J. Algebra Comb. Discrete Appl. $4(2) \cdot 131 - 140$

Received: 12 June 2015 Accepted: 17 February 2016

Journal of Algebra Combinatorics Discrete Structures and Applications

Codes over an infinite family of algebras

Research Article

Irwansyah[∗] , Intan Muchtadi-Alamsyah∗∗, Ahmad Muchlis, Aleams Barra∗∗, Djoko Suprijanto

Abstract: In this paper, we will show some properties of codes over the ring $B_k = \mathbb{F}_p[v_1, \ldots, v_k]/(v_i^2 = v_i, \forall i =$ $1, \ldots, k$). These rings, form a family of commutative algebras over finite field \mathbb{F}_p . We first discuss about the form of maximal ideals and characterization of automorphisms for the ring B_k . Then, we define certain Gray map which can be used to give a connection between codes over B_k and codes over \mathbb{F}_p . Using the previous connection, we give a characterization for equivalence of codes over B_k and Euclidean self-dual codes. Furthermore, we give generators for invariant ring of Euclidean self-dual codes over B_k through MacWilliams relation of Hamming weight enumerator for such codes.

2010 MSC: 11T71

Keywords: Gray map, Equivalence of codes, Euclidean self-dual, Hamming weight enumerator, MacWilliams relation, Invariant ring

1. Introduction

Codes over finite rings has been an interesting topic in algebraic coding theory since the discovery of codes over \mathbb{Z}_4 , see [\[4\]](#page-9-0). An example of finite rings which has interesting properties is the ring $A_k =$ $\mathbb{F}_2[v_1,\ldots,v_k]$, where $v_i^2 = v_i$, for $1 \leq i \leq k$, because it has two Gray maps which relate codes over such ring and binary codes, see [\[2\]](#page-8-0). This ring also has non-trivial automorphisms which can be used to define skew-cyclic codes, for example in [\[1\]](#page-8-1), skew-cyclic codes over the ring $A_1 = \mathbb{F}_2 + v \mathbb{F}_2$, where $v^2 = v$, which give some optimal Euclidean and Hermitian self-dual codes. Furthermore, Abualrub et al. show that skew-cyclic codes over A_1 have a connection to left submodules over a skew-polynomial ring and

[∗] The author is supported by Beasiswa Unggulan BPKLN Direktorat Jenderal Pendidikan Tinggi. ∗∗ The authors are supported by Hibah Desentralisasi DIKTI 2016.

Irwansyah (Corresponding Author); Algebra Research Group, Institut Teknologi Bandung, Bandung, Indonesia, and Department of Mathematics, Universitas Mataram, Mataram, Indonesia (email: irw@unram.ac.id).

Intan Muchtadi-Alamsyah, Ahmad Muchlis, Aleams Barra; Algebra Research Group, Institut Teknologi Bandung, Bandung, Indonesia (email: ntan@math.itb.ac.id, muchlis@math.itb.ac.id, barra@math.itb.ac.id).

Djoko Suprijanto; Combinatorial Research Group, Institut Teknologi Bandung, Bandung, Indonesia (email: djoko@math.itb.ac.id).

give skew-polynomial generators for these codes. In $[6]$, skew-cyclic codes over the ring A_1 have been characterized using a Gray map. This characterization gives a way to construct skew-cyclic codes over the ring A¹ from binary cyclic or quasi-cyclic codes, and also gives decoding algorithm for some codes over such ring. Meanwhile, Gao [\[3\]](#page-8-2) consider skew-cyclic codes over the ring $B_1 = \mathbb{F}_p + v\mathbb{F}_p$, where $v^2 = v$, and found that these codes are equivalent to either cyclic codes or quasi-cyclic codes. Using this connection, Gao is able to give an enumeration for skew-cyclic codes which are constructed using an automorphism with order relatively prime to the length of the codes.

In this paper, we consider codes over the ring $B_k = \mathbb{F}_p[v_1, \ldots, v_k]$, where $v_i^2 = v_i$ for $1 \le i \le k$, which is a generalization of the ring A_k in [\[2\]](#page-8-0) and B_1 in [\[3\]](#page-8-2). We study its maximal ideals, automorphisms, equivalence codes, and Euclidean self-dual codes over these rings, including the generators for its invariant ring. This paper is organized as follows: Section 2 describes some properties of the ring B_k such as maximal ideals and automorphisms. Meanwhile, in Section 3, we describe a Gray map for the ring B_k , and we characterize linear codes and equivalent codes over the ring B_k . Finally, in Section 4, we characterize Euclidean self-dual codes, give the shape of MacWilliams relation and generators of invariant rings for Euclidean self-dual codes.

2. The ring B_k

As we readily see, the ring B_k forms a commutative algebra over prime field \mathbb{F}_p . Let $\Omega = \{1, 2, \ldots, k\}$ and 2^{Ω} is the collection of all subsets of Ω . Also, let w_i be an element in the set $\{v_i, 1-v_i\}$, for $1 \leq i \leq k$. Then, we will prove the following observation.

Lemma 2.1. $\omega \in B_k$ is a zero divisor if and only if $\omega \in \langle w_1, w_2, \ldots, w_k \rangle$.

Proof. (\Longleftarrow) It is clear that, $v_i(1-v_i) = 0$, for all $i = 1, ..., k$. Therefore, if $\omega \in \langle w_1, w_2, ..., w_k \rangle$, then it is a zero divisor in B_k .

 (\Longrightarrow) Consider the equation,

$$
(\alpha + \beta v_k)(\gamma + \epsilon v_k) = a + bv_k
$$

given $\alpha + \beta v_k$, $a + bv_k \in B_k$, for some $\alpha, \beta, a, b \in B_{k-1}$. We have $\gamma = a\alpha^{-1}$ and $\epsilon = (b - \beta a)(\alpha(\beta + \alpha))^{-1}$. Therefore, if $a + bv_k = 1$, then $\gamma = 1$ and $\epsilon = -\beta(\alpha(\beta + \alpha))^{-1}$. Which implies, $\alpha + \beta v_k$ is a unit if and only if α and $\alpha + \beta$ are also units. Considering this observation for elements in $B_{k-1}, B_{k-2}, \ldots, B_1$, we have $\alpha + \beta v \in B_1$ is a unit if and only if $\alpha, \alpha + \beta \in \mathbb{F}_p$ are non zero elements. Since, every element in finite commutative ring is either a unit or a zero divisor, we can see that the only zero divisors in B_1 are the elements in the ideals generated by βv or $\alpha(1-v)$. By generalizing this result recursively, we have the intended conclusion. \Box

Also, we can easily show that $I = \langle w_1, w_2, \ldots, w_k \rangle$ is a maximal ideal in B_k .

Lemma 2.2. Let $I = \langle w_1, w_2, \ldots, w_k \rangle$. Then I is a maximal ideal in B_k .

Proof. Consider quotient ring B_k/I . If $v_i \in I$, then $1 - v_i \equiv 1 \mod I$, and if $1 - v_i \in I$, then $v_i = 1 - (1 - v_i) \equiv 1 \mod I$. Consequently, B_k/I is a field. So, I is a maximal ideal. Moreover, $B_k/I \cong \mathbb{F}_p$. \Box

The following lemma is needed to prove Proposition [2.4.](#page-2-0)

Lemma 2.3. $\alpha^p = \alpha$, for all $\alpha \in B_k$.

Proof. Let $\alpha = \sum_{A \subseteq \{1,\dots,k\}} \alpha_A v_A$, for some $\alpha_A \in \mathbb{F}_p$, where $v_A = \prod_{j \in A} v_j$. Then, consider

$$
\alpha^p = \sum_{i=0}^p \binom{p}{i} \alpha_{A_1}^i v_{A_1} \left(\sum_{A \neq A_1} \alpha_A v_A \right)^{p-i} = \alpha_{A_1} v_{A_1} + \left(\sum_{A \neq A_1} \alpha_A v_A \right)^p
$$

since \mathbb{F}_p has characteristic p and $\beta^{p-1} = 1$ for all $\beta \in \mathbb{F}_p$. If we continue this procedure, then we have $\alpha^p = \alpha.$ \Box

The following result shows that the ring B_k is a principal ideal ring.

Proposition 2.4. Let $I = \langle \alpha_1, \ldots, \alpha_m \rangle$ be an ideal in B_k , for some $\alpha_1, \ldots, \alpha_m \in B_k$. Then,

$$
I = \langle \sum_{A \subseteq \{1,\dots,m\}, A \neq \emptyset} (-1)^{|A|+1} (\prod_{j \in A} \alpha_j)^{p-1} \rangle.
$$

Proof. Consider $\alpha_i \sum_{A \subseteq \{1,\dots,m\}, A \neq \emptyset} (-1)^{|A|+1} (\prod_{j \in A} \alpha_j)^{p-1}$. For any $A \subseteq \{1,\dots,m\}$, if $i \in A$, then

$$
\alpha_i(-1)^{|A|+1}(\prod_{j\in A}\alpha_j)^{p-1} = (-1)^{|A|+1}\alpha_i(\prod_{j\in A-\{i\}}\alpha_j)^{p-1}
$$

since $\alpha_i^p = \alpha_i$ by Lemma [2.3.](#page-1-0) Consequently, there is a unique $A' = A - \{i\} \subseteq \{1, \ldots, m\}$, such that

$$
\alpha_i \left((-1)^{|A|+1} (\prod_{j \in A} \alpha_j)^{p-1} + (-1)^{|A'|+1} (\prod_{j \in A} \alpha_j)^{p-1} \right) = 0.
$$

Otherwise, if $i \notin A$, then there is a unique $A'' = A \cup \{i\} \subseteq \{1, \ldots, m\}$ such that

$$
\alpha_i \left((-1)^{|A|+1} (\prod_{j \in A} \alpha_j)^{p-1} + (-1)^{|A''|+1} (\prod_{j \in A} \alpha_j)^{p-1} \right) = 0.
$$

So, every term will be vanish except $\alpha_i \alpha_i^{p-1} = \alpha_i$. Therefore,

$$
I \subseteq \langle \sum_{A \subseteq \{1,\dots,m\}, A \neq \emptyset} (-1)^{|A|+1} (\prod_{j \in A} \alpha_j)^{p-1} \rangle.
$$

It is clear that

$$
\langle \sum_{A \subseteq \{1,\ldots,m\}, A \neq \emptyset} (-1)^{|A|+1} (\prod_{j \in A} \alpha_j)^{p-1} \rangle \subseteq I.
$$

Thus, $I = \langle \sum_{A \subseteq \{1,\ldots,m\},A \neq \emptyset} (-1)^{|A|+1} (\prod_{j \in A} \alpha_j)^{p-1} \rangle$.

The following proposition shows that the ideal in Lemma [2.2](#page-1-1) is the only maximal ideal in B_k . **Proposition 2.5.** An ideal I in B_k is maximal if and only if $I = \langle w_1, w_2, \ldots, w_k \rangle$.

Proof. (\Leftarrow) It is clear by Lemma [2.2.](#page-1-1)

 (\Longrightarrow) Let J be a maximal ideal in B_k . By Proposition [2.4,](#page-2-0) B_k is a principal ideal ring. Then, let $J = \langle \omega \rangle$, for some $\omega \in B_k$. Note that, ω is not a unit in B_k , so it is a zero divisor. By Lemma [2.1,](#page-1-2) ω is an element of some $m_i = \langle w_1, w_2, \ldots, w_k \rangle$, which means $J \subseteq m_i$. Consequently, $J = m_i$, because J is a maximal ideal. \Box

 \Box

Using the above result, we have the following lemmas.

Lemma 2.6. The ring B_k can be viewed as an \mathbb{F}_p -vector space with dimension 2^k whose basis consists of elements of the form $w_S = \prod_{i \in S} w_i$, where $S \in 2^{\Omega}$.

Proof. As we can see, every element $a \in B_k$ can be written as $a = \sum_{S \in 2^{\Omega}} \alpha_S v_S$, for some $\alpha_S \in \mathbb{F}_p$, where $v_S = \prod_{i \in S} v_i$ and $v_\emptyset = 1$. So, B_k is a vector space over \mathbb{F}_p whose basis consists of elements of the form $v_S = \prod_{i \in S} v_i$, where $v_\emptyset = 1$ and there are $\sum_{j=0}^k {k \choose j} = 2^k$ elements of basis. Now, we will show that the set $\{1, w_{S_2}, \ldots, w_{S_{2^k}}\}$ is also a basis. Consider,

$$
\alpha_1 + \alpha_2 w_{S_2} + \dots + \alpha_{2^k} w_{S_{2^k}} = 0
$$

for some $\alpha_i \in \mathbb{F}_p$, for all $i = 1, \ldots, 2^k$, which gives,

$$
-\alpha_1 = \alpha_2 w_{S_2} + \cdots + \alpha_{2^k} w_{S_{2^k}}.
$$

If $\alpha_1 \neq 0$, then $\xi_1 = (\alpha_2 w_{S_2} + \cdots + \alpha_{2^k} w_{S_{2^k}})$ is a unit, a contradiction to the fact that $\xi_1 \in \langle w_1, \ldots, w_k \rangle$. So, $\alpha_1 = 0$, which means,

$$
-(\alpha_2 w_{S_2} + \cdots + \alpha_{k+1} w_{S_{k+1}}) = \alpha_{k+2} w_{S_{k+2}} + \cdots + \alpha_{2^k} w_{S_{2^k}}.
$$

If $(\alpha_2w_{S_2} + \cdots + \alpha_{k+1}w_{S_{k+1}}) \neq 0$, then it is a contradiction to the fact that $|S_j| \geq 2$, for all $j =$ $k+2,\ldots,2^k$. Consequently, $(\alpha_2w_{S_2}+\cdots+\alpha_{k+1}w_{S_{k+1}})=0$. We have to note that, the set with elements of the w_S , where $S \in 2^{\Omega}$, is also linearly independent over \mathbb{F}_p , because S_k is a vector space over \mathbb{F}_p with element of basis are of the form v_S , where $S \subseteq \Omega$. Therefore, $(\alpha_2 w_{S_2} + \cdots + \alpha_{k+1} w_{S_{k+1}}) = 0$ gives $\alpha_2 = \cdots = \alpha_{k+1} = 0$. By continuing this process, we have $\alpha_1 = \cdots = \alpha_{2^k} = 0$, which means they are linearly independent over \mathbb{F}_p . \Box

Lemma 2.7. The ring B_k has characteristic p and cardinality p^{2^k} .

Proof. It is immediate since characteristic of \mathbb{F}_p is p, and B_k can be viewed as a \mathbb{F}_p -vector space with dimension $\sum_{i=0}^{k} {k \choose i} = 2^{k}$. So, $|B_{k}| = p^{2^{k}}$. П

The following theorem characterizes the shape of automorphisms in the ring B_k .

Theorem 2.8. Let θ be an endomorphism in B_k . Then, θ is an automorphism if and only if $\theta(v_i) = w_j$, for every $i \in \Omega$, and θ , when restricted to \mathbb{F}_p , is an identity map.

Proof. (
$$
\Longrightarrow
$$
) Let $J = \langle v_1, \ldots, v_k \rangle$ and $J_\theta = \langle \theta(v_1), \ldots, \theta(v_k) \rangle$. Consider the map

$$
\lambda: \frac{B_k}{J} \rightarrow \frac{B_k}{J_{\theta}}
$$

$$
a + J \rightarrow \theta(a) + J_{\theta}
$$

We can see that the map λ is a ring homomorphism. For any $a, b \in B_k/J$ where $\lambda(a) = \lambda(b)$, let $a = a_1 + J$ and $b = b_1 + J$ for some $a_1, b_1 \in B_k$. As we can see, $\theta(a_1 - b_1) \in J_{\theta}$, so $a_1 - b_1 \in J$. Consequently, $a - b = 0 + J$, which means $a = b$, in other words, λ is a monomorphism. Moreover, for any $a' \in B_k/J_{\theta}$, let $a' = a_2 + J_{\theta}$ for some $a_2 \in B_k$, then there exists $a = \theta^{-1}(a_2) + J$ such that $\lambda(a) = a'$. Therefore, $\mathbb{F}_p \simeq B_k/J \simeq B_k/J_\theta$, which implies J_θ is also a maximal ideal. By Proposition [2.5,](#page-2-1) $J_{\theta} = \langle w_1, \ldots, w_k \rangle$, where $w_i \in \{v_i, 1 - v_i\}$ for $1 \le i \le k$. By Proposition [2.4,](#page-2-0)

$$
J_{\theta} = \langle \sum_{A \subseteq \Omega, A \neq \emptyset} (-1)^{|A|+1} (\prod_{j \in A} w_j)^{p-1} \rangle = \langle \sum_{A \subseteq \Omega, A \neq \emptyset} (-1)^{|A|+1} (\prod_{j \in A} \theta(v_j))^{p-1} \rangle
$$

which means, $\sum_{A\subseteq\Omega,A\neq\emptyset}(-1)^{|A|+1}(\prod_{j\in A}w_j)^{p-1}$ and $\sum_{A\subseteq\Omega,A\neq\emptyset}(-1)^{|A|+1}(\prod_{j\in A}\theta(v_j))^{p-1}$ are associate. Therefore, $\theta(v_i) = \beta w_j$ for some unit β which satisfies $(\beta^{|A|})^{p-1} = \beta$, for all $A \neq \emptyset$. Consequently, we

have $\beta^{p-1} = \beta$, but by Lemma [2.3,](#page-1-0) $\beta^p = \beta$. Since β is a unit, we have that $\beta^{p-1} = 1$. Therefore, β must be equal to 1. Moreover, since θ is an automorphism, $\theta(v_i) \neq \theta(v_j)$ whenever $i \neq j$. Also, since the only automorphism in \mathbb{F}_p is identity map, we have the conclusion.

(\Longleftarrow) Suppose that $\theta(v_i) = w_j$, and $\theta(v_i) \neq \theta(v_j)$ whenever $i \neq j$. By Lemma [2.6,](#page-3-0) we can see that θ is also an automorphism. П

Now, we have to note that every element a in B_k can be written as

$$
a = \sum_{S \in 2^{\Omega}} \alpha_S w_S
$$

for some $\alpha_S \in \mathbb{F}_p$, where $w_S = \prod_{i \in S} w_i$. Define a map φ as follows.

$$
\varphi : B_k \longrightarrow \mathbb{F}_p^{2^k} \n a = \sum_{i=1}^{2^k} \alpha_{S_i} w_{S_i} \rightarrow (\sum_{S \subseteq S_1} \alpha_S, \sum_{S \subseteq S_2} \alpha_S, \dots, \sum_{S \subseteq S_{2^k}} \alpha_S)
$$

We can show that this map φ is a bijection map. Furthermore, this map can be extended n tuples of B_k as follows.

$$
\overline{\varphi} : B_{k}^{n} \longrightarrow \mathbb{F}_{p}^{n2^{k}} \newline (a_{1},...,a_{n}) \mapsto (\varphi(a_{1}),...,\varphi(a_{n})).
$$

Since φ is a bijection map, we also have $\overline{\varphi}$ is a bijection map. We have to note that, the map φ is a permutation, based on the choice of subsets $S_i \in 2^{\Omega}$, of Gray maps in [\[2\]](#page-8-0).

3. Codes over the ring B_k

A subset $C \subseteq B_k^n$ is called *code* over B_k of length n. If C is a B_k -submodule of B_k^n , then C called linear code. The following proposition gives a characterization of B_k -linear codes using the map $\overline{\varphi}$.

Proposition 3.1. C is a linear code over B_k if and only if there exist linear codes C_1, \ldots, C_{2^k} over \mathbb{F}_p such that $C = \overline{\varphi}^{-1}(C_1, \ldots, C_{2^k}).$

Proof. (\implies) Since $\overline{\varphi}$ is a bijection, there exist C_1, \ldots, C_{2^k} such that $C = \overline{\varphi}^{-1}(C_1, \ldots, C_{2^k})$. Now, we only need to show that C_i is a linear code over \mathbb{F}_p for all $i = 1, \ldots, 2^k$. For any C_i , let c_1 and c_2 be two codewords in C_i . For $l = 1, 2$, let $c_l = (\alpha_1^{(l)}, \ldots, \alpha_n^{(l)})$, for some $\alpha_j^{(l)}$ in \mathbb{F}_p . Consider

$$
c'_{l} = \overline{\varphi}^{-1}(\mathbf{0}, \dots, \mathbf{0}, \lambda_{l} c_{l}, \mathbf{0}, \mathbf{0})
$$

= $(\varphi^{-1}(0, \dots, 0, \lambda_{l} \alpha_{1}^{(l)}, 0, \dots, 0), \dots, \varphi^{-1}(0, \dots, 0, \lambda_{l} \alpha_{n}^{(l)}, 0, \dots, 0))$
= $(\lambda_{l} \alpha_{1}^{(l)} (w_{S_{l}} - \sum_{j \in \{1, \dots, k\} - S_{l}} w_{S_{l} \cup \{j\}})), \dots, \lambda_{l} \alpha_{n}^{(l)} (w_{S_{l}} - \sum_{j \in \{1, \dots, k\} - S_{l}} w_{S_{l} \cup \{j\}})),$

for any λ_l in \mathbb{F}_p^{\times} for all $l = 1, 2$. The last equality holds since

$$
\varphi\left(\alpha_t^{(l)}\left(w_{S_l} - \sum_{j \in \{1, ..., k\} - S_l} w_{S_l \cup \{j\}}\right)\right) = (0, ..., 0, \alpha_t^{(l)}, 0, ..., 0)
$$

for all $1 \le t \le n$. Since $C = \overline{\varphi}^{-1}(C_1, \ldots, C_{2^k})$, we have c'_l is in C for all $l = 1, 2$, and $c'_1 + c'_2$ is also in C. Then, consider

$$
\overline{\varphi}(c_1'+c_2')=\left(\begin{array}{ccccc}0 & \cdots & 0 & \cdots & 0 \\ \vdots & \cdots & \vdots & \cdots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \\ \lambda_1\alpha_1^{(1)}+\lambda_2\alpha_1^{(2)} & \cdots & \lambda_1\alpha_l^{(1)}+\lambda_2\alpha_l^{(2)} & \cdots & \lambda_1\alpha_n^{(1)}+\lambda_2\alpha_n^{(2)} \\ 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \cdots & \vdots & \cdots & \vdots \\ 0 & \cdots & 0 & \cdots & 0\end{array}\right).
$$

Hence, $\lambda_1 c_1 + \lambda_2 c_2$ is also in C_i .

 (\Leftarrow) Take any two codewords c_3 and c_4 in C. Let

$$
c_3 = \left(\sum_{S \in 2^{\Omega}} \alpha_S^{(1)} w_S, \dots, \sum_{S \in 2^{\Omega}} \alpha_S^{(n)} w_S\right)
$$

and

$$
c_4 = \left(\sum_{S \in 2^{\Omega}} \beta_S^{(1)} w_S, \dots, \sum_{S \in 2^{\Omega}} \beta_S^{(n)} w_S\right),
$$

for some α_i, β_i in \mathbb{F}_p , where $i = 1, \ldots, 2^k$. For any λ_3 and λ_4 in \mathbb{F}_p^{\times} we have

$$
\overline{\varphi}(\lambda_3 c_3 + \lambda_4 c_4) = \begin{pmatrix}\n\lambda_3 \alpha_{S_1}^{(1)} + \lambda_4 \beta_{S_1}^{(1)} & \cdots & \lambda_3 \alpha_{S_1}^{(n)} + \lambda_4 \beta_{S_1}^{(n)} \\
\lambda_3 \sum_{S \subseteq S_2} \alpha_S^{(1)} + \lambda_4 \sum_{S \subseteq S_2} \beta_S^{(1)} & \cdots & \lambda_3 \sum_{S \subseteq S_2} \alpha_S^{(n)} + \lambda_4 \sum_{S \subseteq S_2} \beta_S^{(n)} \\
\vdots & \vdots & \vdots \\
\lambda_3 \sum_{S \subseteq S_{2^k}} \alpha_S^{(1)} + \lambda_4 \sum_{S \subseteq S_{2^k}} \beta_S^{(1)} & \cdots & \lambda_3 \sum_{S \subseteq S_{2^k}} \alpha_S^{(n)} + \lambda_4 \sum_{S \subseteq S_{2^k}} \beta_S^{(n)}\n\end{pmatrix}
$$

is also in (C_1,\ldots,C_{2^k}) , since C_i is a linear code for every $i=1,\ldots,2^k$. Therefore, $\lambda_3c_3+\lambda_4c_4$ is also in C. \Box

Now, following [\[5\]](#page-9-2), we define permutation equivalence of codes as follows.

Definition 3.2. Two codes are permutation equivalent if one can be obtained from the other by permuting the coordinates.

Using Definition [3.2,](#page-5-0) we can define the following notion of equivalence between two codes.

Definition 3.3. Two codes C and C' over B_k are equivalent if either they are permutation-equivalent or C is permutation equivalent to the code $\theta(C')$ for some automorphism θ in B_k , i.e. the code $\theta(C')$ obtained from C' by changing α with $\theta(\alpha)$ in all coordinates.

Note that, the above definition is similar to the one in [\[5\]](#page-9-2). Now, let Π_{θ} be a permutation on 2^{k} tuples of \mathbb{F}_p induced by automorphism θ . Then we have

$$
\left(\Pi_{\theta} \circ \overline{\varphi}\right)(c) = \overline{\varphi}(\theta(c))\tag{1}
$$

for any $c \in B_k^n$. Then, we have the following characterization.

Theorem 3.4. Let C and C' be two codes over B_k . Then, C and C' are equivalent if and only if there exists a permutation which sends (C_1, \ldots, C_{2^k}) to (C'_1, \ldots, C'_{2^k}) or to $(\Pi_{\theta}(C'_1), \ldots, \Pi_{\theta}(C'_{2^k}))$.

Proof. (\implies) Let $C = \overline{\varphi}^{-1}(C_1, \ldots, C_{2^k})$ and $C' = \overline{\varphi}^{-1}(C'_1, \ldots, C'_{2^k})$, where C_i and C'_i are codes over \mathbb{F}_p , for all $1 \leq i \leq 2^k$. If there exists an automorphism θ such that C is permutation equivalent to $\theta(C')$, then by equation [1,](#page-5-1) we have $C = \overline{\varphi}^{-1}(C_1, \ldots, C_{2^k})$ is permutation equivalent to $(\Pi_{\theta}(C'_1), \ldots, \Pi_{\theta}(C'_{2^k}))$.

 (\Leftarrow) If there exists a permutation which sends (C_1, \ldots, C_{2^k}) to

$$
(\Pi_{\theta}(C'_1),\ldots,\Pi_{\theta}(C'_{2^k})),
$$

for some bijective map Π_{θ} , then we can have the automorphism θ using the equation [1.](#page-5-1)

4. Invariant ring

In this section, we describe some aspect of Euclidean self-dual codes as well as MacWiliams identity and invariant ring.

Related to Euclidean self-dual codes over the ring B_k , we have the following result.

Proposition 4.1. Let $C = \overline{\varphi}^{-1}(C_1, C_2, \ldots, C_{2^k})$, for some p-ary codes C_1, \ldots, C_{2^k} . Then, C is Eulidean self-dual codes over B_k if and only if C_i is also Euclidean self-dual codes, for $1 \leq i \leq 2^k$.

Proof. (\implies) For any $c_i \in C_i$, let $c_i = (\alpha_{S_i}^{(0)})$ $S_i^{(0)}, \ldots, \alpha_{S_i}^{(n-1)}$ $\binom{n-1}{S_i}$, for some $\alpha_{S_i}^{(j)}$ $S_i^{(j)} \in \mathbb{F}_p$, where $0 \leq j \leq n-1$. Let $c = \overline{\varphi}^{-1}(0,\ldots,0,c_i,0,\ldots,0) \in C$, then we have $\langle c,c' \rangle = 0$ for every $c' \in C$. To make the representation for any element in the ring B_k easier, we will use the basis whose elements are of the form v_s , for all $S \subseteq \{1, 2, \ldots, k\}$. Now, let

$$
c' = \left(\beta_{S_i}^{(0)} v_{S_i} + \sum_{S \in 2^{\Omega}, S \neq S_i} \beta_S^{(0)} v_S, \dots, \beta_{S_i}^{(n-1)} v_{S_i} + \sum_{S \in 2^{\Omega}, S \neq S_i} \beta_S^{(n-1)} v_S\right).
$$

Consider,

$$
c = \overline{\varphi}^{-1}(0, \ldots, 0, c_i, 0, \ldots, 0)
$$

= $\left(\alpha_{S_i}^{(0)}(v_{S_i} - \sum_{j \in \{1, \ldots, k\} - S_i} v_{S_i \cup \{j\}}), \ldots, \alpha_{S_i}^{(n-1)}(v_{S_i} - \sum_{j \in \{1, \ldots, k\} - S_i} v_{S_i \cup \{j\}})\right).$

Since $\langle c, c' \rangle = 0$ for every $c' \in C$ and $v_S^2 = v_S$ for every $S \in 2^{\Omega}$, we have

$$
\sum_{j=0}^{n-1} \left(\alpha_{S_i}^{(j)} \beta_{S_i}^{(j)} v_{S_i} - \sum_{j \in \{1, \dots, k\} - S_i} \alpha_{S_i}^{(j)} \beta_{S_i \cup \{j\}}^{(j)} v_{S_i \cup \{j\}} = 0 \right).
$$

Consequently, $\sum_{j=0}^{n-1} \alpha_{S_i}^{(j)}$ $S_i^{(j)}\beta_{S_i}^{(j)}$ $S_i^{(j)}=0.$

Take any $c_i' \in C_i$. Let $c_i' = (\gamma_{S_i}^{(0)})$ $\hat{\gamma}^{(0)}_{S_i},\ldots,\gamma^{(n-1)}_{S_i}$ $S_i^{(n-1)}$), for some $\gamma_{S_i}^{(j)}$ $S_i^{(j)} \in \mathbb{F}_p$, where $0 \leq j \leq n-1$. Since $c' = \overline{\varphi}^{-1}(0,\ldots,0,c_i,0,\ldots,0) \in C$, we have $\langle c,c' \rangle = 0$. So

$$
\langle c_i, c'_i \rangle = \sum_{j=0}^{n-1} \alpha_{S_i}^{(j)} \gamma_{S_i}^{(j)} = 0.
$$

Therefore $C_i \subseteq C_i^{\perp}$.

For any $c_1 \in C_i^{\perp}$, let $c_1 = (\zeta_0, \ldots, \zeta_{n-1})$ for some $\zeta_j \in \mathbb{F}_p$, where $0 \le j \le n-1$. Since $\langle c_1, c_i \rangle = 0$, we have $\sum_{j=0}^{n-1} \zeta_j \alpha_{S_i}^{(j)}$ $S_i^{(j)} = 0$. We can see that

$$
c'_1 = \overline{\varphi}^{-1}(0, \ldots, 0, c_1, 0, \ldots, 0)
$$

= $\left(\zeta_0 (v_{S_i} - \sum_{j \in \{1, \ldots, k\} - S_i} v_{S_i \cup \{j\}}), \ldots, \zeta_{n-1} (v_{S_i} - \sum_{j \in \{1, \ldots, k\} - S_i} v_{S_i \cup \{j\}}) \right).$

137

 \Box

Now, since $\sum_{j=0}^{n-1} \zeta_j \alpha_{S_i}^{(j)}$ $S_i^{(j)} = 0$, we also have $\langle c_1', c_2 \rangle = 0$ for every $c_2 \in C$. Remember that $C = C^{\perp}$, which gives $c'_1 \in C$. So, $c_1 \in C_i$, or in other words $C_i^{\perp} \subseteq C_i$. Thus, C_i is a Euclidean self-dual code, for all $i=1,\ldots,2^k.$

(\Longleftarrow) Take any $c_1, c_2 \in C$. For every $i = 1, 2$, let

$$
c_i = \left(\sum_{S \subseteq \{1,\dots,k\}} c_S^{(i,0)}, \dots, \sum_{S \subseteq \{1,\dots,k\}} c_S^{(i,n-1)}\right),
$$

for some $c_S^{(i,j)} \in \mathbb{F}_p$, where $i = 1, 2$, and $j = 0, \ldots, n - 1$. Consider,

$$
\overline{\varphi}(c_i) = \left(\sum_{S \subseteq S_1} c_S^{(i,0)}, \dots, \sum_{S \subseteq S_1} c_S^{(i,n-1)}, \dots, \sum_{S \subseteq S_l} c_S^{(i,0)}, \dots, \sum_{S \subseteq S_l} c_S^{(i,n-1)}, \dots, \sum_{S \subseteq S_{2^k}} c_S^{(i,0)}, \dots, \sum_{S \subseteq S_{2^k}} c_S^{(i,n-1)} \right),
$$

where $i = 1, 2$. Since C_l is a Euclidean self-dual code, for all $l = 1, \ldots, 2^k$, we have

$$
\langle c_1, c_2 \rangle = \sum_{j=0}^{n-1} \sum_{S_l \in 2^{\Omega}} \sum_{S \subseteq S_l} c_S^{(1,j)} c_S^{(2,j)} v_S
$$

= 0.

So, $C \subseteq C^{\perp}$.

Now, take any $c_3 \in C^{\perp}$. Since $\langle c_3, c \rangle = 0$ for all $c \in C$, we have

$$
\sum_{j=0}^{n-1} \sum_{S \subseteq S_l} c_S^{(1,j)} c_S^{(2,j)} v_S = 0,
$$

for all $S \in 2^{\Omega}$. Remember that C_l is a Euclidean self-dual code, for all $l = 1, 2, \ldots, 2^k$, which give

$$
\sum_{j=0}^{n-1} \sum_{S \subseteq S_l} c_S^{(1,j)} c_S^{(2,j)} v_S = 0,
$$

for all $S \in 2^{\Omega}$, and moreover $c_3 \in C$. So, $C^{\perp} \subseteq C$. Therefore, C is a Euclidean self-dual code. \Box

The following lemma gives MacWilliams identity for codes over the ring B_k .

Lemma 4.2. The MacWilliams identity for Hamming weight enumerators for codes over B_k is :

$$
W_{C^{\perp}}(X,Y) = \frac{1}{|C|}W_C(X + (p^{2^k} - 1)Y, X - Y)
$$
\n(2)

 \Box

Proof. The identity follows from [\[7,](#page-9-3) Theorem 8.3] and Proposition [4.1.](#page-6-0)

As we can see from Lemma [4.2,](#page-7-0) MacWilliams identity gives a transformation between polynomial representing a code and polynomial representing its corresponding dual code. We have to note that if C is an Euclidean self-dual code, then the weight enumerator of C is invariant under this transformation. The above transformation can be formulated as an action '◦' by a matrix group G generated by matrices

$$
T = \begin{pmatrix} \frac{1}{p^{2^{k-1}}} & \frac{p^{2^k}-1}{p^{2^{k-1}}} \\ \frac{1}{p^{2^{k-1}}} & \frac{1}{p^{2^k-1}} \end{pmatrix}
$$
 and $D = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$. The action of any $g = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \in G$ to a polynomial $f(X, Y)$ is written as

$$
g \circ f(X, Y) = f(a_1X + a_2Y, a_3X + a_4Y).
$$

Note that the matrix T is derived from the identity in Lemma [4.2](#page-7-0) and the matrix D is derived from the condition that n is always even. Also, it is easy to see that $G = \{I, D, T, -T\}$. Formally, we have the following result.

Lemma 4.3. If $W_C(X, Y)$ is a Hamming weight enumerator for an Euclidean self-dual code C over B_k , then $W_C(X, Y)$ is invariant under the action of G.

Let R_G be a set of all polynomials in two variables which are invariant under the action ∘ of G. We can easily prove that R_G is a ring, and by the above Lemma we can see that every Hamming weight enumerator of Euclidean self-dual codes must be inside R_G . This ring R_G called *invariant ring* for Euclidean self-dual codes over B_k . The following theorem gives generators for R_G .

Theorem 4.4. Invariant ring of G is generated by

$$
W_{C_0}(x, y) = x^2 + (p^{2^k} - 1)y^2
$$

and

$$
\tilde{f}(x,y) = \frac{1}{4} \left(\frac{2p^{2^{k-1}} + 2}{p^{2^k}} x^2 + \frac{4(p^{2^k} - 1)}{p^{2^{k-1}}} xy + \frac{2(p^{2^k} - 1)^2}{p^{2^{k-1}}} y^2 \right).
$$

Proof. Consider the Molien series,

$$
\Phi(\lambda) = \frac{1}{|G|} \sum_{A \in G} \frac{1}{\det(I - \lambda A)}
$$

= $\frac{1}{4} \left(\frac{1}{(1 + \lambda)^2} + \frac{1}{(1 - \lambda)^2} + \frac{2}{(1 - \lambda^2)} \right)$
= $\frac{1}{(1 - \lambda^2)^2}$
= $1 + 2\lambda^2 + 3\lambda^4 + 4\lambda^6 + 5\lambda^8 + \dots + n\lambda^{2(n-1)} + \dots$

we can see that, the invariant ring generated by two invariants of degree 2. Consider the weight enumerator for self-dual code

$$
C_0 = \{cc|\forall c \in A_k\}
$$

i.e. $W_{C_0}(x, y) = x^2 + (p^{2^k} - 1)y^2$. This weight enumerator is of degree 2 and invariant under the action of G. So, this weight enumerator is one of the generator. We use averaging method to find the other one. Let $f(x) = x^2$, then by averaging method, we have

$$
\tilde{f}(x,y) = \frac{1}{4} \left(\frac{2p^{2^{k-1}} + 2}{p^{2^k}} x^2 + \frac{4(p^{2^k} - 1)}{p^{2^{k-1}}} xy + \frac{2(p^{2^k} - 1)^2}{p^{2^{k-1}}} y^2 \right)
$$

 $\tilde{f}(x, y)$ are algebraically independent.

References

- [1] [T. Abualrub, N. Aydin, P. Seneviratne, On](http://www.ams.org/mathscinet-getitem?mr=3013244) θ -cyclic codes over $\mathbb{F}_2 + v\mathbb{F}_2$, Australas. J. Combin. 54 [\(2012\) 115–126.](http://www.ams.org/mathscinet-getitem?mr=3013244)
- [2] [Y. Cengellenmis, A. Dertli, S. T. Dougherty, Codes over an infinite family of rings with a Gray map,](http://dx.doi.org/10.1007/s10623-012-9787-y) [Des. Codes Cryptogr. 72\(3\) \(2014\) 559–580.](http://dx.doi.org/10.1007/s10623-012-9787-y)
- [3] J. Gao, Skew cyclic codes over $\mathbb{F}_p + v\mathbb{F}_p$ [, J. Appl. Math. Inform. 31\(3–4\) \(2013\) 337–342.](http://www.ams.org/mathscinet-getitem?mr=3098892)

 \Box

- [4] [A.R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Sole, The](http://dx.doi.org/10.1109/18.312154) \mathbb{Z}_4 –linearity of Kerdock, [Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40\(2\) \(1994\) 301–319.](http://dx.doi.org/10.1109/18.312154)
- [5] W. Huffman, V. Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003.
- [6] [Irwansyah, I. Muchtadi–Alamsyah, A. Muchlis, A. Barra, D. Suprijanto, Construction of](http://dx.doi.org/10.2991/iccst-15.2015.27) θ–cyclic [codes over an algebra of order 4, Proceeding of the Third International Conference on Computation](http://dx.doi.org/10.2991/iccst-15.2015.27) [for Science and Technology \(ICCST–3\), Atlantis Press, 2015.](http://dx.doi.org/10.2991/iccst-15.2015.27)
- [7] [J. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math.](http://dx.doi.org/10.1353/ajm.1999.0024) [121\(3\) \(1999\) 555–575.](http://dx.doi.org/10.1353/ajm.1999.0024)