)-1,4,6-heptatrien-3on telah menunjukkan aktiviti antioksidaan yang tinggi. Zerumin B didapati sitotoksik terhadap empat talian sel termasuk HL-60, HepG2, MCF-7 dan DU-145 dengan nilai 50% perencatan 7.21, 25.33, 0.59 dan 11.21 µM setiap satu.

ACKNOWLEDGEMENTS

Glory and praise be to Allah (SWT), The Omnipotent, Omniscient and Omnipresent, for providing me the strength and perseverance to complete this dissertation despite several obstacles encountered throughout the course of this research, which at times seemed insurmountable.

I would like to express my sincere and wholehearted gratitude to my supervisor, Professor Dr. Md. Nordin Haji Lajis for accepting me as his student. His paramount advice, continuous support and expertise have taught me much about chemistry.

My thanks are extended to Associate Professor Dr. Khozirah Shaari, who has always been helpful on NMR problems, Associate Professor Dr. Daud Ahmad Israf Ali and Associate Professor Dr. Umi Kalsom Yusuf for their invaluable guidance, advice, constructive comments and encouragement during the execution of my project and preparation of this thesis. I would like to extend my heartfelt gratitude to Mr. Salahudin, Cik Zurina, Puan Mazina, my colleagues; Puan Rohaya, Koushik, Dr. Dharma, Dr. Habsah, Khalid and friends who are so many that it is impossible to mention all of them. Last, but not least, my deepest thanks and love to my husband, Ismail Mohamed Yusof for being understanding and patient, as well as my mother, Puan Hajjah Khatijah Abdullah, brothers and

sisters who have always prayed for my success.

I certify that an Examination Committee met on 8th February 2005 to conduct the final examination of Faridah binti Abas on her Doctoral of Philosophy thesis entitled "Phytochemical and Biological Activity Studies of *Cosmos caudatus* and *Curcuma mangga* and the Online Characterization of Bioactive Fractions from *Melicope ptelefolia*" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

IRMAWATI RAMLI, Ph.D.

Lecturer Faculty of Science Universiti Putra Malaysia (Chairman)

MAWARDI RAHMANI, Ph.D.

Professor Faculty of Science Universiti Putra Malaysia (Member)

MOHD ASPOLLAH HJ. SUKARI, Ph.D.

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

GEOFFREY A. CORDELL, Ph.D. FRCS, FLS

Professor Emeritus College of Pharmacy University of Illinois at Chicago United States of America (Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.

Professor/ Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

MD. NORDIN HJ. LAJIS, Ph.D.

Professor Institute of Bioscience Universiti Putra Malaysia (Chairman)

UMI KALSOM YUSUF, Ph.D.

Associate Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

DAUD AHMAD ISRAF ALI, Ph.D.

Associate Professor Institute of Bioscience Universiti Putra Malaysia (Member)

KHOZIRAH SHAARI, Ph.D.

Associate Professor Institute of Bioscience Universiti Putra Malaysia (Member)

AINI IDERIS, Ph.D.

Professor/ Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

FARIDAH ABAS

Date:

TABLES OF CONTENTS

ABSTRACT	ii
ABSTRAK	V
ACKNOWLEDGEMENTS	viii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	xvi
LIST OF FIGURES	xix
LIST OF ABBREVIATIONS	xxvii

CHAPTER

I.	INTRODUCTION	1
II.	RESEARCH EXPERIMENTAL	6
	General Instrumentation	6
	Chromatographic Methods	7
	Solvents	9
	Isolation of the Constituents from Cosmos caudatus Kunth.	9
	Plant Material	9
	Extraction and Fractionation of MeOH Extract	9
	Isolation of 17 , 18 , 19 , and 20	10
	Physical and Spectral Data of Compounds	12
	Isolation of the Constituents from Curcuma mangga Val.	14
	Plant Material	14
	Extraction and Fractionation of the Acetone Extract	14
	Isolation of 141 , 101 , 102 , 113 , 142 ,	
	100 , 143 , 145 , 128 , and 146	16
	Fractionation of the Aqueous Acetone Extract	20
	Isolation of 144	21
	Physical and Spectral Data of Compounds	22
	Derivatization of Curcumin (100), Demethoxycurcumin	
	(101), and Bisdemethoxycurcumin (102)	28
	Demethylation	28
	Acetylation	30
	Physical and Spectral Data of Compounds	31
	Bioassay Procedures	37
	Antioxidant Assay	37
	Nitric Oxide Inhibition Activity (Griess Assay)	39
	Cytotoxic Assay	42

III. BIOLOGICAL ACTIVITIES AND LC-DAD-MS/MS

	ANALYSIS OF MALAY TRADITIONAL VEGETABLES	
	(ULAM)	45
	Screening for Antioxidant, Nitric Oxide Inhibition and	
	Cytotoxic Activities of Malay Traditional Vegetables	46
	Antioxidant Activity	46
	Nitric Oxide Inhibitory Activity	50
	Cytotoxic Activity	52
	Liquid Chromatography and Tandem Mass Spectrometry	
	(LCMS/MS) in Natural Product Studies	53
	LC-DAD-ESI-MS/MS Analysis of Melicope ptelefolia	
	Benth.	54
IV.	CHEMICAL CONSTITUENTS, ANTIOXIDANT, NITRIC	
	OXIDE INHIBITORY AND CYTOTOXIC ACTIVITIES OF	
	COSMOS CAUDATUS	70
	Botany, Distribution and Ethnobotany of <i>Cosmos</i> Species	70
	Genus Cosmos	70
	<i>Cosmos caudatus</i> Kunth.	70
	Review of Previous Work on Genus Cosmos	73
	Phytochemical Studies and Biological Activity of	=-
	C. caudatus	73
	Isolation of the Constituents from <i>C. caudatus</i>	75
	Characterization of:	
	Quercetin 3- <i>O</i> - β -arabinofuranoside (17)	77
	Quercetin 3- O - α -rhamnoside (18)	84
	Quercetin 3- O - β -glucoside (19)	91 07
	Quercetin (20)	97
	Antioxidant, Nitric Oxide, and Cytotoxic Activities of	1.01
	Constituents Isolated from <i>C. caudatus</i>	101
	Antioxidant Activity of Fraction from MeOH Extract	101
	FTC and DPPH Free Radical Scavenging Activities of	101
	the Compounds Isolated from <i>C. caudatus</i>	101
	Nitric Oxide Inhibitory and Cytotoxicity Activities of	105
	the Compounds Isolated from C. caudatus	105
V.	CHEMICAL CONSTITUENTS, ANTIOXIDANT, NITRIC	_
	OXIDE INHIBITORY AND CYTOTOXIC ACTIVITIES OF	
	CURCUMA MANGGA	107
	Botany, Distribution and Ethnobotany of <i>Curcuma</i> Species	107
	Genus Curcuma	107
	Curcuma mangga Val.	112
	Review of Previous Investigation on Genus <i>Curcuma</i>	112
	Phytochemical Investigation on Curcuma	112

Biologically Active Constituents from Genus		
Curcuma	115	
Isolation of the Constituents from <i>C. mangga</i>		
Characterization of:		
Mixture of stigmasterol and β -sitosterol (141)	125	
Demethoxycurcumin (101)	128	
Bisdemethoxycurcumin (102)	134	
1,7-Bis(4-hydroxyphenyl)-1,4,6-heptatriene-3one		
(113)	138	
7-Hydroxy-6-methoxycoumarin (142)	143	
Curcumin (100)	149	
12,15-Dihydroxy-8(17),13-labdadien-16,15-olide		
(143)	154	
Curcumanggoside (144)	164	
4-Hydroxycinnamic Acid (145)	175	
Labda-8(17),12-diene-15,16-dial (128)	180	
Calcaratarin A (146)	189	
Chemotaxonomic Relationship	196	
Derivatization of Curcumin, Demethoxycurcumin, and		
Bisdemethoxycurcumin	197	
Demethylation reaction	197	
Charaterization of:		
Bisdemethylcurcumin (100-a)	199	
Monodemethylcurcumin (100-b)	202	
Demethyldemethoxycurcumin (101-a)	207	
Acetylation reaction	211	
Characterization of:		
Diacetylcurcumin (100-i)	212	
Monoacetylcurcumin (100-ii)	216	
Diacetyldemethoxycurcumin (101-i)	220	
Diacetylbisdemethoxycurcumin (102-i)	224	
Tetraacetylbisdemethylcurcumin (100-a-i)	227	
Triacetyldemethylcurcumin (100-b-i)	230	
Triacetyldemethyldemethoxycurcumin (101-a-i)	235	
Antioxidant, Nitric Oxide, and Cytotoxic Activities of	2 20	
C. mangga	239	
Antioxidant Activity	239	
FTC and DPPH Free Radical Scavenging Activity of	0.40	
the Compounds Isolated from <i>C. mangga</i>	243	
NO and Cytotoxic Activities of <i>C. mangga</i>	245	
Nitric Oxide Inhibitory Activity of the Compounds	246	
Isolated from <i>C. mangga</i>	246	
Cytotoxic Activity of the Compounds Isolated from		

C. mangga	247
Antioxidant, Nitric Oxide, and Cytotoxic Activities of	
Derivative from Curcumin, Demethoxycurcumin, and	
Bisdemethoxycurcumin	248
Antioxidant Activity (FTC)	249
Nitric Oxide Inhibitory Activity	251
Cytotoxic Activity	252
VI. CONCLUSION	255
BIBLIOGRAPHY	260
APPENDICES	277
BIODATA OF THE AUTHOR	

LIST OF TABLES

Table

		Page
1.0	Some ulam from popular and less popular groups	3
3.0	Radical scavenging activity of Malay traditional vegetables	49
3.1	Effect of Malay traditional vegetables on NO synthesis in LPS activated macrophages	51
3.2	Extracts concentrations (μ g/ml) to cause 50% of net cell killing (IC ₅₀)	52
3.3	Components identified in the hexane and dichloromethane fractions from which ion of <i>Melicope ptelefolia</i> by LC-DAD-ESI-MS/MS and MS ⁿ (n=3, 4, 5)	68
3.4	The effects of <i>M. ptelefolia</i> on the NO production in LPS-activated RAW 264.7 cells.	69
3.5	The effects of compounds 1, 4, and 6 on the NO production in LPS-activated RAW 264.7 cells.	69
4.0	The assignment of protons and carbons of quercetin 3- O - β -arabinofuranoside (17)	83
4.1	The assignment of protons and carbons of quercetin 3-O-α-rhamnoside (18)	90

4.2	The assignment of protons and carbons of quercetin 3- O - β -glucoside (19)	96
4.3	The assignment of protons and carbons of quercetin (20)	100
4.4	Percentage inhibition of DPPH radical scavenger effect and IC_{50} values of compounds 17-20 and ascorbic acid as positive control	104
4.5	$\%$ Inhibition of nitrite accumulation in cell culture supernatants of RAW 264.7 by 17, 18, and 19 at 50 μM	106
5.0	Curcuma species in Peninsular Malaysia	109
5.1	Some of the important <i>Curcuma</i> species used for medicinal purposes	111
5.2	Chemical variations in the Curcuma species	114
5.3	Biological activities of some <i>Curcuma</i> species	116
5.4	The assignment of protons and carbons of demethoxycurcumin (101)	133
5.5	The assignment of protons and carbons of bisdemethoxycurcumin (102)	138
5.6	The assignment of protons and carbons of 1,7-bis(4-hydroxyphenyl)-1,4,6-heptatrien-3-one (113)	142
5.7	The assignment of protons and carbons of scopoletin (142)	148
5.8	The assignment of protons and carbons of curcumin (100)	153
5.9	The assignment of protons and carbons of zerumin B (143)	163
5.10	1 H and 13 C NMR data of curcumanggoside (144) and its short and long range (2 J & 3 J) C-H connectivity.	174
5.11	The assignment of protons and carbons of <i>p</i> -hydroxycinnamic acid (145)	180

5.12	The assignment of protons and carbons of labda-8(17),12-diene-15,16-dial (128)	188
5.13	The assignment of protons and carbons of labda-8(17),12-diene-15,15-dimethoxy-16-al or calcaratarin A (146)	198
5.14	The assignment of protons and carbons of bisdemethylcurcumin (100-a)	202
5.15	The assignment of protons and carbons of monodemethylcurucmin (100-b)	206
5.16	The assignment of protons and carbons of bisdemethyldemethoxycurucmin (101-a)	210
5.17	The assignment of protons and carbons of diacetylcurcumin (100- i) and monoacetylcurcumin (100-ii)	219
5.18	The assignment of protons and carbons of diacetyldemethoxycurcumin (101-i)	223
5.19	The assignment of protons of diacetyldemethoxycurucmin (102-i)	226
5.20	The assignment of protons of 1,7-bis(3,4-diacetoxyphenyl)-1,6-heptadiene-3,5-dione (100-a-i)	229
5.21	The assignment of protons and carbons of 1-(3,4-diacetoxyphenyl)-7-(4-acetoxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (100-b-i)	234
5.22	The assignment of protons of 1-(3,4-diacetoxyphenyl)-7-(4-acetoxyphenyl)-1,6-heptadiene-3,5-dione (101-a-i)	238
5.23	DPPH free radical scavenging activity of the compounds isolated from <i>C. mangga</i>	244
5.24	Cytotoxic activity of <i>C. mangga</i> extract and fractions	245
5.25	NO inhibitory activity of the compounds isolated from <i>C. mangga</i>	246
5.26	Cytotoxic activity of the compounds isolated from C. mangga	248

5.27	Free radical scavenging of curcumin and derivatives	251
5.28	NO inhibitory activities of curcumin and derivatives	252
5.29	Cytotoxic activities of curcumin and its derivatives	254

LIST OF FIGURES

Figure		Page
1.0	A flow chart for the study of plants used in traditional medicine	4
2.0	Isolation of quercetin 3- O - β -arabinofuranoside (17), quercetin 3- O - α -rhamnoside (18), and quercetin (20)	11
2.1	Isolation of quercetin 3- <i>O</i> - α -rhamnoside (18) quercetin 3- <i>O</i> - β -glucoside (19)	11
2.2	Fractionation of crude Curcuma mangga	15
2.3	Isolation of 141 , 101 , 102 , 113 , and 143	18
2.4	Isolation of 101 , 102 , 113 , 142 , and 100	19
2.5	Isolation of 145 , 128 , and 146	20
2.6	Isolation of 144	21
2.7	The principles of the MTT assay	42
3.0	Antioxidant activity of Malay traditional vegetables (FTC method)	47
3.1	Antioxidant activity of Malay traditional vegetables (TBA method)	48
3.2	Structures of seven compounds identified from Melicope ptelefolia	56
3.3	HPLC-DAD and total ion chromatogram (TIC) by positive ion ESI-MS of <i>Melicope ptelefolia</i>	59
3.4	Positive ion ESI-MS/MS spectra obtained for $1(a)$, $2(b)$, $3(c)$, $4(d)$, $5(e)$, $6(f)$, and $7(g)$, 63
3.5	Proposed fragmentation pathways (A) 3-geranylgeranyl-2,4,6- trihydroxyacetophenone and (B) 3-farnesylgeranyl-2,4,6- trihydroxyacetophenone	65

3.6	HPLC-DAD and ion traces at m/z 301 and m/z 509 of dichloromethane fraction correspond to compounds 7 and 8	66
4.0	Cosmos caudatus Kunth.	72
4.1	Flowers and fruits of <i>C. caudatus</i>	72
4.2	Flowers and fruit of <i>C. caudatus</i> (Expansion)	72
4.3	Mass spectrum of quercetin 3- O - β -arabinofuranoside (17)	79
4.4	IR spectrum of quercetin 3- O - β -arabinofuranoside (17)	79
4.5	¹ H-NMR spectrum of quercetin 3- O - β -arabinofuranoside (17)	80
4.6	gCOSY spectrum of quercetin 3- O - β -arabinofuranoside (17)	81
4.7	¹³ C-NMR spectrum of quercetin 3- O - β -arabinofuranoside (17)	82
4.8	Structure of quercetin 3- O - β -arabinofuranoside (17)	83
4.9	Mass spectrum of quercetin 3-O- α-rhamnoside (18)	86
4.10	IR spectrum of quercetin 3-O-a-rhamnoside (18)	86
4.11	¹ H-NMR spectrum of quercetin 3- O - α -rhamnoside (18)	87
4.12	gCOSY spectrum of quercetin 3-O-a-rhamnoside (18)	88
4.13	¹³ C-NMR spectrum of quercetin 3- O - α -rhamnoside (18)	89
4.14	Structure of quercetin 3- <i>O</i> - α-rhamnoside (18)	90
4.15	Mass spectrum of quercetin 3- O - β -glucoside (19)	92
4.16	IR spectrum of quercetin 3- O - β -glucoside (19)	92
4.17	¹ H-NMR spectrum of quercetin 3- O - β -glucoside (19)	93
4.18	gCOSY spectrum of quercetin 3- O - β -glucoside (19)	94
4.19	¹³ C-NMR spectrum of quercetin 3- O - β -gluoside (19)	95