New extremal singly even self-dual codes of lengths 64 and 66^{*}

Damyan Anev, Masaaki Harada, Nikolay Yankov

Abstract

For lengths 64 and 66 , we construct six and seven extremal singly even self-dual codes with weight enumerators for which no extremal singly even self-dual codes were previously known to exist, respectively. We also construct new 40 inequivalent extremal doubly even self-dual [64, 32, 12] codes with covering radius 12 meeting the Delsarte bound. These new codes are constructed by considering four-circulant codes along with their neighbors and shadows.

2010 MSC: 94B05
Keywords: Self-dual code, Weight enumerator

1. Introduction

A (binary) $[n, k]$ code C is a k-dimensional vector subspace of \mathbb{F}_{2}^{n}, where \mathbb{F}_{2} denotes the finite field of order 2. All codes in this note are binary. The parameter n is called the length of C. The weight $\mathrm{wt}(x)$ of a vector x is the number of non-zero components of x. A vector of C is a codeword of C. The minimum non-zero weight of all codewords in C is called the minimum weight of C. An $[n, k]$ code with minimum weight d is called an $[n, k, d]$ code. The dual code C^{\perp} of a code C of length n is defined as $C^{\perp}=\left\{x \in \mathbb{F}_{2}^{n} \mid x \cdot y=0\right.$ for all $\left.y \in C\right\}$, where $x \cdot y$ is the standard inner product. A code C is called self-dual if $C=C^{\perp}$. A self-dual code C is doubly even if all codewords of C have weight divisible by four, and singly even if there is at least one codeword x with $\mathrm{wt}(x) \equiv 2(\bmod 4)$. It is known that a self-dual code of length n exists if and only if n is even, and a doubly even self-dual code of length n exists if and only if n is divisible by 8 .

Let C be a singly even self-dual code. Let C_{0} denote the subcode of C consisting of codewords x with $\operatorname{wt}(x) \equiv 0(\bmod 4)$. The shadow S of C is defined to be $C_{0}^{\perp} \backslash C$. Shadows for self-dual codes

[^0]were introduced by Conway and Sloane [6] in order to give the largest possible minimum weight among singly even self-dual codes, and to provide restrictions on the weight enumerators of singly even self-dual codes. The largest possible minimum weights among singly even self-dual codes of length n were given for $n \leq 72$ in [6]. The possible weight enumerators of singly even self-dual codes with the largest possible minimum weights were given in [6] and [7] for $n \leq 72$. It is a fundamental problem to find which weight enumerators actually occur for the possible weight enumerators (see [6]). By considering the shadows, Rains [13] showed that the minimum weight d of a self-dual code of length n is bounded by $d \leq 4\left\lfloor\frac{n}{24}\right\rfloor+6$ if $n \equiv 22(\bmod 24), d \leq 4\left\lfloor\frac{n}{24}\right\rfloor+4$ otherwise. A self-dual code meeting the bound is called extremal.

The aim of this note is to construct extremal singly even self-dual codes with weight enumerators for which no extremal singly even self-dual codes were previously known to exist. More precisely, we construct extremal singly even self-dual $[64,32,12]$ codes with weight enumerators $W_{64,1}$ for $\beta=35$, and $W_{64,2}$ for $\beta \in\{19,34,42,45,50\}$ (see Section 2 for $W_{64,1}$ and $W_{64,2}$). These codes are constructed as self-dual neighbors of extremal four-circulant singly even self-dual codes. We construct extremal singly even self-dual [66,33, 12] codes with weight enumerators $W_{66,1}$ for $\beta \in\{7,58,70,91,93\}$, and $W_{66,3}$ for $\beta \in\{22,23\}$ (see Section 2 for $W_{66,1}$ and $W_{66,3}$). These codes are constructed from extremal singly even self-dual $[64,32,12]$ codes by the method given in [14]. We also demonstrate that there are at least 44 inequivalent extremal doubly even self-dual $[64,32,12]$ codes with covering radius 12 meeting the Delsarte bound.

All computer calculations in this note were done with the help of the algebra software Magma [1] and the computer system Q-extensions [2].

2. Weight enumerators of extremal singly even self-dual codes of lengths 64 and 66

The possible weight enumerators $W_{64, i}$ and $S_{64, i}$ of extremal singly even self-dual [64,32,12] codes and their shadows are given in [6]:

$$
\begin{aligned}
& \left\{\begin{array}{l}
W_{64,1}=1+(1312+16 \beta) y^{12}+(22016-64 \beta) y^{14}+\cdots, \\
S_{64,1}=y^{4}+(\beta-14) y^{8}+(3419-12 \beta) y^{12}+\cdots,
\end{array}\right. \\
& \left\{\begin{array}{l}
W_{64,2}=1+(1312+16 \beta) y^{12}+(23040-64 \beta) y^{14}+\cdots, \\
S_{64,2}=\beta y^{8}+(3328-12 \beta) y^{12}+\cdots,
\end{array}\right.
\end{aligned}
$$

where β are integers with $14 \leq \beta \leq 104$ for $W_{64,1}$ and $0 \leq \beta \leq 277$ for $W_{64,2}$. Extremal singly even self-dual codes with weight enumerator $W_{64,1}$ are known for

$$
\beta \in\left\{\begin{array}{l}
14,16,18,20,22,24,25,26,28,29,30,32 \\
34,36,38,39,44,46,53,59,60,64,74
\end{array}\right\}
$$

(see [4], [10], [11] and [16]). Extremal singly even self-dual codes with weight enumerator $W_{64,2}$ are known for

$$
\beta \in\left\{\begin{array}{l}
0,1, \ldots, 41,44,48,51,52,56,58,64,65,72, \\
80,88,96,104,108,112,114,118,120,184
\end{array}\right\} \backslash\{19,31,34,39\}
$$

(see [4], [10], [16] and [18]).
The possible weight enumerators $W_{66, i}$ and $S_{66, i}$ of extremal singly even self-dual [66,33,12] codes
and their shadows are given in [7]:

$$
\begin{aligned}
& \left\{\begin{array}{l}
W_{66,1}=1+(858+8 \beta) y^{12}+(18678-24 \beta) y^{14}+\cdots, \\
S_{66,1}=\beta y^{9}+(10032-12 \beta) y^{13}+\cdots,
\end{array}\right. \\
& \left\{\begin{array}{l}
W_{66,2}=1+1690 y^{12}+7990 y^{14}+\cdots, \\
S_{66,2}=y+9680 y^{13}+\cdots,
\end{array}\right. \\
& \left\{\begin{array}{l}
W_{66,3}=1+(858+8 \beta) y^{12}+(18166-24 \beta) y^{14}+\cdots, \\
S_{66,3}=y^{5}+(\beta-14) y^{9}+(10123-12 \beta) y^{13}+\cdots,
\end{array}\right.
\end{aligned}
$$

where β are integers with $0 \leq \beta \leq 778$ for $W_{66,1}$ and $14 \leq \beta \leq 756$ for $W_{66,3}$. Extremal singly even self-dual codes with weight enumerator $W_{66,1}$ are known for

$$
\beta \in\{0,1, \ldots, 92,94,100,101,115\} \backslash\{4,7,58,70,91\}
$$

(see [5], [8], [10], [17] and [18]). Extremal singly even self-dual codes with weight enumerator $W_{66,2}$ are known (see [8] and [15]). Extremal singly even self-dual codes with weight enumerator $W_{66,3}$ are known for

$$
\beta \in\{24,25, \ldots, 92\} \backslash\{65,68,69,72,89,91\}
$$

(see [9], [10], [11] and [12]).

3. Extremal four-circulant singly even self-dual [64, 32,12] codes

An $n \times n$ circulant matrix has the following form:

$$
\left(\begin{array}{ccccc}
r_{0} & r_{1} & r_{2} & \cdots & r_{n-1} \\
r_{n-1} & r_{0} & r_{1} & \cdots & r_{n-2} \\
\vdots & \vdots & \vdots & & \vdots \\
r_{1} & r_{2} & r_{3} & \cdots & r_{0}
\end{array}\right)
$$

so that each successive row is a cyclic shift of the previous one. Let A and B be $n \times n$ circulant matrices. Let C be a $[4 n, 2 n]$ code with generator matrix of the following form:

$$
\left(\begin{array}{ccc}
& A & B \tag{1}\\
I_{2 n} & B^{T} & A^{T}
\end{array}\right),
$$

where I_{n} denotes the identity matrix of order n and A^{T} denotes the transpose of A. It is easy to see that C is self-dual if $A A^{T}+B B^{T}=I_{n}$. The codes with generator matrices of the form (1) are called four-circulant.

Two codes are equivalent if one can be obtained from the other by a permutation of coordinates. In this section, we give a classification of extremal four-circulant singly even self-dual [64,32,12] codes. Our exhaustive search found all distinct extremal four-circulant singly even self-dual [64,32, 12] codes, which must be checked further for equivalence to complete the classification. This was done by considering all pairs of 16×16 circulant matrices A and B satisfying the condition that $A A^{T}+B B^{T}=I_{16}$, the sum of the weights of the first rows of A and B is congruent to $1(\bmod 4)$ and the sum of the weights is greater than or equal to 13 . Since a cyclic shift of the first rows gives an equivalent code, we may assume without loss of generality that the last entry of the first row of B is 1 . Then our computer search shows that the above distinct extremal four-circulant singly even self-dual [64,32,12] codes are divided into 67 inequivalent codes.
Proposition 3.1. Up to equivalence, there are 67 extremal four-circulant singly even self-dual [64, 32, 12] codes.

We denote the 67 codes by $C_{64, i}(i=1,2, \ldots, 67)$. For the 67 codes $C_{64, i}$, the first rows r_{A} (resp. r_{B}) of the circulant matrices A (resp. B) in generator matrices (1) are listed in Table 1. We verified that the codes $C_{64, i}$ have weight enumerator $W_{64,2}$, where β are also listed in Table 1.

Table 1. Extremal four-circulant singly even self-dual [64, 32, 12] codes

Codes	r_{A}	r_{B}	β
$C_{64,1}$	(0000001100111111)	(0001011010101111)	0
C	(0000010101111101)	(0010011010111011)	0
C_{6}	(000001100110111	(0010110101011011)	0
	(00000000010	(0001001100101011)	8
	(0000000010101	(0011011011110111)	8
C_{6}	(0000000011010111)	(00001001	8
C_{6}	(0000000011010111)	(0000101100010111)	8
C	(0000000011010111)	(0011101110101111)	8
	(000	(0101101111111111)	8
	(0000001001011101)	(0001000101011011)	8
	(0000001100011111)	(0010101011011111)	8
C_{6}	(0000001100011111)	(0010111011011011)	8
C_{6}	(0000001100111011)	(00011010	8
C_{6}	(0000001101111111)	(0011101111011111)	8
	(000	(0010111011011111)	8
C_{6}	(0000010001011111)	(000	8
$\mathrm{C}_{6} 4$	(0000010110111011)	(0001101110001111)	8
C_{6}	(0000000100011111)	(0010111111110011)	16
C_{64}	(0000000100111101)	(0000101011000111)	
C_{6}	(0000000110010111)	(0001001111111111)	
C_{6}	(0000000111001111)	(0010101110111101)	
$C_{64,22}$	(0000000111001111)	(0010110110111011)	
	(0000001000101111)	(0011101011110111)	
	(0000001011100011)	(0010101111110111)	
C_{6}	(0000001011100011)	(0011011011111011)	
C_{64}	(0000010010011111)	(0010110011101111)	
C_{64}	(0000011001101111)	(0001001011011111)	
C_{6}	(0000011011011111)	(0010010101011101)	
	(0000011011100111)	(0001011111001011)	
	(0000011101111111)	(0101101110110111)	
C_{64}	(0000101110111111)	(0011101011110111)	16
$C_{64,32}$	(0000000000100111)	(0001011101101011)	24
$C_{64,33}$	(0000000001011011)	(0010010101101011)	
$C_{64,34}$	(0000000100111111)	(0001001000101011)	24
C_{6}	(0000000101001011)	(0010010110011011)	
C_{6}	(0000000101001011)	(0010011001011011)	24
$C_{64,37}$	(0000000110111111)	(0000001000100111)	24
$C_{64,38}$	(0000001001111111)	(0010101111001011)	24
$C_{64,39}$	(0000001100011111)	(0001010011111111)	24
$C_{64,40}$	(0000001100011111)	(0001110011110111)	
$C_{64,41}$	(0000010001011111)	(0010101111001111)	
C_{64}	(0000010001101111)	(0011001110101111)	
$C_{64,43}$	(0000010011101111)	(0001011101100111)	24
$C_{64,44}$	(0000010101010111)	(0001010111101111)	24
$C_{64,45}$	(0000010101010111)	(0010110011111011)	24
$C_{64,46}$	(0000010101110111)	(0000101111110011)	24
$C_{64,47}$	(0000010101110111)	(0001011101101011)	24
$C_{64,48}$	(0000011011110111)	(0101101110111111)	24
$C_{64,49}$	(0000000001001011)	(0000111010110111)	32
$C_{64,50}$	(0000000001100111)	(0001001111100011)	32

Table 1. Extremal four-circulant singly even self-dual [64,32,12] codes (continued)

Codes	r_{A}	r_{B}	β
$C_{64,51}$	(0000001010111011)	(0001011111100111)	32
$C_{64,52}$	(0000010101011111)	(0001101111000111)	32
$C_{64,53}$	(0000010101111101)	(0010110010110111)	32
$C_{64,54}$	(0000011010111111)	(0000101110011101)	32
$C_{64,55}$	(0000101011101011)	(0001011111001011)	32
$C_{64,56}$	(0000000000100111)	(0001011010111011)	40
$C_{64,57}$	(0000000010101101)	(0001001011011011)	40
$C_{64,58}$	(0000001000011101)	(0000100101111011)	40
$C_{64,59}$	(0000001110011111)	(0001010111101101)	40
$C_{64,60}$	(0000011000111111)	(0001010111101101)	40
$C_{64,61}$	(0000011011001111)	(0000101010111111)	40
$C_{64,62}$	(0000100111011111)	(0001010101011011)	40
$C_{64,63}$	(0000001001101011)	(0001010011001101)	48
$C_{64,64}$	(0000000001011011)	(0001011000101111)	56
$C_{64,65}$	(0000010111011111)	(0010100101011011)	56
$C_{64,66}$	(0000101110011101)	(0001000101111111)	64
$C_{64,67}$	(0000000001011111)	(0001011111110111)	72

4. Extremal self-dual $[64,32,12]$ neighbors of $C_{64, i}$

Two self-dual codes C and C^{\prime} of length n are said to be neighbors if $\operatorname{dim}\left(C \cap C^{\prime}\right)=n / 2-1$. Any selfdual code of length n can be reached from any other by taking successive neighbors (see [6]). Since every self-dual code C of length n contains the all-one vector $1, C$ has $2^{n / 2-1}-1$ subcodes D of codimension 1 containing 1. Since $\operatorname{dim}\left(D^{\perp} / D\right)=2$, there are two self-dual codes rather than C lying between D^{\perp} and D. If C is a singly even self-dual code of length divisible by 8 , then C has two doubly even selfdual neighbors (see [3]). In this section, we construct extremal self-dual [64, 32, 12] codes by considering self-dual neighbors.

For $i=1,2, \ldots, 67$, we found all distinct extremal singly even self-dual neighbors of $C_{64, i}$, which are equivalent to none of the 67 codes. Then we verified that these codes are divided into 385 inequivalent codes $D_{64, i}(i=1,2, \ldots, 385)$. These codes $D_{64, i}$ are constructed as

$$
\left\langle\left(C_{64, j} \cap\langle x\rangle^{\perp}\right), x\right\rangle
$$

To save space, the values j, the supports $\operatorname{supp}(x)$ of x, the values (k, β) in the weight enumerators $W_{64, k}$ are listed in "http://www.math.is.tohoku.ac.jp/~mharada/Paper/64-SE-d12.txt" for the 385 codes. For extremal singly even self-dual [64,32,12] codes with weight enumerators for which no extremal singly even self-dual codes were previously known to exist, $j, \operatorname{supp}(x)$ and (k, β) are list in Table 2. Hence, we have the following:

Proposition 4.1. There is an extremal singly even self-dual [64,32,12] code with weight enumerator $W_{64,1}$ for $\beta=35$, and $W_{64,2}$ for $\beta \in\{19,34,42,45,50\}$.

Now we consider the extremal doubly even self-dual neighbors of $C_{64, i}(i=1,2,3)$. Since the shadow has minimum weight 12 , the two doubly even self-dual neighbors $\mathcal{C}_{64, i}^{1}$ and $\mathcal{C}_{64, i}^{2}$ are extremal doubly even self-dual $[64,32,12]$ codes with covering radius 12 (see [4]). Thus, six extremal doubly even selfdual $[64,32,12]$ codes with covering radius 12 are constructed. In addition, among the 385 codes $D_{64, i}$ ($i=1,2, \ldots, 385$), the 19 extremal singly even self-dual codes $D_{64, j}$ have shadow of minimum weight 12 , where

$$
j \in\{1,2,12,19,22,33,44,58,66,68,84,95,108,115,136,143,191,240,254\} .
$$

Table 2. Extremal singly even self-dual [64,32, 12] neighbors

Codes	j	$\operatorname{supp}(x)$	(k, β)
$D_{64,138}$	24	$\{1,2,3,38,42,43,45,46,48,54,56,57\}$	$(2,19)$
$D_{64,270}$	49	$\{1,2,8,32,38,41,48,49,50,53,55,61\}$	$(1,35)$
$D_{64,283}$	52	$\{1,2,4,33,36,37,41,43,46,51,61,64\}$	$(2,42)$
$D_{64,293}$	56	$\{3,7,9,10,11,37,43,53,57,58,62,64\}$	$(2,34)$
$D_{64,314}$	64	$\{6,8,26,37,38,40,43,46,48,59,61,63\}$	$(2,50)$
$D_{64,329}$	65	$\{1,6,8,9,37,47,50,52,57,60,63,64\}$	$(2,45)$
$D_{64,1}$	1	$\{4,7,9,34,38,40,45,46,47,50,51,53\}$	$(2,0)$
$D_{64,2}$	1	$\{3,37,38,47,48,50,52,53,54,59,60,63\}$	$(2,0)$
$D_{64,12}$	4	$\{2,4,5,16,17,38,40,46,56,57,60,62\}$	$(2,0)$
$D_{64,19}$	4	$\{2,3,6,7,9,35,41,49,55,56,57,61\}$	$(2,0)$
$D_{64,22}$	4	$\{2,33,34,35,38,39,42,45,48,52,61,62\}$	$(2,0)$
$D_{64,33}$	6	$\{8,9,10,16,17,33,44,45,54,55,59,61\}$	$(2,0)$
$D_{64,44}$	6	$\{1,3,6,33,36,38,39,45,47,55,57,59\}$	$(2,0)$
$D_{64,58}$	8	$\{1,3,5,16,17,35,36,38,42,44,54,59\}$	$(2,0)$
$D_{64,66}$	8	$\{4,6,9,34,36,39,41,42,48,51,57,63\}$	$(2,0)$
$D_{64,68}$	8	$\{3,6,9,33,36,37,38,49,56,57,60,62\}$	$(2,0)$
$D_{64,84}$	13	$\{1,4,5,35,37,38,41,44,53,60,61,62\}$	$(2,0)$
$D_{64,95}$	13	$\{2,4,9,34,35,40,42,47,49,52,59,64\}$	$(2,0)$
$D_{64,108}$	15	$\{2,16,17,37,43,48,49,52,54,57,58,64\}$	$(2,0)$
$D_{64,115}$	16	$\{1,3,6,7,8,41,45,46,49,50,57,60\}$	$(2,0)$
$D_{64,136}$	21	$\{3,16,17,33,34,37,42,44,47,51,52,56\}$	$(2,0)$
$D_{64,143}$	26	$\{1,2,9,34,37,38,41,48,57,58,59,64\}$	$(2,0)$
$D_{64,191}$	35	$\{1,2,6,8,10,33,37,46,54,59,60,63\}$	$(2,0)$
$D_{64,240}$	47	$\{2,4,7,9,13,16,17,44,56,59,62,64\}$	$(2,0)$
$D_{64,254}$	48	$\{1,2,5,7,8,35,36,37,45,47,49,63\}$	$(2,0)$
$D_{64,14}$	4	$\{1,7,8,35,36,37,41,43,46,49,51,53\}$	$(1,14)$
$D_{64,383}$	67	$\{1,33,34,36,37,38,40,41,47,49,50,53,55,59,61,63\}$	$(2,40)$

The constructions of the 19 codes $D_{64, j}$ are listed in Table 2. Their two doubly even self-dual neighbors $\mathcal{D}_{64, j}^{1}$ and $\mathcal{D}_{64, j}^{2}$ are extremal doubly even self-dual [64,32,12] codes with covering radius 12 . We verified that there are the following equivalent codes among the four codes in [4], the six codes $\mathcal{C}_{64, i}^{1}, \mathcal{C}_{64, i}^{2}$ and the 38 codes $\mathcal{D}_{64, j}^{1}, \mathcal{D}_{64, j}^{2}$, where

$$
\mathcal{D}_{64,22}^{2} \cong \mathcal{D}_{64,68}^{2}, \mathcal{D}_{64,33}^{2} \cong \mathcal{D}_{64,84}^{2}, \mathcal{D}_{64,44}^{2} \cong \mathcal{D}_{64,95}^{2}, \mathcal{D}_{64,136}^{2} \cong \mathcal{D}_{64,143}^{2}
$$

where $C \cong D$ means that C and D are equivalent, and there is no other pair of equivalent codes. Therefore, we have the following proposition.

Proposition 4.2. There are at least 44 inequivalent extremal doubly even self-dual $[64,32,12]$ codes with covering radius 12 meeting the Delsarte bound.

In order to distinguish two doubly even neighbors $\mathcal{D}_{64, i}^{1}$ and $\mathcal{D}_{64, i}^{2}(i=68,84,95,143)$, we list in Table 3 the supports $\operatorname{supp}(x)$ for the 8 codes, where $\mathcal{D}_{64, i}^{1}$ and $\mathcal{D}_{64, i}^{2}$ are constructed as $\left\langle\left(D_{64, i} \cap\langle x\rangle^{\perp}\right), x\right\rangle$.

Table 3. Extremal doubly even self-dual [64,32,12] neighbors

Codes	$\operatorname{supp}(x)$
$\mathcal{D}_{64,68}^{1}$	$\{1,4,7,34,35,36,47,54,55,58,60,63\}$
$\mathcal{D}_{64,68}^{2}$	$\{1,4,5,6,30,42,45,47,54,56,58,64\}$
$\mathcal{D}_{64,84}^{1}$	$\{16,17,33,39,43,46,48,49,51,54,58,64\}$
$\mathcal{D}_{64,84}^{2}$	$\{1,2,6,33,35,38,40,42,52,57,59,60\}$
$\mathcal{D}_{64,95}^{1}$	$\{1,2,6,33,35,38,40,42,52,57,59,60\}$
$\mathcal{D}_{64,95}^{2}$	$\{3,33,38,41,45,47,51,53,58,60,62,64\}$
$\mathcal{D}_{64,143}^{1}$	$\{1,4,10,40,43,46,52,54,58,61,62,63\}$
$\mathcal{D}_{64,143}^{2}$	$\{1,31,34,42,44,45,46,50,51,52,54,62\}$

5. Four-circulant singly even self-dual $[64,32,10]$ codes and selfdual neighbors

Using an approach similar to that given in Section 3, our exhaustive search found all distinct fourcirculant singly even self-dual $[64,32,10]$ codes. Then our computer search shows that the distinct four-circulant singly even self-dual [64, 32, 10] codes are divided into 224 inequivalent codes.

Proposition 5.1. Up to equivalence, there are 224 four-circulant singly even self-dual $[64,32,10]$ codes.
We denote the 224 codes by $E_{64, i}(i=1,2, \ldots, 224)$. For the codes, the first rows r_{A} (resp. r_{B}) of the circulant matrices A (resp. B) in generator matrices (1) can be obtained from "http://www.math.is.tohoku.ac.jp/~mharada/Paper/64-4cir-d10.txt".

The following method for constructing self-dual neighbors was given in [4]. For $C=E_{64, i}(i=$ $1,2, \ldots, 224)$, let M be a matrix whose rows are the codewords of weight 10 in C. Suppose that there is a vector x of even weight such that

$$
\begin{equation*}
M x^{T}=\mathbf{1}^{T} \tag{2}
\end{equation*}
$$

Then $C^{0}=\langle x\rangle^{\perp} \cap C$ is a subcode of index 2 in C. We have self-dual neighbors $\left\langle C^{0}, x\right\rangle$ and $\left\langle C^{0}, x+y\right\rangle$ of C for some vector $y \in C \backslash C^{0}$, which have no codeword of weight 10 in C. When C has a self-dual neighbor C^{\prime} with minimum weight 12 , there is a vector x satisfying (2) and we can obtain C^{\prime} in this way. For $i=1,2, \ldots, 224$, we verified that there is a unique vector satisfying (2) and C has two self-dual neighbors, where C^{0} is a doubly even $[64,31,12]$ code. In this case, the two neighbors are automatically doubly even. Hence, we have the following:

Proposition 5.2. There is no extremal singly even self-dual $[64,32,12]$ neighbor of $E_{64, i}$ for $i=$ $1,2, \ldots, 224$.

6. Extremal singly even self-dual [66, 33, 12] codes

The following method for constructing singly even self-dual codes was given in [14]. Let C be a self-dual code of length n. Let x be a vector of odd weight. Let C^{0} denote the subcode of C consisting of all codewords which are orthogonal to x. Then there are cosets C^{1}, C^{2}, C^{3} of C^{0} such that $C^{0}=$ $C^{0} \cup C^{1} \cup C^{2} \cup C^{3}$, where $C=C^{0} \cup C^{2}$ and $x+C=C^{1} \cup C^{3}$. It was shown in [14] that

$$
\begin{equation*}
C(x)=\left(0,0, C^{0}\right) \cup\left(1,1, C^{2}\right) \cup\left(1,0, C^{1}\right) \cup\left(0,1, C^{3}\right) \tag{3}
\end{equation*}
$$

is a self-dual code of length $n+2$. In this section, we construct new extremal singly even self-dual codes of length 66 using this construction from the extremal singly even self-dual [64,32,12] codes obtained in Sections 3 and 4.

Our exhaustive search shows that there are 1166 inequivalent extremal singly even self-dual [66, 33, 12] codes constructed as the codes $C(x)$ in (3) from the codes $C_{64, i}(i=1,2, \ldots, 67) .1157$ codes of the 1166 codes have weight enumerator $W_{66,1}$ for $\beta \in\{7,8, \ldots, 92\} \backslash\{9,11\}, 3$ of them have weight enumerator $W_{66,3}$ for $\beta \in\{30,49,54\}$, and 6 of them have weight enumerator $W_{66,2}$. Extremal singly even self-dual [66, 33, 12] codes with weight enumerator $W_{66,1}$ for $\beta \in\{7,58,70,91\}$ are constructed for the first time. For the four weight enumerators W, as an example, codes $C_{66, i}$ with weight enumerators W are given $(i=1,2,3,4)$. We list in Table 4 the values β in W, the codes C and the vectors $x=\left(x_{1}, x_{2}, \ldots, x_{32}\right)$ of $C(x)$ in (3), where $x_{j}=1(j=33, \ldots, 64)$.

Table 4. Extremal singly even self-dual $[66,33,12]$ codes

Codes	β	W	C	$\left(x_{1}, \ldots, x_{32}\right)$
$C_{66,1}$	7	$W_{66,1}$	$C_{64,1}$	$(01101101101010010111111010101100)$
$C_{66,2}$	58	$W_{66,1}$	$C_{64,56}$	$(00001101100000011000110000011100)$
$C_{66,3}$	70	$W_{66,1}$	$C_{64,66}$	$(00100110011011001001011100000010)$
$C_{66,4}$	91	$W_{66,1}$	$C_{64,67}$	$(00001110110111110000011101000010)$
$D_{66,1}$	22	$W_{66,3}$	$D_{64,14}$	$(10100011100100110111101010011111)$
$D_{66,2}$	23	$W_{66,3}$	$D_{64,14}$	$(10111100111100000100101000100011)$
$D_{66,3}$	93	$W_{66,1}$	$D_{64,383}$	$(10100101011110010011001101001101)$

By applying the construction given in (3) to $D_{64, i}$, we found more extremal singly even self-dual [$66,33,12$] codes $D_{66, j}$ with weight enumerators for which no extremal singly even self-dual codes were previously known to exist. For the codes $D_{66, j}$, we list in Table 4 the values β in the weight enumerators W, the codes C and the vectors $x=\left(x_{1}, x_{2}, \ldots, x_{32}\right)$ of $C(x)$ in (3), where $x_{i}=1(i=33, \ldots, 64)$. Hence, we have the following:
Proposition 6.1. There is an extremal singly even self-dual $[66,33,12]$ code with weight enumerator $W_{66,1}$ for $\beta \in\{7,58,70,91,93\}$, and weight enumerator $W_{66,3}$ for $\beta \in\{22,23\}$.
Remark 6.2. The code $D_{66,1}$ has the smallest value β among known extremal singly even self-dual $[66,33,12]$ codes with weight enumerator $W_{66,3}$.

References

[1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symb. Comput. 24(3-4) (1997) 235-265.
[2] I. Bouyukliev, "About the code equivalence" in Advances in Coding Theory and Cryptology, NJ, Hackensack: World Scientific, 2007.
[3] R. A. Brualdi, V. S. Pless, Weight enumerators of self-dual codes, IEEE Trans. Inform. Theory 37(4) (1991) 1222-1225.
[4] N. Chigira, M. Harada, M. Kitazume, Extremal self-dual codes of length 64 through neighbors and covering radii, Des. Codes Cryptogr. 42(1) (2007) 93-101.
[5] P. Çomak, J. L. Kim, F. Özbudak, New cubic self-dual codes of length 54, 60 and 66, Appl. Algebra Engrg. Comm. Comput. 29(4) (2018) 303-312.
[6] J. H. Conway, N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory 36(6) (1990) 1319-1333.
[7] S. T. Dougherty, T. A. Gulliver, M. Harada, Extremal binary self-dual codes, IEEE Trans. Inform. Theory 43(6) (1997) 2036-2047.
[8] M. Harada, T. Nishimura, R. Yorgova, New extremal self-dual codes of length 66, Math. Balkanica (N.S.) 21(1-2) (2007) 113-121.
[9] S. Karadeniz, B. Yildiz, New extremal binary self-dual codes of length 66 as extensions of self-dual codes over R_{k}, J. Franklin Inst. 350(8) (2013) 1963-1973.
[10] A. Kaya, New extremal binary self-dual codes of lengths 64 and 66 from R_{2}-lifts, Finite Fields Appl. 46 (2017) 271-279.
[11] A. Kaya, B. Yildiz, A. Pasa, New extremal binary self-dual codes from a modified four circulant construction, Discrete Math. 339(3) (2016) 1086-1094.
[12] A. Kaya, B. Yildiz, I. Siap, New extremal binary self-dual codes from $\mathbb{F}_{4}+u \mathbb{F}_{4}$-lifts of quadratic circulant codes over \mathbb{F}_{4}, Finite Fields Appl. 35 (2015) 318-329.
[13] E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory 44(1) (1998) 134-139.
[14] H.-P. Tsai, Existence of certain extremal self-dual codes, IEEE Trans. Inform. Theory 38(2) (1992) 501-504.
[15] H.-P. Tsai, Extremal self-dual codes of lengths 66 and 68, IEEE Trans. Inform. Theory 45(6) (1999) 2129-2133.
[16] N. Yankov, Self-dual $[62,31,12]$ and $[64,32,12]$ codes with an automorphism of order 7, Adv. Math. Commun. 8(1) (2014) 73-81.
[17] N. Yankov, M. H. Lee, M. Gürel, M. Ivanova, Self-dual codes with an automorphism of order 11, IEEE Trans. Inform. Theory 61(3) (2015) 1188-1193.
[18] N. Yankov, M. Ivanova, M. H. Lee, Self-dual codes with an automorphism of order 7 and s-extremal codes of length 68, Finite Fields Appl. 51 (2018) 17-30.

[^0]: * This work was supported by JSPS KAKENHI Grant Number $15 H 03633$.

 Damyan Anev, Nikolay Yankov; Faculty of Mathematics and Informatics, Konstantin Preslavski University of Shumen, Shumen, 9712, Bulgaria (email: damian_anev@mail.bg, jankov_niki@yahoo.com).
 Masaaki Harada (Corresponding Author); Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan (email: mharada@tohoku.ac.jp).

