CORF

J. Algebra Comb. Discrete Appl. $6(2) \bullet 95 - 103$

Received: 9 December 2018 Accepted: 16 April 2019

Journal of Algebra Combinatorics Discrete Structures and Applications

Coretractable modules relative to a submodule

Research Article

Ali Reza Moniri Hamzekolaee, Yahya Talebi

Abstract: Let R be a ring and M a right R-module. Let N be a proper submodule of M. We say that M is N-coretractable (or M is coretractable relative to N) provided that, for every proper submodule Kof M containing N, there is a nonzero homomorphism $f: M/K \to M$. We present some conditions that a module M is coretractable if and only if M is coretractable relative to a submodule N. We also provide some examples to illustrate special cases.

2010 MSC: 16D10, 16D40, 16D80

Keywords: Coretractable module, N-coretractable module

Introduction 1.

Throughout this paper R will denote an arbitrary associative ring with identity and all modules will be unitary right R-modules unless stated otherwise. Let M be an R-module. We use $End_R(M)$, $ann_r(M)$ (in the case M is a right R-module), $ann_l(M)$ (in the case M is a left R-module) to denote the ring of endomorphisms of M, the right annihilator in R of M and the left annihilator in R of M, respectively. Let M be a module and K a submodule of M. Then K is essential in M denoted by $K \leq_e M$, if $L \cap K \neq 0$ for every nonzero submodule L of M. Dually, K is small in M ($K \ll M$), in case M = K + L implies that L = M. A submodule N of M is called *supplement*, if there is a submodule K of M such that M = N + K and $N \cap K \ll N$. A module M is called *supplemented* if every submodule of M has a supplement in M. For any unexplained terminology we refer to [3], [9] and [11].

Khuri in [5] introduced the concept of a retractable module. Let M be a module. Then M is retractable in case for every nonzero submodule N of M, there is a nonzero homomorphism $f: M \to N$, i.e $Hom_R(M, N) \neq 0$. In the literature, there are some works about retractable modules (see [6, 12, 14]). Amini, Ershad and Sharif in [2] defined a dual notation namely coretractable modules. A module M is coretractable provided that, $Hom_R(M/N, M) \neq 0$ for every proper submodule N of M. There are also some papers whose main subject is to study and investigate coretractable modules. We refer readers to [1, 4, 13] for more information about coretractable modules.

Ali Reza Moniri Hamzekolaee (Corresponding Author), Yahya Talebi; Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran (email: a.monirih@umz.ac.ir, talebi@umz.ac.ir).

In [10], the author introduced a generalization of coretractable modules via the cosingular submodule. Following [10], a module M is called $\overline{Z}(M)$ -coretractable in case, for every proper submodule N of M containing $\overline{Z}(M)$, there is a nonzero homomorphism $f: M/N \to M$. It is proved in [10, Theorem 2.11] that a ring R is $\overline{Z}(R_R)$ -coretractable if and only if every finitely generated free right R-module F is Z(F)-coretractable. Also, a characterization of commutative semiperfect Kasch rings is presented via \overline{Z} -coretractablity ([10, Corollary 2.14]). Inspiring by [10], we are interested to study coretractablity of modules relative to their submodules. If in the definition of a coretractable module M, we fix a submodule N and focus just on nonzero homomorphisms from M/K to M where $K \neq M$ contains N, we have a special generalization of coretractable modules. We may choose special submodules of a module M such as Soc(M), Rad(M) and some others. We present some necessary conditions to prove that when two concepts coretractable and coretractable relative to a submodule coincide. Among them, we show that for a small or a semisimple submodule N of M, M is coretractable if and only if M is N-coretractable. It is also shown that if M is N-coretractable and N is coretractable, then M is coretractable. For a right ideal I of R, we show that R_R is I-coretractable if and only if every simple right R-module that is annihilated by I, can be embedded in R_R . As a consequence, R_R is coretractable if and only if R is right Kasch.

2. Coretractable modules relative to a submodule

In this section we introduce a new generalization of coretractable modules via submodules.

Recall that a module M is coretractable, in case for every proper submodule N of M, there exists a nonzero homomorphism $f: M/N \to M$.

Definition 2.1. Let M be a module and N a proper submodule of M. We say M is N-coretractable in case for every proper submodule K of M containing N, there is a nonzero homomorphism $f: M/K \to M$. Note that a module M is corretractable if and only if M is $\{0\}$ -coretractable.

Let M be a module and N a proper submodule of M. It is not hard to verify that M is Ncoretractable if and only if for every proper essential submodule K of M containing N, there is a nonzero
homomorphism from M/K to M.

Note that if a module M is N-coretractable, then for every submodule $T \subseteq N$, there is a nonzero homomorphism $g: M/T \to M$. In fact, if M is N-coretractable, then for every submodule T of M, either contained in N or containing N, there will be a nonzero homomorphism from M/T to M.

Recall from [7], a ring R is right (left) Kasch in case every simple right (left) R-module can be embedded in R_R ($_RR$). In [2, Theorem 2.14], the authors proved that R is right Kasch if and only if R_R is coretractable.

Let R be a right Kasch ring which is not left perfect. Then by [4, Proposition 2.9], there is a right ideal I of R such that R/I is not coretractable while R_R is coretractable as R is a Kasch ring (see also [4, Example 2.10]).

Lemma 2.2. (1) Let $N, K, N_i < M$. Let M be N-coretractable. If $K \supseteq N$, then M is K-coretractable. In particular, if M is N_i -coretractable for each $i \in I$, then M is $(\sum_{i \in I} N_i)$ -coretractable.

(2) Let M be N-coretractable. If $K \leq N$ such that K contains no nonzero image of any endomorphism of M, then M/K is N/K-coretractable. In a special case, if M is N-coretractable such that for every $f \in End(M)$, $Imf \notin N$, then M/N is coretractable (see [4, Proposition 2.11]).

Proof. (1) This is straightforward.

(2) Let T/K be a proper submodule of M/K containing N/K. Then $N \subseteq T \subset M$. Since M is N-coretractable, there exists a nonzero homomorphism $g: M/T \to M$. Now define $h: \frac{M/K}{T/K} \to M/K$ by $h(x + K + \frac{T}{K}) = g(x + T) + K$ for every $x \in M$. If Imh = 0, then $Img \subseteq K$. Now, K contains

the image of the endomorphism $go\pi$ of M where $\pi: M \to M/T$ is the natural epimorphism, this gives a contradiction. Therefore, M/K is N/K-coretractable.

Let R be a right Noetherian ring and M be a N-coretractable module where N is a finitely generated proper submodule of M. Then by Lemma 2.2(2), M/N is coretractable (see [4, Corollary 2.13]).

Proposition 2.3. Let M be a module and $K \leq N < M$. If M/K is N/K-coretractable and M/K can be embedded in M, then M is N-coretractable. In particular, if $M = K \oplus K'$ and N is any submodule of M such that K' is $(N \cap K')$ -coretractable, then M is N-coretractable.

Proof. Let T be a proper submodule of M containing N. Then T/K is a proper submodule of M/K containing N/K. By assumption, there is a nonzero homomorphism $g: \frac{M/K}{T/K} \cong M/T \to M/K$. There also exists a monomorphism $h: M/K \to M$. Now, the homomorphism $hog: M/T \to M$ is the required one.

Corollary 2.4. Let M be a module and N < M such that M/N is coretractable. If M/N can be embedded in M, then M is N-coretractable. In particular, if M is supplemented with Rad(M) a direct summand of M, then M is Rad(M)-coretractable.

Proof. This is a special case of Proposition 2.3. The last part follows from the fact that for a supplemented module M, the module M/Rad(M) is coretractable since M/Rad(M) is semisimple. In this case M is Rad(M)-coretractable.

Example 2.5. (1) Let M be a coretractable module and N < M. Then M is N-coretractable. In particular, every cogenerator M in the category of right R-modules is coretractable relative to every N < M.

(2) Let M be a module such that for every submodule K of M we have $M/K \cong M$. Then M is coretractable relative to each N < M.

(3) Let M be a module and N < M. If every proper submodule of M containing N, is contained in a proper summand of M, then M is N-coretractable.

(4) Let M be an uniserial module. If M is coretractable relative to a proper submodule N, then M is coretractable.

The following introduces a *N*-coretractable module which is not coretractable. In fact, the class of relative coretractable modules properly contains the class of coretractable modules.

Example 2.6. Let P be the set of all prime numbers and $M = \prod_{p \in P} \mathbb{Z}_p$ as an \mathbb{Z} -module. Take $N = \{0\} \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \ldots$ which is a maximal submodule of M, since $M/N \cong \mathbb{Z}_2$. Consider $g : \mathbb{Z}_2 \to M$ defined by $g(x) = (x, 0, 0, \ldots)$. Then g is a nonzero homomorphism indicating that M is N-coretractable. Note that by [2, Example 2.9], M is not a coretractable \mathbb{Z} -module.

Remark 2.7. Let M be a module and N < M. If there is not a nonzero homomorphism from M/N to M, then M is not N-coretractable. For example, let M be a nonsingular module and N be a proper submodule of M such that M/N is singular. So there does not exist any nonzero homomorphism from M/N to M. Now, M is not N-coretractable (for example, \mathbb{Z} -modules \mathbb{Q} and \mathbb{Z} can not be $n\mathbb{Z}$ -coretractable).

We shall consider some conditions under which the two concepts coretractable and N-coretractable coincide.

Lemma 2.8. Let M be a module and N < M. In each of the following cases M is N-coretractable if and only if M is coretractable.

- (1) N is a small submodule of M.
- (2) N is a coretractable module.

Proof. (1) Let M be N-coretractable where $N \ll M$ and K be a proper submodule of M. Since N is small in M, we have $N + K \neq M$. Now since M is N-coretractable, then there is a nonzero homomorphism $f: M/(N+K) \to M$. So that $Hom_R(M/K, M) \neq 0$. It follows that M is coretractable. The converse is clear.

(2) Let K be a proper submodule of M. Then either $K + N \neq M$ or K + N = M. If $K + N \neq M$, then similarly to (1) we have $Hom_R(M/K, M) \neq 0$. Now suppose that K + N = M. Then there is an isomorphism $h: M/K \to N/(N \cap K)$ induced from M = N + K. Since N is coretractable, there is a nonzero homomorphism $g: N/(N \cap K) \to N$. Therefore, $jogoh: M/K \to M$ is a nonzero homomorphism where $j: N \to M$ is the inclusion.

Recall that a module M is hollow, provided every proper submodule of M is small in M.

Corollary 2.9. (1) Let M be a hollow module and N < M. Then M is N-coretractable if and only if M is coretractable.

(2) Let M be a finitely generated module. Then M is Rad(M)-coretractable if and only if M is coretractable.

(3) Let N be a semisimple submodule of M. Then M is N-coretractable if and only if M is coretractable.

(4) Let M be a module. Then M is Soc(M)-coretractable if and only if M is coretractable.

Let M be a module and N a submodule of M. Following [15], N is δ -small in M (denoted by $N \ll_{\delta} M$), in case M = N + K with M/K singular implies that M = K. Note that by definitions, every small submodule of M is δ -small in M. The sum of all δ -small submodules of M is denoted by $\delta(M)$. Also $\delta(M)$ is the reject of the class of all simple singular modules in M.

Proposition 2.10. Let M be a module and N be a proper δ -small submodule of M. Then M is N-coretractable if and only if M is coretractable.

Proof. Let M be N-coretractable and K be a proper submodule of M. Suppose that $M \neq N+K$. Since M is N-coretractable, there is a nonzero homomorphism $f: M/(N+K) \to M$. So that $fo\pi: M/K \to M$ is the required homomorphism where $\pi: M/K \to M/(N+K)$ is natural epimorphism. Otherwise, M = N + K. Now from [15, Lemma 1.2], there is a decomposition $M = Y \oplus K$ where Y is a semisimple projective submodule of N. Therefore, there is a monomorphism from M/K to M since K is a direct summand of M. It follows that M is coretractable.

Proposition 2.11. Let M be a module and N be a proper submodule of M. If M is N-coretractable and M/N has a maximal submodule, then $Soc(M) \neq 0$. In particular, if M is finitely generated and N-coretractable, then $Soc(M) \neq 0$.

Proof. Let K/N be a maximal submodule of M/N. Then K is a maximal submodule of M. So there is a nonzero homomorphism $h: M/K \to M$. It follows that Imh is a simple submodule of M. This completes the proof.

The following is an immediate consequence of last proposition.

Corollary 2.12. Let R be a ring such that every cyclic right R-module is coretractable relative to at least one of its submodules. Then R is semi-Artinian.

Let R be a ring. Then R is called a right V-ring in case every simple right R-module is injective. As a generalization of V-rings, R is a right generalized V-ring (GV-ring for short), if every simple singular right R-module is injective ([11]).

Proposition 2.13. Let R be a ring and M be an indecomposable right R-module with $Rad(M) \neq M$. If each of the following statements holds, then M is Rad(M)-coretractable if and only if M is simple.

- (1) R is a right GV-ring.
- (2) M is noncosingular.

Proof. (1) Let M be Rad(M)-coretractable. Then for each maximal submodule K of M there is a monomorphism $g: M/K \to M$. It follows that Img is a simple submodule of M. Then Img is either singular or projective. If Img is projective, then K is a direct summand of M and hence K = 0 or K = M. So that K = 0. If Img is singular, it will be injective as R is right GV. Therefore, Img is a summand of M and since $g \neq 0$ we conclude that Img = M. In both cases, M is simple. The converse is obvious.

(2) It follows from (1) and the fact that every homomorphic image of M is noncosingular.

Corollary 2.14. Let R be a right V-ring and M an indecomposable right R-module. Then M is coretractable if and only if M is simple.

Following [8], a module M is dual Rickart provided that for every $f \in End(M)$, Imf is a direct summand of M.

Remark 2.15. Let M be an indecomposable dual Rickart module with $Rad(M) \neq M$. Then M is (Rad(M))-coretractable if and only if M is simple. Let K be a maximal submodule of M. Then there is a monomorphism $g: M/K \to M$. Consider the endomorphism $h = go\pi: M \to M$ where $\pi: M \to M/K$ is the natural epimorphism. Then Imh = Img is a summand of M. So Img = M as M is indecomposable. It follows that M is simple.

Proposition 2.16. Let M be a module and L a proper submodule of M such that L has a supplement K in M. If M is L-coretractable and K is fully invariant in M, then K is coretractable.

Proof. Let K be a supplement of L in M. Then M = K + L and $K \cap L \ll K$. Let N be a proper submodule of K. Then N + L is a proper submodule of M. For if, N + L = M, by modular law $N + (K \cap L) = K$, which implies that N = K, a contradiction. Since M is L-coretractable, there is a nonzero homomorphism $f: M/(N + L) \to M$. Since K is a fully invariant submodule of M, we have $fo\pi(K) \subseteq K$ where $\pi: M \to M/(N + L)$ is the natural epimorphism. Now consider $h: K/N \to K$ by h(x + N) = f(x + N + L) for every $x \in K$. It is not hard to verify that h is well-defined. Now, there is $y \in M$ such that $y \notin N + L$ and $f(y + N + L) \neq 0$. Now there exists $k \in K$ and $l \in L$ such that y = k + l. It is easy to see that $h(k + N) = f(k + l + N + L) = f(y + L) \neq 0$. It follows that h is nonzero.

Corollary 2.17. ([2, Proposition 2.5]) Every fully invariant direct summand of a coretractable module is coretractable.

Let M be a module. Then M is called a duo module provided every submodule of M is fully invariant.

Corollary 2.18. Let M be a duo module. If M is coretractable relative to each direct summand of M, then every direct summand of M is coretractable.

Proposition 2.19. Let $M = M_1 \oplus \ldots \oplus M_n$ and N < M. If each M_i is $N \cap M_i$ -coretractable, then M is N-coretractable. Especially a finite direct sum of coretractable modules is coretractable.

Proof. The proof is exactly similar to proof of [2, Proposition 2.6].

Proposition 2.20. Let R be a right max ring and $M = \bigoplus_{i \in I} M_i$ be a direct sum of $N \cap M_i$ -coretractable right R-modules where N < M. Then M is N-coretractable. In particular, an arbitrary direct sum of coretractable right R-modules is coretractable.

Proof. Similar to the proof of [2, Proposition 2.7].

Let M be an R-module. A submodule K of M is said to be dense in M if, for any $y \in M$ and $0 \neq x \in M$, there exists $r \in R$ such that $xr \neq 0$ and $yr \in K$. Obviously, any dense submodule of M is essential in M. From [7, Proposition 8.6], K is dense in M if and only if $Hom_R(P/K, M) = 0$ for every submodule $P \supseteq K$.

Remark 2.21. Let M be a module and N < M. If N is dense in M, then M is not N-coretractable. In fact for a N-coretractable module M, we have N is not dense in M. This follows from the fact that if M is N-coretractable, then there is a nonzero homomorphism from M/N to M.

Proposition 2.22. Let M be a module and N a proper submodule of M. If M is quasi-injective or every proper submodule of M is contained in a maximal submodule, then M is N-coretractable if and only if every proper submodule of M containing N is not dense in M.

Proof. (1) Let M be a quasi-injective module such that every proper submodule of M containing N is not dense in M. Suppose that K is a proper submodule of M containing N. Since K is not dense in M, there is a $f: P/K \to M$ where P is a submodule of M containing K. It follows that $fo\pi: P \to M$ is a nonzero homomorphism where $\pi: P \to P/K$ is the natural epimorphism. Consider the inclusion homomorphism $j: P \to M$. Since M is quasi-injective, there exists $h: M \to M$ such that $hoj = fo\pi$. By defining $\overline{h}: M/K \to M$ with $\overline{h}(m+K) = h(m)$ we conclude that M is N-coretractable. Note that \overline{h} is nonzero. Conversely, if M is N-coretractable and $N \subseteq K < M$, then there is a homomorphism $g: M/K \to M$ which shows that K is not dense in M.

(2) Suppose that every submodule of M is contained in a maximal submodule of M. Let $N \subseteq K < M$. Then there is a maximal submodule L of M such that $K \leq L$. Since L is not dense in M, there is a nonzero homomorphism $h: M/L \to M$. As $f: M/K \to M/L$ with f(x + K) = x + L is a nonzero homomorphism, then *hof* is nonzero. It follows that M is N-coretractable. The converse is the same as (1).

The following presents a characterization of *I*-coretractable rings.

Theorem 2.23. Let R be a ring and I be a proper right ideal of R. Then the following are equivalent:

- (1) R_R is *I*-coretractable;
- (2) Every n-generated free right R-module is $I^{(n)}$ -coretractable;
- (3) For every right ideal $T \supseteq I$, $ann_l(T) \neq 0$.

Proof. (1) \Leftrightarrow (2) Follows from Proposition 2.19.

(1) \Rightarrow (3) Let *T* be a right ideal of *R* containing *I*. Since R_R is *I*-coretractable, there is a nonzero homomorphism $f: R/T \to R$. Consider the endomorphism $g = fo\pi : R \to R$ where π is the natural epimorphism from *R* to R/T. Then there is an element $0 \neq a \in R$ such that g(x) = ax. Let $y \in T$. Then g(y) = ay = 0 as $T \subseteq Kerg$. This shows that $0 \neq a \in ann_l(T)$.

 $(3) \Rightarrow (1)$ Let T be a right ideal of R containing I. Since $ann_l(T) \neq 0$, there exists an element of R such as a that aT = 0 and $a \neq 0$. Define $f: R/T \to R$ by f(x+T) = ax. It is easy to check that f is an R-homomorphism and in particular $f \neq 0$.

Remark 2.24. Let R be a ring and $I \leq R_R$ with $ann_l(I) = 0$. Then R_R is not I-coretractable. For example, let $R = \begin{bmatrix} K & K \\ 0 & K \end{bmatrix}$ be the ring of 2×2 upper triangular matrices over a field K. Let $I = \begin{bmatrix} 0 & K \\ 0 & K \end{bmatrix}$ which is a right ideal of R. Then $ann_l(I) = 0$. Hence, R_R is not I-coretractable. In other words, R/J(R) is coretractable relative to each of its ideals as R/J(R) is a semisimple ring. Note that $J(R) = \begin{bmatrix} 0 & K \\ 0 & K \end{bmatrix}$.

Theorem 2.25. Let R be a ring and I be a proper two-sided ideal of R. Then the following statements are equivalent:

- (1) R_R is *I*-coretractable;
- (2) Every simple right R-module that is annihilated by I can be embedded in R_R .

Proof. (1) \Rightarrow (2) Let $M \cong R/K$ be a simple right *R*-module such that MI = 0. It follows that $I \subseteq K$. Since R_R is *I*-coretractable, there is a nonzero homomorphism $f : R/K \to R$.

 $(2) \Rightarrow (1)$ Let T be a right ideal of R containing I. Now there exists a right maximal ideal K of R such that $I \subseteq T \subseteq K$. Consider the simple right R-module M = R/K. Since MI = 0, there is a nonzero homomorphism $g: R/K \to R$ by assumption. As T is a submodule of K, there exists $f: R/T \to R/K$ defined by f(x+T) = x + K. Hence gof is the desired homomorphism. \Box

For a ring R, Theorem 2.25 implies that R_R is (J(R))-coretractable if and only if R is a right Kasch ring.

In [2, Proposition 4.4], it is shown that if R is a von Neumann regular ring then R is right Kasch if and only if R is semisimple. In the following we shall investigate a more general version.

Proposition 2.26. Let R be a right GV-ring. Then the following are equivalent:

- (1) R is right Kasch;
- (2) R is semisimple.

Proof. (1) \Rightarrow (2) Let R be right Kasch. So R_R is J(R)-coretractable. Now suppose that K is an arbitrary maximal right ideal of R. Then there is a monomorphism $g : R/K \to R$. It follows that $R/K \cong Img$ is a simple right R-module. So, Img is either singular or projective. In first case Img should be injective as R is right GV. Therefore, Img is a direct summand of R_R . Now Img is singular projective which implies that Img = 0, a contradiction. So that Img and hence every simple right R-module will be projective. This shows that R is semisimple.

 $(2) \Rightarrow (1)$ It is obvious.

Corollary 2.27. Let R be a right V-ring. Then R is a Kasch ring if and only if R is semisimple.

Example 2.28. (1) Let $R = \begin{bmatrix} K & K \\ 0 & K \end{bmatrix}$ where K is a field. Then $J(R) = \begin{bmatrix} 0 & K \\ 0 & 0 \end{bmatrix}$. It is easy to check that R is a semilocal ring as $R/J(R) \cong K \times K$ which is a semisimple ring. Now by [3, Exercise 10, Page 113], $Soc(_RR) = \begin{bmatrix} K & K \\ 0 & 0 \end{bmatrix}$. However, $Soc(R_R) = \begin{bmatrix} 0 & K \\ 0 & K \end{bmatrix}$. Set $m_1 = Soc(_RR)$ and $m_2 = Soc(R_R)$. Then both m_1 and m_2 are maximal left and right ideals of R. A quick calculation shows that $ann_l(m_1) = m_2$, $ann_l(m_2) = 0$, $ann_r(m_1) = 0$ and $ann_r(m_2) = m_1$. Now by Theorem 2.23, R_R is m_1 -coretractable while R_R is not m_2 -coretractable. Also left version of Theorem 2.23, implies that $_RR$ is m_2 -coretractable but it is not m_1 -coretractable. Since the simple right R-module R/m_2 can not be embedded in R_R and the simple left R-module R/m_1 can not be embedded in $_RR$, the ring R is neither right Kasch nor left Kasch (note that since R is right GV which is not a V-ring, it can not be Kasch from Proposition 2.26).

(2) Let K be a division ring and
$$R = \{A = \begin{bmatrix} a & 0 & b & c \\ 0 & a & 0 & d \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & e \end{bmatrix} \mid a, b, c, d, e \in K\}.$$
 Then $J(R) = \{A \in A \in A \}$

 $R \mid a = 0 = e\}$, $Soc(R_R) = ann_l(J(R)) = \{A \in R \mid a = 0\}$, $Soc(_RR) = ann_r(J(R)) = J(R)$. Since $R/J(R) \cong K \times K$, R is a semilocal ring. Now $Soc(R_R) = \{A \in R \mid a = 0\}$ and $Soc(_RR) = J(R)$. From [7, Example 8.29], $Soc(R_R)$ is a left and right maximal ideal of R. Since $ann_r(Soc(R_R)) = \{A \in R \mid a = e = 0\} = J(R) \neq 0$, it follows from [7, Corollary 8.28], $R/Soc(R_R)$ can be embedded in $_RR$ (see also Theorem 2.23). Therefore, $_RR$ is $Soc(R_R)$ -coretractable while $_RR$ is not $Soc(_RR)$ -coretractable (see also Corollary 2.9). Now an easy computation shows that $ann_l(Soc(R_R)) = \{A \in R \mid a = c = d = e = 0\} \neq 0$. So $R/Soc(R_R)$ can be embedded in R_R by [7, Corollary 8.28]. As $Soc(R_R)$ is a maximal right ideal of R, then R_R is $Soc(R_R)$ -coretractable. Also from [7, Example 8.29], R is a right Kasch ring while it is not a left Kasch ring.

(3) Let K be a field and $R = \prod_{i=1}^{\infty} K$. It is well-known that R is a Von Neumann regular V-ring. Consider the ideal $T_i = K \times K \times \ldots \times K \times 0 \times K \times K \times \ldots$. It is clear that T_i for each $i \in \mathbb{N}$ is a maximal ideal of R. It is easy to see that $ann(T_i) = 0 \times 0 \times \ldots \times 0 \times K \times 0 \times \ldots$ which is nonzero. Therefore, from Theorem 2.23, R is I-coretractable for each $I \subseteq T_i$. Now consider the ideal $L = \bigoplus_{i=1}^{\infty} K$ of R. Then ann(L) = 0 and of course ann(m) = 0 for every maximal ideal m of R containing L. Hence the simple R-module R/m can not be embedded in R (see [7, Corollary 8.28]). Therefore, R is not coretractable relative to L. This means that R is not a Kasch ring.

Proposition 2.29. Let R be a ring and I a right ideal of R such that every free right R-module $R^{(A)}$ is $(I^{(A)})$ -coretractable. Then for every right R-module M with $I \subseteq ann_r(M)$, $Hom_R(M, R) \neq 0$.

Proof. Let M be a right R-module such that $I \subseteq ann_r(M)$. Then there is a free right R-module F and a submodule K of F such that $M \cong F/K$. Since MI = 0, we have $I^{(A)} \subseteq K$ where A is an indexed set. By assumption, there is a nonzero homomorphism $f: F/K \to F$. Then the homomorphism $\pi of: M \to R$ is the required one where $\pi: F \to R$ is the natural epimorphism. \Box

Proposition 2.30. Let R be a ring having a radical right R-module M with $MI \neq M$ where $I \leq R_R$. If for every right ideal T of R, $Rad(T) \neq T$, then there is a free right R-module $R^{(A)}$ which is not $I^{(A)}$ -coretractable.

Proof. Let Rad(M) = M such that MI is a proper submodule of M. There exists a free right R-module $F = R^{(A)}$ and a submodule K of F such that $M/MI \cong F/K$. Being M radical implies that M/MI is radical. So, $Hom_R(M/MI, R) = 0$. Since (F/K)I = 0, $I^{(A)} \subseteq K$. It follows that $Hom_R(F/K, F) = 0$ which implies F is not $I^{(A)}$ -coretractable.

Proposition 2.31. Let R be a right max ring and $I \leq R_R$ such that every cyclic R-module N is NI-coretractable. Then every right R-module M is MI-coretractable. In particular, if R is a (semiperfect) right perfect ring with all cyclic right R-modules coretractable, then every (finitely generated) right R-module is coretractable.

Proof. Let M be a right R-module. Suppose that K is a proper submodule of M containing MI. Since R is a right max ring, K is contained in a maximal submodule L of M. For every $x \in M \setminus L$, we know $M/L \cong xR/(xR \cap L)$ as xR + L = M. Note that $MI \subseteq L$. So that $(xR/(xR \cap L))I = 0$. It follows that $(xR)I \subseteq xR \cap L$. Being xR a (xR)I-coretractable module implies that $Hom_R(xR/(xR \cap L), xR) \neq 0$. Hence there is a nonzero homomorphism $f: M/L \to M$. Therefore, $Hom_R(M/K, M) \neq 0$ as $K \subseteq L$. \Box

References

- A. N. Abyzov, A. A. Tuganbaev, Retractable and coretractable modules, J. Math. Sci. 213(2) (2016) 132–142.
- [2] B. Amini, M. Ershad, H. Sharif, Coretractable modules, J. Aust. Math. Soc. 86(3) (2009) 289–304.
- [3] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer-Verlog, New York, 1992.
- [4] N. O. Ertaş, D. K. Tütüncü, R. Tribak, A variation of coretractable modules, Bull. Malays. Math. Sci. Soc. 41(3) (2018) 1275–1291.
- [5] S. M. Khuri, Endomorphism rings and lattice isomorphisms, J. Algebra 56(2) (1979) 401–408.
- [6] S. M. Khuri, Nonsingular retractable modules and their endomorphism rings, Bull. Aust. Math. Soc. 43(1) (1991) 63–71.
- [7] T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999.
- [8] G. Lee, S. T. Rizvi, C. S. Roman, Dual Rickart modules, Comm. Algebra 39(11) (2011) 4036-4058.
- [9] S. H. Mohamed, B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, Cambridge, 1990.
- [10] A. R. M. Hamzekolaee, A generalization of coretractable modules, J. Algebraic Syst. 5(2) (2017) 163–176.

- [11] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.
- [12] J. M. Zelmanowitz, Correspondences of closed submodules, Proc. Amer. Math. Soc. 124(10) (1996) 2955–2960.
- [13] J. Žemlička, Completely coretractable rings, Bull. Iranian Math. 39(3) (2013) 523–528.
- [14] Z. Zhengping, A lattice isomorphism theorem for nonsingular retractable modules, Canad. Math. Bull. 37(1) (1994) 140–144.
- [15] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq. 7(3) (2000) 305–318.