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Abstract. We consider the second-order linear differential equation (x2 − 1)y′′ +
f (x)y′ + g(x)y = h(x) in the interval (−1, 1) with initial conditions or boundary condi-
tions (Dirichlet, Neumann or mixed Dirichlet–Neumann). The functions f , g and h are
analytic in a Cassini disk Dr with foci at x = ±1 containing the interval [−1, 1]. Then,
the two end points of the interval may be regular singular points of the differential
equation. The two-point Taylor expansion of the solution y(x) at the end points ±1 is
used to study the space of analytic solutions in Dr of the differential equation, and to
give a criterion for the existence and uniqueness of analytic solutions of the boundary
value problem. This method is constructive and provides the two-point Taylor appro-
ximation of the analytic solutions when they exist.
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1 Introduction

In [6] we considered the second-order linear equation y′′ + f (x)y′ + g(x)y = h(x) in the
interval (−1, 1) with initial conditions or boundary conditions of the type Dirichlet, Neumann
or mixed Dirichlet–Neumann. The functions f , g and h are analytic in a Cassini disk with foci
at x = ±1 containing the interval [−1, 1]. Then, the end points of the interval, where the
boundary data are given, are regular points of the differential equation. The two-point Taylor
expansion of the solution y(x) at the end points ±1 was used to give a criterion for the
existence and uniqueness of analytic solutions of the initial or boundary value problem and
approximate the solutions when they exist. In [1] we have considered problems that have
an extra difficulty: one of the end points of the interval is a regular singular point of the
differential equation, that is, we have considered the equation (x + 1)y′′ + f (x)y′ + g(x)y =

h(x).
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In this paper we continue our investigation considering problems where both end points
of the interval are regular singular points of the differential equation. We consider initial or
boundary value problems of the form

(x2 − 1)y′′ + f (x)y′ + g(x)y = h(x) in (−1, 1),

B


y(−1)

y(1)

y′(−1)

y′(1)

 =

(
α

β

)
,

(1.1)

where f , g and h are analytic in a Cassini disk with foci at x = ±1 containing the interval
[−1, 1] (we give more details in the next section), α, β ∈ C and B is a 2× 4 matrix of rank
two which defines the initial conditions or the boundary conditions (Dirichlet, Neumann or
mixed).

The consideration of the interval (−1, 1) is not a restriction, as any real interval (a, b) can
be transformed into the interval (−1, 1) by means of an affine change of the independent
variable. The form of the differential equation in (1.1) is not a restriction either: consider
the differential equation (x2 − 1)2u′′(x) + (x2 − 1)F(x)u′(x) + G(x)u(x) = 0, with F and G
analytic at x = ±1. After the change of the dependent variable u = (x − 1)λ(x + 1)µy, with
λ a solution of the equation 4λ(λ− 1) + 2F(1)λ + G(1) = 0 and µ a solution of the equation
4µ(µ − 1) − 2F(−1)µ + G(−1) = 0, the equation may be written in the form (x2 − 1)y′′ +
f (x)y′+ g(x)y = 0, with f and g analytic at x = ±1. On the other hand, the points x = ±1 are
both indeed regular singular points of the differential equation (x2 − 1)y′′ + f (x)y′ + g(x)y =

h(x) when | f (±1)| + |g(±1)| + |h(±1)| 6= 0; if f (±1) = g(±1) = h(±1) = 0, then both,
x = ±1, are regular points, and problem (1.1) is the regular problem analyzed in [6]. If
f (1) = g(1) = h(1) = 0 and | f (−1)|+ |g(−1)|+ |h(−1)| 6= 0, then only one end point is a
regular singular point of the equation, and problem (1.1) has been analyzed in [1]. We omit
these restrictions here and then, the regular case studied in [6] or the cases studied in [1] may
be considered particular cases of the more general one analyzed in this paper.

A standard theorem for the existence and uniqueness of solution of (1.1) is based on the
knowledge of the two-dimensional linear space of solutions of the homogeneous equation
(x2 − 1)y′′ + f (x)y′ + g(x)y = 0 [2, Chapter 4, Section 1]. When f are g are constants or
in some other particular situation, it is possible to find the general solution of the equation
(sometimes via the Green function [2, Chapter 4], [7, Chapters 1 and 3])). But this is not
possible in general situations and that standard criterion for the existence and uniqueness of
solution of (1.1) is not practical. Other well-known criterion for the existence and uniqueness
of solution of (1.1) is based on the Lax–Milgram theorem when (1.1) is an elliptic problem [3].
In any case, the determination of the existence and uniqueness of solution of (1.1) requires a
non-systematic detailed study of the problem, like for example the study of the eigenvalue
problem associated to (1.1) [2, Chapter 4, Section 2], [7, Chapter 7].

When f , g and h are analytic in a disk with center at x = 0 and containing the interval
[−1, 1], we may consider the initial value problem{

(x2 − 1)y′′ + f (x)y′ + g(x)y = h(x), x ∈ (−1, 1),

y(0) = y0, y′(0) = y′0,
(1.2)

with y0, y′0 ∈ C. Using the Frobenius method we can approximate the solution of this problem
by its Taylor polynomial of degree N ∈ N at x = 0, yN(x) = ∑N

n=0 ckxk, where the coefficients
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ck are affine functions of c0 = y0 and c1 = y′0. By imposing the boundary conditions given
in (1.1) over yN(x), we obtain an algebraic linear system for y0 and y′0. The existence and
uniqueness of solution to this algebraic linear system gives us information about the existence
and uniqueness of solution of (1.1). This procedure, although theoretically possible, has a
difficult practical implementation since the data of the problem are given at x = ±1, not at
x = 0 (see [6] for further details).

In [6] we improved the ideas of the previous paragraph for the regular case (when f (−1) =
g(−1) = h(−1) = 0) using, not the standard Taylor expansion in the associated initial value
problem (1.2), but a two-point Taylor expansion [4] at the end points x = ±1 directly in the
differential equation and in the boundary conditions. The convergence region for a two-point
Taylor expansion is a Cassini disk (see Figure 2.1), and this Cassini disk avoids the possible
singularities of the coefficient functions located near the interval [−1, 1] more efficiently than
the standard Taylor disk [5].

In this paper we investigate if a two-point Taylor expansion at the end points x = ±1 also
works for the more general problem (1.1), in particular when both, x = −1 and x = 1 are
regular singular points of the equation. Thus, we use the two-point Taylor expansion of the
solution y(x) to give a criterion for the existence and uniqueness of analytic solutions based on
the data of the problem, not based on the knowledge of the general solution of the differential
equation.

The paper is organized as follows. In the next section we introduce some elements of
the theory of two-point Taylor expansions and study the space S of analytic solutions of the
differential equation (x2− 1)y′′ + f (x)y′ + g(x)y = h(x). In Section 3 we derive the two-point
Taylor expansion at the end points x = ±1 of the functions of S (when S is nonempty). In
Section 4 we give an algebraic characterization of S that we use, in Section 5, to formulate a
criterion of existence and uniqueness of analytic solutions of problem (1.1). Section 6 includes
some illustrative examples and Section 7 a few final remarks. The analysis of this paper paper
follows the same pattern as the analysis of [5].

2 Global analytic solutions of the differential equation

Assume that the coefficient functions f , g and h in (1.1) are analytic in the Cassini disk Dr =

{z ∈ C | |z2 − 1| < r} with foci at z = ±1 and Cassini’s radius r, with r > 1 (see [4]). The
requirement r > 1 assures that the interval [−1, 1] is contained into the Cassini disk Dr (see
Figure 2.1). Then, the three functions f , g and h, admit a two-point Taylor series in Dr of the
form [4],

f (z) =
∞

∑
n=0

[ f 0
n + f 1

n z](z2− 1)n, g(z) =
∞

∑
n=0

[g0
n + g1

nz](z2− 1)n, h(z) =
∞

∑
n=0

[h0
n + h1

nz](z2− 1)n,

(2.1)
where the coefficients of the expansions of f are [4]

f 0
0 :=

f (1) + f (−1)
2

, f 1
0 :=

f (1)− f (−1)
2

,

f 0
n :=

n

∑
k=0

(n + k− 1)!
(n− k− 1)!

(−1)k f (n−k)(1) + (−1)n f (n−k)(−1)
n! k! 2n+k+1 , n = 1, 2, 3, . . . ,

f 1
n :=

n

∑
k=0

(n + k)!
(n− k)!

(−1)k f (n−k)(1)− (−1)n f (n−k)(−1)
n! k! 2n+k+1 , n = 1, 2, 3, . . .

(2.2)
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The coefficients g0
n and g1

n of the expansion of g and the coefficients h0
n and h1

n of the expansion
of h are defined by means of similar formulas. The three expansions in (2.1) converge absolute
and uniformly to the respective functions f , g and h in Dr (see [4]). The regular case analyzed
in [6] corresponds to the particular situation f 0

0 = f 1
0 = g0

0 = g1
0 = h0

0 = h1
0 = 0 (that is

equivalent to f (±1) = g(±1) = h(±1) = 0).

1-1 Re z

Im z

Figure 2.1: The Cassini disk Dr = {z ∈ C | |z2− 1| < r} with foci at z = ±1 and
radius r > 1 contains the real interval [−1, 1].

As it is argued in [6], when f (±1) = g(±1) = h(±1) = 0, any solution of the differential
equation is analytic in Dr. But the situation is different when | f (1)| + |g(1)| + |h(1)| 6= 0
and/or | f (−1)| + |g(−1)| + |h(−1)| 6= 0 (see [1]) and we need to introduce the following
definition.

Definition 2.1. Denote by Sh the linear space of solutions of the homogeneous equation
(z2 − 1)y′′ + f (z)y′ + g(z)y = 0 that are analytic in Dr. Denote by S the affine space of
solutions of the complete equation (z2 − 1)y′′ + f (z)y′ + g(z)y = h(z) that are analytic in Dr.

From Frobenius theory we know that the critical exponents of the homogeneous diffe-
rential equation (z2 − 1)y′′ + f (z)y′ + g(z)y = 0 at z = −1 are µ1(−1) = 0 and µ2(−1) =

1+ f (−1)/2. When µ2(−1) /∈ Z ( f (−1) /∈ 2Z), one independent solution of the homogeneous
equation is analytic in Dr \ {1} and the other one is not, as it is of the form (z + 1)µ2(−1)a(z)
with a(z) analytic in Dr. When µ2(−1) = 0,−1,−2, . . ., ( f (−1) ∈ −2N), one independent
solution of (z2 − 1)y′′ + f (z)y′ + g(z)y = 0 is analytic in Dr \ {1} and the other one is not, as
it is of the form a1(z) log(z + 1) + (z + 1)µ2(−1)a2(z) with a1(z) and a2(z) analytic in Dr \ {1}.
When µ2(−1) ∈N ( f (−1) ∈ 2N∪ {0}), one independent solution of the homogeneous equa-
tion is analytic in Dr \ {1} (and it is canceled µ2(−1) times at z = −1) and the other one
is of the form (z + 1)µ2(−1)a1(z) log(z + 1) + a2(z) with a1(z) and a2(z) analytic in Dr \ {1}.
Therefore, when µ2(−1) ∈ N, may be only one or may be two independent solutions of
(z2 − 1)y′′ + f (z)y′ + g(z)y = 0 analytic at z = −1.

The discussion is similar at the point z = 1 replacing f (−1) by − f (1), that is, µ1(1) = 0
and µ2(1) = 1− f (1)/2: when f (1) /∈ 2Z, one independent solution of the homogeneous
equation is analytic in Dr \ {−1} and the other one is not. When f (1) ∈ 2N, one independent
solution of (z2 − 1)y′′ + f (z)y′ + g(z)y = 0 is analytic in Dr \ {−1} and the other one is not.
When f (1) ∈ −2N ∪ {0}, one independent solution of the homogeneous equation is analytic
in Dr \ {−1} (and it is canceled µ2(1) times at z = 1) and the other one may be or may
be not analytic in Dr \ {−1}. Therefore, when µ2(1) ∈ N, may be only one or may be two
independent solutions of (z2 − 1)y′′ + f (z)y′ + g(z)y = 0 analytic at z = 1.
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Then, all the possibilities may be summarized as follows: When f (−1) 6= 0, 2, 4, . . . or
f (1) 6= 0,−2,−4, . . ., then the homogeneous equation has only the null solution or a
one-dimensional space of analytic solutions in Dr. When f (−1) = 0, 2, 4, . . . and f (1) =

0,−2,−4, . . . then everything is possible: the homogeneous equation has only the null solu-
tion, it has a one-dimensional space or it has a two-dimensional space of analytic solutions in
Dr.

From the above discussion we conclude that

dim(Sh) =

{
0 or 1 when f (−1) 6= 0, 2, 4, . . . or f (1) 6= 0,−2,−4, . . .

0, 1 or 2 when f (−1) = 0, 2, 4, . . . and f (1) = 0,−2,−4, . . .

On the other hand, it is clear that S = yp + Sh, where yp(z) is a particular solution of
(z2 − 1)y′′ + f (z)y′ + g(z)y = h(z) that is analytic in Dr. The existence of that particu-
lar solution yp(z) is not guaranteed a priori; then, either dim(S) = dim(Sh) or S is empty.
(For example, the general solution of the equation (z2 − 1)y′′ = 1 is y(z) = c1 + c2z +

z log(
√
(1− z)/(z + 1)) − log(

√
z2 − 1), c1, c2 ∈ C, then dim(Sh) = 2 and S is empty. The

general solution of the equation (z2 − 1)y′′ − y′ = 1 is y(z) = c1 + c2(arcsin z +
√

1− z2)− z,
c1, c2 ∈ C, then dim(Sh) = dim(S) = 1.)

Once we have a picture of the spaces S and Sh in relation to the values of f (±1), we
introduce the key point in the discussion of the paper. Any function y(z) ∈ S or y(z) ∈ Sh can
be written in the form of a two-point Taylor expansion at the base points z = ±1 (see [4]),

y(z) =
∞

∑
n=0

[an + bnz](z2 − 1)n, z ∈ Dr, (2.3)

where the coefficients an and bn are related to the values of the derivatives of y(z) at z = ±1
in the same form as the coefficients f 0

n and f 1
n of f are related to the derivatives of f at z = ±1

in (2.2). If we can derive the coefficients an and bn from (z2− 1)y′′+ f (z)y′+ g(z)y = h(z), we
will obtain the functions y ∈ S in the form of a two-point Taylor series (2.3), when the space S
is nonempty. This fact is not guaranteed a priori from the data of the problem. In the regular
case f (±1) = g(±1) = 0, it is guaranteed that the dimension of Sh is two [6]. When only one
of the end points is a regular singular point, then it is guaranteed that the dimension of Sh is,
at least, one (see [1]).

In the more general case analyzed in this paper it is not guaranteed a priori that Sh or S are
nonempty. Then, the existence of one analytic solution in Dr of the initial or boundary value
problem (1.1) is not guaranteed a priori either; nor even when h = 0 (homogeneous case) or in
the regular case f (±1) = g(±1) = h(±1) = 0. In this paper we analyze the size of the spaces
Sh and S and then, the existence and uniqueness of analytic solutions in Dr of the problem
(1.1). We accomplish this task using that any function in S may be written in the form (2.3):
in the remaining of the paper we replace the formal two-point Taylor series (2.3) in (1.1) and
study if it is possible to obtain the coefficients an and bn from the differential equation and the
boundary conditions given in (1.1).

For any function y(z) analytic in Dr, the series (2.3) is absolute and uniformly convergent
in the interval [−1, 1], and we also have [6]

y′(z) =
∞

∑
k=0
{[(2k + 1)bk + 2(k + 1)bk+1] + 2(k + 1)ak+1z} (z2 − 1)k,

y′′(z) =
∞

∑
k=0

2(k + 1) {[(2k + 1)ak+1 + 2(k + 2)ak+2] + [(2k + 3)bk+1 + 2(k + 2)bk+2]z} (z2 − 1)k,

(2.4)
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where the convergence of the series is absolute and uniform in the interval [−1, 1].

3 Two-point Taylor expansion representation of the functions of S

As it happens in the standard Frobenius method for initial value problems, when we replace
f , g and h by their two-point Taylor expansions (2.1) in the differential equation (z2 − 1)y′′ +
f (z)y′ + g(z)y = h(z), and the solution y(z) and its derivatives by their two-point Taylor
expansions (2.3) and (2.4), we find that the coefficients an and bn satisfy, for n = 0, 1, 2, . . ., a
linear system of two recurrences

2(n + 1)[(2n + f 1
0 )an+1 + f 0

0 bn+1] + 2n(2n− 1)an + 2
n−1

∑
k=0

(k + 1)( f 0
n−kbk+1 + f 1

n−kak+1)

+
n

∑
k=0

[
(2k + 1) f 0

n−kbk + 2(k + 1) f 1
n−k−1ak+1 + g0

n−kak + (g1
n−k + g1

n−k−1)bk

]
= h0

n,

2(n + 1)[(2n + f 1
0 )bn+1 + f 0

0 an+1] + 2n(2n + 1)bn + 2
n−1

∑
k=0

(k + 1)( f 0
n−kak+1 + f 1

n−kbk+1)

+
n

∑
k=0

[
(2k + 1) f 1

n−kbk + g0
n−kbk + g1

n−kak

]
= h1

n,

(3.1)

with f 0
−1 = g0

−1 = f 1
−1 = g1

−1 := 0. Then, in general, as it happens in the standard Frobenius
method or in the particular regular boundary problem analyzed in [6], the computation of the
coefficients an and bn involve the previous coefficients a0, b0, . . . , an−1 and bn−1. But we find
here a particularity that we do not find in the standard Frobenius method nor in the regular
problem solved in [6]: in general, for a given n = 0, 1, 2, . . ., we can solve the linear system
(3.1) for an+1 and bn+1 if and only if∣∣∣∣2n + f 1

0 f 0
0

f 0
0 2n + f 1

0

∣∣∣∣ 6= 0⇔
{

f (−1) ≡ f 0
0 − f 1

0 6= 2n,

f (1) ≡ f 0
0 + f 1

0 6= −2n.

Then, if f (−1)/2 and − f (1)/2 /∈ N ∪ {0}, we can solve the linear system (3.1) for an+1 and
bn+1 for any n = 0, 1, 2, . . . But if f (−1)/2 or − f (1)/2 ≡ n0 ∈ N ∪ {0}, then we can solve
the system (3.1) for an+1 and bn+1 for any n = 0, 1, 2, . . ., except for n = n0. If f (−1)/2 and
− f (1)/2 ∈ N ∪ {0}, then we define n0 ≡ max{ f (−1)/2,− f (1)/2}. For convenience, when
f (−1)/2 /∈N∪ {0} and − f (1)/2 /∈N∪ {0} we define n0 = −1.

Therefore, in any case, we can solve the linear system (3.1) for an+1 and bn+1 for n =

n0 + 1, n0 + 2, n0 + 3, . . . This means that we obtain all the coefficients an and bn needed
in (2.3) for n = n0 + 2, n0 + 3, n0 + 4, . . ., as a function of the first 2(n0 + 2) coefficients
a0, b0, a1, b1, . . . , an0+1, bn0+1. But these 2(n0 + 2) first coefficients are not totally free, as they
must satisfy the equations (3.1) for n = 0, 1, 2, . . . , n0. These facts impose 2(n0 + 1) lin-
ear restrictions (not all of them necessarily independent) to the 2(n0 + 2) first coefficients
a0, b0, a1, b1, . . . , an0+1, bn0+1. Let us denote these equations by Lk[a0, b0, a1, b1, . . . , an0+1, bn0+1] =

0, k = 1, 2, 3, . . . , 2n0 + 2. In general, these equations are non homogeneous; they are homoge-
neous when h(z) = 0.

In the particular case of the regular problem analyzed in [6] we have that n0 = 0, since
f (±1) = 0. Then, we can obtain from system (3.1) all the coefficients an and bn for n ≥ 2
as a function of the first four coefficients a0, b0, a1 and b1. In this case, the above mentioned
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set of restrictions consists of the equations (3.1) for n = 0. But using that f (±1) = g(±1) =
h(±1) = 0 we see that these equations are the tautology 0 = 0 and then, they do not introduce
any linear dependence between the coefficients a0, b0, a1 and b1.

As a difference with the Frobenius method where we only have one recurrence relation for
the sequence of standard Taylor coefficients, here we have a system of two recurrences (3.1).
But moreover, the computation of the coefficients an, bn for n ≥ n0 + 2 requires the initial seed
a0, b0, a1, b1, . . . , an0+1, bn0+1. These 2n0 + 4 coefficients satisfy the above mentioned 2n0 + 2
equations Lk = 0. This does not mean that the linear space Sh or the affine space S may have
dimension two or more, these spaces have, of course, dimension at most two. It is happening
that, apart from the affine space S of (true) solutions of (z2 − 1)y′′ + f (z)y′ + g(z)y = h(z),
there is a bigger space of formal solutions W defined by

W :=
{

y(z) =
∞

∑
n=0

[an + bnz](z2 − 1)n
∣∣∣∣ an, bn given in (3.1) for n ≥ n0 + 2;

(a0, b0, a1, b1, . . . , an0+1, bn0+1) ∈ C2n0+4

with Lk[a0, b0, . . . , an0+1, bn0+1] = 0, k = 1, 2, 3, . . . , 2n0 + 2
}

.

Formally, all the two-point Taylor series in W are solutions of (z2 − 1)y′′ + f (z)y′ + g(z)y =

h(z). But not all of them are convergent, only a subset: the affine space S of (true) solutions
of (z2 − 1)y′′ + f (z)y′ + g(z)y = h(z), that may be written in the form

S =

{
y ∈W

∣∣ ∞

∑
n=0

[an + bnz](z2 − 1)n is uniformly convergent in [−1, 1]

}
.

In the following section we derive a more practical characterization of the space S in the form
of two extra linear equations for the coefficients a0, b0, a1, b1, . . . , an0+1, bn0+1. This characteri-
zation allows us to give some more precise information about the size of the space S.

4 Algebraic characterization of the space S

From (3.1) and the discussion below that formula, we see that we may solve (3.1) for (an, bn)

for n ≥ n0 + 2 in the schematic form

an =
n−1

∑
k=0

[An,kak + Bn,kbk] + En,

bn =
n−1

∑
k=0

[Cn,kak + Dn,kbk] + Fn,

(4.1)

where the coefficients An,k, Bn,k, Cn,k and Dn,k are functions of f 0
k , f 1

k , g0
k and g1

k . The coefficients
En,k and Fn,k are functions of h0

k and h1
k , k = 0, 1, 2, . . . , n− 1. For simplicity, we do not detail

here these functions, as the precise value of these coefficients is not needed in the theoretical
discussion. It is not needed either in computation in the particular examples, as it is more
convenient the use of an algebraic manipulator to compute (an, bn), n ≥ n0 + 2, directly from
(3.1).

For a fixed m ∈N, m ≥ 2n0 + 2, and n = 0, 1, 2, . . . , m− n0 − 1, we define the vectors

vn := (an+n0+2−m, bn+n0+2−m, an+n0+3−m, bn+n0+3−m, . . . , an+n0 , bn+n0 , an+n0+1, bn+n0+1) ∈ C2m,
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with a−k = b−k = 0 for k ∈N. In particular, we have

vm−n0−2 = (a0, b0, a1, b1, . . . , am−1, bm−1)

and

v0 = (0, 0, . . . , 0, 0, a0, b0, a1, b1, . . . , an0+1, bn0+1).

For n = 0, 1, 2, . . . , m− n0 − 2, define the (2m)× (2m) matrix

Mn :=



0 0 1 0 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . 0 1 0
0 0 0 0 0 . . . 0 0 1
0 . . . 0 An+n0+2,0 Bn+n0+2,0 . . . . . . An+n0+2,n+n0+1 Bn+n0+2,n+n0+1

0 . . . 0 Cn+n0+2,0 Dn+n0+2,0 . . . . . . Cn+n0+2,n+n0+1 Dn+n0+2,n+n0+1


.

(4.2)
The only non-null elements of this matrix are the corresponding to the entries mi,i+2 = 1,
i = 1, 2, 3, . . . , 2m− 2, and to the entries m2m−1,k, m2m,k, k = 0, 1, 2, . . . , n + n0 + 1. In particular
we have

M0 =



0 0 1 0 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . 0 1 0
0 0 0 0 0 . . . 0 0 1
0 . . . 0 An0+2,0 Bn0+2,0 . . . . . . An0+2,n0+1 Bn0+2,n0+1

0 . . . 0 Cn0+2,0 Dn0+2,0 . . . . . . Cn0+2,n0+1 Dn0+2,n0+1


and

Mm−n0−2 =



0 0 1 0 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . 0 1 0
0 0 0 0 0 . . . 0 0 1

Am,0 Bm,0 Am,1 Bm,1 . . . . . . . . . Am,m−1 Bm,m−1

Cm,0 Dm,0 Cm,1 Dm,1 . . . . . . . . . Cm,m−1 Dm,m−1


.

We also need, for n = 0, 1, 2, . . . , m− n0 − 2, the definition of the vector

cn := (0, 0, . . . , 0, 0, En+2, Fn+2) ∈ C2m.

Then, the system of recurrences (4.1) (that indeed represents (3.1)) can be written in matrix
form

vn = Mn−1vn−1 + cn−1, n = 1, 2, 3, . . . , m− n0 − 1.

To find the solution of this linear recurrence for the vector vn, we define recurrently the
following matrices

M0 :=M0, Mn := MnMn−1,

C0 :=c0, Cn := MnCn−1 + cn, n = 1, 2, 3, . . . , m− n0 − 2,



Singular boundary value problems and two-point Taylor expansions 9

or equivalently,

Mn =
n

∏
k=0

Mn−k, Cn = cn +
n−1

∑
k=0

[Mn ·Mn−1 · · ·Mk+1]ck, n = 0, 1, 2, 3, . . . , m− n0 − 2.

Then, we find
vm−n0−1 =Mm−n0−2v0 + Cm−n0−2,

or, in an extended form
?
?
.
.
.
?
?

am
bm

 =


?
?
.
.
.
?
?

B2m−1
B2m

+


? ? ? ? ? ... ? ?
? ? ? ? ? ... ? ?
... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ...
? ? ? ? ? ... ? ?
? ? ? ? ? ... ? ?
? ... ? M2m−1,2m−2n0−3 M2m−1,2m−2n0−2 ... M2m−1,2m−1 M2m−1,2m

? ... ? M2m,2m−2n0−3 M2m,2m−2n0−2 ... M2m,2m−1 M2m,2m




0
.
0
a0
b0
.
.

an0+1

bn0+1

,

where Mi,j are the entrances of the last two rows and last 2n0 + 4 columns of the matrix
Mm−n0−2, Bi are the last two components of the vector Cm−n0−2 and the ? denote complex
(unspecified) numbers. The two-point Taylor series of an analytic function in Dr converges in
[−1, 1] if it converges at z = 0 [4]. And it converges at z = 0 if and only if limm→∞(am, bm) =

(0, 0). Then, taking the limit m→ ∞ into the above equation we find

?

?

.

.

.
?

?

0
0


=



? ? ? ? ? . . . ? ?

? ? ? ? ? . . . ? ?

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .
? ? ? ? ? . . . ? ?

? ? ? ? ? . . . ? ?

? . . . ? H1,1 H1,2 . . . H1,2n0+3 H1,2n0+4

? . . . ? H2,1 H2,2 . . . H2,2n0+3 H2,2n0+4





0
.
0
a0

b0

.

.
an0+1

bn0+1


+



?

?

.

.

.
?

?

γ1

γ2


,

where we have denoted

Hi,j := lim
m→∞

M2m+i−2,2m−2n0+j−4, i = 1, 2, j = 1, 2, 3, . . . , 2n0 + 4,

γ1 = lim
m→∞

B2m−1, γ2 = lim
m→∞

B2m.
(4.3)

Then, the two equations that we were looking for are, for k = 1, 2

Hk[a0, b0, . . . , an0+1, bn0+1] := Hk,1a0 + Hk,2b0 + · · ·+ Hk,2n0+3an0+1 + Hk,2n0+4bn0+1 + γk = 0.
(4.4)

Therefore, at this moment, we have found the more practical characterization of the space
S of true solutions of (z2 − 1)y′′ + f (z)y′ + g(z)y = h(z) that we were looking for

S :=
{

y(z) =
∞

∑
n=0

[an + bnz](z2 − 1)n
∣∣∣∣ an, bn given in (3.1) for n ≥ n0 + 2;

(a0, b0, a1, b1, . . . , an0+1, bn0+1) ∈ C2n0+4 with Lk[a0, b0, a1, b1, . . . , an0+1, bn0+1] = 0

for k = 1, 2, 3, . . . , 2n0 + 2, and Hk[a0, b0, a1, b1, . . . , an0+1, bn0+1] = 0 for k = 1, 2
}

.

(4.5)
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In other words, the 2n0 + 4 coefficients a0, b0, a1, b1, . . . , an0+1, bn0+1 of the two-point Taylor
expansion of any function in S must be a solution of the following linear system of 2n0 + 4
equations {

Lk[a0, b0, a1, b1, . . . , an0+1, bn0+1] = 0, k = 1, 2, 3, . . . , 2n0 + 2,

Hk[a0, b0, a1, b1, . . . , an0+1, bn0+1] = 0, k = 1, 2.
(4.6)

This system is homogeneous when h = 0 (when h0
n = h1

n = 0) and non-homogeneous when
h 6= 0. Let’s denote (4.6)h the system (4.6) when h = 0. We know that dim(Sh) = 0, 1 or 2.
This means that rank[(4.6)h] = 2n0 + 2, 2n0 + 3 or 2n0 + 4 and then, the homogeneous system
has a one or two-dimensional space of solutions or Sh = {0}. On the other hand, we know
that dim(S) = 1 or 2, or S is empty. This means that there are five possibilities:

(i) rank[(4.6)] = rank[(4.6)h] = 2n0 + 2; then dim(S) = dim(Sh) = 2,

(ii) rank[(4.6)] = rank[(4.6)h] = 2n0 + 3; then dim(S) = dim(Sh) = 1,

(iii) rank[(4.6)] = rank[(4.6)h] = 2n0 + 4; then Sh = {0} and S = {yp},

(iv) rank[(4.6)] = 2n0 + 3 or 2n0 + 4 and rank[(4.6)h] = 2n0 + 2; then dim(Sh) = 2 and S is
empty,

(v) rank[(4.6)] = 2n0 + 4 and rank[(4.6)h] = 2n0 + 3; then dim(Sh) = 1 and S is empty.

Therefore,

• When rank[(4.6)h] = 2n0 + 4, the unique analytic solution in Dr of the homogeneous
equation (z2 − 1)y′′ + f (z)y′ + g(z)y = 0 is the null solution and the complete equation
(z2 − 1)y′′ + f (z)y′ + g(z)y = h(z) has a unique solution analytic in Dr.

• When rank[(4.6)h] = 2n0 + 2 then either, dim(S) = 2 or S is empty.

• When rank[(4.6)h] = 2n0 + 3 then either, dim(S) = 1 or S is empty.

In the regular case we know that dim(S) = 2 (it is proved in [6] that the only two equations
Hk = 0 that define S in this case are linearly independent). But, in general, we need to compute
the above ranks in order to obtain some information about the sizes of S and Sh.

4.1 Polynomial coefficients

When the coefficient functions f and g are polynomials, we can simplify the formulation of
the above existence and uniqueness criterion. In general, the computation of the coefficients
(an, bn) requires a matrix Mn of size (2m)× (2m) with m ≥ n + n0 + 2. This means that we
need matrices of increasing size to compute the coefficients when n increases. In the case of
polynomial coefficients, the situation is different. The recurrences (3.1) are of constant order s
independent of n and the computation of the coefficients an and bn involves only the previous
2s coefficients an−s, bn−s, . . . , an−1 and bn−1. Thus, in this case, we do not need matrices of
increasing size, but matrices of constant size (2s)× (2s).

The recurrence system (3.1) for polynomial coefficients is of the form

an =
n−1

∑
k=n−s

[An,kak + Bn,kbk] + En,

bn =
n−1

∑
k=n−s

[Cn,kak + Dn,kbk] + Fn,
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for a certain s ∈ N, n = n0, n0 + 1, n0 + 2, . . ., with a−k = b−k = 0, k ∈ N. The discussion is
identical to the one developed in the general case analyzed above, but now we can eliminate
the restriction n ≤ m− n0 − 2. Moreover, we can simplify the computations because now, the
size of the matrices Mn does not depend on n. We can now define the matrices Mn of fixed
size (2s)× (2s) in the form

Mn :=



0 0 1 0 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . 0 1 0
0 0 0 0 0 . . . 0 0 1

An+2,n+2−s Bn+2,n+2−s . . . An+2,0 Bn+2,0 . . . . . . An+2,n+1 Bn+2,n+1

Cn+2,n+2−s Dn+2,n+2−s . . . Cn+2,0 Dn+2,0 . . . . . . Cn+2,n+1 Dn+2,n+1


instead of the form (4.2), with An,−k = Bn,−k = Cn,−k = Dn,−k = 0 for k ∈N. The computation
of the system (4.6) is identical. The only difference is that now, the matrices Mm are of size
(2s)× (2s) ∀m ∈N and the vectors Cm ∈ R2s ∀m ∈N.

5 Existence and uniqueness criterion for the boundary value pro-
blem (1.1)

Once we have the algebraic description (4.5) of the space S of solutions analytic in Dr of the
equation (z2 − 1)y′′ + f (z)y′ + g(z)y = h(z), we focus our attention on the boundary value
problem (1.1) stated in the introduction. We introduce now the two boundary conditions in
order to find an algebraic description of the solutions of (1.1). From (2.3) and (2.4) we have


y(−1)
y(1)

y′(−1)
y′(1)

 = T


a0

b0

a1

b1

 ,

where T is the regular matrix

T =


1 −1 0 0
1 1 0 0
0 1 −2 2
0 1 2 2

 .

(The first four coefficients a0, b0, a1, b1 of the two-point Taylor expansion (2.3) are related to
y(−1), y(1), y′(−1), y′(1) by the matrix T−1). Write the matrix BT, where B is the 2× 4 matrix
defining the boundary condition in (1.1), in the form

BT =

(
R1,1 R1,2 R1,3 R1,4

R2,1 R2,2 R2,3 R2,4

)
.

Then, the boundary value problem (1.1) may be written in the following equivalent form that
stresses the role of the first four coefficients of the two-point Taylor expansion of y(x) in the
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boundary value equations
(x2 − 1)y′′ + f (x)y′ + g(x)y = h(x) in (−1, 1),

R1[a0, b0, a1, b1] := R1,1a0 + R1,2b0 + R1,3a1 + R1,4b1 − α = 0,

R2[a0, b0, a1, b1] := R2,1a0 + R2,2b0 + R2,3a1 + R2,4b1 − β = 0.

(5.1)

When we add the above two algebraic equations R1 and R2 to the set of equations (4.6) that
describe the space S of solutions of (x2 − 1)y′′ + f (x)y′ + g(x)y = h(x), we find that the
coefficients a0, b0, . . . , an0+1, bn0+1 of the two-point Taylor solutions y(x) of (5.1) (if any) are
solutions of the algebraic linear system

Lk[a0, b0, a1, b1, . . . , an0+1, bn0+1] = 0, k = 1, 2, 3, . . . , 2n0 + 2,

Hk[a0, b0, a1, b1, . . . , an0+1, bn0+1] = 0, k = 1, 2,

Rk[a0, b0, a1, b1] = 0, k = 1, 2.

(5.2)

The remaining coefficients an, bn for n ≥ n0 + 2 are obtained recursively from (3.1). The
system (5.2) is a linear system of 2n0 + 6 equations with 2n0 + 4 unknowns (in the regular
case, the system reduces to the last 4 equations). The existence and uniqueness of solutions
of the system (5.2) is equivalent to the existence and uniqueness of solution of the problem
(5.1). Then, we can finally formulate the following existence and uniqueness criterion for the
boundary value problem (1.1).

Existence and uniqueness criterion

(i) If the system (5.2) has not a solution, then problem (1.1) has not an analytic solution in Dr.

(ii) If the system (5.2) has a unique solution, then problem (1.1) has a unique analytic solution in
Dr.

(iii) If the system (5.2) has a one-dimensional space of solutions, then problem (1.1) has a one-
dimensional family of analytic solutions in Dr.

(iv) If the system (5.2) has a two-dimensional space of solutions, then problem (1.1) has a two-
dimensional family of analytic solutions in Dr.

Remark 5.1. According to the ranks of (4.6) and (4.6)h we have that

1. If rank[(4.6)] = rank[(4.6)h] = 2n0 + 3, then (iv) is not possible.

2. If rank[(4.6)] = rank[(4.6)h] = 2n0 + 4, then (iii) and (iv) are not possible.

3. If rank[(4.6)] 6= rank[(4.6)h], then only (i) is possible.

Remark 5.2. In practice, the coefficients of the two equations Hk in (5.2) are computed approxi-
mately, as the limits involved in their computation can be computed only approximately (see
(4.3) and (4.4)). Therefore, the above existence and uniqueness criterion for solution of (1.1)
is useful when system (5.2) is well conditioned. In order to determine the rank of system
(5.2) and then, the dimension of the space of solutions, it is convenient to compute the limits
of the determinants of the principal minors. On the other hand, the criterion is construc-
tive as it provides an approximation to the solution of the form (2.3) once the coefficients
(a0, b0, . . . , an0+1, bn0+1) are computed from (5.2).
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Remark 5.3. When − f (1) or f (−1) 6= 0, 2, 4, . . ., the rank of the first 2n0 + 4 equations in (5.2)
is, at least, 2n0 + 3 and (iv) is not possible. When f (±1) = g(±1) = h(±1) = 0 (regular case),
the system (5.2) only consists of the four last equations and the rank of the two equations
Hk = 0, k = 1, 2, is 2. In any other case, the rank of the first 2n0 + 4 equations in the system
(5.2) is not known a priori; it is calculated once we have computed the first 2n0 + 4 equations
of system (5.2).

The key point in the discussion of the dimensions of S and Sh is system (4.6), and the key
point in the discussion of the existence and uniqueness of problem (1.1) is system (5.2). In the
examples of the following section we show how these systems are computed in practice and
how the above criterium of existence and uniqueness may be implemented.

6 Examples

In the examples of this section we explore all the possible situations in relation to the values
of f (1) and f (−1) and the sizes of the spaces S and Sh:

(i) f (−1)/2 and − f (1)/2 ∈N∪ {0} and dim(Sh) = 2, S is empty. Example 6.1.

(ii) f (−1)/2 and − f (1)/2 ∈N∪ {0} and dim(Sh) =dim(S) = 2. Example 6.2.

(iii) f (−1)/2 or − f (1)/2 /∈N∪ {0} and dim(Sh) =dim(S) = 1. Example 6.3.

(iv) f (−1)/2 and − f (1)/2 ∈N∪ {0} and dim(Sh) =dim(S) = 1. Example 6.4.

(v) f (−1)/2 or − f (1)/2 /∈N∪ {0} and dim(Sh) = 1, S empty. Example 6.5.

(vi) f (−1)/2 and − f (1)/2 ∈N∪ {0} and dim(Sh) = 1, S empty. Example 6.6.

(vii) f (−1)/2 or − f (1)/2 /∈N∪ {0} and Sh = {0}, S non empty. Example 6.7.

(viii) f (−1)/2 and − f (1)/2 ∈N∪ {0} and Sh = {0}, S non empty. Example 6.8.

In all the examples below, the parameters a, b, c, d, ã, b̃, c̃, d̃, C, α and β are arbitrary complex
numbers. The limits in the m index of the sequences (4.3) are approximated by the value of
the sequences at m = 10. We have selected examples for which the general solution of the
differential equation is known; in this way we may check the validity of the existence and
uniqueness criterion of Section 5.

Example 6.1. Consider the boundary value problem
(x2 − 1)y′′ − (x + 1)y′ = 1 in (−1, 1),

ay(−1) + by(1) + cy′(−1) + dy′(1) = α,

ãy(−1) + b̃y(1) + c̃y′(−1) + d̃y′(1) = β.

(6.1)

We have f (x) = −(x + 1), g(x) = 0 and h(x) = 1. As f (−1) = 0 and f (1) = −2, the critical
exponents at the points x = ±1 are µ2(−1) = 1 and µ2(1) = 2 respectively and n0 = 1. For
this example, the recurrence relations (3.1) may be written in the form vn+1 = Mnvn + cn with
vn = (an, bn), cn = (0, 0), n = 2, 3, . . . , and

Mn =

(
1−2n

2(n+1) 0
− 1

2(n+1) −
2n+1

2(n+1)

)
.
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System (4.6) is given by 

b0 + 2a1 + 2b1 = −1,

b0 + 2a1 + 2b1 = 0,

−3b1 + 4a2 − 4b2 = 0,

3b1 − 4a2 + 4b2 = 0,

0.028031a2 = 0,

0.165074a2 + 0.358179b2 = 0,

which has no solution. The solution to the homogeneous system (4.6)h is (a1, b1, a2, b2) =

(−b0/2, 0, 0, 0) with a0, b0 ∈ C free parameters. Then, dim(Sh) = 2, but S is empty. This
conclusion is the same one that we obtain from the knowledge of the general solution of the
differential equation in (6.1)

y(x) = c1 + c2x(x− 2) +
1
8
[(x2 − 2x− 3) log(x + 1)− (x− 1)2 log(x− 1)− 2x].

Example 6.2. Consider the boundary value problem
(x2 − 1)y′′ − 2x3y′ + 2(x2 + 1)y = 0 in (−1, 1),

ay(−1) + by(1) + cy′(−1) + dy′(1) = α,

ãy(−1) + b̃y(1) + c̃y′(−1) + d̃y′(1) = β.

(6.2)

We have f (x) = −2x3, g(x) = 2(x2 + 1) and h(x) = 0. As f (−1) = 2 and f (1) = −2, the
critical exponents at the points x = ±1 are µ2(−1) = µ2(1) = 2 respectively and n0 = 1. For
this example, the recurrence relations (3.1) may be written in the form vn+1 = Mnvn + cn with
vn = (an−1, bn−1, an, bn), cn = (0, 0, 0, 0), n = 2, 3, . . . , and

Mn =


0 0 1 0
0 0 0 1

2n−3
2(n−1)(n+1) 0 − (n−2)(2n−1)

2(n−1)(n+1) 0
0 1

n+1 0 − 2n−1
2(n+1)

 .

System (4.6)=(4.6)h is given by

a0 − a1 = 0,

b0 − 2b1 = 0,

a0 − a1 = 0,

0.015263a1 − 0.030525a2 = 0,

0.150515b1 − 0.35839b2 = 0,

(6.3)

whose solution is (a1, b1, a2, b2) = (a0, b0/2, a0/2, 0.209988b0) with a0, b0 ∈ C free parameters.
As dim(Sh) = dim(S) = 2, the differential equation in (6.2) has a two-dimensional family of
analytic solutions in [−1, 1], which agrees with the fact that the differential equation has two
independent solutions ex2

and
√

πex2
erf(x) + 2x, both of them analytic in [−1, 1].

Now we apply the existence and uniqueness criterion of Section 5: the existence and
uniqueness of solution of (6.2) is equivalent to the existence and uniqueness of solution of the
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linear system given by equations (6.3) and the boundary value conditions written in terms of
the coefficients ak and bk{

(a + b)a0 + (−a + b + c + d)b0 + (−2c + 2d)a1 + (2c + 2d)b1 = α,

(ã + b̃)a0 + (−ã + b̃ + c̃ + d̃)b0 + (−2c̃ + 2d̃)a1 + (2c̃ + 2d̃)b1 = β,
(6.4)

that, for this example, are given by{
(a + b− 2c + 2d)a0 + (−a + b + 2c + 2d)b0 = α,

(ã + b̃− 2c̃ + 2d̃)a0 + (−ã + b̃ + 2c̃ + 2d̃)b0 = β.

Then, problem (6.2) has a unique solution if and only if(
a + b− 2c + 2d −a + b + 2c + 2d
ã + b̃− 2c̃ + 2d̃ −ã + b̃ + 2c̃ + 2d̃

)(
a0

b0

)
=

(
α

β

)
. (6.5)

The existence and uniqueness condition obtained with this criterion coincides with the one
provided by the knowledge of the family of analytic solutions of the differential equation
given in (6.2)

y(x, C1, C2) = C1ex2
+ C2(

√
πex2

erf(x) + 2x).

The standard criterion of existence and uniqueness of solution of problem (6.2) depends on
the existence of two complex numbers C1 and C2 that make y(x, C1, C2) compatible with the
boundary conditions in (6.2), that is,(

(a + b− 2c + 2d)e (−a + b + 2(c + d))
(
2 + e

√
π erf(1)

)
(ã + b̃− 2c̃ + 2d̃)e (−ã + b̃ + 2(c̃ + d̃))

(
2 + e

√
π erf(1)

))(C1

C2

)
=

(
α

β

)
. (6.6)

It can be checked that (6.5) and (6.6) are equivalent.

Example 6.3. Consider the boundary value problem
(x2 − 1)y′′ + x(1− 2x2)y′ + 2y = 0 in (−1, 1),

ay(−1) + by(1) + cy′(−1) + dy′(1) = α,

ãy(−1) + b̃y(1) + c̃y′(−1) + d̃y′(1) = β.

(6.7)

In this problem, f (x) = x(1− 2x2), g(x) = 2 and h(x) = 0. We have f (−1) = 1 and f (1) = −1,
so the critical exponents at the points x = ±1 are µ2(−1) = µ2(1) = 3/2 respectively and
n0 = −1.

For this example, the recurrence relations (3.1) may be written in the form vn+1=Mnvn + cn

with vn = (an−1, bn−1, an, bn), cn = (0, 0, 0, 0), n = 2, 3, . . . , and

Mn =


0 0 1 0
0 0 0 1

2(n−1)
(n+1)(2n−1) 0 − 2n2−4n+1

(n+1)(2n−1) 0
0 1

n+1 0 − 2n−1
2(n+1)

 .
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System (4.6) = (4.6)h is given by

a0 − a1 = 0,

b0 − 2b1 = 0,

−a1 + 2a2 = 0,

−2b0 + b1 + 4b2 = 0,

0.009033a1 − 0.018067a2 = 0,

0.111897b1 − 0.266438b2 = 0,

(6.8)

whose solution is (b0, a1, b1, a2, b2) = (0, a0, 0, a0/2, 0), with a0 ∈ C a free parameter. As
dim(Sh) = dim(S) = 1, the differential equation in (6.7) has a one-dimensional family of
analytic solutions in [−1, 1], which agrees with the fact that the differential equation has two
independent solutions, ex2−1 and ex2−1

∫ x e−t2√
1− t2dt, and just one of them is analytic in

[−1, 1].
Now we apply the existence and uniqueness criterion of Section 5: the existence and

uniqueness of solution of (6.7) is equivalent to the existence and uniqueness of solution of the
linear system given by equations (6.8) and (6.4), that, for this example, are given by{

(a + b)a0 + (−2c + 2d)a0 = α,

(ã + b̃)a0 + (−2c̃ + 2d̃)a0 = β.

Then, problem (6.7) has a unique solution if and only if

α

a + b− 2c + 2d
=

β

ã + b̃− 2c̃ + 2d̃
(6.9)

with a + b − 2c + 2d 6= 0 and ã + b̃ − 2c̃ + 2d̃ 6= 0. The existence and uniqueness condition
obtained with this criterion coincides with the one provided by the knowledge of the family
of analytic solutions of the differential equation given in (6.7)

y(x, C) = Cex2−1.

The standard criterion of existence and uniqueness of solution of problem (6.7) depends on the
existence of a complex number C that makes y(x, C) compatible with the boundary conditions
in (6.7), that is, {

aC + bC− 2cC + 2dC = α,

ãC + b̃C− 2c̃C + 2d̃C = β.
(6.10)

It can be checked that conditions (6.9) and (6.10) are the same.

Example 6.4. Consider the boundary value problem
(x2 − 1)y′′ − 2y = −2 in (−1, 1),

ay(−1) + by(1) + cy′(−1) + dy′(1) = α,

ãy(−1) + b̃y(1) + c̃y′(−1) + d̃y′(1) = β.

(6.11)

We have f (x) = 0, g(x) = −2 and h(x) = −2. As f (−1) = f (1) = 0, the critical exponents
at the points x = ±1 are µ2(−1) = µ2(1) = 1 respectively and n0 = 0. For this example, the
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recurrence relations (3.1) may be written in the form vn+1 = Mnvn + cn with vn = (an, bn),
cn = (0, 0), n = 1, 2, . . . , and

Mn =

(
− (n−1)(2n+1)

2n(n+1) 0
0 − 2n−1

2n

)
.

System (4.6) and (4.6)h are given, respectively, by
a0 = 1,

b0 = 0,

0.176197b1 = 0,


a0 = 0,

b0 = 0,

0.176197b1 = 0,

(6.12)

whose respective solutions are (a0, b0, b1) = (1, 0, 0) and (a0, b0, b1) = (0, 0, 0) with a1 ∈
C a free parameter. As dim(Sh) = dim(S) = 1, the differential equation in (6.11) has a
one-dimensional family of analytic solutions in [−1, 1], which agrees with the fact
that the homogeneous differential equation has two independent solutions, x2 − 1 and
(x2 − 1) log((x + 1)/(1− x))− 2x, and just one is analytic in [−1, 1].

Now we apply the existence and uniqueness criterion of Section 5: the existence and
uniqueness of solution of (6.11) is equivalent to the existence and uniqueness of solution of
the linear system given by equations (6.12) and (6.4). Then, problem (6.11) has a unique
solution if and only if

α− a− b
d− c

=
β− ã− b̃

d̃− c̃
(6.13)

with c 6= d and c̃ 6= d̃.
The existence and uniqueness condition obtained with this criterion coincides with the

one provided by the knowledge of the family of analytic solutions of the differential equation
given in (6.11)

y(x, C) = C(x2 − 1) + 1.

The standard criterion of existence and uniqueness of solution of problem (6.11) depends
on the existence of a complex number C that makes y(x, C) compatible with the boundary
conditions in (6.11), that is,

a + b− 2cC + 2dC = α, ã + b̃− 2c̃C + 2d̃C = β (6.14)

It can be checked that equations (6.14) and (6.13) are equivalent.

Example 6.5. Consider the boundary value problem
(x2 − 1)y′′ + y′ = x in (−1, 1),

ay(−1) + by(1) + cy′(−1) + dy′(1) = α,

ãy(−1) + b̃y(1) + c̃y′(−1) + d̃y′(1) = β.

We have f (x) = 1, g(x) = 0 and h(x) = x. As f (−1) = f (1) = 1, the critical exponents at
the points x = ±1 are µ2(−1) = 3/2 and µ2(1) = 1/2 respectively and n0 = −1. For this
example, the recurrence relations (3.1) may be written in the form vn+1 = Mnvn + cn with
vn = (an, bn), cn = (0, 0), n = 1, 2, . . . , and

Mn =

(
− 2n2

2n2+3n+1 0
n

2n2+3n+1 − 2n+1
2n+2

)
.
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Systems (4.6) and (4.6)h are given, respectively, by
b0 + 2b1 = 0,

2a1 = 1,

0.024569a1 = 0,

−0.132232a1 + 0.336376b1 = 0,


b0 + 2b1 = 0,

2a1 = 0,

0.024569a1 = 0,

−0.132232a1 + 0.336376b1 = 0.

The first system has no solution; the solution of the second one is (b0, a1, b1) = (0, 0, 0) and
a0 ∈ C a free parameter. For this example, dim(Sh) = 1 but S is empty, which agrees with the
fact that the solution to the differential equation is

y(x) = c1

[√
1− x2 + 2 arctan

(
x√

1− x2

)]
+ c2

− 2x +
√

1− x2 arctan
(

x√
1− x2

)
− 1

2
arctan

(
x√

1− x2

)2

,

that is not analytic in [−1, 1] for any value of (c1, c2).

Example 6.6. Consider the boundary value problem
(x2 − 1)y′′ + (1− x)y′ + y = x in (−1, 1),

ay(−1) + by(1) + cy′(−1) + dy′(1) = α,

ãy(−1) + b̃y(1) + c̃y′(−1) + d̃y′(1) = β.

We have f (x) = 1− x, g(x) = 1 and h(x) = x. As f (−1) = 2 and f (1) = 0, the critical
exponents at the points x = ±1 are µ2(−1) = 2 and µ2(1) = 1 respectively, and n0 = 1. For
this example, the recurrence relations (3.1) may be written in the form vn+1 = Mnvn + cn with
vn = (an, bn), cn = (0, 0), n = 2, 3, . . . , and

Mn =

− (2n−1)3

8n(n2−1)
1

8n(n2−1)
(1−2n)2

8n(n2−1)
1+2n+4n2−8n3

8n(n2−1)

 .

System (4.6) is given by 

a0 − 2a1 + b0 + 2b1 = 0,

2a1 − 2b1 = 1,

a2 + b1 + b2 = 0,

a1 + 4a2 + 3b1 + 4b2 = 0,

−0.080292a2 + 0.005407b2 = 0,

0.236021a2 − 0.527175b2 = 0.

This system has no solution. For this example, the solution to the homogeneous system (4.6)h
is (b0, a1, b1, a2, b2) = (−a0, 0, 0, 0, 0) with a0 ∈ C a free parameter. Then, dim(Sh) = 1 but S is
empty, which agrees with the fact that the solution of the differential equation is

y(x) = c1(1− x) + c2[2 + (1− x) log(x− 1)]− (x− 1)Li2

(
1− x

2

)
+ (x− 1) log(1− x) + log(2)(x− 1) log(x− 1)− (x + 1) log(x + 1)− 1,

that is not analytic in [−1, 1] for any value of (c1, c2). (Here Li2(z) is the polylogarithmic
function.)



Singular boundary value problems and two-point Taylor expansions 19

Example 6.7. Consider the boundary value problem
(x2 − 1)y′′ + 4xy′ + 2y = ex in (−1, 1),

ay(−1) + by(1) + cy′(−1) + dy′(1) = α,

ãy(−1) + b̃y(1) + c̃y′(−1) + d̃y′(1) = β.

(6.15)

We have f (x) = 4x, g(x) = 2 and h(x) = ex. As f (−1) = −4 and f (1) = 4, the critical
exponents at the points x = ±1 are µ2(−1) = µ2(1) = −1 respectively and n0 = −1. For
this example, the recurrence relations (3.1) may be written in the form vn+1 = Mnvn + cn with
vn = (an, bn), cn = (An, Bn), n = 1, 2, . . . ,

Mn =

(
− 2n+1

2(n+2) 0
0 − 2n+3

2(n+2)

)
,

An =
1

4(n + 1)(n + 2)

n

∑
k=0

(n + k− 1)
k!n!(n− k− 1)!2n+k+1 ((−1)ke− (−1)n+1e−1),

and

Bn =
1

4(n + 1)(n + 2)

n

∑
k=0

(n + k− 1)
k!n!(n− k− 1)!2n+k+1 ((−1)ke + (−1)n+1e−1).

System (4.6) is given by 
2a0 + 8a1 = cosh 1,

6b0 + 8b1 = sinh 1,

0.056062a1 = 0.002946,

0.429814b1 = 0.004012,

(6.16)

whose solution is (a0, b0, a1, b1) = (0.561323, 0.183421, 0.0525542, 0.00933429). In this case, the
solution to the system (4.6)h is Sh = {0} and S is non empty.

This conclusion is the same that we obtain from the knowledge of the general solution of
the differential equation in (6.15),

y(x) = − ex

1− x2 +
c1

1− x2 +
c2x

1− x2 .

There is only one analytic solution obtained for (c1, c2) = (1, 1).
Now we apply the existence and uniqueness criterion of Section 5: the existence and

uniqueness of solution of (6.15) is equivalent to the existence and uniqueness of solution of
the linear system given by equations (6.16) and (6.4). Then, problem (6.15) has a unique
solution if and only if{

0.377902a + 0.744745b + 0.0969813c + 0.307198d = α,

0.377902ã + 0.744745b̃ + 0.0969813c̃ + 0.307198d̃ = β.

The same conditions may be obtained from the exact solution.

Example 6.8. Consider the boundary value problem
(x2 − 1)y′′ +

1
4

y = 0 in (−1, 1),

ay(−1) + by(1) + cy′(−1) + dy′(1) = α,

ãy(−1) + b̃y(1) + c̃y′(−1) + d̃y′(1) = β.

(6.17)
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We have f (x) = 0, g(x) = 1/4 and h(x) = 0. As f (−1) = f (1) = 0, the critical exponents
at the points x = ±1 are µ2(−1) = µ2(1) = 1 respectively and n0 = 0. For this example, the
recurrence relations (3.1) may be written in the form vn+1 = Mnvn + cn with vn = (an, bn),
cn = (0, 0), n = 1, 2, . . . , and

Mn =

− (1−4n)2

16n(1+n) 0

0 − (1+4n)2

16n(1+n)

 .

System (4.6) = (4.6)h is given by 
a0 = 0,

b0 = 0,

0.018792a1 = 0,

0.360749b1 = 0,

(6.18)

whose solution is (a0, b0, a1, b1) = (0, 0, 0, 0). Then, Sh = S = {0} and the unique analytic
solution in (−1, 1) of the differential equation in problem (6.17) is the null solution. This
conclusion is the same one that we obtain from the knowledge of the general solution of
the differential equation in (6.17), since two independent solutions, none of them analytic in
[−1, 1] are

2F1

(
−1

4
,−1

4
,

1
2

, x2
)

, x 2F1

(
1
4

,
1
4

,
3
2

, x2
)

.

Now we apply the existence and uniqueness criterion of Section 5: the existence and
uniqueness of solution of (6.17) is equivalent to the existence and uniqueness of solution of
the linear system given by equations (6.18) and (6.4). Then, problem (6.17) has a unique
solution if and only if α = β = 0.

7 Final remarks

In Section 2 we have detailed the dimensionality of the space Sh of analytic solutions in Dr of
the homogeneous differential equation (z2 − 1)y′′ + f (z)y′ + g(z)y = 0. The dimension of Sh
is: (i) zero or one when f (−1) 6= 0, 2, 4, . . . or f (1) 6= 0,−2,−4, . . .; (ii) zero, one or two when
f (−1) = 0, 2, 4, . . . and f (1) = 0,−2,−4, . . .; (iii) two when f (±1) = g(±1) = 0 (regular case).
We have included the regular case analyzed in [6] as a particular case of the more general
situation analyzed in this paper. The dimension of the space S of analytic solutions in Dr of
the complete differential equation is either, the same as the dimension of Sh, or it is empty. A
complete characterization of this space is given at the end of Section 4 from the study of the
ranks of the algebraic linear systems (4.6) and (4.6)h.

In Section 3 we have derived an algorithm to obtain the two-point Taylor expansion of the
solutions of (1.1) (if any). In Section 5 we have given a straightforward and systematic criterion
for the existence and uniqueness of analytic solutions of the boundary value problem (1.1).
The criterion is very simple and establishes that the existence and uniqueness of solution of
the boundary value problem (1.1) is equivalent to the existence and uniqueness of solution of
the algebraic linear system (5.2). Two equations of this algebraic system are defined by the
limits (4.3), whose exact computation is, in general, difficult. Then, in practice, the entrances
of two of the equations of this algebraic system must be computed approximately and then,
the solution is computed in an approximated form. Also, in practice, we must apply the
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above existence and uniqueness criterion for the solution of (1.1) using the approximate linear
system. Then, the conclusions about the existence and uniqueness of solution are exact unless
the system is ill-conditioned. In this case, the ranks of the coefficient matrix and/or of the
augmented matrix of the system (5.2) sensibly depend on the precision in the computation of
the approximate limits.

Formally, the criterion proposed in this paper is similar to the standard criterion based on
the knowledge of the space of solutions: both criteria relate the existence and uniqueness of
solution of the boundary value problem (1.1) to the existence and uniqueness of a solution
of an algebraic linear system. As a difference with that standard criterion, our criterion does
not require the knowledge of the general solution of the differential equation. This qualitative
difference is essential when the general solution of the equation is not known. In this case,
the standard criterion is not useful, whereas our criterion can always be applied (except in
the case of ill-conditioning before discussed), as we have shown in the examples analyzed in
Section 6.
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