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Abstract: Let R be a ring and M a right R-module. Let N be a proper submodule of M . We say that M is
N -coretractable (or M is coretractable relative to N) provided that, for every proper submodule K
of M containing N , there is a nonzero homomorphism f : M/K → M . We present some conditions
that a module M is coretractable if and only if M is coretractable relative to a submodule N . We
also provide some examples to illustrate special cases.
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1. Introduction

Throughout this paper R will denote an arbitrary associative ring with identity and all modules
will be unitary right R-modules unless stated otherwise. Let M be an R-module. We use EndR(M),
annr(M) (in the case M is a right R-module), annl(M) (in the case M is a left R-module) to denote
the ring of endomorphisms of M , the right annihilator in R of M and the left annihilator in R of M ,
respectively. Let M be a module and K a submodule of M . Then K is essential in M denoted by
K ≤e M , if L∩K 6= 0 for every nonzero submodule L of M . Dually, K is small in M (K �M), in case
M = K + L implies that L =M . A submodule N of M is called supplement, if there is a submodule K
of M such that M = N +K and N ∩K � N . A module M is called supplemented if every submodule
of M has a supplement in M . For any unexplained terminology we refer to [3], [9] and [11].

Khuri in [5] introduced the concept of a retractable module. Let M be a module. Then M is
retractable in case for every nonzero submodule N of M , there is a nonzero homomorphism f :M → N ,
i.e HomR(M,N) 6= 0. In the literature, there are some works about retractable modules (see [6, 12, 14]).
Amini, Ershad and Sharif in [2] defined a dual notation namely coretractable modules. A module M is
coretractable provided that, HomR(M/N,M) 6= 0 for every proper submodule N of M . There are also
some papers whose main subject is to study and investigate coretractable modules. We refer readers to
[1, 4, 13] for more information about coretractable modules.
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In [10], the author introduced a generalization of coretractable modules via the cosingular submodule.
Following [10], a module M is called Z(M)-coretractable in case, for every proper submodule N of M
containing Z(M), there is a nonzero homomorphism f : M/N → M . It is proved in [10, Theorem 2.11]
that a ring R is Z(RR)-coretractable if and only if every finitely generated free right R-module F is
Z(F )-coretractable. Also, a characterization of commutative semiperfect Kasch rings is presented via
Z-coretractablity ([10, Corollary 2.14]). Inspiring by [10], we are interested to study coretractablity of
modules relative to their submodules. If in the definition of a coretractable moduleM , we fix a submodule
N and focus just on nonzero homomorphisms from M/K to M where K 6= M contains N , we have a
special generalization of coretractable modules. We may choose special submodules of a module M such
as Soc(M), Rad(M) and some others. We present some necessary conditions to prove that when two
concepts coretractable and coretractable relative to a submodule coincide. Among them, we show that
for a small or a semisimple submodule N of M , M is coretractable if and only if M is N -coretractable.
It is also shown that if M is N -coretractable and N is coretractable, then M is coretractable. For a
right ideal I of R, we show that RR is I-coretractable if and only if every simple right R-module that is
annihilated by I, can be embedded in RR. As a consequence, RR is coretractable if and only if R is right
Kasch.

2. Coretractable modules relative to a submodule

In this section we introduce a new generalization of coretractable modules via submodules.

Recall that a module M is coretractable, in case for every proper submodule N of M , there exists a
nonzero homomorphism f :M/N →M .

Definition 2.1. Let M be a module and N a proper submodule of M . We say M is N -coretractable in
case for every proper submodule K ofM containing N , there is a nonzero homomorphism f :M/K →M .
Note that a module M is coretractable if and only if M is {0}-coretractable.

Let M be a module and N a proper submodule of M . It is not hard to verify that M is N -
coretractable if and only if for every proper essential submodule K ofM containing N , there is a nonzero
homomorphism from M/K to M .

Note that if a module M is N -coretractable, then for every submodule T ⊆ N , there is a nonzero
homomorphism g :M/T →M . In fact, ifM is N -coretractable, then for every submodule T ofM , either
contained in N or containing N , there will be a nonzero homomorphism from M/T to M .

Recall from [7], a ring R is right (left) Kasch in case every simple right (left) R-module can be
embedded in RR (RR). In [2, Theorem 2.14], the authors proved that R is right Kasch if and only if RR
is coretractable.

Let R be a right Kasch ring which is not left perfect. Then by [4, Proposition 2.9], there is a right
ideal I of R such that R/I is not coretractable while RR is coretractable as R is a Kasch ring (see also
[4, Example 2.10]).

Lemma 2.2. (1) Let N,K,Ni < M . Let M be N -coretractable. If K ⊇ N , then M is K-coretractable.
In particular, if M is Ni-coretractable for each i ∈ I, then M is (

∑
i∈I Ni)-coretractable.

(2) Let M be N -coretractable. If K ≤ N such that K contains no nonzero image of any endomor-
phism of M , then M/K is N/K-coretractable. In a special case, if M is N -coretractable such that for
every f ∈ End(M), Imf * N , then M/N is coretractable (see [4, Proposition 2.11]).

Proof. (1) This is straightforward.

(2) Let T/K be a proper submodule of M/K containing N/K. Then N ⊆ T ⊂ M . Since M is
N -coretractable, there exists a nonzero homomorphism g : M/T → M . Now define h : M/K

T/K → M/K

by h(x + K + T
K ) = g(x + T ) + K for every x ∈ M . If Imh = 0, then Img ⊆ K. Now, K contains
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the image of the endomorphism goπ of M where π :M →M/T is the natural epimorphism, this gives a
contradiction. Therefore, M/K is N/K-coretractable.

Let R be a right Noetherian ring andM be a N -coretractable module where N is a finitely generated
proper submodule of M . Then by Lemma 2.2(2), M/N is coretractable (see [4, Corollary 2.13]).

Proposition 2.3. Let M be a module and K ≤ N < M . If M/K is N/K-coretractable and M/K can
be embedded in M , then M is N -coretractable. In particular, if M = K ⊕K ′ and N is any submodule of
M such that K ′ is (N ∩K ′)-coretractable, then M is N -coretractable.

Proof. Let T be a proper submodule of M containing N . Then T/K is a proper submodule of M/K

containing N/K. By assumption, there is a nonzero homomorphism g : M/K
T/K

∼= M/T → M/K. There
also exists a monomorphism h : M/K → M . Now, the homomorphism hog : M/T → M is the required
one.

Corollary 2.4. LetM be a module and N < M such thatM/N is coretractable. IfM/N can be embedded
in M , then M is N -coretractable. In particular, if M is supplemented with Rad(M) a direct summand
of M , then M is Rad(M)-coretractable.

Proof. This is a special case of Proposition 2.3. The last part follows from the fact that for a supple-
mented module M , the module M/Rad(M) is coretractable since M/Rad(M) is semisimple. In this case
M is Rad(M)-coretractable.

Example 2.5. (1) Let M be a coretractable module and N < M . Then M is N -coretractable. In
particular, every cogenerator M in the category of right R-modules is coretractable relative to every
N < M .

(2) Let M be a module such that for every submodule K of M we have M/K ∼= M . Then M is
coretractable relative to each N < M .

(3) Let M be a module and N < M . If every proper submodule of M containing N , is contained in
a proper summand of M , then M is N -coretractable.

(4) Let M be an uniserial module. If M is coretractable relative to a proper submodule N , then M
is coretractable.

The following introduces a N -coretractable module which is not coretractable. In fact, the class of
relative coretractable modules properly contains the class of coretractable modules.

Example 2.6. Let P be the set of all prime numbers and M =
∏
p∈P Zp as an Z-module. Take N =

{0}×Z3×Z5× . . . which is a maximal submodule of M , since M/N ∼= Z2. Consider g : Z2 →M defined
by g(x) = (x, 0, 0, . . .). Then g is a nonzero homomorphism indicating that M is N -coretractable. Note
that by [2, Example 2.9], M is not a coretractable Z-module.

Remark 2.7. LetM be a module and N < M . If there is not a nonzero homomorphism fromM/N toM ,
then M is not N -coretractable. For example, let M be a nonsingular module and N be a proper submodule
of M such that M/N is singular. So there does not exist any nonzero homomorphism from M/N to M .
Now, M is not N -coretractable (for example, Z-modules Q and Z can not be nZ-coretractable).

We shall consider some conditions under which the two concepts coretractable and N -coretractable
coincide.

Lemma 2.8. Let M be a module and N < M . In each of the following cases M is N -coretractable if
and only if M is coretractable.

(1) N is a small submodule of M .

(2) N is a coretractable module.
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Proof. (1) Let M be N -coretractable where N � M and K be a proper submodule of M . Since
N is small in M , we have N + K 6= M . Now since M is N -coretractable, then there is a nonzero
homomorphism f :M/(N +K)→M . So that HomR(M/K,M) 6= 0. It follows that M is coretractable.
The converse is clear.

(2) Let K be a proper submodule of M . Then either K +N 6=M or K +N =M . If K +N 6=M ,
then similarly to (1) we have HomR(M/K,M) 6= 0. Now suppose that K +N = M . Then there is an
isomorphism h : M/K → N/(N ∩ K) induced from M = N + K. Since N is coretractable, there is a
nonzero homomorphism g : N/(N∩K)→ N . Therefore, jogoh :M/K →M is a nonzero homomorphism
where j : N →M is the inclusion.

Recall that a module M is hollow, provided every proper submodule of M is small in M .

Corollary 2.9. (1) Let M be a hollow module and N < M . Then M is N -coretractable if and only if
M is coretractable.

(2) Let M be a finitely generated module. Then M is Rad(M)-coretractable if and only if M is
coretractable.

(3) Let N be a semisimple submodule of M . Then M is N -coretractable if and only if M is core-
tractable.

(4) Let M be a module. Then M is Soc(M)-coretractable if and only if M is coretractable.

Let M be a module and N a submodule of M . Following [15], N is δ-small in M (denoted by
N �δ M), in case M = N +K with M/K singular implies that M = K. Note that by definitions, every
small submodule of M is δ-small in M . The sum of all δ-small submodules of M is denoted by δ(M).
Also δ(M) is the reject of the class of all simple singular modules in M .

Proposition 2.10. Let M be a module and N be a proper δ-small submodule of M . Then M is N -
coretractable if and only if M is coretractable.

Proof. LetM beN -coretractable andK be a proper submodule ofM . Suppose thatM 6= N+K. Since
M is N -coretractable, there is a nonzero homomorphism f :M/(N+K)→M . So that foπ :M/K →M
is the required homomorphism where π : M/K → M/(N + K) is natural epimorphism. Otherwise,
M = N +K. Now from [15, Lemma 1.2], there is a decomposition M = Y ⊕K where Y is a semisimple
projective submodule of N . Therefore, there is a monomorphism from M/K to M since K is a direct
summand of M . It follows that M is coretractable.

Proposition 2.11. Let M be a module and N be a proper submodule of M . If M is N -coretractable
and M/N has a maximal submodule, then Soc(M) 6= 0. In particular, if M is finitely generated and
N -coretractable, then Soc(M) 6= 0.

Proof. Let K/N be a maximal submodule of M/N . Then K is a maximal submodule of M . So there
is a nonzero homomorphism h : M/K → M . It follows that Imh is a simple submodule of M . This
completes the proof.

The following is an immediate consequence of last proposition.

Corollary 2.12. Let R be a ring such that every cyclic right R-module is coretractable relative to at least
one of its submodules. Then R is semi-Artinian.

Let R be a ring. Then R is called a right V -ring in case every simple right R-module is injective. As
a generalization of V -rings, R is a right generalized V -ring (GV -ring for short), if every simple singular
right R-module is injective ([11]).
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Proposition 2.13. Let R be a ring and M be an indecomposable right R-module with Rad(M) 6=M . If
each of the following statements holds, then M is Rad(M)-coretractable if and only if M is simple.

(1) R is a right GV -ring.

(2) M is noncosingular.

Proof. (1) Let M be Rad(M)-coretractable. Then for each maximal submodule K of M there is a
monomorphism g : M/K → M . It follows that Img is a simple submodule of M . Then Img is either
singular or projective. If Img is projective, then K is a direct summand of M and hence K = 0 or
K = M . So that K = 0. If Img is singular, it will be injective as R is right GV . Therefore, Img is a
summand of M and since g 6= 0 we conclude that Img = M . In both cases, M is simple. The converse
is obvious.

(2) It follows from (1) and the fact that every homomorphic image of M is noncosingular.

Corollary 2.14. Let R be a right V -ring and M an indecomposable right R-module. Then M is core-
tractable if and only if M is simple.

Following [8], a module M is dual Rickart provided that for every f ∈ End(M), Imf is a direct
summand of M .

Remark 2.15. Let M be an indecomposable dual Rickart module with Rad(M) 6= M . Then M is
(Rad(M)-)coretractable if and only if M is simple. Let K be a maximal submodule of M . Then there is a
monomorphism g :M/K →M . Consider the endomorphism h = goπ :M →M where π :M →M/K is
the natural epimorphism. Then Imh = Img is a summand of M . So Img =M as M is indecomposable.
It follows that M is simple.

Proposition 2.16. Let M be a module and L a proper submodule of M such that L has a supplement
K in M . If M is L-coretractable and K is fully invariant in M , then K is coretractable.

Proof. Let K be a supplement of L in M . Then M = K + L and K ∩ L � K. Let N be a proper
submodule of K. Then N + L is a proper submodule of M . For if, N + L = M , by modular law
N + (K ∩ L) = K, which implies that N = K, a contradiction. Since M is L-coretractable, there is a
nonzero homomorphism f : M/(N + L) → M . Since K is a fully invariant submodule of M , we have
foπ(K) ⊆ K where π : M → M/(N + L) is the natural epimorphism. Now consider h : K/N → K by
h(x+N) = f(x+N + L) for every x ∈ K. It is not hard to verify that h is well-defined. Now, there is
y ∈M such that y /∈ N +L and f(y+N +L) 6= 0. Now there exists k ∈ K and l ∈ L such that y = k+ l.
It is easy to see that h(k +N) = f(k + l +N + L) = f(y + L) 6= 0. It follows that h is nonzero.

Corollary 2.17. ([2, Proposition 2.5]) Every fully invariant direct summand of a coretractable module
is coretractable.

Let M be a module. Then M is called a duo module provided every submodule of M is fully
invariant.

Corollary 2.18. Let M be a duo module. If M is coretractable relative to each direct summand of M ,
then every direct summand of M is coretractable.

Proposition 2.19. Let M = M1 ⊕ . . .⊕Mn and N < M . If each Mi is N ∩Mi-coretractable, then M
is N -coretractable. Especially a finite direct sum of coretractable modules is coretractable.

Proof. The proof is exactly similar to proof of [2, Proposition 2.6].

Proposition 2.20. Let R be a right max ring and M =
⊕

i∈IMi be a direct sum of N ∩Mi-coretractable
right R-modules where N < M . Then M is N -coretractable. In particular, an arbitrary direct sum of
coretractable right R-modules is coretractable.

Proof. Similar to the proof of [2, Proposition 2.7].
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Let M be an R-module. A submodule K of M is said to be dense in M if, for any y ∈ M and
0 6= x ∈ M , there exists r ∈ R such that xr 6= 0 and yr ∈ K. Obviously, any dense submodule of M is
essential in M . From [7, Proposition 8.6], K is dense in M if and only if HomR(P/K,M) = 0 for every
submodule P ⊇ K.

Remark 2.21. Let M be a module and N < M . If N is dense in M , then M is not N -coretractable. In
fact for a N -coretractable module M, we have N is not dense in M . This follows from the fact that if M
is N -coretractable, then there is a nonzero homomorphism from M/N to M .

Proposition 2.22. Let M be a module and N a proper submodule of M . If M is quasi-injective or every
proper submodule of M is contained in a maximal submodule, then M is N -coretractable if and only if
every proper submodule of M containing N is not dense in M .

Proof. (1) Let M be a quasi-injective module such that every proper submodule of M containing N
is not dense in M . Suppose that K is a proper submodule of M containing N . Since K is not dense in
M , there is a f : P/K → M where P is a submodule of M containing K. It follows that foπ : P → M
is a nonzero homomorphism where π : P → P/K is the natural epimorphism. Consider the inclusion
homomorphism j : P → M . Since M is quasi-injective, there exists h : M → M such that hoj = foπ.
By defining h : M/K → M with h(m +K) = h(m) we conclude that M is N -coretractable. Note that
h is nonzero. Conversely, if M is N -coretractable and N ⊆ K < M , then there is a homomorphism
g :M/K →M which shows that K is not dense in M .

(2) Suppose that every submodule ofM is contained in a maximal submodule ofM . LetN ⊆ K < M .
Then there is a maximal submodule L of M such that K ≤ L. Since L is not dense in M , there is a
nonzero homomorphism h : M/L → M . As f : M/K → M/L with f(x + K) = x + L is a nonzero
homomorphism, then hof is nonzero. It follows that M is N -coretractable. The converse is the same as
(1).

The following presents a characterization of I-coretractable rings.

Theorem 2.23. Let R be a ring and I be a proper right ideal of R. Then the following are equivalent:

(1) RR is I-coretractable;

(2) Every n-generated free right R-module is I(n)-coretractable;

(3) For every right ideal T ⊇ I, annl(T ) 6= 0.

Proof. (1)⇔ (2) Follows from Proposition 2.19.

(1) ⇒ (3) Let T be a right ideal of R containing I. Since RR is I-coretractable, there is a nonzero
homomorphism f : R/T → R. Consider the endomorphism g = foπ : R → R where π is the natural
epimorphism from R to R/T . Then there is an element 0 6= a ∈ R such that g(x) = ax. Let y ∈ T . Then
g(y) = ay = 0 as T ⊆ Kerg. This shows that 0 6= a ∈ annl(T ).

(3)⇒ (1) Let T be a right ideal of R containing I. Since annl(T ) 6= 0, there exists an element of R
such as a that aT = 0 and a 6= 0. Define f : R/T → R by f(x + T ) = ax. It is easy to check that f is
an R-homomorphism and in particular f 6= 0.

Remark 2.24. Let R be a ring and I ≤ RR with annl(I) = 0. Then RR is not I-coretractable. For

example, let R =

[
K K
0 K

]
be the ring of 2× 2 upper triangular matrices over a field K. Let I =

[
0 K
0 K

]
which is a right ideal of R. Then annl(I) = 0. Hence, RR is not I-coretractable. In other words, R/J(R)

is coretractable relative to each of its ideals as R/J(R) is a semisimple ring. Note that J(R) =
[
0 K
0 0

]
.

Theorem 2.25. Let R be a ring and I be a proper two-sided ideal of R. Then the following statements
are equivalent:

(1) RR is I-coretractable;

(2) Every simple right R-module that is annihilated by I can be embedded in RR.
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Proof. (1)⇒ (2) Let M ∼= R/K be a simple right R-module such that MI = 0. It follows that I ⊆ K.
Since RR is I-coretractable, there is a nonzero homomorphism f : R/K → R.

(2) ⇒ (1) Let T be a right ideal of R containing I. Now there exists a right maximal ideal K of R
such that I ⊆ T ⊆ K. Consider the simple right R-module M = R/K. Since MI = 0, there is a nonzero
homomorphism g : R/K → R by assumption. As T is a submodule of K, there exists f : R/T → R/K
defined by f(x+ T ) = x+K. Hence gof is the desired homomorphism.

For a ring R, Theorem 2.25 implies that RR is (J(R)-)coretractable if and only if R is a right Kasch
ring.

In [2, Proposition 4.4], it is shown that if R is a von Neumann regular ring then R is right Kasch if
and only if R is semisimple. In the following we shall investigate a more general version.

Proposition 2.26. Let R be a right GV -ring. Then the following are equivalent:

(1) R is right Kasch;

(2) R is semisimple.

Proof. (1) ⇒ (2) Let R be right Kasch. So RR is J(R)-coretractable. Now suppose that K is an
arbitrary maximal right ideal of R. Then there is a monomorphism g : R/K → R. It follows that
R/K ∼= Img is a simple right R-module. So, Img is either singular or projective. In first case Img
should be injective as R is right GV . Therefore, Img is a direct summand of RR. Now Img is singular
projective which implies that Img = 0, a contradiction. So that Img and hence every simple right
R-module will be projective. This shows that R is semisimple.

(2)⇒ (1) It is obvious.

Corollary 2.27. Let R be a right V -ring. Then R is a Kasch ring if and only if R is semisimple.

Example 2.28. (1) Let R =

[
K K
0 K

]
where K is a field. Then J(R) =

[
0 K
0 0

]
. It is easy to check that

R is a semilocal ring as R/J(R) ∼= K × K which is a semisimple ring. Now by [3, Exercise 10, Page

113], Soc(RR) =
[
K K
0 0

]
. However, Soc(RR) =

[
0 K
0 K

]
. Set m1 = Soc(RR) and m2 = Soc(RR). Then

both m1 and m2 are maximal left and right ideals of R. A quick calculation shows that annl(m1) = m2,
annl(m2) = 0, annr(m1) = 0 and annr(m2) = m1. Now by Theorem 2.23, RR is m1-coretractable while
RR is not m2-coretractable. Also left version of Theorem 2.23, implies that RR is m2-coretractable but
it is not m1-coretractable. Since the simple right R-module R/m2 can not be embedded in RR and the
simple left R-module R/m1 can not be embedded in RR, the ring R is neither right Kasch nor left Kasch
(note that since R is right GV which is not a V -ring, it can not be Kasch from Proposition 2.26).

(2) Let K be a division ring and R = {A =

a 0 b c
0 a 0 d
0 0 a 0
0 0 0 e

 | a, b, c, d, e ∈ K}. Then J(R) = {A ∈

R | a = 0 = e}, Soc(RR) = annl(J(R)) = {A ∈ R | a = 0}, Soc(RR) = annr(J(R)) = J(R). Since
R/J(R) ∼= K ×K, R is a semilocal ring. Now Soc(RR) = {A ∈ R | a = 0} and Soc(RR) = J(R). From
[7, Example 8.29], Soc(RR) is a left and right maximal ideal of R. Since annr(Soc(RR)) = {A ∈ R |
a = e = 0} = J(R) 6= 0, it follows from [7, Corollary 8.28], R/Soc(RR) can be embedded in RR (see also
Theorem 2.23). Therefore, RR is Soc(RR)-coretractable while RR is not Soc(RR)-coretractable (see also
Corollary 2.9). Now an easy computation shows that annl(Soc(RR)) = {A ∈ R | a = c = d = e = 0} 6= 0.
So R/Soc(RR) can be embedded in RR by [7, Corollary 8.28]. As Soc(RR) is a maximal right ideal of R,
then RR is Soc(RR)-coretractable. Also from [7, Example 8.29], R is a right Kasch ring while it is not
a left Kasch ring.

(3) Let K be a field and R =
∏∞
i=1K. It is well-known that R is a Von Neumann regular V -ring.

Consider the ideal Ti = K×K× . . .×K×0×K×K× . . .. It is clear that Ti for each i ∈ N is a maximal
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ideal of R. It is easy to see that ann(Ti) = 0×0× . . .×0×K×0× . . . which is nonzero. Therefore, from
Theorem 2.23, R is I-coretractable for each I ⊆ Ti. Now consider the ideal L =

⊕∞
i=1K of R. Then

ann(L) = 0 and of course ann(m) = 0 for every maximal ideal m of R containing L. Hence the simple
R-module R/m can not be embedded in R (see [7, Corollary 8.28]). Therefore, R is not coretractable
relative to L. This means that R is not a Kasch ring.

Proposition 2.29. Let R be a ring and I a right ideal of R such that every free right R-module R(A) is
(I(A))-coretractable. Then for every right R-module M with I ⊆ annr(M), HomR(M,R) 6= 0.

Proof. Let M be a right R-module such that I ⊆ annr(M). Then there is a free right R-module
F and a submodule K of F such that M ∼= F/K. Since MI = 0, we have I(A) ⊆ K where A is an
indexed set. By assumption, there is a nonzero homomorphism f : F/K → F . Then the homomorphism
πof :M → R is the required one where π : F → R is the natural epimorphism.

Proposition 2.30. Let R be a ring having a radical right R-module M with MI 6= M where I ≤ RR.
If for every right ideal T of R, Rad(T ) 6= T , then there is a free right R-module R(A) which is not
I(A)-coretractable.

Proof. Let Rad(M) =M such thatMI is a proper submodule ofM . There exists a free right R-module
F = R(A) and a submodule K of F such that M/MI ∼= F/K. Being M radical implies that M/MI is
radical. So, HomR(M/MI,R) = 0. Since (F/K)I = 0, I(A) ⊆ K. It follows that HomR(F/K,F ) = 0
which implies F is not I(A)-coretractable.

Proposition 2.31. Let R be a right max ring and I ≤ RR such that every cyclic R-module N is NI-
coretractable. Then every right R-module M is MI-coretractable. In particular, if R is a (semiperfect)
right perfect ring with all cyclic right R-modules coretractable, then every (finitely generated) right R-
module is coretractable.

Proof. LetM be a right R-module. Suppose that K is a proper submodule ofM containingMI. Since
R is a right max ring, K is contained in a maximal submodule L of M . For every x ∈ M \ L, we know
M/L ∼= xR/(xR ∩ L) as xR+ L =M . Note that MI ⊆ L. So that (xR/(xR ∩ L))I = 0. It follows that
(xR)I ⊆ xR ∩ L. Being xR a (xR)I-coretractable module implies that HomR(xR/(xR ∩ L), xR) 6= 0.
Hence there is a nonzero homomorphism f :M/L→M . Therefore, HomR(M/K,M) 6= 0 as K ⊆ L.
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