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Abstract. In this paper, we show the existence of infinitely many radial nodal solutions
for the following Dirichlet problem involving mean curvature operator in Minkowski

space

. \v4 .

~div (%) = Ah(y) + g(lxl,y) inE,
y=0 ondB,

where B = {x € RN : |x| < 1} is the unit ballin RN, N > 1, A > 0is a parameter,
h € C(R) and ¢ € C(R* x R). By bifurcation and topological methods, we prove the
problem possesses infinitely many component of radial solutions branching off at A = 0
from the trivial solution, each component being characterized by nodal properties.
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1 Introduction

The purpose of this paper is to deal with radial nodal solutions for the following 0-Dirichlet
problem with mean curvature operator in the Minkowski space

Cgiv YY) -
d1v< ) Ah(y) + g(|x|,y) in B, 1)

V1—=|Vyl?

y=0 onoaB,

where B = {x € RN : |x| < 1} is the unit ball in RN, N > 1, A > 0 is a parameter,
h(y) ~ |y|7 %y, 1 < g < 2 near y = 0 and g is of higher order with respect to  at y = 0. This
kind of problems are originated from differential geometry or classical relativity.

™ Corresponding author. Email: xmannwnu@126.com


https://doi.org/10.14232/ejqtde.2020.1.27
https://www.math.u-szeged.hu/ejqtde/

2 M. Xu and R. Ma

For example, let
LN = {(x,t) : x € RN, t € R}

be the flat Minkowski space, endowed with the Lorentzian metric

N
) dx]2 — df.
=1

It is known (see [4,28]) that the study of spacelike submanifolds of codimension one in ILN*!
with prescribed mean extrinsic curvature leads to Dirichlet problems of the type

—div <Vu) = H(x,u) inQ,

V1= |Vul|?

u=0 onodQ,

(1.2)

where Q) is a bounded domain in RN and the nonlinearity H : Q) x R — R is continuous.

There are a large amount of papers in the literature on the existence, multiplicity and
qualitative properties of solutions for this type of problems, see [1-3,7,11,12,14,16,25,26,31].
It is worth pointing out that the starting point of this type of problems is the seminal paper
[9] which prove the Bernstein’s property for entire solutions of the maximal (i.e., zero mean
curvature) hypersurface equation. Bartnik and Simon [4] proved the existence of one strictly
spacelike solution when A = 1 and H is bounded, this always can be seen as an important
universal existence result of (1.2). For the case N = 1, the existence and multiplicity of positive
solutions of the Dirichlet problem for the quasilinear ordinary differential equation

B (\/1”_7> —H(xu), xe(01),

u(0)=u(1)=0

have been extensively studied by Coelho et al. [10] via variational or topological methods.
For the special case () is a ball, by using upper and lower solutions, Leray—Schauder degree
arguments and critical point theory for convex, lower semicontinuous perturbations of C!-
functionals, Bereanu, Jebelean, and Torres [5, 6] obtained some nonexistence, existence and
multiplicity results of classical positive radial solutions of (1.2). Ma, Gao and Lu [24] con-
cerned with the global structure of radial positive solutions of (1.2) by using global bifurcation
techniques, and extended the results of [5,6] to more general cases, all results, depending on
the behavior of nonlinear term H near 0. Later, Ma and Xu [27] studied the global behavior of
positive solutions of (1.2) with () is a general domain in RN.

However, few results on the existence of radial nodal solutions [15], even positive solutions,
have been established for problem with mean curvature operator on general domain. In this
paper, we will show an existence result of infinitely many radial nodal solutions for Dirichlet
problem (1.1) by bifurcation and topological methods. For the applications of nodal solutions,
see Kurth [20] and Lazer and McKenna [21].

Our study is motivated by some recent works on one-dimensional prescribed mean curva-
ture problems with concave-convex nonlinearities, see [19,34].
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Setting, as usual |x| = r and y(x) = u(r), the problem (1.1) reduces to the mixed boundary
value problem

Au = Ah(u) + g(r,u), re (0,1),

u'(0) =u(1) =0, 13)
where 1
Au= == (g (), (14)
and
$1(s) = S seR,

V1—¢2'
note that ¢1 : (—1,1) — R is an odd, increasing homeomorphism and ¢;(0) = 0. Throughout
we assume A > 0, h € C(R), g € C(R" x R) and satisfy the following conditions:

(A1) h € C(R,R) with sh(s) > 0 for s # 0, 111%’1(575) — oo
S—>
(A2) lim@ = 0 uniformly for r € [0,1].
s—0

Let X = {u € C'[0,1] : #/(0) = u(1) = 0} with the norm ||u|| := ||u'[|c, and let E = R x X.
In the sequel by a solution of (1.1) we mean a pair (A, u) € E, such that u € C! [0,1],
max,epoq] |4/ (r)| <1, N "1g1 (') € C10,1], and satisfies (1.1). These are strong strictly space-
like solutions of (1.1) according to the terminology of [4,9,18,31].

The main result of this paper is the following.

Theorem 1.1. Let (A1) and (A2) hold. Then the point (A,u) = (0,0) is a bifurcation point for
problem (1.1). More precisely, there are infinitely many unbounded component (i.e., closed connected
sets) Ty C E of solutions of (1.1) branching off from (0,0), such that

(i) If (A,u) € Tyand A > 0, then u # 0.
(ii) If (A, u) € T, then u has exactly k — 1 simple zeros in the interval (0,1).

(iii) There exists a constant pg € (0,1/2) such that if p € (0,p0], and (A, u) € Ty with |lul| = p,
then A > A(p) > 0.

As an immediate consequence we get:

Corollary 1.2. There exists A, > 0 such that problem (1.1) has infinitely many radial nodal solutions
forany A € (0,Ay).
Remark 1.3. It is easy to find that (A2) yields that

¢(r,0) =0 uniformly for r € [0,1].
Otherwise, from the continuity of g, we get lim;_,o @ = oo for some r € [0,1], this is a
contradiction.
Remark 1.4. Let (A, u) be a solution of (1.3), then it follows from |u/(r)| < 1 that

[ufleo < 1.

This leads to the bifurcation diagrams mainly depend on the behavior of i = h(s) and g =
g(r,s) near s = 0. This is a significant difference between the Minkowski-curvature problems
and the p-Laplacian problems.
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Remark 1.5. If g(r,s) =0 for all r € [0,1], then

lim $U725)

=0 wuniformly for r € [0,1].
s—0 S

Clearly, Theorem 1.1 improves some well-known existence results of positive solutions [5] and
radial nodal solutions [15] for related problems.

The rest of the paper is arranged as follows. In Section 2, we show the property of the
superior limit of a sequence of components and obtain a topological degree jumping result.
Finally in Section 3, we prove our main result and give an example to illustrate our main
result.

2 Some preliminary results

2.1 Superior limit and component
The following results are somewhat scattered in Ma and An [22,23].

Definition 2.1 ([22,23]). Let X be a Banach space and {C, : n = 1,2,... } be a family of subsets
of X. Then the the superior limit D of {C,} is defined by

D :=limsupC, = {x € X : there exist {n;} C N and x,, € Cy, such that x,, — x}.

n—o0

Definition 2.2 ([22,23]). A component of a set M means a maximal connected subset of M.
Lemma 2.3 ([22, Lemma 2.4], [23, Lemma 2.2]). Assume that

(i) thereexistz, € C,,n=1,2,...,and z* € X, such that z,, — z*;

(ii) limy,_yeo 'y = 0o, where r, = sup{||x|| : x € Cy};
(iii) for every R >0, (U, Cy) N Br is a relative compact set of X, where

Br ={x € X :||x|| <R}.
Then there exists an unbounded component C in D with z* € C.

2.2 Topological degree jumping result
Let us introduce the eigenvalue problem

—(erllu/)/ = ANy, re(0,1), @.1)
u'(0) =u(1) =0.

From [29] with p = 2 or [32, p. 269], we have the following result.

Lemma 2.4. Problem (2.1) has infinitely many simple real eigenvalues, which can be arranged in the
increasing order
D<M <A< <A< = 400 ask — 4o,

and no other eigenvalues. Moreover, the algebraic multiplicity of Ay is 1, and the eigenfunction ¢y has
exactly k — 1 simple zeros in (0,1).



Existence of infinitely many radial nodal solutions 5

For any t € (0,1], we consider the following auxiliary problem

e (M) =0, re ),

V1 —tu'? (2.2)
u'(0)=u(1)=0
for a given f € C[0,1]. Letting v = v/fu, problem (2.2) is equivalent to
i (M) =V, re o
rN-1 Vi—d2) ’ T (2.3)

v’ (0) = v(1) = 0.

By Theorem 3.6 of [4], we know that there exists a unique strictly spacelike solution v € C[0, 1]
to problem (2.3) which is denoted by (\/tf). So u = % is the unique solution of problem
(2.2).

For a given b € C|0, 1], we also consider the following auxiliary problem

(PN = b(r), re (0,1),
u'(0) = u(1) =0.

Nl (2.4)

It is well known that problem (2.4) has a solution u for every given b € C[0,1]. Let ¢(b)
denote the unique solution to problem (2.4). It is easy to check that ¢ : C[0,1] — X is linear
and completely continuous.

Therefore, for any given f € C[0, 1], let us define G : [0,1] x C[0,1] — X by

P(Vif) tE(O 1]
Gt f) = vt 7 Y 2.5
(t.f) {Mﬁ, . @5)

From the Lemma 2.3 of [14], we have G is completely continuous.

For any fixed A, consider the following problem

1 o1 W !
_rN—l <7" m) - Au, r e (O, 1),

u'(0) = u(1) =0.

(2.6)

Clearly, problem (2.6) is equivalent to the operator equation

u=pAu):=pP(u).

From Lemma 2.3 of [14], we see that i, : X — X is completely continuous. And we can also
obtain the following topological degree jumping result.

Lemma 2.5. For any r > 0, we have that

deg(I — ¢, B-(0),0) = {1' if A€ (0,A1),

(=1, ifA € (A, Apy1), k€N
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Proof. It is not difficult to show that I — 1, is a nonlinear compact perturbation of the identity.
Thus, the Leray—Schauder degree deg(I — 5, B;(0),0) is well defined for arbitrary r-ball B,(0)
and A # Ag. From the invariance of the degree under homotopies we obtain that

deg(I — ya, B/(0),0) = deg(I — G(1,A-),B,(0),0)
= deg(I — G(0,A-),B,(0),0)
= deg(I — A¢, B,(0),0).

")

G
G
Since ¢ is compact and linear, by [13, Lemma 3.1] or [17, Theorem 8.10], we have that

degu>—A¢,on»o>=:{1 if A € (0,M),

(—1)F if A€ (A, App), KEN,
and accordingly,

1 if A € (0,A1),

deg(l -y, B:(0),0) = {(_1)k if A € (Ak, Arr1), k € N.

3 Proof of the main result

Before proving the Theorem 1.1, we state the following lemmas.

Lemma 3.1. Assume that (A1) and (A2). Let (A, u) be a solution of problem (1.3). If u has a double
zero, then u = 0.

Proof. Assume on the contrary that there exists a solution (A, u), A > 0, of (1.3) and u has a
double zero. Let T € [0,1] be a double zero of u. Integrating the equation of (1.3) over [t,7],
we have
u'(r) B 1
1= (u'(r))? Nt

/[r sNTH(AR(u(s)) + g(s,u(s)))ds.

If T =0, then for r € [0,1], from (A1) and the fact
W' (r)] <1,

it follows that

1 [ y
W) < oy [N gl m)lds < 3 Ig(s, )l

Recalling (A2), there exists a constant M > 0 such that |g(s, )| < M|u| for any s € [0,1] and
u € [—1,1]. Using the boundary conditions #'(0) = u(1) = 0, we get

Mr [T
! < <—/ "(s)|ds.
W ()] < Sy lul < 57 | 1(5)1ds

By the Gronwall-Bellman inequality [8], we obtain u/(r) = 0 on [0, 1]. Therefore, u(r) = 0 on
[0,1].

If T > 0, we first assume that r € [0, 7]. Since

u(r) = —/Trqbl_l <tNll /TtsN_l(Ah(u(s)) +g(s,u(s)))ds> dt
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for all r € [0, 7], where ¢, ! is the inverse function of ¢;, namely

-1 S
s) = , s € R.
o) = =

It is easy to check that ¢; ! is increasing. Hence, by (A1), we have
T 1 t
) = o (e [+ Qo) + (o)) s )
T _ 1 T _
— [Cort (s [ (Antu(e) — gl uls) s ) a

T 1 t
S/r ¢;! <tN—1/T sN_lg(s,u(s))ds> dt
tl\,%lf;sN_lg(s,u(s))ds

K YU+ (i J7 5 gl u(9)s)

since 0 < 7 <1and N > 1, this implies

dt,

T ot T
N1[u(r)| < / / N \g(s, u(s))|dsdt < M/ N1 |u(s)|ds.
r T r
By Gronwall-Bellman inequality, we have N~!|u(r)| = 0 on [0, 7]. And accordingly, u(r) =0
on (0, t]. This fact together with the continuity of u, we conclude that u(r) = 0 on [0, 7.

Similarly, if T > 0 and r € [7, 1], then by Gronwall-Bellman inequality again, we can get
u(r) =0 on [t1,1] and the proof is completed. O

Lemma 3.2. There exists pg > 0 such that any nontrivial solution u of

Au = g(r,u), re (0,1),

satisfies ||u|| > po.

Proof. Assume, by contradiction, that there is a sequence {u,} of solutions of (3.1) and such
thatu, # 0and ||u,| — 0. Foralln € N, letv,, = HZ—:H Then ||v,]| = ||v}, || = 1, consequently,
|vn |l is bounded. By the Ascoli-Arzela theorem, there exists a subsequence of {v,} which
uniformly converges to v € C[0, 1]. We again denote the subsequence by {v, }. For any u,, we
have

V1-u?

ul(0) = uy(1) = 0.

/
1 _ u’

Multiplying both sides of (3.2) by ||u,| !, we have

’ /
_L T’Nil vl’l — g(r’ un)vn’ re (0,1)’
\/1 —u;z Uy

v),(0) = v, (1) = 0.
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Since ||u,|| — 0 implies |[uy|l0 — 0. From (A2) and Lebesgue’s dominated convergence
theorem, we conclude that

1 (erlv’)' =0, re(01),

which means that v = 0 contradicting with ||v|| = 1. O

Proof of Theorem 1.1. Theorem 1.1 cannot be proved using standard bifurcation techniques
by linearization. Actually, from (A1), we have known the nonlinear term / has infinite deriva-
tive at u = 0. To overcome this problem we shall employ a limiting procedure. Let us define
a function /i : R — R by setting

h(s), 0<]|s|] <1,
h(s) = { linear, 1< [s| <2,
0, ls| =2,

and define a function § : [0,1] x R — R by setting, for r € [0, 1],

g(r,s), 0<|s|<1,
§(r,s) =  linear, 1< |s| <2,
0, Is| > 2.

Observe that, within the context of positive solutions, problem (1.3) is equivalent to the same
problem with £, g replaced by %, §. Indeed, if u is a positive solution, then ||u'[| < 1 and
hence ||u||c < 1. Clearly, 7 and ¢ satisfy all the properties assumed in the statement of the
theorem. In the sequel, we shall replace 1, ¢ with  and §, however, for the sake of simplicity,
the modified functions /, § will still be denoted by &, g. Next, for any 6 € (0,1), let us define

hs by setting
h(5)
— < <
h(s) = 5 0<|s| <9,
h(s), |s| >¢.
Obviously,
. o T h5(S) o h((S)
(lsli%h(s(s) = h(S), (h(s)o = lg% s T > 0. (3.3)
This together with (A1) implies that
6—0

Let us consider the approximated problems

Au = Ahg(u) + g(r,u), re(0,1),

3.5
where A is given by (1.4).

Define |
1 /
Fs(A, u) = Ahs(u) + g(r,u) + N1 (rN—1u>



Existence of infinitely many radial nodal solutions 9

for any (A, u) € R x X and fixed 6 > 0. Then, from Remark 1.3, and by a simple calculation,
we have that

(Es)u(A, 0) = lim Te 1) = Fo(4,0)

t—0 t
(3.6)
h(9) 1 N
=A=5T0F R (rN1o')

Let A s = Ak - %. Then from (3.6), it follows that if (A s, 0) is a bifurcation point of problem
(3.5), then Ay is an eigenvalue of problem (2.1).

For any 1y € [0,1], we consider the following problem

Au = Ahg(u) +yg(r,u), re(0,1),
u'(0) = u(1) =0.

Then problem (3.7) is equivalent to

u = p(Ahs(u) +yg(r,u)) == Fsa(y,u).

From [14, Lemma 2.3], it follows that F5;, : [0,1] x X — X is completely continuous. In
particular, Hs ) := F;,(1,-) : X — X is completely continuous.

By (A2) and an argument similar to that of Lemma 2.5, we can show that the Leray-
Schauder degree deg(I — F5,(7,+), B-(0),0) is well defined for A € (0,00) \ {Ax}. From the
invariance of the degree under homotopies we obtain that

deg(I — Hy, B;(0),0) = deg(I — F51(1,-), B+(0),0)

So by Lemma 2.5, we have that

1, if A e <0, h((S(S) /\1) ,
deg(I — Hs 5, B,(0),0) = 5 5
_1)k 7 7
( 1), 1f)t€<h((s))\k, h((s))\k+1),k€N.

Denote
Rx X

Fs={(Au): (Au)€0,00) x X, uisasolution of (3.5)} .

Then by a variant of the global bifurcation theorem of Rabinowitz [30], or index jump principle
of Zeidler [33], for any J > 0, there exists a maximal closed connected set Sy ; in f 5 such that
(Aks,0) € Sk s and at least one of the following conditions holds:

(i) Sks is unbounded in R x X;

(ii) Sks N (R\{Axs} x {0}) # @.
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Since (0,0) is the only solution of (3.5) for A = 0 and 0 is not the eigenvalue of eigenvalue
problem (2.1), therefore S5 N (R\{Axs} x {0}) = @. Recalling Remark 1.4, we get Sy s is
unbounded in A-direction for each fixed 4.

Combining this and (3.3) and (3.4) and using Lemma 2.3, it follows that for each k € IN,
there exists a component I'y in lim sup Sy s which joins (0,0) to infinity in A-direction.

In the following, we will prove the properties (i)—(iii) of Theorem 1.1, respectively.

(i) Let &g be a positive constant such that A M) A1. Let us consider (A, u) € S15, with A >0
P
0 /

and ¢ € (0, d)-

Fixing & > 0 small, from (A1) and (A2), we obtain there exists ¢ = c¢(A) > 0 such that
Ahs(s) +g(r,s) > (M +¢)s, Vs € (0,c].

Hence, we obtain if ||u#1]e < ¢, then u; satisfies

Auq > (/\1 —|—8)u1.
From [6], we have u; is an upper solution of the eigenvalue problem
Au = (A +¢)s. (3.8)

On the other hand, it is easy to verify that up = 0 is a lower solution of (3.8). Therefore,
[6, Proposition 1] yields the existence of a positive solution u € X of the eigenvalue problem
(3.8). However, this is a contradiction, because A1 + ¢ is not the first eigenvalue of (2.1).

This shows that if (A, u) € S5 with A > 0 and ¢ € (0,d], then |[u|l > c(A). Passing to
the limit as 6 — 0 it follows that if (A, u) € T'y then [|u]|e > c(A).

When we consider I'y with k > 1 the argument is similar. If (A, u) € Sy 5, then there exists
at least one interval I; with length 1/k where u has constant sign. Therefore if we restrict the
discussion to the interval Iy and replace A; by the first eigenvalue of (2.1) on the interval I,
then we can get the same contradiction as before.

(ii) From (i), we have for any (A, u) € I', if A > 0, then u # 0.

Let {(An, un)} C Sk, be a sequence, converging to (A, u) in R x X. First, if k = 1, then
we have u, > 01in [0,1), therefore u > 0, moreover, the strong Maximum Principle yields that
u>0in|0,1).

Next, if k > 1, then let {x,} and {y,} be two consecutive zeros of u, with x, — ¢ and
Yn — 1. Obviously, u(&) = u(y) = 0. We claim that ¢ # 7. Otherwise, there exists a third
sequence {z,} such that u)(z,) = 0 and lim, 2z, = {. Therefore, we can find a u, it is a
solution of
Au = Ah(u) + g(r,u),

and satisfies
u(¢) =u'(¢) = 0.

However, from Lemma 3.1, we know this is impossible. Therefore, we conclude that for any
(A, u) € Ty and A > 0, u has exactly k — 1 simple zeros in the interval (0,1).
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(iii) Suppose on the contrary that there exists a sequence { (A, 1,)} C S, such that A, — 0,
uy, — u and ||uy|| = p < po. Passing to the limit we find that u # 0 is a solution of (3.1) and u
satisfies ||u|| < po, however this contradicts Lemma 3.2. O

Example 3.3. Let us consider the following Dirichlet problem with mean curvature operator
in the Minkowski space

_div (V”> — )+ g(rw),  r=x] <1,

VT vap 69)
u=0, r=lx| =1,
where
o-{Vm
and

(ru) = w2,  u>0,
s\ —u?, u<D0.

Obviously, g = 3 and all assumptions of Theorem 1.1 are valid. Therefore, from Theorem 1.1,
we know there are infinitely many unbounded component of radial nodal solutions of (3.9)
branching off from (0,0).
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