One-generator quasi-abelian codes revisited*

Somphong Jitman, Patanee Udomkavanich

Abstract

The class of 1-generator quasi-abelian codes over finite fields is revisited. Alternative and explicit characterization and enumeration of such codes are given. An algorithm to find all 1-generator quasi-abelian codes is provided. Two 1-generator quasi-abelian codes whose minimum distances are improved from Grassl's online table are presented.

2010 MSC: 94B15, 94B60, 16A26

Keywords: Group algebras, Quasi-abelian codes, Minimum distances, 1-generator

1. Introduction

As a family of codes with good parameters, rich algebraic structures, and wide ranges of applications (see [8], [9], [11], [10], [13], [14], and references therein), quasi-cyclic codes have been studied for a halfcentury. Quasi-abelian codes, a generalization of quasi-cyclic codes, have been introduced in [15] and extensively studied in [7].

Given finite abelian groups $H \leq G$ and a finite field \mathbb{F}_{q}, an H-quasi-abelian code is defined to be an $\mathbb{F}_{q}[H]$-submodule of $\mathbb{F}_{q}[G]$. Note that H-quasi-abelian codes are not only a generalization of quasi-cyclic codes (see [7], [8], [9], and [15]) if H is cyclic but also of abelian codes (see [1] and [2]) if $G=H$, and of cyclic codes (see [12]) if $G=H$ is cyclic. The characterization and enumeration of quasi-abelian codes have been established in [7]. An H-quasi-abelian code C is said to be of 1-generator if C is a cyclic $\mathbb{F}_{q}[H]$-module. Such a code can be viewed as a generalization of 1-generator quasi-cyclic codes which are more frequently studied and applied (see [11], [13], and [14]). Analogous to the case of 1-generator quasi-cyclic codes, the number of 1-generator quasi-abelian codes has been determined in [7]. However, an explicit construction and an algorithm to determine all 1-generator quasi-abelian codes have not been well studied.

[^0]In this paper, we give an alternative discussion on the algebraic structure of 1-generator quasi-abelian codes and an algorithm to find all 1-generator quasi-abelian codes. Examples of new codes derived from 1-generator quasi-abelian codes are presented.

The paper is organized as follows. In Section 2, we recall some notations and basic results. An alternative discussion on the algebraic structure of 1-generator quasi-abelian codes is given in Section 3 together with an algorithm to find all 1-generator quasi-abelian codes and the number of such codes. Examples of new codes derived from 1-generator quasi-abelian codes are presented in Section 4.

2. Preliminaries

Let \mathbb{F}_{q} denote a finite field of order q and let G be a finite abelian group of order n, written additively. Denote by $\mathbb{F}_{q}[G]$ the group ring of G over \mathbb{F}_{q}. The elements in $\mathbb{F}_{q}[G]$ will be written as $\sum_{g \in G} \alpha_{g} Y^{g}$, where $\alpha_{g} \in \mathbb{F}_{q}$. The addition and the multiplication in $\mathbb{F}_{q}[G]$ are given as in the usual polynomial rings over \mathbb{F}_{q} with the indeterminate Y, where the indices are computed additively in G. We note that $Y^{0}=1$ is the identity of $\mathbb{F}_{q}[G]$, where 1 is the identity in \mathbb{F}_{q} and 0 is the identity of G.

Given a ring \mathcal{R}, a linear code of length n over \mathcal{R} refers to a submodule of the \mathcal{R}-module \mathcal{R}^{n}. A linear code in $\mathbb{F}_{q}[G]$ refers to an \mathbb{F}_{q}-subspace C of $\mathbb{F}_{q}[G]$. This can be viewed as a linear code of length n over \mathbb{F}_{q} by indexing the n-tuples by the elements in G. The Hamming weight wt (\boldsymbol{u}) of $\boldsymbol{u}=\sum_{g \in G} u_{g} Y^{g} \in \mathbb{F}_{q}[G]$ is defined to be the number of nonzero term u_{g} 's in \boldsymbol{u}. The minimum Hamming distance a code C is defined by $\mathrm{d}(C):=\min \{\operatorname{wt}(\boldsymbol{u}) \mid \boldsymbol{u} \in C, \boldsymbol{u} \neq 0\}$. A linear code C in $\mathbb{F}_{q}[G]$ is referred to as an $[n, k, d]_{q}$ code if C has \mathbb{F}_{q}-dimension k and minimum Hamming distance d.

Given a subgroup H of G, a code C in $\mathbb{F}_{q}[G]$ is called an H-quasi-abelian code if C is an $\mathbb{F}_{q}[H]$ module, i.e., C is closed under the multiplication by the elements in $\mathbb{F}_{q}[H]$. Such a code will be called a quasi-abelian code if H is not specified or where it is clear in the context. An H-quasi-abelian code C is said to be of 1 -generator if C is a cyclic $\mathbb{F}_{q}[H]$-module. Since every H-quasi-abelian code C in $\mathbb{F}_{q}[G]$ is an $\mathbb{F}_{q}[H]$-module, it is also an $\mathbb{F}_{q}[A]$-module for all cyclic subgroups of H. It follows that C is quasi-cyclic of index $|G| /|A|$. However, being 1-generator H-quasi-abelian does not imply that C is 1-generator quasi-cyclic. Therefore, it makes sense to study 1-generator H-quasi-abelian codes.

Assume that $H \leq G$ such that $|H|=m$ and the index $[G: H]=\frac{n}{m}=l$. Let $\left\{\mathfrak{g}_{1}, \mathfrak{g}_{2}, \ldots, \mathfrak{g}_{l}\right\}$ be a fixed set of representatives of the cosets of H in G. Let $R:=\mathbb{F}_{q}[H]$. Define $\Phi: \mathbb{F}_{q}[G] \rightarrow R^{l}$ by

$$
\begin{equation*}
\Phi\left(\sum_{h \in H} \sum_{i=1}^{l} \alpha_{h+\mathfrak{g}_{i}} Y^{h+\mathfrak{g}_{i}}\right)=\left(\boldsymbol{\alpha}_{1}(Y), \boldsymbol{\alpha}_{2}(Y), \ldots, \boldsymbol{\alpha}_{l}(Y)\right), \tag{1}
\end{equation*}
$$

where $\boldsymbol{\alpha}_{i}(Y)=\sum_{h \in H} \alpha_{h+\mathfrak{g}_{i}} Y^{h} \in R$, for all $i \in\{1,2, \ldots, l\}$. It is not difficult to see that Φ is an R-module isomorphism, and hence, the next lemma follows.
Lemma 2.1. The map Φ induces a one-to-one correspondence between H-quasi-abelian codes in $\mathbb{F}_{q}[G]$ and linear codes of length l over R.

Throughout, assume that $\operatorname{gcd}(q,|H|)=1$, or equivalently, $\mathbb{F}_{q}[H]$ is semisimple. Following [7, Section 3], the group ring $R=\mathbb{F}_{q}[H]$ is decomposed as follows.

For each $h \in H$, denote by $\operatorname{ord}(h)$ the order of h in H. The q-cyclotomic class of H containing $h \in H$, denoted by $S_{q}(h)$, is defined to be the set

$$
S_{q}(h):=\left\{q^{i} \cdot h \mid i=0,1, \ldots\right\}=\left\{q^{i} \cdot h \mid 0 \leq i \leq \nu_{h}\right\},
$$

where $q^{i} \cdot h:=\sum_{j=1}^{q^{i}} h$ in H and ν_{h} is the multiplicative order of q in $\mathbb{Z}_{\operatorname{ord}(h)}$.
An idempotent in a ring R is a non-zero element e such that $e^{2}=e$. An idempotent e is said to be primitive if for every other idempotent f, either $e f=e$ or $e f=0$. The primitive idempotents in R
are induced by the q-cyclotomic classes of H (see [4, Proposition II.4]). Every idempotent e in R can be viewed as a unique sum of primitive idempotents in R. The \mathbb{F}_{q}-dimension of an idempotent $e \in R$ is defined to be the \mathbb{F}_{q}-dimension of $R e$.

From [7, Subsection 3.2], $R:=\mathbb{F}_{q}[H]$ can be decomposed as

$$
R=R e_{1}+R e_{2}+\cdots+R e_{s}
$$

where $e_{1}, e_{2}, \ldots, e_{s}$ are the primitive idempotents in R. Moreover, every ideal in R is of the form $R e$, where e is an idempotent in R.

3. 1-generator quasi-abelian codes

In [7], characterization and enumeration of 1-generator H-quasi-abelian codes in $\mathbb{F}_{q}[G]$ have been given. In this section, we give alternative characterization and enumeration of such codes. The characterization in Subsection 3.1 allows us to express an algorithm to find all 1-generator H-quasi-abelian codes in $\mathbb{F}_{q}[G]$ in Subsection 3.2.

Using the R-module isomorphism Φ defined in (1), to study 1-generator H-quasi-abelian codes in $\mathbb{F}_{q}[G]$, it suffices to consider cyclic R-submodules $R \boldsymbol{a}$, where $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{l}\right) \in R^{l}$.

For each $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{l}\right) \in R^{l}$, there exists a unique idempotent $e \in R$ such that $R e=R a_{1}+$ $R a_{2}+\cdots+R a_{l}$. The element e is called the idempotent generator element for $R \boldsymbol{a}$. An idempotent $f \in R$ of largest \mathbb{F}_{q}-dimension such that

$$
f \boldsymbol{a}=0
$$

is called the idempotent check element for Ra.
Let $S=\mathbb{F}_{q^{l}}[H]$, where $\mathbb{F}_{q^{l}}$ is an extension field of \mathbb{F}_{q} of degree l. Let $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right\}$ be a fixed basis of $\mathbb{F}_{q^{l}}$ over \mathbb{F}_{q}. Let $\varphi: R^{l} \rightarrow S$ be an R-module isomorphism defined by

$$
\begin{equation*}
\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{l}\right) \mapsto A=\sum_{i=1}^{l} \alpha_{i} a_{i} \tag{2}
\end{equation*}
$$

Using the map φ, the code $R \boldsymbol{a}$ can be regarded as an R-module $R A$ in S.
Lemma 3.1 ([7, Lemma 6.1]). Let $\boldsymbol{a} \in R^{l}$ and let e and f be the idempotent generator and idempotent check elements of Ra, respectively, Then

$$
e+f=1
$$

and

$$
\operatorname{dim}_{\mathbb{F}_{q}}(R \boldsymbol{a})=\operatorname{dim}_{\mathbb{F}_{q}}(R e)=m-\operatorname{dim}_{\mathbb{F}_{q}}(R f)
$$

For a ring \mathcal{R}, denote by \mathcal{R}^{*} and \mathcal{R}^{\times}the set of non-zero elements and the group of units of \mathcal{R}, respectively.

In order to enumerate and determine all 1-generator H-quasi-abelian codes in $\mathbb{F}_{q}[G]$, we need the following result.

Lemma 3.2. Let $\boldsymbol{a}, \boldsymbol{b} \in R^{l}$ and let e be the idempotent generator of Ra. Let $A=\varphi(\boldsymbol{a})$ and $B=\varphi(\boldsymbol{b})$, where φ is defined in (2). Then $R \boldsymbol{a}=R \boldsymbol{b}$ if and only if there exists $u \in(R e)^{\times}$such that $\boldsymbol{b}=u \boldsymbol{a}$.

Equivalently, $R A=R B$ if and only if there exists $u \in(R e)^{\times}$such that $B=u A$.

Proof. Write $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{l}\right)$ and $\boldsymbol{b}=\left(b_{1}, b_{2}, \ldots, b_{l}\right)$, where $a_{i}, b_{i} \in R$ for all $i \in\{1,2, \ldots, l\}$.
Assume that $R \boldsymbol{a}=R \boldsymbol{b}$. Then $\boldsymbol{b}=v \boldsymbol{a}$ for some $v \in R$. Let $u=v e \in R e$. Note that, for each $i \in\{1,2, \ldots, l\}$, we have $a_{i}=r_{i} e$ for some $r_{i} \in R$. Then $u a_{i}=(v e)\left(r_{i} e\right)=v r_{i} e^{2}=v\left(r_{i} e\right)=v a_{i}=b_{i}$ for all $i \in\{1,2, \ldots, l\}$. Hence, $\boldsymbol{b}=u \boldsymbol{a}$ and

$$
R e=R \boldsymbol{a}=R \boldsymbol{b}=R(u \boldsymbol{a})=u R \boldsymbol{a}=u R e .
$$

Since $u \in R e$ and $R e=u R e$, we have $u \in(R e)^{\times}$.
Conversely, assume that there exists $u \in(R e)^{\times}$such that $\boldsymbol{b}=u \boldsymbol{a}$. Then $R \boldsymbol{b}=R u \boldsymbol{a} \subseteq R \boldsymbol{a}$. We need to show that $\operatorname{dim}_{\mathbb{F}_{q}}(R \boldsymbol{a})=\operatorname{dim}_{\mathbb{F}_{q}}(R \boldsymbol{b})$. Let e^{\prime} be an idempotent generator of $R \boldsymbol{b}$. We have

$$
R e^{\prime}=R \boldsymbol{b}=R(u \boldsymbol{b})=u(R \boldsymbol{b})=u(R e)=R e
$$

since $u \in(R e)^{\times}$. Hence, by Lemma 3.1, we have

$$
\operatorname{dim}_{\mathbb{F}_{q}}(R \boldsymbol{a})=\operatorname{dim}_{\mathbb{F}_{q}}(R e)=\operatorname{dim}_{\mathbb{F}_{q}}\left(R e^{\prime}\right)=\operatorname{dim}_{\mathbb{F}_{q}}(R \boldsymbol{b})
$$

Therefore, $R \boldsymbol{b}=R \boldsymbol{a}$ as desired.

3.1. The enumeration of 1-generator quasi-abelian codes

First, we focus on the number of 1-generator H-quasi-abelian codes of a given idempotent generator in $\mathbb{F}_{q}[H]$. Using the fact that the idempotents in $\mathbb{F}_{q}[H]$ are known, the number of 1-generator H-quasiabelian codes in $\mathbb{F}_{q}[G]$ can be concluded.

Proposition 3.3. Let $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ be a set of primitive idempotents of R and $e=e_{1}+e_{2}+\cdots+e_{r}$. Then the following statements hold.
i) $e_{1}, e_{2}, \ldots, e_{r}$ are pairwise orthogonal (non-zero) idempotents of $S e$.
ii) e_{j} is the identity of $S e_{j}$ for all $j \in\{1,2, \ldots, r\}$.
iii) e is the identity of Se.
iv) $S e=S e_{1} \oplus S e_{2} \oplus \cdots \oplus S e_{r}$.

Proof. For i), it is clear that $e_{1}, e_{2}, \ldots, e_{r}$ are pairwise orthogonal (non-zero) idempotents in S. They are in $S e$ since $e_{j}=e_{j} e \in S e$ for all $j \in\{1,2, \ldots, r\}$. The statements $i i$) and $i i i$) follow since $s e_{j}=s e_{j}^{2}=$ $\left(s e_{j}\right) e_{j}$ for all $s e_{j} \in S e_{j}$ and $s e=s e^{2}=(s e) e$ for all $s e \in S e$. The last statement can be verified using $i)$.

Corollary 3.4. Let $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ be a set of primitive idempotents of R and $e=e_{1}+e_{2}+\cdots+e_{r}$. Then the following statements hold.
i) $e_{1}, e_{2}, \ldots, e_{r}$ are pairwise orthogonal (non-zero) idempotents of Re.
ii) e_{j} is the identity of $R e_{j}$ for all $j \in\{1,2, \ldots, r\}$.
iii) e is the identity of Re.
iv) $R e=R e_{1} \oplus R e_{2} \oplus \cdots \oplus R e_{r}$, where $R e_{j}$ is isomorphic to an extension field of \mathbb{F}_{q} for all $j \in\{1,2, \ldots, r\}$.

Let $\Omega=\left\{\sum_{j=1}^{r} A_{j} \mid A_{j} \in\left(S e_{j}\right)^{*}\right\} \subset S e$. Then we have the following results.
Lemma 3.5. Let $A=\sum_{i=1}^{l} \alpha_{i} a_{i} \in S$, where $a_{i} \in R$, and let $b \in R$. Then $R A \subseteq S b$ if and only if $R a_{1}+R a_{2}+\cdots+R a_{l} \subseteq R b$.

Proof. Assume that $R A \subseteq S b$. Then $A=B b$ for some $B \in S$. Write $B=\sum_{i=1}^{l} \alpha_{i} b_{i}$, where $b_{i} \in R$. Then $a_{i}=b b_{i}$ for all $i \in\{1,2, \ldots, l\}$. Hence, we have

$$
\sum_{i=1}^{l} r_{i} a_{i}=\sum_{i=1}^{l} r_{i} b b_{i}=\left(\sum_{i=1}^{l} r_{i} b_{i}\right) b \in R b
$$

for all $\sum_{i=1}^{l} r_{i} a_{i} \in R a_{1}+R a_{2}+\cdots+R a_{l}$.
Conversely, it suffices to show that $A \in S b$. Since $R a_{1}+R a_{2}+\cdots+R a_{l} \subseteq R b$, we have $a_{i} \in R b$ for all $i \in\{1,2, \ldots, l\}$. Then, for each $i \in\{1,2, \ldots, l\}$, there exists $r_{i} \in R$ such that $a_{i}=r_{i} b$. Hence,

$$
A=\sum_{i=1}^{l} \alpha_{i} a_{i}=\sum_{i=1}^{l} \alpha_{i} r_{i} b=\left(\sum_{i=1}^{l} \alpha_{i} r_{i}\right) b \in S b
$$

as desired.
Lemma 3.6. Let $A=\sum_{i=1}^{l} \alpha_{i} a_{i} \in S e$, where $a_{i} \in R$. Then $A \in \Omega$ if and only if

$$
R e=R a_{1}+R a_{2}+\cdots+R a_{l}
$$

Proof. First, we note that $R A \subseteq S e$ since $A \in S e$. Then $R a_{1}+R a_{2}+\cdots+R a_{l} \subseteq R e$ by Lemma 3.5.
Assume that $A \in \Omega$. Then $A=A_{1}+A_{2}+\cdots+A_{r}$, where $A_{j} \in\left(S e_{j}\right)^{*}$. We have $A e_{j}=A_{j} \neq 0$ for all $j \in\{1,2, \ldots, r\}$. Suppose that $R a_{1}+R a_{2}+\cdots+R a_{l} \subsetneq R e$. By Corollary 3.4, we have $R e=$ $R e_{1} \oplus R e_{2} \oplus \cdots \oplus R e_{r}$. Then

$$
R a_{1}+R a_{2}+\cdots+R a_{l} \subseteq \widehat{R e_{j}}=R\left(e-e_{j}\right)
$$

for some $j \in\{1,2, \ldots, r\}$, where $\widehat{R e_{j}}:=R e_{1} \oplus \cdots \oplus R e_{j-1} \oplus R e_{j+1} \oplus \cdots \oplus R e_{r}$. By Lemma 3.5, we have

$$
0 \neq A_{j}=A e_{j} \in R A \subseteq S\left(e-e_{j}\right)
$$

a contradiction. Therefore, $R a_{1}+R a_{2}+\cdots+R a_{l}=R e$.
Conversely, assume that $R e=R a_{1}+R a_{2}+\cdots+R a_{l}$. Then $R A \subseteq S e$ by Lemma 3.5. Since $A \in S e$, by Theorem 3.3, we have $A=A_{1}+A_{2}+\cdots+A_{r}$, where $A_{j} \in S e_{j}$ for all $j \in\{1,2, \ldots, r\}$. Suppose that $A_{j}=0$ for some $j \in\{1,2, \ldots, r\}$. Then $R A=\widehat{R A_{j}} \subseteq \widehat{S e_{j}}=S\left(e-e_{j}\right)$. By Lemma 3.5, we have

$$
R e=R a_{1}+R a_{2}+\cdots+R a_{l} \subseteq R\left(e-e_{j}\right)
$$

which is a contradiction. Hence, $A_{j} \in\left(S e_{j}\right)^{*}$ for all $j \in\{1,2, \ldots, r\}$.
Corollary 3.7. Let $A=\sum_{i=1}^{l} \alpha_{i} a_{i} \in S e_{j}$, where $a_{i} \in R$. Then $A \in\left(S e_{j}\right)^{*}$ if and only if $R e_{j}=$ $R a_{1}+R a_{2}+\cdots+R a_{l}$.

Let $j \in\{1,2, \ldots, r\}$ and let k_{j} denote the \mathbb{F}_{q}-dimension of e_{j}. Then $R e_{j}$ is isomorphic to a finite field of $q^{k_{j}}$ elements.

Define an equivalence relation on $\left(S e_{j}\right)^{*}$ by

$$
A \sim B \Longleftrightarrow \exists u \in\left(R e_{j}\right)^{\times} \text {such that } A=u B
$$

For $A \in\left(S e_{j}\right)^{*}$, denote by $[A]$ the equivalence class of A and let $\left[\left(S e_{j}\right)^{*}\right]=\left\{[A] \mid A \in\left(S e_{j}\right)^{*}\right\}$.
Lemma 3.8. Let $j \in\{1,2, \ldots, r\}$. Then $|[A]|=q^{k_{j}}-1$ for all $A \in\left(S e_{j}\right)^{*}$.

Proof. Let $A \in\left(S e_{j}\right)^{*}$ and define $\rho:\left(R e_{j}\right)^{\times} \rightarrow[A]$,

$$
u \mapsto u A .
$$

From the definition of \sim, ρ is a well-defined surjective map. For each $u_{1}, u_{2} \in\left(R e_{j}\right)^{\times}$, if $u_{1} A=u_{2} A$, then $\left(u_{1}-u_{2}\right) A=0$. Write $A=\sum_{i=1}^{l} \alpha_{i} a_{i}$, where $a_{i} \in R$. Then $a_{i}\left(u_{1}-u_{2}\right)=0$ for all $i \in\{1,2, \ldots, l\}$. Since $A \in\left(S e_{j}\right)^{*}$, by Corollary 3.7, we can write $e_{j}=\sum_{i=1}^{i} r_{i} a_{i}$, where $r_{i} \in R$. Hence,

$$
e_{j}\left(u_{1}-u_{2}\right)=\left(\sum_{i=1}^{i} r_{i} a_{i}\right)\left(u_{1}-u_{2}\right)=\sum_{i=1}^{i} r_{i} a_{i}\left(u_{1}-u_{2}\right)=0 \in R e_{j} .
$$

Since e_{j} is the identity of $R e_{j}$, it follows that $u_{1}=u_{2} \in\left(R e_{j}\right)^{\times}$. Hence, ρ is a bijection. Therefore, $|[A]|=\left|\left(R e_{j}\right)^{\times}\right|=\left|\mathbb{F}_{q^{k_{j}}}^{*}\right|=q^{k_{j}}-1$.

Corollary 3.9. For each $i \in\{1,2, \ldots, r\}$, we have

$$
\left|\left[\left(S e_{j}\right)^{*}\right]\right|=\frac{\left|\left(S e_{j}\right)^{*}\right|}{|[A]|}=\frac{q^{l k_{j}}-1}{q^{k_{j}}-1} .
$$

Let $[\Omega]=\prod_{j=1}^{r}\left[\left(S e_{j}\right)^{*}\right]$. Then $|[\Omega]|=\prod_{j=1}^{r} \frac{q^{l k_{j}}-1}{q^{k_{j}}-1}$.

The number of 1-generator quasi-abelian codes sharing a idempotent has been determined in [7, Corollary 6.1]. Here, an alternative proof using a different technique is provided.

Theorem 3.10. Let \mathfrak{C} denote the set of all 1-generator H-quasi-abelian codes in $\mathbb{F}_{q}[G]$ with idempotent generator e. Then there exists a one-to-one correspondence between $[\Omega]$ and \mathfrak{C}. Hence, the number of 1-generator quasi-abelian codes having e as their idempotent generator is

$$
\prod_{j=1}^{r} \frac{q^{l k_{j}}-1}{q^{k_{j}}-1}
$$

Proof. Define $\sigma:[\Omega] \rightarrow \mathfrak{C}$,

$$
\left(\left[A_{1}\right],\left[A_{2}\right], \ldots,\left[A_{r}\right]\right) \mapsto R \boldsymbol{a},
$$

where $A:=A_{1}+A_{2}+\cdots+A_{r} \in S e$ is viewed as $A=\sum_{i=1}^{l} \alpha_{i} a_{i}$ and $\boldsymbol{a}:=\left(a_{1}, a_{2}, \ldots, a_{l}\right)$.
Since $A_{j} \in\left(S e_{j}\right)^{*}$ for all $j \in\{1,2, \ldots, r\}$, we have $A \in \Omega$. Then $R e=R a_{1}+R a_{2}+\cdots+R a_{l}$ by Lemma 3.6, and hence, $R \boldsymbol{a}$ is a 1-generator quasi-abelian code with idempotent generator e, i.e., $R \boldsymbol{a} \in \mathfrak{C}$.

For $\left(\left[A_{1}\right],\left[A_{2}\right], \ldots,\left[A_{r}\right]\right)=\left(\left[B_{1}\right],\left[B_{2}\right], \ldots,\left[B_{r}\right]\right) \in[\Omega]$, there exists $u_{j} \in\left(R e_{j}\right)^{\times}$such that $A_{j}=u_{j} B_{j}$ for all $j \in\{1,2, \ldots, r\}$. Let $u:=u_{1}+u_{2}+\cdots+u_{r}$. Then

$$
u\left(u_{1}^{-1}+u_{2}^{-1}+\cdots+u_{r}^{-1}\right)=e_{1}+e_{2}+\cdots+e_{r}=e
$$

is the identity of $R e$ (see Corollary 3.4), where u_{j}^{-1} refers to the inverse of u_{j} in $R e_{j}$. Hence, u is a unit in $(R e)^{\times}$. Let $B:=\sum_{j=1}^{r} B_{j}$. Then

$$
A=\sum_{j=1}^{r} A_{j}=\sum_{j=1}^{r} u_{j} B_{j}=u B .
$$

Hence, $R \boldsymbol{a}=R \boldsymbol{b}$ by Lemma 3.2. Therefore, σ is a well-defined map.

For $\left(\left[A_{1}\right],\left[A_{2}\right], \ldots,\left[A_{r}\right]\right),\left(\left[B_{1}\right],\left[B_{2}\right], \ldots,\left[B_{r}\right]\right) \in[\Omega]$, if $R \boldsymbol{a}=R \boldsymbol{b}$, then, by Lemma 3.2, there exists $u \in(R e)^{\times}$such that $A=u B$. Then $A_{j}=u B_{j}=u e_{j} B_{j}$ since e_{j} is the identity of $S e_{j}$ by Proposition 3.3. Since $A_{j} \in\left(S e_{j}\right)^{*}, u e_{j}$ is a non-zero in $R e_{j}$ which is a finite field. Thus $u e_{j}$ is a unit in $\left(R e_{j}\right)^{\times}$. Hence,

$$
\left(\left[A_{1}\right],\left[A_{2}\right], \ldots,\left[A_{r}\right]\right)=\left(\left[B_{1}\right],\left[B_{2}\right], \ldots,\left[B_{r}\right]\right)
$$

which implies that σ is an injective map.
To verify that σ is surjective, let $R \boldsymbol{a} \in \mathfrak{C}$, where $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{l}\right) \in R^{l}$. Then $R e=R a_{1}+R a_{2}+$ $\cdots+R a_{l}$. Hence, by Lemma 3.6, we conclude that

$$
A:=\sum_{i=1}^{l} \alpha_{i} a_{i} \in \Omega
$$

Write $A=\sum_{j=1}^{r} A_{j}$, where $A_{j} \in\left(S e_{j}\right)^{*}$. Then $\left(\left[A_{1}\right],\left[A_{2}\right], \ldots,\left[A_{r}\right]\right) \in[\Omega]$, and hence,

$$
\sigma\left(\left(\left[A_{1}\right],\left[A_{2}\right], \ldots,\left[A_{r}\right]\right)\right)=R \boldsymbol{a} .
$$

3.2. The generators for 1-generator quasi-abelian codes

In this subsection, we establish an algorithm to find all 1-generator H-quasi-abelian codes in $\mathbb{F}_{q}[G]$. Note that every idempotent in $R:=\mathbb{F}_{q}[H]$ can be written as a unique sum of primitive idempotents in R. Hence, it is sufficient to study H-quasi-abelian codes of a given idempotent generator.

Let $e=e_{1}+e_{2}+\cdots+e_{r}$ be an idempotent in R, where, for each $j \in\{1,2, \ldots, r\}, e_{j}$ is the primitive idempotent in R induced by a q-cyclotomic class $S_{q}\left(h_{j}\right)$ for some $h_{j} \in H$.

For each $j \in\{1,2, \ldots, r\}$, assume that e_{j} is decomposed as

$$
e_{j}=e_{j 1}+e_{j 2}+\cdots+e_{j s_{j}}
$$

where, for each $i \in\left\{1,2, \ldots, s_{j}\right\}, e_{j i}$ is the primitive idempotent in S defined corresponding to a q^{l} cyclotomic class $S_{q^{l}}\left(h_{j i}\right)$ for some $h_{j i} \in S_{q}\left(h_{j}\right)$.

Note that all the elements in $S_{q}\left(h_{j}\right)$ have the same order. Hence, the q^{l}-cyclotomic classes $S_{q^{l}}\left(h_{j i}\right)$ have the same size for all $1 \leq i \leq s_{j}$. Without loss of generality, we assume that $e_{j 1}$ is defined corresponding to $S_{q^{l}}\left(h_{j}\right)$. For each $j \in\{1,2, \ldots, r\}$, let k_{j} and d_{j} denote the $\mathbb{F}_{q^{\prime}}$-dimension of e_{j} and the $\mathbb{F}_{q^{l}}$-dimension of $e_{j 1}$, respectively. Then k_{j} and d_{j} are the smallest positive integers such that

$$
q^{k_{j}} \cdot h_{j}=h_{j} \text { and } q^{l d_{j}} \cdot h_{j}=h_{j} .
$$

Then $k_{j} \mid l d_{j}$ which implies that $\left.\frac{k_{j}}{\operatorname{gcd}\left(l, k_{j}\right)} \right\rvert\, d_{j}$. Since $q^{l \frac{k_{j}}{\operatorname{gcd}\left(l, k_{j}\right)}} \cdot h_{j}=q^{k_{j} \frac{l}{\operatorname{gcd}\left(l, k_{j}\right)}} \cdot h_{j}=h_{j}$, we have $d_{j} \left\lvert\, \frac{k_{j}}{\operatorname{gcd}\left(l, k_{j}\right)}\right.$. It follows that $d_{j}=\frac{k_{j}}{\operatorname{gcd}\left(l, k_{j}\right)}$. Hence, $e_{j i}$'s have the same q^{l}-size $d_{j}=\frac{k_{j}}{\operatorname{gcd}\left(l, k_{j}\right)}$ and $s_{j}=$ $\operatorname{gcd}\left(l, k_{j}\right)$.

Using arguments similar to those in the proof of Proposition 3.3, we conclude the following result.
Proposition 3.11. Let $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ be a set of primitive idempotents of R. Assume that $e_{j}=e_{j 1}+$ $e_{j 2}+\cdots+e_{j s_{j}}$, where $e_{j i}$ is a primitive idempotent in S for all $i \in\left\{1,2, \ldots, s_{j}\right\}$. Then the following statements hold.
i) For $j \in\{1,2, \ldots, r\}$, the elements $e_{j 1}, e_{j 2}, \ldots, e_{j s_{j}}$ are pairwise orthogonal (non-zero) idempotents of $S e_{j}$.
ii) $e_{j i}$ is the identity of $S e_{j i}$ for all $j \in\{1,2, \ldots, r\}$ and $i \in\left\{1,2, \ldots, s_{j}\right\}$.
iii) $e_{j}=e_{j 1}+e_{j 2}+\cdots+e_{j s_{j}}$ is the identity of $S e_{j}$ for all $j \in\{1,2, \ldots, r\}$.
iv) For $j \in\{1,2, \ldots, r\}$, we have $S e_{j}=S e_{j 1} \oplus S e_{j 2} \oplus \cdots \oplus S e_{j s_{j}}$, where $S e_{j i}$ is an extension field of \mathbb{F}_{q} of order $q^{l d_{j}}$ for all $i \in\left\{1,2, \ldots, s_{j}\right\}$.

Theorem 3.12. Let $j \in\{1,2, \ldots, r\}$ be fixed. For $i \in\left\{1,2, \ldots, s_{j}\right\}$, let π_{i} be a primitive element of $S e_{j i}$, a finite field of $q^{l d_{j}}$ elements. Let $L_{j}=\frac{q^{l d_{j}}-1}{q^{k_{j}}-1}$ and $T_{j}=\left\{\infty, 0,1,2, \ldots, q^{l d_{j}}-2\right\}$. Then the elements

$$
\begin{equation*}
\pi_{t}^{\nu_{t}}+\pi_{t+1}^{\nu_{t+1}}+\cdots+\pi_{s_{j}}^{\nu_{s_{j}}} \tag{3}
\end{equation*}
$$

for all $1 \leq t \leq s_{j}, 0 \leq \nu_{t} \leq L_{j}-1$, and $\nu_{t+1}, \nu_{t+2}, \ldots, \nu_{s_{j}} \in T_{j}$, are a complete set of representatives of $\left[\left(S e_{j}\right)^{*}\right] .\left(\right.$ By convention, $\pi_{i}^{\infty}=0$.)

Proof. Note that the number of elements in (3) is

$$
L_{j} q^{l d_{j}\left(s_{j}-1\right)}+L_{j} q^{l d_{j}\left(s_{j}-2\right)}+\cdots+L_{j}=\frac{q^{l k_{j}}-1}{q^{k_{j}}-1}=\left|\left[\left(S e_{j}\right)^{*}\right]\right| .
$$

Hence, it suffices to show that the elements in (3) are in different equivalence classes. Let

$$
A=\pi_{t}^{\nu_{t}}+\pi_{t+1}^{\nu_{t+1}}+\cdots+\pi_{s_{j}}^{\nu_{s_{j}}} \text { and } B=\pi_{x}^{\mu_{x}}+\pi_{x+1}^{\mu_{x+1}}+\cdots+\pi_{s_{j}}^{\mu_{s_{j}}},
$$

where $0 \leq \nu_{t}, \mu_{x} \leq L_{j}-1, \nu_{t+1}, \nu_{t+2}, \ldots, \nu_{s_{j}} \in T_{j}$, and $\mu_{x+1}, \mu_{x+2}, \ldots, \mu_{s_{j}} \in T_{j}$. Assume that $[A]=[B]$. Then there exists $u \in\left(R e_{j}\right)^{\times}$such that

$$
\pi_{t}^{\nu_{t}}+\pi_{t+1}^{\nu_{t+1}}+\cdots+\pi_{s_{j}}^{\nu_{s_{j}}}=A=u B=u \pi_{x}^{\mu_{x}}+u \pi_{x+1}^{\mu_{x+1}}+\cdots+u \pi_{s_{j}}^{\mu_{s_{j}}} .
$$

Since $\pi_{t}^{\nu_{t}} \in\left(S e_{j t}\right)^{\times}$and $u \pi_{x}^{\mu_{x}} \in\left(S e_{j x}\right)^{\times}$, by the decomposition in Proposition 3.11, $t=x$ and $\pi_{t}^{\nu_{t}}=$ $u \pi_{t}^{\mu_{t}} \in S e_{j t}$. Then $u e_{j t}=\pi_{t}^{\nu_{t}-\mu_{t}}$. Since $u \in\left(R e_{j}\right)^{\times}$, we have $u^{q^{k_{j}}-1}=e_{j}$, and hence, $e_{j t}=e_{j t} e_{j}=$ $\pi_{t}^{\left(\nu_{t}-\mu_{t}\right)\left(q^{k_{j}}-1\right)}$. Since $0 \leq \nu_{t}, \mu_{t} \leq L_{j}-1$ and π_{t} has order $q^{l d_{j}}-1$, we conclude that $\nu_{t}=\mu_{t}$. Hence, $u e_{j t}=e_{j t}=e_{j} e_{j t}$ which implies $\left(u-e_{j}\right) e_{j t}=0$ in $S e_{j t}$. It follows that

$$
S\left(u-e_{j}\right) \subseteq S\left(e_{j 1}+\cdots+e_{j, t-1}+e_{j, t+1}+\cdots+e_{j s_{j}}\right) \subsetneq S e_{j} .
$$

Since $u, e_{j} \in R e_{j}$, we have $u-e_{j} \in R e_{j}$ and $R\left(u-e_{j}\right) \subsetneq R e_{j}$. Hence, $R\left(u-e_{j}\right)$ is the zero ideal, i.e., $u=e_{j}$. Therefore, $A=u B=e_{j} B=B$ since e_{j} is the identity of $S e_{j}$.

The following corollary now follows from Theorem 3.10 and Theorem 3.12.
Corollary 3.13. Let $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ be a set of primitive idempotents of R and $e=e_{1}+e_{2}+\cdots+e_{r}$. Then all 1-generator quasi-abelian codes having e as their idempotent generator are of the form

$$
A_{1}+A_{2}+\cdots+A_{r},
$$

where $A_{j} \in\left(S e_{j}\right)^{*}$ is as defined in (3).
Combining the results above, we summarize the steps of finding all 1-generator H-quasi-abelian codes in $\mathbb{F}_{q}[G]$ as in Algorithm 1. We note that the 1-generator H-quasi-abelian codes in $\mathbb{F}_{q}[G]$ are possible to determined using [7, Theorem 6.1] which depend on linear codes of dimension 1 over various extension fields of \mathbb{F}_{q}. Using this concept, the algorithm might look more tedious and complicated.

An illustrative example for Algorithm 1 is given as follows.
Example 3.14. Let $q=2, G=\mathbb{Z}_{3} \times \mathbb{Z}_{6}$ and $H=\mathbb{Z}_{3} \times 2 \mathbb{Z}_{6}$. Denote by $a_{0}:=(0,0), a_{1}:=(1,0)$, $a_{2}:=(2,0), a_{3}:=(0,2), a_{4}:=(1,2), a_{5}:=(2,2), a_{6}:=(0,4), a_{7}:=(1,4)$, and $a_{8}:=(2,4)$, the elements in H. Then $l=[G: H]=2$ and the elements in H can be partitioned into the following 2-cyclotomic

For abelian groups $H \leq G$ and a finite field \mathbb{F}_{q} with $\operatorname{gcd}(q,|H|)=1$ and $[G: H]=l$, do the following steps

1. Compute the q-cyclotomic classes of H in G.
2. Compute the set $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ of primitive idempotents of $R=\mathbb{F}_{q}[H]$ (see [4, Proposition II.4]).
3. For each $1 \leq j \leq r$, compute a set B_{j} of a complete set of representatives of $\left[\left(S e_{j}\right)^{*}\right]$ (see Theorem 3.12).
4. Compute the idempotents of R, i.e., the set

$$
T=\left\{\sum_{j=1}^{t} e_{i_{j}} \mid 1 \leq t \leq r \text { and } 1 \leq i_{1}<i_{2}<\cdots<i_{t} \leq r\right\} .
$$

5. For each $e=\sum_{j=1}^{t} e_{i_{j}} \in T$, compute the 1-generator quasi-abelian codes having e as their idempotent generator of the form

$$
A_{1}+A_{2}+\cdots+A_{t}
$$

where $A_{j} \in B_{i_{j}}$ (see Corollary 3.13).
6. Run e over all elements of T, the 1-generator H-quasi-abelian codes in $\mathbb{F}_{q}[G]$ are obtained.

Algorithm 1. Steps for determining all 1-generator H-quasi-abelian codes in $\mathbb{F}_{q}[G]$

classes $S_{2}\left(a_{0}\right)=\left\{a_{0}\right\}, S_{2}\left(a_{1}\right)=\left\{a_{1}, a_{2}\right\}, S_{2}\left(a_{3}\right)=\left\{a_{3}, a_{6}\right\}, S_{2}\left(a_{4}\right)=\left\{a_{4}, a_{8}\right\}$, and $S_{2}\left(a_{5}\right)=\left\{a_{7}, a_{5}\right\}$. From [4, Proposition II.4], we note that

$$
\begin{aligned}
& e_{1}=Y^{a_{0}}+Y^{a_{1}}+Y^{a_{2}}+Y^{a_{3}}+Y^{a_{4}}+Y^{a_{5}}+Y^{a_{6}}+Y^{a_{7}}+Y^{a_{8}}, \\
& e_{2}=Y^{a_{1}}+Y^{a_{2}}+Y^{a_{4}}+Y^{a_{5}}+Y^{a_{7}}+Y^{a_{8}}, \\
& e_{3}=Y^{a_{3}}+Y^{a_{4}}+Y^{a_{5}}+Y^{a_{6}}+Y^{a_{7}}+Y^{a_{8}}, \\
& e_{4}=Y^{a_{1}}+Y^{a_{2}}+Y^{a_{3}}+Y^{a_{4}}+Y^{a_{6}}+Y^{a_{8}}, \\
& e_{5}=Y^{a_{1}}+Y^{a_{2}}+Y^{a_{3}}+Y^{a_{5}}+Y^{a_{6}}+Y^{a_{7}}
\end{aligned}
$$

are primitive idempotents of $R:=\mathbb{F}_{2}[H]$ induced by $S_{2}\left(a_{0}\right), S_{2}\left(a_{1}\right)$, $S_{2}\left(a_{3}\right), S_{2}\left(a_{4}\right)$, and $S_{2}\left(a_{5}\right)$, respectively.

Let $e:=e_{1}+e_{2}+e_{3}$. From Theorem 3.10, it follows that the number of 1-generator H-quasi abelian codes in $\mathbb{F}_{2}[G]$ with idempotent generator e is $3 \cdot 5 \cdot 5=75$.

Let $S:=\mathbb{F}_{4}[H]$, where $\mathbb{F}_{4}=\left\{0,1, \alpha, \alpha^{2}=1+\alpha\right\}$. Then $e_{2}=e_{21}+e_{22}$ and $e_{3}=e_{31}+e_{32}$, where

$$
\begin{aligned}
& e_{21}=Y^{a_{0}}+\alpha^{2} Y^{a_{1}}+\alpha Y^{a_{2}}+Y^{a_{3}}+\alpha^{2} Y^{a_{4}}+\alpha Y^{a_{5}}+Y^{a_{6}}+\alpha^{2} Y^{a_{7}}+\alpha Y^{a_{8}}, \\
& e_{22}=Y^{a_{0}}+\alpha Y^{a_{1}}+\alpha^{2} Y^{a_{2}}+Y^{a_{3}}+\alpha Y^{a_{4}}+\alpha^{2} Y^{a_{5}}+1 Y^{a_{6}}+\alpha Y^{a_{7}}+\alpha^{2} Y^{a_{8}}, \\
& e_{31}=Y^{a_{0}}+Y^{a_{1}}+Y^{a_{2}}+\alpha^{2} Y^{a_{3}}+\alpha^{2} Y^{a_{4}}+\alpha^{2} Y^{a_{5}}+\alpha Y^{a_{6}}+\alpha Y^{a_{7}}+\alpha Y^{a_{8}}, \\
& e_{32}=Y^{a_{0}}+Y^{a_{1}}+Y^{a_{2}}+\alpha Y^{a_{3}}+\alpha Y^{a_{4}}+\alpha Y^{a_{5}}+\alpha^{2} Y^{a_{6}}+\alpha^{2} Y^{a_{7}}+\alpha^{2} Y^{a_{8}}
\end{aligned}
$$

are primitive idempotents in S induced by 4 -cyclotomic classes $\left\{a_{1}\right\},\left\{a_{2}\right\},\left\{a_{3}\right\}$ and $\left\{a_{6}\right\}$, respectively.
Now, we have $k_{1}=1, k_{2}=k_{3}=2, d_{1}=d_{2}=d_{3}=1, s_{1}=1$, and $s_{2}=s_{3}=2$. It follows that $L_{1}=\frac{2^{2}-1}{2-1}=3, L_{2}=L_{3}=\frac{2^{2}-1}{2^{2}-1}=1$, and $T_{1}=T_{2}=T_{3}=\{\infty, 0,1,2\}$.

Then $\alpha e_{1}, \alpha e_{21}, \alpha e_{22}, \alpha e_{31}$, and αe_{32} are primitive elements of $S e_{1}, S e_{21}, S e_{22}, S e_{31}$, and $S e_{32}$,
respectively. Therefore, we have that

$$
\begin{aligned}
& B_{1}=\left\{e_{1}, \alpha e_{1}, \alpha^{2} e_{1}\right\} \\
& B_{2}=\left\{e_{21}, e_{21}+e_{22}, e_{21}+\alpha e_{22}, e_{21}+\alpha^{2} e_{22}, e_{22}\right\}, \text { and } \\
& B_{2}=\left\{e_{31}, e_{31}+e_{32}, e_{31}+\alpha e_{32}, e_{31}+\alpha^{2} e_{32}, e_{32}\right\}
\end{aligned}
$$

are complete sets of representatives of $\left[\left(S e_{1}\right)^{*}\right],\left[\left(S e_{2}\right)^{*}\right]$, and $\left[\left(S e_{3}\right)^{*}\right]$, respectively. Hence, all the generators of the 75 1-generator H-quasi abelian codes in $\mathbb{F}_{2}[G]$ with idempotent generator e are of the form

$$
A_{1}+A_{2}+A_{3}
$$

where $A_{i} \in B_{i}$ for all $i \in\{1,2,3\}$.
In order to find permutation inequivalent 1-generator H-quasi abelian codes, the following theorem is useful.
Theorem 3.15. Let $H \leq G$ be finite abelian groups of index $[G: H]=l$ and let $\left\{\alpha^{q^{i}} \mid 1 \leq i \leq l\right\}$ be a fixed basis of $\mathbb{F}_{q^{l}}$ over \mathbb{F}_{q}. If $A=\sum_{i=1}^{l} a_{i} \alpha^{q^{i}} \in S e$, then A and $A^{q}=\sum_{i=1}^{l} a_{i}^{q} \alpha^{q^{i+1}}$ generate permutation equivalent H-quasi abelian codes (viewed in $\mathbb{F}_{q}[G]$) with the same idempotent generator.

Proof. Let e be the idempotent generator of a quasi-abelian code $R A$. Then

$$
R a_{1}^{q}+R a_{2}^{q}+\cdots+R a_{l}^{q} \subseteq R a_{1}+R a_{2}+\cdots+R a_{l}=R e
$$

Assume that $e=\sum_{i=1}^{l} r_{i} a_{i}$, where $r_{i} \in R$. It follows that

$$
e=e^{q}=\sum_{i=1}^{l} r_{i}^{q} a_{i}^{q} \in R a_{1}^{q}+R a_{2}^{q}+\cdots+R a_{l}^{q} .
$$

Hence, we have $R e=R a_{1}^{q}+R a_{2}^{q}+\cdots+R a_{l}^{q}$. Therefore, A and A^{q} generate 1-generator H-quasi-abelian codes with the same idempotent generator e.

Let $\psi: R \rightarrow R$ be a ring homomorphism defined by

$$
\gamma \mapsto \gamma^{q}
$$

Let $\gamma=\sum_{h \in H} \gamma_{h} Y^{h}$ and $\beta=\sum_{h \in H} \beta_{h} Y^{h}$ be elements in R, where γ_{h} and β_{h} are elements in \mathbb{F}_{q}. If $\psi(\gamma)=\psi(\beta)$, then

$$
0=\gamma^{q}-\beta^{q}=(\gamma-\beta)^{q}=\sum_{h \in H}\left(\gamma_{h}-\beta_{h}\right) Y^{q \cdot h}
$$

By comparing the coefficients, we have $\gamma_{h}=\beta_{h}$ for all $h \in H$, i.e., $\gamma=\beta$. Hence, ψ is a ring automorphism and

$$
\begin{equation*}
R\left(a_{l}^{q}, a_{1}^{q}, \ldots, a_{l-1}^{q}\right)=R\left(\psi\left(a_{l}\right), \psi\left(a_{1}\right), \ldots, \psi\left(a_{l-1}\right)\right)=\Psi\left(R\left(a_{l}, a_{1}, \ldots, a_{l-1}\right)\right) \tag{4}
\end{equation*}
$$

where Ψ is a natural extension of ψ to R^{l}.
Since $\psi(\gamma)=\sum_{h \in H} \gamma_{h} Y^{q \cdot h}, \psi(\gamma)$ is just a permutation on the coefficients of γ. Hence, by (4), $\Psi \circ \Phi$ is a permutation on $\mathbb{F}_{q}[G]$ such that $\Phi^{-1}\left(R\left(a_{l}^{q}, a_{1}^{q}, \ldots, a_{l-1}^{q}\right)\right)$ is permutation equivalent to $\Phi^{-1}\left(R\left(a_{l}, a_{1}, \ldots, a_{l-1}\right)\right)$ in $\mathbb{F}[G]$, where Φ is the R-module isomorphism defined in (1). Therefore, the result follows since $R\left(a_{l}, a_{1}, \ldots, a_{l-1}\right)$ is permutation equivalent to $R\left(a_{1}, a_{2}, \ldots, a_{l}\right)$.

4. Computational results

It has been shown in [6] and [7] that a family of quasi-abelian codes contains various new and optimal codes. Here, we present other 2 new codes from 1-generator quasi-abelian codes together with 1 new code obtained by shortening of one of these codes.

Given an abelian group $H=\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}$ of order $n=n_{1} n_{2}$, denote by $u=\left(u_{0}, u_{1}, u_{2}, \ldots, u_{n-1}\right) \in \mathbb{F}_{q}^{n}$ the vector representation of

$$
u=\sum_{j=0}^{n_{2}-1} \sum_{i=0}^{n_{1}-1} u_{j n_{1}+i} Y^{(i, j)} \text { in } \mathbb{F}_{q}[H] .
$$

Let

$$
\begin{equation*}
C_{(a, b)}:=\left\{(f a, f b) \mid f \in \mathbb{F}_{q}[H]\right\}, \tag{5}
\end{equation*}
$$

where a and b are elements in $\mathbb{F}_{q}[H]$. Using (5), 2 quasi-abelian codes whose minimum distance improves on Grassl's online table [5] can be found. The codes C_{1} and C_{2} are presented in Table 1 and the generator matrices of C_{1} and C_{2} are

$$
G_{1}=\left[\begin{array}{llllllllllllllllllllll}
1 & 3 & 0 & 3 & 4 & 1 & 3 & 2 & 0 & 4 & 1 & 2 & 1 & 4 & 0 & 4 & 1 & 0 & 4 & 3 & 0 & 4 \\
1 & 3 & 4 & 4 & 3 & 1 & 4 & 0 & 2 & 4 & 1 & 3 & 0 & 2 & 2 & 4 & 3 & 1 & 1 & 3 & 4 & 0 \\
1 & 4 & 4 & 3 & 4 & 0 & 4 & 0 & 0 & 1 & 0 & 3 & 1 & 2 & 0 & 1 & 0 & 3 & 2 & 4 & 4 & 4 \\
4 & 4 & 3 & 3 & 4 & 2 & 3 & 3 & 1 & 3 & 4 & 0 & 3 & 3 & 2 & 1 & 1 & 1 & 1 & 0 & 3 & 0 \\
4 & 3 & 3 & 4 & 3 & 2 & 4 & 2 & 3 & 2 & 3 & 2 & 2 & 3 & 0 & 3 & 2 & 1 & 0 & 1 & 4 & 3 \\
4 & 4 & 2 & 4 & 4 & 1 & 4 & 1 & 2 & 4 & 2 & 1 & 4 & 0 & 0 & 1 & 1 & 2 & 0 & 4 & 0 & 4 \\
0 & 2 & 1 & 1 & 3 & 1 & 4 & 1 & 1 & 2 & 1 & 0 & 1 & 1 & 4 & 2 & 0 & 0 & 1 & 3 & 2 & 3 \\
0 & 1 & 2 & 1 & 4 & 3 & 1 & 2 & 1 & 1 & 1 & 1 & 0 & 2 & 1 & 4 & 1 & 0 & 0 & 3 & 3 & 2 \\
0 & 1 & 1 & 2 & 1 & 4 & 3 & 1 & 2 & 1 & 0 & 1 & 1 & 4 & 2 & 1 & 0 & 1 & 0 & 2 & 3 & 3 \\
1 & 2 & 2 & 2 & 3 & 4 & 4 & 4 & 4 & 1 & 3 & 1 & 4 & 4 & 3 & 3 & 1 & 0 & 1 & 2 & 2 & 4 \\
1 & 2 & 3 & 1 & 4 & 0 & 2 & 2 & 4 & 3 & 4 & 0 & 4 & 1 & 2 & 2 & 0 & 1 & 1 & 3 & 3 & 2 \\
1 & 1 & 3 & 2 & 2 & 1 & 3 & 4 & 2 & 3 & 4 & 1 & 3 & 0 & 4 & 1 & 0 & 0 & 2 & 1 & 4 & 3 \\
4 & 0 & 4 & 1 & 0 & 3 & 2 & 4 & 0 & 1 & 0 & 3 & 2 & 2 & 2 & 1 & 1 & 0 & 4 & 1 & 4 & 0 \\
& & 3 & 0 & 4 & 1 & 2 & 3 & 0 & 3 & 4 & 3 & 0 & 1 & 4 & 1 & 0 & 4
\end{array}\right]
$$

and

$$
G_{2}=\left[\begin{array}{l}
-11
\end{array} \left\lvert\, \begin{array}{llllllllllllllllllllllll}
0 & 1 & 0 & 4 & 4 & 0 & 0 & 1 & 4 & 4 & 0 & 4 & 1 & 3 & 2 & 3 & 3 & 1 & 1 & 3 & 3 & 2 & 0 & 1 \\
4 & 4 & 1 & 1 & 2 & 1 & 2 & 4 & 1 & 4 & 3 & 2 & 1 & 4 & 4 & 3 & 2 & 4 & 2 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 4 & 0 & 0 & 0 & 4 & 4 & 4 & 1 & 4 & 1 & 0 & 2 & 3 & 3 & 1 & 1 & 3 & 3 & 2 & 3 & 1 & 4 \\
0 \\
0 & 1 & 0 & 0 & 4 & 0 & 4 & 1 & 0 & 3 & 1 & 3 & 0 & 3 & 1 & 4 & 1 & 3 & 4 & 1 & 4 & 3 & 3 & 4 \\
4 & 4 & 0 & 0 & 0 & 0 & 1 & 1 & 4 & 3 & 3 & 4 & 1 & 4 & 3 & 1 & 4 & 1 & 3 & 0 & 3 & 1 & 3 & 0
\end{array}\right.\right]
$$

respectively.
By puncturing C_{2} at the first coordinate, a $[35,11,17]_{5}$ code can be obtained with minimum distance improved by 1 from Grassl's online table [5]. All the computations are done using MAGMA [3].

Acknowledgment: The authors thank to San Ling for useful discussions and to the anonymous referees for their helpful comments.

Table 1. New codes from quasi-abelian codes

name	$C_{(a, b)}$	H	a and b
$C 1$	$[36,14,15]_{5}$	$\mathbb{Z}_{3} \times \mathbb{Z}_{6}$	$a=(3,3,3,0,0,1,4,3,4,0,4,4,4,4,3,0,1,0)$ $b=(2,4,1,1,3,3,0,0,4,4,1,0,0,1, ~ 4, ~ 2, ~ 2, ~ 4) ~$
$C 2$	$[36,11,18]_{5}$		$\mathbb{Z}_{3} \times \mathbb{Z}_{6}$
		$a=(2,4,4,3,4,4,3,2,4,3,4,4,3,4,2,3,4,4)$ $b=(3,0,0,0,3,3,3,0,3,0,3,0,1,1,1,1,1,1)$	

References

[1] S. D. Berman, Semi-simple cyclic and abelian codes. II, Kibernetika 3(3) (1967) 21-30.
[2] S. D. Berman, On the theory of group codes, Kibernetika 3(1) (1967) 31-39.
[3] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24(3-4) (1997) 235-265.
[4] C. Ding, D. R. Kohel, S. Ling, Split group codes, IEEE Trans. Inform. Theory 46(2) (2000) 485-495.
[5] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Online available at http://www.codetables.de, Accessed on 2015-10-09.
[6] S. Jitman, Generator matrices for new quasi-abelian codes, Online available at https://sites.google.com/site/quasiabeliancodes, Accessed on 2015-10-09.
[7] S. Jitman, S. Ling, Quasi-abelian codes, Des. Codes Cryptogr. 74(3) (2015) 511-531.
[8] K. Lally, P. Fitzpatrick, Algebraic structure of quasicyclic codes, Discrete Appl. Math. 111(1-2) (2001) 157-175.
[9] S. Ling, P. Solé, On the algebraic structure of quasi-cyclic codes I: Finite fields, IEEE Trans. Inform. Theory 47(7) (2001) 2751-2760.
[10] S. Ling, P. Solé, Good self-dual quasi-cyclic codes exist, IEEE Trans. Inform. Theory 49(4) (2003) 1052-1053.
[11] S. Ling, P. Solé, On the algebraic structure of quasi-cyclic codes III: Generator theory, IEEE Trans. Inform. Theory 51(7) (2005) 2692-2700.
[12] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, Amsterdam, The Netherlands: North-Holland, 1977.
[13] J. Pei, X. Zhang, 1-generator quasi-cyclic codes, J. Syst. Sci. Complex. 20(4) (2007) 554-561.
[14] G. E. Seguin, A class of 1-generator quasi-cyclic codes, IEEE Trans. Inform. Theory 50(8) (2004) 1745-1753.
[15] S. K. Wasan, Quasi abelian codes, Pub. Inst. Math. 21(35) (1977) 201-206.

[^0]: * This research is supported by the DPST Research Grant 005/2557 and the Thailand Research Fund under Research Grant TRG5780065.
 Somphong Jitman (Corresponding Author); Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand (email: sjitman@gmail.com).
 Patanee Udomkavanich; Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand (email: pattanee.u@chula.ac.th).

